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Abstract

Variational autoencoders often assume isotropic Gaussian priors and mean-field pos-
teriors, hence do not exploit structure in scenarios where we may expect similarity or
consistency across latent variables. Gaussian process variational autoencoders alleviate
this problem through the use of a latent Gaussian process, but lead to a cubic inference
time complexity. We propose a more scalable extension of these models by leveraging
the independence of the auxiliary features, which is present in many datasets. Our model
factorizes the latent kernel across these features in different dimensions, leading to a signifi-
cant speed-up (in theory and practice), while empirically performing comparably to existing
non-scalable approaches. Moreover, our approach allows for additional modeling of global
latent information and for more general extrapolation to unseen input combinations.

1. Introduction

Variational autoencoders (VAEs) have achieved great success in many representation learn-
ing tasks (Kingma and Welling, 2013; Rezende et al., 2014). However, their isotropic Gaus-
sian prior and variational posterior hinge on the strong assumption that all data points
are independent. This can often lead to problems in real-world use cases, where the data
exhibit significant correlations (Fraccaro et al., 2017; Krishnan et al., 2016).

Many alternative priors and posteriors have been proposed for VAEs (Tomczak and
Welling, 2018; Fortuin et al., 2018; Kopf et al., 2019). Especially when each input comes with
meta-data, or auxiliary features, such extra information can be used to construct Gaussian
processes (GPs) and use them as priors in the latent space (Casale et al., 2018; Fortuin
et al., 2020; Pearce, 2020). By choosing appropriate kernels, these resulting GP-VAE models
allow to capture the structured correlations across latent variables of different data points
(Williams and Rasmussen, 2006). However, they are also haunted by the computational
cost of exact GP inference, which scales as O(N3) for N elements in the dataset.

We consider the setting in which the inputs are images, and each image is associated
with several features, some of which are unique to the image and some of which are shared
with other images. For example in a set of MNIST digits rotated by multiple angles (Casale
et al., 2018), the digit ID is shared by other images of the same digit while the angle is
unique. Similarly, in a set of faces viewed from multiple perspectives, the person is common
to multiple images while each image has a unique position (Casale et al., 2018). Further

∗ Equal contribution.

© M. Jazbec, M. Pearce & V. Fortuin.



Factorized Gaussian Process Variational Autoencoders

applications include a set of scenes viewed from multiple positions (Eslami et al., 2018),
high dimensional spatio-temporal datasets (Ashman et al., 2020), or speech segments where
one speaker’s voice is shared by multiple segments (Li and Mandt, 2018).

For such settings, we propose a novel factorized GP-VAE model, FGP-VAE, with two
desirable properties. Firstly, by carefully exploiting factorization, inference is significantly
reduced from O(N3). Secondly, the representations are encouraged to be disentangled,
which is a highly desirable property for VAE models (Locatello et al., 2019; van Steenkiste
et al., 2019; Träuble et al., 2020).

We describe the problem setting in Section 2 and the proposed model in Section 3. We
present experimental results in Section 4, and conclude in Section 5.

2. Problem Setting

Consider high-dimensional data of N elements Y = [y1, . . . ,yN ]> where yi ∈ RK and each
data point has corresponding low-dimensional auxiliary data X = [x1, . . . ,xN ]> ∈ XN ,X ⊆
RD. For ease of exposition, we will focus on the example of the rotated MNIST dataset
(Casale et al., 2018). It consists of P digits, each observed at Q different angles, amounting
to a total of N = P ·Q images.1 Each xi = (di, wi) ∈ X is composed of a categorical digit
instance di (integer index or one-hot encoding) and a continuous angle wi. We wish to train
a model that can (1) given new x∗ ∈ X generate y∗ ∈ RK , and (2) infer an interpretable
and disentangled latent representation.

3. Method

Generative model: we follow a latent GP approach, first proposed in Casale et al. (2018)
and later extended in Pearce (2020). As in a standard VAE, each image yi is associated
with a latent variable zi ∈ RL. Making use of the auxiliary data, we further expect that
two images yi and yj with similar xi and xj should also have similar zi and zj . To this end,
a Gaussian process regression is used to model a joint distribution over all latent variables
Z = [z1, . . . , zN ]T ∈ RN×L. Given L latent dimensions, we assume L independent latent
functions f l ∼ GP (0, klθ), l = 1, . . . , L with kernels klθ and therefore the latent variable for yi
may be written as zi = [f1(xi), . . . , f

L(xi)]
T . Likewise, all latent variables of the lth channel

zl1:N = [f l(x1), . . . , f l(xN )] ∈ RN are assumed to come from a single (unknown) function,
specifically zl1:N has a correlated Gaussian prior with covariance Kl

NN = klθ(X,X) ∈ RN×N .
The generative model, pψ(Y,Z|X) = pψ(Y|Z)pθ(Z|X), is thus

pθ(Z|X) =

L∏
l=1

N (zl1:N |0,Kl
NN ),

pψ(Y|Z) =
N∏
i=1

pψ(yi|zi) =
N∏
i=1

N (yi|µψ(zi), σ
2
y IK),

1. The assumption that all digit instances are observed in the same number of angles Q is made to simplify
notation; the presented approach does not rely on this assumption.
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where µψ : RL → RK is a (generative) network with parameters ψ. Note that if KNN = I
is the identity matrix, the model recovers a standard VAE; using the X values enables the
use of more sophisticated prior.

In prior work (Casale et al., 2018; Jazbec et al., 2020), a single GP prior is used in
each of the L latent channels. Specifically, for rotated MNIST, a product kernel between a
periodic and a linear kernel is considered

kθ(xi,xj) = Σdi,dj · exp

(
−

2 sin2
(
|wi − wj |

)
r2

)
,

with parameters θ = {σ, r,Σ}. Σ = DDT has a low-rank form, and D ∈ RP×m is a
(learned) matrix that captures information common to all images of each digit such as
written style. This approach has multiple drawbacks. Firstly, given a set of N images, the
above kernel gives rise to a dense matrix KNN , where all latent variables are correlated
with each other. This necessitates either O(N3) cost or non-trivial approximations, such as
sparse GPs (Jazbec et al., 2020) or assuming equally spaced xi enabling specialized matrix
decompositions (Casale et al., 2018). Statistically, the prior does not factorize across any
subsets of the data. Secondly, if new digits are added to the dataset, the Σ matrix needs
be augmented with a new row and column, the new hyperparamters of D must be learned
from scratch, and it is not “amortized” over digits.

In this work, we propose two simple (yet still unexplored) changes that alleviate the
aforementioned issues. We start by partitioning the dataset into digit specific subsets
{X,Y,Z} = ∪Pp=1{Xp,Yp,Zp} and denote partitions by

Xp = {xi|di = p} ∈ RQ×D,
Yp = {yi|di = p} ∈ RQ×K ,
Zp = {zi|di = p} ∈ RQ×L.

Instead of assuming a single correlated prior over all N latent variables, we assume P
separate correlated priors over Q latent variables each, that is, one prior for each partition
of the data. Secondly, we assume that each latent variable zi ∈ RL is composed of two
parts. Temporarily dropping i for clarity, we propose to have

z =
(
z1, ..., zJ︸ ︷︷ ︸

local

, zJ+1, ..., zL︸ ︷︷ ︸
global

)
,

where the local variable z1:J
i is unique to the given image and the global variable zJ+1:L

i is
shared by all elements in the subset Zp. The global variable captures style information or
other common features of digit di that are angle-agnostic. For example, for frames from
videos of moving objects, local variables could capture object position and location while
global variables could capture object color and shape.

We must construct a kernel for each latent dimension l ∈ {1, ..., L} satisfying the above
criteria. For the local latent channels l ∈ {1, ..., J}, we specify the following kernel2

k1
θ(xi,xj) = δdi,dj · σ

2 exp

(
−

2 sin2
(
|wi − wj |

)
r2

)
.

2. δdi,dj = 1 if di = dj and 0 else.
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The first Kronecker delta term ensures that two images corresponding to different digits
have zero assumed latent variable similarity, while for two images of the same digit the
assumed similarity depends upon the difference in the rotation angles. This enforces that
the GP priors for each subset of digits are independent.

For the global latent channels l ∈ {J + 1, ..., L}, we wish to capture rotation-agnostic
characteristics of each image, that is, its style. To this end, a simple binary kernel is used

k2
θ(xi,xj) = δdi,dj .

Thus, among rotated images of the same digit, the global latents have perfect correlation;
for each global channel there is a single univariate distribution shared by all images of a
single digit. Simultaneously, the global latent variable of images in another subset is treated
as independent (this may also be viewed as the local kernel with length scale r →∞). Due
to the kernel structure, there is now a separate generative model for every digit instance
pψ,θ(Y,Z|X) =

∏P
p=1 pψ(Yp|Zp)pθ(Zp|Xp). Within each of the digit-specific generative

models, working with the GP prior is much less prohibitive as Q � N . Secondly, digit
style is captured in the global latent variables zj+1:L

i which can be estimated from images
via amortization. Such global information is no longer encoded in the generative model
hyperparameters Σ.

Approximate Posterior: exploiting the factorized structure of the generative model,
we may consider the posterior of each subset Zp independently. Since the true posterior for
latent variables pψ,θ(Zp|Yp,Xp) is intractable, approximate inference is required. In VAEs,
an inference network (with parameters φ) takes yq ∈ Yp as input to predict the mean and
variance of a mean-field approximate posterior of each latent encoding which we denote as

q̃φ(zq|yq) =
L∏
l=1

N
(
zlq|µlφ(yq), σ

l
φ(yq)

2
)
,

and one possible approximate posterior is to use the product of the above factors over all
N latent variables. Instead, closely following Pearce (2020), we use q̃φ(·) to replace only
the intractable likelihood pψ(yi|zi) in the exact posterior. This gives rise to the following
approximate posterior

q(Zp|Yp,Xp, φ, θ) :=

∏Q
q=1 q̃φ(zq|yq) · pθ(Zp|Xp)

Zφ,θ(Yp,Xp)
.

The conjugacy of the Gaussian prior and (approximate) Gaussian likelihoods yields a closed-
form solution for the normalizing constant Zφ,θ(Yp,Xp). Moreover, the approximate poste-
rior q(Zp|·) is mathematically equivalent to a product of J exact GP posteriors of Q points
(one GP for each angle latent channel) and L − J univariate Gaussian distributions that
are common to all Q elements in the subset. Exact derivations are given in Appendix B.

Finally, the FGP-VAE ELBO has the form:

log p(Y|X) ≥
P∑
p=1

Eq
[ Q∑
q=1

log pψ(yq|zq)− log q̃φ(zq|yq)
]

+ logZφ,θ(Yp,Xp).
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Table 1: Results on the rotated MNIST digit 3 dataset. Reported here are mean values
together with standard deviations based on 5 runs. We see that our proposed
model outperforms the baselines while still being more scalable than the Casale
et al. (2018) model. P represents the number of unique digits, Q the number of
rotations for each digit and m the dimension of the low-rank matrix in the GP
kernel used in Casale et al. (2018).

MSE GP complexity Time/epoch [s]

CVAE (Sohn et al., 2015) 0.0796± 0.0023 - 0.39± 0.01

GP-VAE (Casale et al., 2018) 0.0370± 0.0012 O(PQ3m2) 19.10± 0.66

FGP-VAE (ours) 0.0284± 0.0004 O(PQ3) 1.41± 0.08

Due to its factorization across digit subsets, and the assumption that Q � N , exact GP
inference (with approximate likelihoods) is feasible, resulting in O(PQ3) complexity for one
epoch. Additionally, training can be done in mini-batches of digit subsets {Yp,Xp}, hence
the ELBO does not require the whole dataset in memory. In cases where Q is large or Yp

do not fit into memory, the factorized kernel we propose may be combined with a sparse
GP-VAE method (Ashman et al., 2020; Jazbec et al., 2020) to further reduce computational
complexity.

4. Experiments

We follow the experimental setup from Casale et al. (2018) in conditionally generating
rotated images of MNIST handwritten digits (LeCun et al., 1998). The dataset consists
of P = 400 different instances of the digit 3 at Q = 16 different angles each, resulting
in a total of N = 6400 possible combinations. From these combinations, Ntrain = 4050
images are used for training and Ntest = 270 for testing. The dimension of the latent
space is set to L = 16 in all models. In our FGP-VAE, we use 8 latent channels for
local variables and 8 latent channels for global variables (J = 18). We choose the same
network architecture as the one in Casale et al. (2018) for all models (see Appendix A for
implementation details). For running the baselines, we used the code from Jazbec et al.
(2020). Moreover, we make use of the GECO algorithm (Rezende and Viola, 2018) to
train our FGP-VAE model, as it improves training stability. Our code is made available at
https://github.com/metodj/FGP-VAE.

Reconstruction performance. We see qualitatively in Figure 1(a) and quanitatively in
Table 1 that our proposed FGP-VAE clearly outperforms the non-correlated CVAE model
(Sohn et al., 2015) and performs comparably to the non-factorized GP-VAE (Casale et al.,
2018). However, our proposed model is an order of magnitude faster than the non-factorized
GP-VAE and reaches runtimes that are almost as fast as the CVAE.

Scaling behavior. We additionally studied the scaling of our proposed model to dif-
ferently sized subsets, including the full dataset. (We do not compare against the other
GP-VAE model here, since we did not manage to scale it to this larger dataset). We can see
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(b) Scaling properties

Figure 1: (a) Conditionally generated rotated MNIST images. The generations of our pro-
posed model are qualitatively more faithful to the ground truth. (b) Performance
and runtime of our proposed model on differently sized subsets of the MNIST
dataset, including the full set. We see that the performance stays roughly the
same, regardless of dataset size, while the runtime grows linearly as expected.
The size of each dataset equals 4050× nr. of MNIST digits.

in Figure 1(b) that our proposed model does not deteriorate in performance when scaling
the dataset, while the runtime scales as gracefully as theoretically predicted (see Sec. 3).

Extrapolation in the digit space. An additional attractive feature of the factorized
model is that it can (unlike past works) extrapolate beyond digits observed in the training
data. Past works only considered images seen during training and generated them at new
angles. The FGP-VAE can also generate arbitrary rotations for previously unseen digits
given either a single example (sample the posterior of global latents), or even generated
randomly (sample the prior of global latents). This is a consequence of our disentangled
(and arguably much simpler) GP kernel. The FGP-VAE achieved an MSE of 0.0316±0.0005
for the extrapolation experiment, which is only slightly worse than the 0.0284 ± 0.0004
for the non-extrapolation version of the experiment. This demonstrates the FGP-VAE’s
strong extrapolation ability in the digit space. Generated images from the extrapolation
experiment are shown in Appendix D. We further elaborate on the extrapolation properties
of GP-VAE models in Appendix C.

5. Conclusion

We have proposed a novel method for improving the scalability of GP-VAE models in
settings where the auxiliary data consists of several independent features. Our method
factorizes the latent GP kernel across the different data features in different latent dimen-
sions, leading to a large reduction in inference time complexity. We have shown that our
model is faster than existing non-factorized approaches in practice, while yielding a compa-
rable predictive performance and offering more general extrapolation properties. In future
work, it would be interesting to study the combination of our method with the recently
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proposed sparse GP-VAE approaches (Jazbec et al., 2020; Ashman et al., 2020), to reduce
the inference time even further.
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Appendix A. Implementation details

For the rotated MNIST experiment described, we used the same neural networks architec-
tures as in Casale et al. (2018): three convolutional layers followed by a fully connected
layer in the inference network and vice-versa in the generative network. For more details,
see Table A.1.

The FGP-VAE model is trained for 1000 epochs with a batch size of 220 images (20
digits subsets, each with 11 rotations). The Adam optimizer (Kingma and Ba, 2014) is used
with its default parameters and a learning rate of 0.001. Moreover, the GECO algorithm
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Table A.1: Neural networks architectures for the MNIST experiment.

Parameter Value

Nr. of CNN layers in inference network 3
Nr. of CNN layers in generative network 3
Nr. of filters per CNN layer 8
Filter size 3× 3
Nr. of feedforward layers in inference network 1
Nr. of feedforward layers in generative network 1
Activation function in CNN layers ELU
Dimensionality of latent space (L) 16
Number of latent channels for angle info (J) 8

(Rezende and Viola, 2018) is used for training our FGP-VAE model in this experiment.
The reconstruction parameter in GECO was set to κ = 0.020 in all reported experiments.

GP parameters are kept fixed throughout training for FGP-VAE. The amplitude is set
to σ = 1 and the length scale to r = 1. For the baseline GP-VAE model (Casale et al.,
2018), GP parameters are optimized during training as proposed in Casale et al. (2018).

Appendix B. Derivations

To simplify the notation, we use here one latent channel per feature set, i.e. J = 1 and
L = 2. For zq ∈ Zp, we thus have that zq = [zq zp]

T , where we drop latent channel
superscripts for clarity. With zq we denote a local latent variable that is specific to the q-th
rotation, while zp represents a global latent variable that is shared among all rotations of
the p-th digit. Further, let z1

p = [z1 . . . zQ]T ∈ RQ contain all local latent variables in Zp,

and Kp = k1
θ(Xp,Xp). For notational convenience, let µq,l := µlφ(yq) and σq,l := σlφ(yq).

We proceed as

Zφ,θ(Yp,Xp) =

∫ Q∏
q=1

q̃φ(zq|yq) · pθ(Zp|Xp) dZp =

∫ Q∏
q=1

N (zq|µq,1, σ2
q,1)N (zp|µq,2, σ2

q,2) · N (z1
p|0,Kp)N (zp|0, 1) dZp =

∫ Q∏
q=1

N (zq|µq,1, σ2
q,1)N (z1

p|0,Kp) dz
1
p ·
∫ Q∏

q=1

N (zp|µq,2, σ2
q,2)N (zp|0, 1) dzp .

By exploiting the symmetry of Gaussian distribution, N (z|µ, σ) = N (µ|z, σ), the first
integral equals a marginal GP likelihood in the standard GP regression with inputs Xp and
outputs µp := [µ1,1 . . . µQ,1]T ∈ RQ with (heteroscedastic) noise σp := [σ1,1 . . . σQ,1]T ∈ RQ.
Combining the same symmetry property with a formula for conjugate posterior parameters
for Gaussian likelihood with known heteroscedastic variance yields the following expression
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for the second integral∫ Q∏
q=1

N (zp|µq,2, σ2
q,2)N (zp|0, 1) dzp =

N (0|0, 1)
∏Q
q=1N (0|µq,2, σ2

q,2)

N (0|µ̄2, σ̄2
2)

,

where

σ̄2
2 =

(
1 +

Q∑
q=1

1

σ2
q,2

)−1
, µ̄2 = σ̄2

2

Q∑
q=1

µq,2
σ2
q,2

.

Similarly, a closed form for the approximate posterior can be obtained as

q(Zp|Yp,Xp, φ, θ) =

∏Q
q=1 q̃φ(zq|yq) · pθ(Zp|Xp)

Zφ,θ(Yp,Xp)
=

∏Q
q=1N (zq|µq,1, σ2

q,1)N (z1
p|0,Kp)∫ ∏Q

q=1N (zq|µq,1, σ2
q,1)N (z1

p|0,Kp) dz1
p︸ ︷︷ ︸

(exact) GP posterior for {Xp,µp,σp}

·
∏Q
q=1N (zp|µq,2, σ2

q,2)N (zp|0, 1)∫ ∏Q
q=1N (zp|µq,2, σ2

q,2)N (zp|0, 1) dzp︸ ︷︷ ︸
= N (zp|µ̄2, σ̄2

2), Gaussian posterior

.

Finally, an FGP-VAE ELBO can be derived as follows using the standard steps:

log p(Y|X) ≥
P∑
p=1

∫
log

pψ,θ(Yp,Zp|Xp)

q(Zp|·)
q(Zp|·)dZp =

P∑
p=1

∫
log

(
pψ(Yp|Zp) · pθ(Zp|Xp) · Zφ,θ(Yp,Xp)∏Q

q=1 q̃φ(zq|yq) · pθ(Zp|Xp)

)
q(Zp|·)dZp =

P∑
p=1

Eq
[ Q∑
q=1

log pψ(yq|zq)− log q̃φ(zq|yq)
]

+ logZφ,θ(Yp,Xp).

Appendix C. Amortization of auxiliary data in GP-VAE models

Auxiliary data X is crucial in applications of GP-VAE models as it represents the data
over which a GP prior is placed.3 While it is often fully observed, there are cases where
auxiliary data is not given (or is only partially observed). In such instances, the authors in
Casale et al. (2018) rely on the GP-LVM (Lawrence, 2004) to learn the missing parts of the
auxiliary information. Such an approach solves the issue of (partly) unobserved X in an
elegant way, however by doing so, the extrapolation ability of GP-VAE models is diminished.
Suppose we want to generate new views or angles for previously unseen digits or objects.
In that case, we need to re-run the training optimization so that the respective GP-LVM
vectors are obtained. Note that GP-LVM vectors correspond to rows in the low-rank matrix
Σ ∈ RP×m that is part of the GP kernel proposed in Casale et al. (2018).

3. Auxiliary data in a GP-VAE corresponds to independent variables in a GP regression.

10



Factorized Gaussian Process Variational Autoencoders

Another way of endowing GP-VAE models with the extrapolation ability, besides con-
sidering factorized (and simpler) GP priors as done in our FGP-VAE, would be to amortize
the GP-LVM information using a representation network rζ : RK → Rm, similar to what is
done in Eslami et al. (2018). The representation for the p-th digit instance is then

dp = f
(
rζ(y1), . . . , rζ(yQ)

)
∈ Rm ,

where Yp = [y1 . . .yQ]T , and f is a chosen aggregation function, for instance, a sum or a
mean. Instead of GP-LVM vectors, the parameters of the representation network ζ would
be learned jointly with the rest of GP-VAE parameters.

Appendix D. Extrapolation in the digit space

Figure D.1: Ground truths (columns 1 and 3) and generated images (columns 2 and 4) using
FGP-VAE for new digit instances (not seen during training in any angle). To
generate the rotations for each new digit in the test phase, 11 context images
were given to the model.
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