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ABSTRACT

As models become larger and hardware limitations widen, parallel training tech-
niques have become increasingly important for improving training efficiency.
However, the choice and combination of these techniques can greatly impact
their effectiveness. Automatic parallelism methods have emerged to select the
best combination of strategies from a selection space of parallel strategies. How-
ever, these methods rely heavily on manual annotation of operator SPMD sharding
rules, which makes them difficult to develop, maintain and benchmark, and lack-
ing in ecological compatibility. In this work, we present MetaDist, an infrastruc-
ture for automatic parallelism. We propose two abstract data structures, MetaOp
and MetaIR, which enable us to construct the MetaSPMD space. The ShardCom-
bine Algorithm obviates the need for manual annotation, significantly reducing the
development and maintenance cost. Moreover, our approach is natively compati-
ble with multiple ecologies, including PyTorch and JAX. To validate our design,
we implement two baseline automatic parallelism algorithms based on MetaDist.
Our experiments demonstrate that our approach achieves state-of-the-art perfor-
mance compared with other distributed solutions.

1 INTRODUCTION

Deep learning has achieved significant progress in the quest for artificial general intelligence, and
its success can largely be attributed to the development of foundational models (Bommasani et al.,
2021) that can scale up with increasing amounts of data and parameters. As these foundational
models grow in size, they exhibit significant improvements in performance for downstream tasks
and undergo emergence of new capabilities. Because of the rapid growth of models, and the huge
gap between hardware limitations, a series of parallel training efforts have emerged, including ten-
sor parallelism (Shazeer et al., 2018; Shoeybi et al., 2019; Karakus et al., 2021), pipeline paral-
lelism (Huang et al., 2019; Fan et al., 2021; Li & Hoefler, 2021), etc. The training of large models is
often a combination of these parallel methods, and different strategies can lead to huge performance
differences (Narayanan et al., 2021). Existing large model training frameworks still require complex
developing involving high performance computing experts to have good performance.

Automatic parallelism holds great potential for accelerating deep learning research and production
by allowing model developers to quickly explore new designs without worrying about distributed
strategies or performance optimizations. There are two main approaches to automatic parallelism:
the template-based approach (Chen et al., 2023; Miao et al., 2022) and the compiler approach (Zheng
et al., 2022; Zhang et al., 2023). The template-based approach is limited to specific model struc-
tures, such as the transformer architecture, and relies on predefined templates for parallelization.
On the other hand, the compiler approach offers more flexibility and can be applied to any model
structure, but relies heavily on manual annotation of operator SPMD sharding rules, which involves
enumerating the feasible parallelism of each operator. These annotations are often specific to a par-
ticular intermediate representation (IR), such as Alpa (Zheng et al., 2022) and Rhino’s (Zhang et al.,
2023) SPMD annotations for XLA (Sabne, 2020) operators. The coupling between the automatic
parallelism algorithm and the IR and its ecological framework leads to two main challenges:

1) Lack of ecological compatibility: Automatic parallelism algorithms developed for one frame-
work may not be directly applicable to other frameworks, resulting in duplicated work within the
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community. This lack of compatibility limits the reusability of parallelization algorithms across
different deep learning frameworks, making it harder to take advantage of existing solutions.

2) Difficulty in development, maintenance, and benchmarking: Automatic parallelism algo-
rithms that are strongly coupled to specific IRs and frameworks can be challenging to develop,
maintain, and benchmark. As IRs and frameworks evolve over time, the automatic parallelism algo-
rithms need to be updated accordingly, leading to additional development and maintenance efforts.
Furthermore, benchmarking and comparing the performance of different parallelization algorithms
becomes complicated due to the dependence on specific IRs and frameworks.

Our key observation and motivation revolve around the idea that by automatically exploring SPMD
rules for arbitrary operators, we can decouple automatic parallel algorithms from specific IR or
machine learning (ML) frameworks. This approach allows us to eliminate the need for manually
annotating, reducing the cost of developing and maintaining sharding annotations. Additionally, it
enables us to use a set of automatically parallel algorithms across different ML framework ecosys-
tems, making benchmarks between these algorithms more fair.
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Figure 1: The architecture of existing approaches and MetaDist. MetaDist decouples automatic
parallelism from specific IR and frameworks (MetaOp and MetaIR, Section 3.2) and propose an au-
tomatic annotation algorithm (ShardCombine Algorithm, Section 3.3) for operator SPMD sharding
rules without the need for manual annotations, as often required in existing approaches.

With the aforementioned observation and motivation, we present MetaDist, an infrastructure for
automatic parallelism utilizing the ShardCombine Algorithm. To achieve this, we introduce
two abstraction structures: MetaOp and MetaIR. MetaOp serves as an abstraction for operators
from different frameworks, encompassing kernels from compiler codegen, and supporting PyTorch
ATen (Paszke et al., 2019), Jax Primitives (Frostig et al., 2018), and TVM Tensor Expression (Chen
et al., 2018). MetaIR unifies a framework-agnostic representation of computational graphs, accom-
modating PyTorch ATen graph (Wu, 2023) and Jaxprs. At the abstraction level of MetaOp, we con-
struct the MetaSPMD (Meta Single Program Multiple Data) space and propose the ShardCombine
Algorithm, which automates generate MetaSPMD annotation. Finally, we implement two baseline
automatic parallelism algorithms based on MetaDist to validate the design and implementation.

2 BACKGROUND

2.1 DISTRIBUTED ALGORITHM AND SYSTEM

Data parallelism has been the go-to approach for distributed training for a long time. It involves
splitting the data across different devices and performing local forward and backward computations
separately, followed by gradient synchronization using all-reduce communication. However, as it
requires a complete copy of the parameters on each device, it’s not suitable for training large mod-
els. To address this issue, tensor parallelism and pipeline parallelism have been proposed, with the
main difference being the way parameters are partitioned. Tensor parallelism divides the parameters
within a layer, while pipeline parallelism divides them between layers. These approaches enable the
parallel training of large models by reducing the memory requirements on each device.

Megatron-LM leverages a hybrid approach called PTD Parallelism, which combines pipeline paral-
lelism, tensor parallelism, and data parallelism. To use PTD Parallelism, users need to modify their
model to use layers that support tensor parallelism and adjust the ratio of individual parallelisms to
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achieve optimal performance. Meanwhile, developers need to implement tensor parallelism layers
for and manually manage computation and communication.

Another approach is the ZeRO Redundancy Optimizer (ZeRO) Rajbhandari et al. (2020), which
adapts data parallelism by sharding the model parameters, gradients, and optimizer states. From
the user’s perspective, it is easier to use than other methods, but still requires strategic choices
(ZeRO-2 or ZeRO-3) to obtain the best performance. From the developer’s perspective, ZeRO’s
implementation relies heavily on PyTorch’s Module feature, which requires manual scheduling and
communication management, making it difficult to port to TensorFlow Abadi et al. (2016) or Jax.

Recent automatic parallelism work, such as Alpa Zheng et al. (2022) and Rhino Zhang et al. (2023),
abstract parallelism problems as optimization problems to find the least costly solution for commu-
nication by using Integer Linear Programming (ILP) or Dynamic Programming (DP). Such a system
requires no user-set policies and is easy to use. However, from a development point of view, this
class of work requires manual annotations of SPMD rules for each type of operator (typically tens to
hundreds) in a particular IR. Such systems are not framework-agnostic, and implementing an iden-
tical set of automatic parallelism algorithms for each framework requires significant annotating and
development costs, as well as maintenance costs as the framework evolves.

Table 1: Comparison of current distributed solution for large-scale deep learning.

Distributed Solution
Large Model
Support

Easy-to-use
(user’s view)

Easy-to-dev
(develop’s view)

Ecological
Compatibility

PTD Parallelism   

ZeRO  - 

Alpa/Rhino   

MetaDist   

2.2 MACHINE LEARNING FRAMEWORK

The current machine learning frameworks can typically be classified into two categories: eager
mode and graph mode, which correspond to imperative and declarative programming, respectively.
Most modern frameworks support both modes. For instance, Jax uses eager execution by default
for jax.Array calculations, but it provides Just In Time (JIT) compilation for better performance.
This feature converts Python functions to Jaxpr, and lowers it to XLA. Jax uses HLO (High Level
Operations) IR to construct a computational graph for analysis and optimization. The HLO operator
is more fine-grained, containing only a few dozen operators.

PyTorch 2.0 introduced a compiler infrastructure that supports graph mode. AOT Autograd traces
the forward and backward graphs ahead of time, builds a computational graph based on the PyTorch
ATen operator, and provides an API for optimizing and transforming the graph. Moreover, PyTorch’s
newly introduced DTensor (Distributed Tensor) provides programming primitives and run-time for
the SPMD paradigm.

3 METADIST

3.1 THE OBSERVATION

After observing the current machine learning frameworks and operator-level SPMD parallelism, we
can identify two main patterns:

1) As mentioned in Section 2.2, all machine learning frameworks utilize similar computational
graph structures and operators. Operators is a set of fundamental operations in deep learning,
such as convolution and layer normalization. Computational graphs are comprised of tensors and
operators. In computational graphs, nodes typically represent operators, and directed edges between
nodes depict tensor states and signify the dependencies between computations. For instance, Jax
employs Jaxpr as the computational graph and Primitives as operators, while PyTorch uses the FX
graph traced by AOT Autograd as the computational graph and ATen operators.
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2) The common pattern of SPMD operation rules involve: specific sharding input, local com-
putation, re-combineable output, as illustrated in the right portion of Figure 2. For example, to
perform the matrix multiplication Y = XW , the first dimension of X is sharded, W is replicated,
and local matrix multiplication is executed, resulting in local Y . Gathering local Y in the first
dimension produces the global Y .

Building upon the two aforementioned observations, we have developed two framework-agnostic
concepts: MetaIR and MetaOp. Computational graphs from various frameworks can be transformed
into MetaIR, wherein the operators are converted into MetaOp. The ShardCombine algorithm is then
utilized to automatically annotate SPMD rules on MetaOp, facilitating the design and implementa-
tion of parallel algorithms based on MetaOp and MetaIR.

3.2 METAOP AND METAIR

MetaIR provides an abstract representation of computational graphs from diverse frameworks, com-
prising of three parts: input list, op list, and output list. The input list and
output list consist of several MetaVars, which serve as abstract representations of tensors.
MetaVars contain information such as the shape and data type of tensors, as illustrated in Figure
2. The op list comprises of numerous MetaOp, each of which receives a set of MetaVars as
input and produces a set of MetaVars as output. Additionally, MetaOp contains a callable primitive
operator function from the frameworks, as well as MetaSPMD, which encompasses the operator
parallelism space.

op_function

d b

e
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Combination

Computation

  MetaIR 
   input_list: List[MetaVar] 
   op_list: List[MetaOp] 
   output_list: List[MetaVar] 
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  ==================== 
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  [c] <-- [tanh] -- [a] 
  [d] <-- [exp] -- [c] 
  [e] <-- [dot_general] -- [d, b] 

  output_list: [e] 
  ==================== 

MetaOp 

MetaSPMD

Figure 2: The definition and example for MetaIR and MetaOp.

MetaIR can be considered as a directed acyclic graph (DAG), with MetaOp serving as nodes and
MetaVar as edges. The central portion of Figure 2 depicts a simple instance of MetaIR, which
has two MetaVars (a, b) as input and a single MetaVar (e) as output, along with three MetaOps
(tanh, exp, dot general). However, since the granularity of operators differs across various
frameworks, the MetaIR’s general abstraction would differ for an equivalent computation. In the
case of PyTorch’s ATen operator, which has a coarser granularity, its corresponding MetaIR usually
features a smaller number of MetaOps. Conversely, Jax, which has a finer granularity, typically
incorporates a greater number of MetaOps in its MetaIR representation. And we will describe how
to make MetaOp support TVM Tensor Expression in the Appendix A.1.

3.3 METASPMD AND SHARDCOMBINE ALGORITHM

In accordance with our second observation in Section 3.1, we have designed MetaSPMD as the part
of MetaOp that expresses the operator-level parallel space. MetaSPMD consists of a ShardSpec
and a CombineSpec that detail how to shard the input and combine the local results into global
results, respectively. For a particular MetaOp, let us assume that it has i inputs, denoted by X1,
X2, ..., Xi, where each input Xi has a tensor shape of [Di1 , Di2 , ..., Din ] (i.e., tensor Xi has in
dimensions). The ShardSpec takes a list of in values, [Ci1 , Ci2 , ..., Cin ], for each input Xi, where
each value corresponds to a dimension of the tensor Xi and takes on the values NoShardDim (N )
or ShardDim(id=j) (Sj). The value NoShardDim signifies that the dimension is not shard-
able, while Sj corresponds to dimensions that can be sharded simultaneously. For each Sj , there
is a corresponding CombineFunc that can re-combine the local results into global results. The
CombineSpec is a dictionary whose key is Sj , and its value is its corresponding CombineFunc.
Common CombineFunc include gather, reduce, and so on.
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Figure 3 illustrates some examples of the MetaSPMD for common operators. In the case of the ma-
trix multiplication (MatMul) operator, there are two inputs with ShardSpecs [S1, S2] and [S2, S3],
indicating three sharding strategies: S1 (sharding the first dimension of the first input, correspond-
ing to data parallelism), S2 (sharding the first input of the second dimension and the first dimension
of the second input, which corresponds to row tensor parallelism in Megatron-LM), and S3 (shard-
ing the second dimension of the second input, which corresponds to column tensor parallelism in
Megatron-LM). The CombineSpec shows that, under S1, we need to gather on the first dimen-
sion of the output; under S2, we need to reduce(SUM) on the output; and under S3, we need to
gather on the second dimension of the output.

X1 X2

[ D1,D2 ] [ D2,D3 ]

MatMul:

X1 X2

[ D1,D2 ] [ D1,D2 ]

Elementwise-Add:

X1

[ D1,D2 ]

LayerNorm:

ShardSpec: [ S1,S2 ], [ S2,S3 ]

CombineSpec: [ S1 : gather(dim=0), 
               S2 : reduce(op=SUM), 
               S3 : gather(dim=1) ]

ShardSpec: [ S1,S2 ], [ S1,S2 ]

CombineSpec: [ S1 : gather(dim=0), 
               S2 : gather(dim=1) ]

ShardSpec: [ S1,N ]

CombineSpec: [ S1 : gather(dim=0) ]

Input

MetaSPMD

MetaOp

Figure 3: MetaSPMD of some common operators.

MetaSPMD encompasses all the parallel strategies at the operator level, which can be utilized by
automatic parallelism algorithms. Traditionally, automatic parallelism algorithms have required the
manual annotating of this information for each operator within a specific IR. However, MetaDist
utilize the ShardCombine Algorithm to automatically annotate MetaSPMD.

Design of ShardCombine Algorithm. The ShardCombine algorithm is an exploration algorithm
that utilizes heuristic information to shard input data, and attempts to re-combine local results
into global results using the TryCombine function. The high-level pseudo-code for this algo-
rithm can be found in Algorithm 1. In the function TryCombine(dims), the first step is to run
MetaOp.op function with MetaOp.invars as input to obtain global results. Next, the cor-
responding dimensions of MetaOp.invars are sharded, and the op function is attempted to
be executed to obtain local results. Finally, an attempt is made to obtain global results from local
results using a predefined CombineFunc. If successful, the function returns the CombineFunc;
otherwise, it returns None. It is important to note that many attempts to execute the op function
will fail due to shape mismatches, and these will immediately return a failure without the need to
attempt combining.

Algorithm 1: ShardCombine Algorithm
Input: MetaOp
Output: MetaSPMD for this MetaOp

1 MetaSPMD.ShardSpec← [[NoShardDim] * var.ndim for var in
MetaOp.invars]

2 MetaSPMD.CombineSpec← {}
3 ShardID = 1
4 for dim in flatten(MetaSPMD.ShardSpec) do
5 if dim == NoShardDim then
6 try assign ShardDim(ShardID) on dim
7 for dims in the set of all subsets of NoShardDim in subsequent invars do
8 combine func = TryCombine(dim+dims)
9 if combine func is not None then

10 assign ShardDim(ShardID) on dim+dims
11 MetaSPMD.CombineSpec[ShardID] = combine func
12 ShardID += 1, break
13 end if
14 end for
15 end if
16 end for
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Figure 4 illustrates an example of the ShardCombine algorithm applied to the matrix multiplication
(MatMul) operator. Initially, we assign a value of NoShardDim (N ) to each dimension of the
input. We then attempt to assign a value of ShardDim(1) (S1) to the first input dimension. Next,
we check whether performing a gather operation on the first dimension of the output would result
in a successful combination. On the second attempt, we determine that assigning S2 to both the
second dimension of the first input and the first dimension of the second input would enable us to
execute the op function and obtain global results by combining reduce(SUM). The final step
can be accomplished in a similar manner.

X1 X2

[ D1,D2 ] [ D3,D4 ]

MatMul:

[ N,N ] [ N,N ]

[ S1,N ] [ N,N ]

Step 0:

Step 1:

[ S1,S2 ] [ N,N ]Step 2:

[ S1,S2 ] [ S2,N ]

Step 3: [ S1,S2 ] [ S2,S3 ]

[ D1,D4 ]

Y1

S1: Gather on D1

S2: Reduce

S3: Gather on D4

MetaSPMD of MatMul

ShardSpec: [ S1,S2 ], [ S2,S3 ]

CombineSpec: [ S1 : gather(dim=0), 
               S2 : reduce(op=SUM), 
               S3 : gather(dim=1) ]

Figure 4: An example of the ShardCombine Algorithm on the matrix multiplication (MatMul) op-
erator. The left side shows the exploration process of ShardCombine Algorithm, and the right side
shows the MetaSPMD output of ShardCombine Algorithm.

Implementation and Optimization of ShardCombine Algorithm.

The effectiveness of this approach is the most critical question, as it determines whether it can
encompass all operator-level parallelism strategies. As discussed in Section 3.1, the majority of
operator-level parallelism can be expressed through shard, local computation, and re-combine. The
ShardCombine algorithm effectively navigates this range of expression capabilities for each oper-
ator, enabling it to produce MetaSPMD for most operators in an efficient manner. Therefore, the
ShardCombine algorithm’s capability to include most operator-level parallelism strategies makes it
a valuable approach.

We offer two methods to expand the functionality of the ShardCombine algorithm. Firstly, we can
generate MetaSPMD directly for certain operators without undergoing the exploration process of
the ShardCombine algorithm. This approach is useful for operators like reshape, which cannot be
expressed as a simple shard and re-combine process due to the involvement of shape and stride
derivation. Secondly, we can extend the algorithm’s strategy space by expanding its shard and
combine capabilities. For instance, we added support for the halo argument when dealing with
convolution operators. In Figure 5, the gather function is extended with a halo argument. The halo
argument can be a positive or negative number. If it is positive, we add the data in the overlap region
when we combine the results. If it is negative, we discard the data with width d and then perform
the gather operation. By using such extensions, we can search for operator-level parallel strategies
for convolution operators that involve sharding with the image length and width. Refer to Appendix
A.3 for a demonstration of how to support complex cases in details

gather gather(halo=d) gather(halo=-d)

d d

Figure 5: An example of extending CombineFunc. The left side shows the local results, the right
side is the global results, different colors represent the data from different shards, the mixed color
represents the sum of the data in the corresponding area.

Regarding the efficiency of the ShardCombine Algorithm, there are two aspects to consider. First,
the time required for the ShardCombine Algorithm to explore all the operators is negligible com-
pared to the training time of tens of hours or even days. This exploration process only needs to be
done once before training starts. Second, our implementation uses a cache mechanism that leverages
the op function and invars as unique keys to find completed search strategies in the cache.
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This mechanism can also speed up the process for a specific operator with different inputs. Since
the MetaSPMD is approximately the same for an operator, even with different inputs, historical ex-
ploration results can be used as the initial state to reduce the number of attempts. Therefore, the
ShardCombine Algorithm can significantly improve the efficiency of training deep neural networks.

The cache mechanism can greatly reduce search time, but its effectiveness varies depending on the
model’s characteristics. In the case of transformer architecture models, the cache mechanism is
particularly effective for reducing search costs in the ShardCombine algorithm due to the model’s
small number of operators and fixed tensor shape.

3.4 BASELINE AUTOMATIC PARALLELISM ALGORITHM

We have implemented two baseline automatic parallelism algorithms using the MetaDist in-
frastructure to validate its effectiveness. One algorithm is based on integer linear program-
ming (ILP), while the other is designed based on beam search. With the support of MetaDist,
we have created a platform-agnostic implementation of automatic parallelism algorithms that
can natively support PyTorch and Jax, without the need for manual annotation for operator-
level SPMD rules. We have also used PyTorch’s DTensor and Jax’s jax.Array with
jax.lax.with sharding constraint to inject the strategy generated by the automatic al-
gorithm back into the framework via transformations. Finally, we have executed the computational
graph using the framework’s native runtime.

3.4.1 AUTOMATIC PARALLELISM WITH ILP

In the context of MetaIR, we can view MetaOp as a node (N ) and MetaVar as an edge (E), which
collectively form a graph G = (N,E). Following the approach proposed by Alpa Zheng et al.
(2022) for intra-operator parallelism, we can model automatic parallelism as integer linear program-
ming (ILP) problems and use an off-the-shelf solver to determine the optimal solution.

For a given node nodei, let Ni denote the number of possible sharding strategies available. We
define a decision vector mi ∈ {0, 1}Ni for each node, where each element that takes a value of 1
in mi represents the selection of the corresponding sharding strategy. For edges connecting nodes
nodei and nodej, we use Mi,j ∈ {0, 1}Ni×Nj as the decision vector. We also define a communication
cost matrix Ci,j ∈ RNi×Nj . The objective of the problem is to minimize the communication cost∑

E

∑
i,j Mi,j ∗ Ci,j. The constraints for this problem are as follows:

• sum(mi) == 1 for each node (mi is one-hot vector)
• sum(Mi,j) == 1 for ecah edge (Mi,j is one-hot vector)
• for each edge connect nodei and nodej

– Mi,j <= mi, Mi,j <= mj
– Mi,j >= mi + mj - 1

In contrast to Alpa, which is implemented at the XLA compiler level, our automatic parallelism
algorithm is implemented on top of the ML framework. Therefore, we utilize Python-MIP Santos &
Toffolo (2020) as the solver. For each node, we can generate all possible sharding strategies based
on the MetaOp’s MetaSPMD information and the current device mesh.

3.4.2 AUTOMATIC PARALLELISM WITH BEAM SEARCH

In addition to ILP, we have also implemented another baseline automatic parallelism algorithm based
on beam search. To implement the beam search algorithm, we loop through the op list in MetaIR
and maintain a strategy candidate set of size K. For each newly added opi, assuming it has ni

strategies, we combine each strategy in the current strategy candidate set with the strategy of this
operator to generate a new set of strategies. If there are N strategies in the current strategy candidate
set, and after adding the new operator, we get N ∗ ni strategies. From this new set, we filter out the
optimal K strategies based on the cost function. The beam search algorithm, like the ILP algorithm,
aims to minimize communication as an optimization objective. However, the beam search algorithm
relies on local information for decision-making, which can lead to getting stuck in local optima and
makes it more challenging to consider memory constraints.
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Algorithm 2: Automatic Parallelism with Beam Search
Input: MetaIR, BeamWidth (K)
Output: ShardingStrategy for this MetaIR

1 CandidateSet← []
2 for op in MetaIR.op list do
3 CandidateSet = MERGE(CandidateSet, op.get strategies())
4 // select the K strategies with less cost
5 CandidateSet = TopK(CandidateSet, K)
6 end for
7 ShardingStrategy = sorted(CandidateSet)[0]

4 EXPERIMENTS

We conduct experiments to discuss and evaluate the following three points: 1) the time consumption
of MetaSPMD annotation based on the ShardCombine algorithm; 2) the time consumption of two
auto-parallelism baseline algorithms with different models and frameworks; 3) the performance
comparison between the SOTA system and the baseline algorithm implemented with MetaDist.

The experimental platform comprises a GPU server equipped with eight 32GB V100 GPUs are
equipped, interconnected via NVLink (hybrid cube-mesh topology). And in MetaDist, we use Py-
Torch 2.0.1 and Jax 0.4.6. For benchmark, we use FairScale 0.4.13 and Alpa 0.2.3.

The time consumption of MetaSPMD annotation. As shown in Figure 6, we performed
MetaSPMD annotation using the ShardCombine Algorithm for all operators in the GPT and ResNet
He et al. (2016) models of four sizes under PyTorch and Jax. The lines represents the number of
operators, and it can be seen that under the Jax framework, because of its smaller operator granular-
ity, the number of operators required is much larger than that of PyTorch, which is more obvious on
ResNet. Furthermore, the annotation process under PyTorch is much faster, because Jax has more
operators and involves compilation overhead. With the cache mechanism, PyTorch can complete
annotation in seconds and Jax can also complete annotation in minutes.
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Figure 6: The bar chart represents the time consumption for MetaSPMD annotation of different
models under PyTorch and Jax. S1 to S4 represent progressively larger models, and the blue lines
and the right-hand Y-axis indicate their corresponding number of operators.

The time consumption of two baseline auto-parallelism algorithms. As shown in Figure 7, we
performed two baseline algorithms on the GPT and ResNet models of four sizes under PyTorch
and Jax. It can be seen that as the number of operators increases, the time for the auto-parallelism
algorithm search all increases significantly. The ILP algorithm is able to complete the search within
one or two minutes for models of different sizes. The BeamSearch algorithm is very fast when
the number of operators is small. However, when the number of operators exceeds thousands, the
overhead of its dictionary operations can cause a sharp increase in time consumption.

Performance comparison with the SOTA system. We chose three models for evaluation of the
weak scaling, GPT Brown et al. (2020), WideResNet Zagoruyko & Komodakis (2016) and GAT
Veličković et al. (2017) (see supplementary materials for configuration). GPT, WideResNet is a
common evaluation workload for auto-parallelism algorithms. GAT is a graph neural network that
extends the range of evaluation models in the future. Because the input of GAT is a graph containing
its node features and adjacency matrix, it has no data dimension and cannot use even the most basic
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Figure 7: Time consumption of two automatic parallelism baseline algorithms for different models
and sizes. The model size and the number of operators correspond to those in Figure 6.

data parallelism. For PyTorch, we use the PyTorch FSDP implementation of ZeRO-3 Rajbhandari
et al. (2020) as the baseline, and for GPT, we add the tensor parallelism implemented with FairScale
FairScale authors (2021) as the baseline, and for Jax, we use Alpa Zheng et al. (2022) as the primary
baseline (only intra-op parallelism here). We use the aggregated floating-point operations per second
(Flop/s) as the performance metric. It is worth noting that the ML framework uses the winograd
convolution algorithm Lavin & Gray (2016), which requires fewer Flop than the theoretical estimate,
so it can lead to higher metrics in WideResNet.

As shown in Figure 8, data parallelism cannot be adapted to model enlargement and soon OOM.
ZeRO-3 is difficult to scale efficiently because of its communication overhead. On GPT, the ILP
implemented based on MetaDist can basically reach the performance of hand-optimized (Tensor-
Parallel). And in the Jax, it can be roughly reach the performance of the auto-parallel system Alpa,
with some slight performance advantages on 2 and 4 GPUs. Furthermore, MetaDist-ILP performs
best in all cases of GAT. On the other hand, beam search (MetaDist-BS) is less effective than the
ILP algorithm because it tends to fall into local optima, and is more likely to exceed memory limits.
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Figure 8: Performance comparison of two auto-parallelism baseline algorithms implemented on
MetaDist and other SOTA systems. MetaDist-BS and MetaDist-ILP represent the two auto-
parallelism algorithms implemented with MetaDist. Red crosses represent out-of-memory (OOM).

5 CONCLUSION

In conclusion, the use of MetaOp, MetaIR, and the ShardCombine Algorithm for automatic paral-
lelism provides a framework-agnostic approach for decoupling parallelism strategy and ML frame-
work. These developments in ecological compatibility have the potential to significantly improve the
efficiency and effectiveness of developing, maintaining, and benchmarking automatic parallelism.
Our baseline implementation and experiments demonstrate that our approach achieves state-of-the-
art performance compared with other distributed solutions.
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A APPENDIX

A.1 FRAMEWORK INTEGRATE: TVM TENSOR EXPRESSION

To support TVM, we first need to specify that tvm.nd.NDArray is the data structure for Tensors
in metadist.platform.tvm. Then, we must define and register basic operations such as add,
concatenate, chunk, allclose, and others that are required to perform relevant calculations
in the ShardCombine algorithm.

Here’s an example of how we can use MetaDist to run the ShardCombine Algorithm on TVM:

import tvm, metadist

n = tvm.te.var("n")
A = tvm.te.placeholder((n, ), name="A")
B = tvm.te.placeholder((n, ), name="B")
C = tvm.te.compute(A.shape, lambda i: A[i] + B[i], name="C")

s = tvm.te.create_schedule(C.op)
tgt = tvm.target.Target(target="llvm", host="llvm")
fadd = tvm.build(s, [A, B, C], tgt, name="myadd")

def fadd_wrapped(a, b):
c = metadist.platform.tvm.zeros_like(a)
fadd(a, b, c)
return c

meta_op_ = metadist.unifyshard.MetaOp(fadd_wrapped, ((a, b), {}))
meta_op_.sharding_annotation()

Note that in MetaDist, we need to shard and combine the input and output. However, TVM’s kernel
includes the output in the parameters of the input. Thus, we need to wrap the TVM kernel with the
fadd wrapped function before using it. Once the kernel is wrapped, we can apply the MetaSPMD
annotation to the function via sharding annotation. Adding distributed support for TVM is
mainly missing communication features and distributed runtime. we will try to fully support TVM
in future work.

A.2 DETAILED CONFIGURATION OF THE MODEL IN SECTION 4

For our weak-scaling experiments in Figure 8, we used three different models: GPT, WideResNet,
and GAT. Regarding models for benchmarking, we carefully selected well-known models such as
GPT and WResNet. These choices allowed us to conduct a scientific comparison with existing
approaches effectively. Moreover, we intentionally included models like GAT, which lack designed
parallelism and have not been extensively explored in the context of auto-parallelism.

The detailed configurations for each model are shown in Table 2, 3 and 4.

Table 2: Four sizes of GPT models for evaluation.
Number of
GPUs

Number of
parameters (billion)

Number of
layers

Hidden size Attention heads Batch Size TFLOPs

1 1.26 1 10240 40 8 27.75
2 2.52 2 10240 40 8 58.93
4 5.03 4 10240 40 8 121.29
8 10.07 4 14336 56 8 237.15
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Table 3: Four sizes of WideResNet models for evaluation.
Number of
GPUs

Number of parameters
(billion)

Number of layers Width Batch Size #FLOPs (tera)

1 0.63 50 448 64 37.08
2 0.63 50 448 128 74.17
4 1.23 50 320 128 145.22
8 1.23 50 320 256 290.44

Table 4: Four sizes of GAT models for evaluation.
Number of
GPUs

Number of parameters
(billion)

Number of
nodes

Hidden size
Number of
heads

#FLOPs (tera)

1 0.6 1024 24576 1 2.63
2 1.21 1024 24576 2 6.49
4 2.42 1024 24576 4 14.23
8 4.83 1024 24576 8 29.69

A.3 DETAILS ABOUT GATHER

What’s challenging and interesting is the complexity of the different operation. MetaDist introduces
two arguments in Gather, halo and block to support operators, such as convolution and concat. These
two operators are the more frequently used operators in deep learning models. We found that the
normal ShardCombine approach cannot describe these two operators. So we supported them by
extending the Gather function. And because the complete exploration of the space is large and time
consuming, we use some prior knowledge for efficiency.

A.3.1 HALOGATHER AND CONVOLUTION

In Figure 9, the shard and gather is extended with a halo argument. In the left case, we . If it is
positive, we add the data in the overlap region when we combine the results. If it is negative, we
discard the data with width d and then perform the gather operation. In this case

AGlobal Tensor

A1

A2

Shard Tensor(halo=1)

1

Shard Result A1

A2

1

Gather(halo=-1) A'1 A'2

Figure 9: Meaning of the argument halo in Shard and Gather

Figure 10 illustrates the two most common convolution operators. The left panel displays
convolution(kernel = 3, pad = 0), while the right panel shows convolution(kernel = 3, pad =
1). For simplicity and ease of understanding, we use 1D convolution. Similar methods can be used
in 2D and 3D convolution. In both cases, we assume that the input Tensor is A, which has x ele-
ments. After shard, each of our two devices contains half of the elements of A. Then we perform
a local convolution calculation. In convolution without padding, the halo argument can be inferred
from the tensor size. In convolution with padding, since the last row of data is computed under
ZERO padding and is not equivalent with the original computation, the size of the shard halo can
be inferred from the allclose rows. And when trying to GATHER, halo argument of GATHER
can be inferred from the tensor size.
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Convolution(kernel=3,pad=0) Convolution(kernel=3,pad=1)

AGlobal Tensor

Global Result A'

Convolution x

Device 1 Device 2

Shard Tensor A1
Convolution

A2

Shard Result A'1 A'2

x-2

x/2 x/2

Gather A'1 A'2

shard_halo = (x-2 - 2(x/2 - 2)) / 2 = 1

Shard Tensor(halo=1) A1
Convolution

A2

x/2 + 1 x/2 + 1

Shard Result A'1 A'2

x/2 - 2 x/2 - 2

x/2 - 1 x/2 - 1

AGlobal Tensor

Global Result A'

Convolution x

Device 1 Device 2

Shard Tensor A1
Convolution

A2

Shard Result A'1 A'2

x

x/2

Gather(halo=-1) A'1 A'2

shard halo = x/2 - allclose_rows = 1

Shard Tensor(halo=1) A1
Convolution

A2

x/2 + 1 x/2 + 1

Shard Result A'1 A2

x/2 x/2

x/2 + 1 x/2 + 1

allclose_rows = x/2 - 1

Figure 10: Two kinds of convolution (commonly used) are shown.

A.3.2 BLOCKGATHER AND CONCAT

The concat (or concatenate) operator accepts a set of tensors as input, and its output is a tensor
created by splicing together the input tensors. We can observe that if we shard each input tensor and
then concatenate them locally, the results do not align with the global result; it resembles a block-
cyclic distribution. Therefore, we introduce the argument named block. The gather operation,
with block = n, first divides the shard tensor into n parts, then performs all-gather on each
part, and finally splices the results of the n all-gather parts.

Figure 11 shows depicts a concatenation of three tensors, A1, A2, B1, B2, C1, C2 represent the
shards of these three tensors. After concatenating them locally, we observed that only the first
allclose rows elements could be aligned. Therefore, we can infer from this information that
’block’ is set to 3, meaning that the combine function here is Gather(block=3).’

A B C

concat

Global Tensor

Shard Result A1 B1 C1 A2 B2 C2

Device 1 Device 2

Gather(block=3) A1 B1 C1A2 B2 C2

Global Result A B C

Shard Tensor A1 B1 C1 A2 B2 C2

Concat

Concat rows

allclose_rows

allclose_rows

allclose_rows
rows =3

Figure 11: This example shows the concat operator concatenating three tensors. rows represents
the number of rows in the first shard result. allclose rows represents the number of rows in
the first shard result that are allclose with the global result. Dividing the two yields the guessed
argument of block, which is used to try and validate.
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