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Abstract

Pre-trained language models (PLMs) are often
deployed as cloud services, enabling users
to upload textual data and perform inference
remotely. However, users’ personal text often
contains sensitive information, and sharing
such data directly with the service providers
can lead to serious privacy leakage. To
address this problem, we introduce a novel
privacy-preserving inference framework called
TextMixer, which prevents plaintext leakage
during the inference phase. Inspired by
k-anonymity, TextMixer aims to obfuscate
a user’s private input by mixing it with
multiple other inputs, thereby confounding
potential privacy attackers. To achieve this,
our approach involves: (1) proposing a novel
encryption module, Privacy Mixer, which
encrypts input from three distinct dimensions:
mixing, representation, and position. (2)
adopting a pre-trained Multi-input Multi-output
network to handle mixed representations and
obtain multiple predictions. (3) employing a
Privacy Demixer to ensure only the user can
decrypt the real output among the multiple
predictions. Furthermore, we explore different
ways to automatically generate synthetic inputs
required for mixing. Experimental results
on token and sentence classification tasks
demonstrate that TextMixer greatly surpasses
existing privacy-preserving methods in both
performance and privacy.

1 Introduction

The emergence of pre-trained language models
(PLMs) (Devlin et al., 2018; Liu et al., 2019; Brown
et al., 2020) has significantly increased the demand
for cloud inference services. By uploading their
textual inputs to the cloud, users can benefit from
PLMs and achieve superior performance on various
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Figure 1: Comparison of the baseline (left) with our
method (right). Without privacy protection, word
representations can be easily restored to plain text. Our
method utilizes mixing to conceal the real input among
multiple inputs, thereby confusing privacy attackers and
preserving the plain text privacy during inference phase.

NLP tasks, without requiring high-performance
hardware or expertise. However, the widespread
adoption of PLM services also introduces a risk
of privacy leakage (Jegorova et al., 2022). Users’
textual inputs may contain sensitive information,
including names, schedules, and even business
secrets. Leaking such private information to service
providers is unacceptable to most users.

To address users’ privacy concerns and comply
with relevant laws1, service providers can provide
privacy-preserving inference services. Many
sought to make users query PLM services with
word representations rather than plaintext. But
digital word representations still need additional
privacy protection because recent studies (Pan et al.,
2020; Song and Raghunathan, 2020) have revealed
that standard word representation can be easily
restored to its original word under embedding
inversion attacks (Höhmann et al., 2021).

One solution is to apply cryptographic tech-
niques to the PLM (Hao et al.; Li et al., 2022;
Zheng et al., 2023; Chen et al., 2022), but these
methods often come with significant communi-

1https://www.consilium.europa.eu/en/policies/data-
protection/data-protection-regulation/



cation costs and computational time, making it
difficult to apply them in real-world scenarios.
Another potential solution is to remove the private
information in word representations (Pan et al.,
2020) through adversarial training (Li et al., 2018;
Coavoux et al., 2018; Plant et al., 2021) and
differential privacy (Lyu et al., 2020a; Hoory
et al., 2021; Yue et al., 2021). However, the
private information in our scenario pertains to
each word in the user’s plaintext. Removing the
word information from word representations
is highly unnatural and often leads to crucial
performance degradation (Zhou et al., 2022).

In this paper, we propose a novel privacy-
preserving inference paradigm named TextMixer.
Our method is inspired by k-anonymity (Sweeney,
2002), a classic privacy-preserving technique that
ensures each individual’s information cannot be
distinguished from at least k-1 other individuals.
For that purpose, TextMixer aims to make each
real word representation indistinguishable by
mixing it with multiple synthetic representations
during the inference phase, rather than removing
word information, as shown in Figure 1.

However, directly mixing the representations of
k inputs leads to information interference, and
normal PLMs cannot handle the mixed inputs
to acquire the desired output. To address the
above problems, we resort to Multi-input Multi-
output (MIMO) network (Ramé et al., 2021;
Murahari et al., 2022, 2023), allows us to process
mixed representations with minimal information
interference and obtain multiple predictions si-
multaneously. We further design a privacy mixer
to enhance TextMixer’s privacy, which encrypts
the real inputs from three dimensions. For each
forward pass, the privacy mixer applies anony-
mous mixing, representation perturbation, and
position shuffling to encrypt the real inputs. Only
the user holds the correct keys to decrypt the real
prediction from mixed representation. In this way,
TextMixer preserves the privacy of both the input
and prediction. We also conduct an investigation
into different methods for generating synthetic
inputs. Our contribution can be summarized as
follows2:

• We propose TextMixer, a privacy-preserving
inference method that obfuscates privacy attacks
by mixing private input with synthetic inputs.

2We release our code at https://github.com/
LuLuLuyi/TextMixer

• We propose a mixing-centric encryption method
and explore several approaches for synthetic
input generation.

• Experimental results on various token and
sentence classification datasets demonstrate
TextMixer’s effectiveness in privacy and
performance.

2 Methodology

In this section, we present a novel privacy-
preserving inference framework TextMixer, which
achieves k-anonymity (Sweeney, 2002) by mixing
multiple inputs during the inference phase.

2.1 Overview

We take an example to show how k-anonymity
contributes to privacy-preserving inference. To
hide the private text "John", TextMixer mixes the
word representation of "John" with k-1 synthetic
ones (such as "Mike", "Smith", "Johnson", etc.).
Only the mixed representation is shared with
privacy attackers, making it difficult for privacy
attackers to identify which word is real. As
shown in Figure 2, our method consists of three
steps: (1) User first generates k-1 synthetic
representations (§2.5) and inputs k representations
into the Privacy Mixer (§2.3), which uses various
encryption methods with mixing as the core to
combine the real and synthetic inputs, creating
mixed and encrypted representations; (2) Cloud
server receives the mixed representations, and
inputs them into a pre-trained MIMO network
(§2.2), which can handle mixed representations
formed by multiple inputs and output their outputs;
(3) User uses a Privacy DeMixer (§2.4) to decrypt
the desired prediction from the multiple outputs
locally. In the following subsection, we provide
a detailed introduction to each part of TextMixer.
We also conduct a theoretical privacy analysis
of TextMixer in Appendix B.

2.2 MIMO Network

We first adopt the mixing process of MIMO Net-
work (Murahari et al., 2023) (called vanilla mixing
here) to our scenarios. Vanilla mixing transforms
different inputs into separate spaces before mixing,
thus reducing representation interference between
multiple inputs.

Given a user’s real input sequence Xr =
[xr

1, ...,x
r
n] with n word representations, and

k − 1 synthetic inputs {Xsi}k−1
i=1 where Xsi =

https://github.com/LuLuLuyi/TextMixer
https://github.com/LuLuLuyi/TextMixer
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Figure 2: An overview of TextMixer’s inference. Privacy Mixer first encrypts the real input locally on the user’s
device, obtaining the encrypted input through three aspects: anonymous mixing, perturb representation and random
position. The MIMO network deployed in the cloud only received encrypted inputs for subsequent inference and
returns the encrypted output back to the user. With the help of the user’s private keys, Privacy DeMixer can decrypt
the real prediction from the encrypted output.

[xsi
1 , ...,x

si
n ], we aims to mix these representation

to generate Xmix = [xmix
1 , ...,xmix

n ]. For
simplicity, we denote k words to be mixed at
the i-th position as x1:k

i = [xr
i ,x

s1
i , ...,x

sk−1

i ].
To avoid misunderstanding, we use "position"
to represent the word position in an input
sequence, and "order" to represent the order
of k inputs. For example, xj

i means the word
representation at i-th position from j-th input.
To ensure that the mixed representation still
retains the individual semantics of each input, we
need to perform transformation before mixing.
Transformation maps word representations from
different inputs to separate spaces and consequently
reduces interference between their representations.
The process of transformation and mixing can be
defined as:

xmix
i =

1

k

k∑
j=1

xj
i ⊙ ej , (1)

where xj
i is j-th representation in x1:k

i and ej ∈
Rd ∼ N (0, I) is transformation vector sampled
from a standard multivariate Gaussian distribution.

Next, we input mixed representations into a
MIMO network to obtain multiple predictions.
Then we demix the real prediction from the
multiple predictions, as shown in §2.4. The
structure of MIMO network is the same as BERT,
its ability to handle mixed representation comes

from the over-parameterized network and MIMO
pre-training (Murahari et al., 2023).

2.3 Privacy Mixer

However, vanilla mixing process is not a good
privacy protector due to the lack of randomness.
For example, equation 1 shows that different
inputs will be mapped to different spaces. If
the real input is always mapped to a fixed space,
privacy attackers can easily identify this fixed
pattern, thereby restoring the real input from
the mixed representation (shown in Table 2).
Thus, we design privacy mixer, which extends the
vanilla mixing into a real encryption strategy from
three dimensions: anonymous mixing, perturbed
representation, and random position.

Mixing Encryption. Inspired by k-anonymity,
this encryption aims to make each real represen-
tation xr

i indistinguishable from synthetic ones
{xsj

i }k−1
j=1 . As mentioned before, the real input

cannot be mapped to a fixed space, thus we shuffle
inputs to get a random mixing order, allowing
the real input to be anonymous:

RME · x1:k
i = [x

sk−1

i , ...,xr
i ,x

s1
i ], (2)

where x1:k
i ∈ Rk×d and RME ∈ {0, 1}k×k

is a random permutation matrix. Equation 2
represents only one possible shuffling result. RME



is generated by the user’s side and not shared
with the cloud.

Representation Encryption. To obscure the
representation itself, we add random perturbations
to each representation of a random input, as shown
in Figure 2. Following Plant et al. (2021), we
adopt Laplace Noise as the random perturbation.
Formally, the process of mixing encryption and
representation encryption for x1:k

i is:

x
Enc(1:k)
i = RME · [xr

i ,x
s1
i , ...,xsα

i + Lap(ϵ), ...,x
sk−1

i ],
(3)

where ϵ is a hyperparameter controlling the scale
of noise, smaller values of correspond to a larger
scale of noise. Lap(ϵ) can be added to any
representation, including real input xr

i .
Then we mix k representation x

Enc(1:k)
i at each

position i, according to equation 1. Finally, we
obtain the mixed representations Xmix ∈ Rn×d.

Position Encryption. To further enhance the
privacy of Xmix, position encryption aims to
reduce its human readability. We utilize a random
permutation matrix, denoted as RPE ∈ {0, 1}n×n,
to shuffle word positions in Xmix:

Xmix
PE = RPE ·Xmix = [xmix

n ,xmix
1 ...,xmix

n−1].
(4)

In this way, even if privacy attackers can restore
some text from mixed representation, they cannot
obtain a readable sequence. We show that Xmix

PE

and Xmix are equivalent for PLMs in Appendix
D. Similar to Mixing Encryption, only the user
holds the private key RPE .

Finally, users upload encrypted representations,
Xmix

PE , to the cloud for further computation. A pre-
trained MIMO network processes the Xmix

PE and
sends back the final representation Hmix

PE ∈ Rn×d

to the user’s side for de-mixing the real prediction.

2.4 Privacy DeMixer

The goal of Privacy DeMixer is to decrypt the
encrypted final representations Hmix

PE and obtain
the desired prediction, with the help of user’s
personal keys RPE and RME . First, we use RPE

to restore original word position:

Hmix = R−1
PE ·Hmix

PE , (5)

where Hmix = [hmix
1 , ...,hmix

n ]. Next, we de-mix
these mixed final representations Hmix to get final
representations corresponding to different inputs.

For simplicity, we only consider the representa-
tion in position i. De-mixing means extracting k
final representations h1:k

i ∈ Rk×d from hmix
i ∈

Rd, where h1:k
i are the final representations of

different inputs x1:k
i . The final representation of

j-th input in x1:k
i can be obtained by:

hj
i = DeMix

(
[hmix

i ;dj ]
)
, (6)

where DeMix is a two layer MLP and dj ∈ Rd is
private vectors to de-mix the j-th representation
from mixed representation and [∗; ∗] means con-
catenation. The de-mixing ability of DeMix and
dj comes from pre-training (Murahari et al., 2023).
We show that DeMix and dj are not helpful in
restoring the real input in §4.3.

After de-mixing, we restore an ordered set
h1:k
i = [h1

i , ...,h
k
i ], then we can use RME to

decrypt the original order by R−1
ME ·h1:k

i , obtaining
the real input’s final representation Hr ∈ Rn×d.
Subsequently, Hr is fed into the classification layer
to obtain the prediction desired by the user.

2.5 Synthetic Input Generating
As mentioned before, our method requires k-1
synthetic inputs for mixing. We now explore
principled ways of generating synthetic input.

Generating with Real Data. The most intuitive
method is to select the real training data as the
synthetic data. Given a real input sentence, we
randomly sample k− 1 sentences from the training
set and encrypt these sentences.

Generating with Similarity. In this approach,
we leverage the similarity for synthetic input
generating. Given a real word xr, we select the
closest word ws in the embedding space as its
synthetic word:

ws = argmaxk−1||w − xr||, (7)

where w is the embedding matrix of PLM.

Generating with Input Itself. This method
is inspired by Zhou et al. (2022) that fuses
representation within the same sentence. Given
a real input Xr = [xr

1, ...,x
r
n], for each xr

i , we
random sample k − 1 representations from Xr

(excluding xr
i itself) as the synthetic inputs.

2.6 Training Details
TextMixer supports both token-level and sentence-
level classification tasks. During the training



process, we randomly sample k inputs from
the training set and only enable representation
encryption. We add random noise to a random
input sequence and then mix all the inputs together.
The mixed input is sent to a pre-trained MIMO
network to get the final representation. Without
any decryption process, we directly use DeMix to
obtain the final representation of each input, which
is then fed into the output layer to predict the task
label. In addition to the task loss, a retrieval loss is
added to promote the network’s ability to handle
multiple inputs (Murahari et al., 2023). The final
loss can be represented as follows:

Lretrieval(x
1:k) =

∑
i

−logP (wj
i |h

j
i ), (8)

L =Ltask + αLretrieval, (9)

where α is a hyperparameter, hj
i is final repre-

sentation of the j-th sentence at position i, and
wj
i is the word corresponding to hj

i . During
the inference phase, we can directly enable all
encryption strategies and switch the synthetic input
generation methods without retraining.

3 Experimental Setup

3.1 Datasets
We conduct experiments on four representative
datasets. Sentence classification: we select
IMDB (Maas et al., 2011) for sentiment analysis
and AGNews (Zhang et al., 2015) for topic
classification. Token classification: we select
NER (Named Entity Recognition) as the main
task, including CoNLL2003 (Tjong Kim Sang and
De Meulder, 2003) and Ontonotes (Weischedel
et al., 2013). These tasks are highly relevant to real-
world scenarios and datasets often involve sensitive
information such as names and locations. Thus
they serve as suitable benchmarks for evaluating
both privacy and performance. The details of these
datasets are in Appendix A.

3.2 Baselines
For a thorough comparison, we select the widely
used privacy attack and defense baselines.

Attack Baselines. Following Zhou et al. (2022),
we select three privacy attack baselines. KNN
(Qu et al., 2021) selects the closest word in
the embedding space as the real word. InvBert
(Höhmann et al., 2021) trains an embedding
inversion model that takes word representations

as input and outputs each representation’s original
word one-to-one. MLC (Song and Raghunathan,
2020) is similar to InvBert, the difference is that
MLC performs multi-label classification tasks,
predicting all the words that have appeared without
emphasizing the order.

Defense Baselines. DPNR (Lyu et al., 2020b)
uses differential privacy to obfuscate representa-
tions. CAPE (Plant et al., 2021) further eliminates
privacy information by incorporating adversarial
training and differential privacy. SanText+ (Yue
et al., 2021) uses differential privacy and word
frequency to replace sensitive words. TextFusion
(Zhou et al., 2022) employs word fusion and
misleading training to hinder privacy attackers
from training targeted embedding inversion models.
We attack it with a special InvBert due to different
settings, as shown in Appendix C. DataMix (Liu
et al., 2020) proposes to mix and encrypt the image
with random coefficients.

3.3 Evaluation Metrics

We consider privacy metrics at both the word level
and the sentence level. At the word level, we use
the Top-k, which refers to the proportion of real
words among the top k predictions generated by the
attack methods for a given representation. At the
sentence level, we use the RougeL (Lin, 2004), a
text generation metric, to measure the similarity
between the restored sentence and the original
sentence. For MLC Attack, we use the Token-
Hit (Zhou et al., 2022), which treats the words in
real input as a set, calculating the percentage of
predicted words in the raw words.

3.4 Implementation Details

We show three important implementation details
below, and present the remaining details in Ap-
pendix G. (1) All attack and defense methods are
performed at the embedding layer, before any
transformer modules. Users only need to convert
words into embeddings and send them to the cloud.
(2) The pre-trained MIMO network is based on
BERT-base, thus we also chose BERT-base as the
backbone to train task models for all baselines, as
well as the inversion models for InvBert and MLC.
(3) Inversion models for each dataset are trained in
its training set.



Dataset Method Task ↑ KNN ↓ InvBert ↓ MLC ↓
Top-1 Top-5 Rouge Top-1 Top-5 Rouge Token-Hit

IMDB

Fine-tuning (Devlin et al., 2018) 94.10 100 100 91.70 100 100 99.28 51.13
DPNR (Lyu et al., 2020b) 85.00 0.11 58.42 0.08 99.82 99.99 99.17 43.01
CAPE (Plant et al., 2021) 85.88 5.70 71.78 4.12 100 100 99.28 48.05
SanText+ (Yue et al., 2021) 50.16 69.21 69.27 59.19 73.94 81.24 73.47 42.48
DataMix (Liu et al., 2020) 50.36 29.51 76.08 26.57 66.48 98.20 60.55 28.13
TextFusion (Zhou et al., 2022) 90.60 39.46 85.30 46.17 48.93 91.94 61.38 54.43
TextMixer (Ours) 90.93 0.00 0.00 0.00 12.17 36.07 0.35 21.11

AGNews

Fine-tuning (Devlin et al., 2018) 94.92 100 100 93.66 100 100 99.81 89.31
DPNR (Lyu et al., 2020b) 90.01 4.11 24.35 3.64 28.50 45.05 28.94 27.22
CAPE (Plant et al., 2021) 90.22 0.36 1.18 0.36 5.73 10.72 5.91 22.13
SanText+ (Yue et al., 2021) 90.80 65.24 65.28 52.90 70.11 76.94 70.28 53.91
DataMix (Liu et al., 2020) 91.62 59.19 98.41 55.68 95.26 99.85 89.14 34.94
TextFusion (Zhou et al., 2022) 91.89 7.21 26.80 4.22 49.03 87.69 59.61 71.01
TextMixer (Ours) 92.23 0.00 0.00 0.00 2.22 5.62 0.10 16.09

CoNLL2003

Fine-tuning (Devlin et al., 2018) 90.47 100 100 95.01 100 100 99.83 61.47
DPNR (Lyu et al., 2020b) 39.09 13.86 30.81 9.96 11.27 23.55 11.37 25.46
CAPE (Plant et al., 2021) 70.53 0.11 5.90 0.06 37.44 45.28 37.91 27.56
SanText+ (Yue et al., 2021) 72.19 76.56 76.85 55.24 75.62 82.02 75.74 40.93
DataMix (Liu et al., 2020) 2.38 63.69 97.82 60.96 78.98 97.24 74.80 39.32
TextFusion (Zhou et al., 2022) 77.53 4.91 21.40 2.64 22.27 27.02 49.24 55.09
TextMixer (Ours) 86.24 0.00 0.00 0.00 4.14 11.26 0.93 18.45

Ontonotes 5.0

Fine-tuning (Devlin et al., 2018) 87.07 100 100 95.01 100 100 99.82 81.11
DPNR (Lyu et al., 2020b) 42.10 10.64 41.24 9.26 24.84 42.85 25.22 31.17
CAPE (Plant et al., 2021) 71.23 1.97 11.42 1.51 22.66 29.10 22.77 30.68
SanText+ (Yue et al., 2021) 65.32 73.66 73.82 55.89 73.22 80.69 73.36 48.61
DataMix (Liu et al., 2020) 0.21 65.76 97.75 62.52 90.39 99.11 85.67 55.03
TextFusion (Zhou et al., 2022) 79.30 3.86 26.13 0.65 21.31 25.35 39.81 73.89
TextMixer (Ours) 82.38 0.00 0.00 0.00 11.45 31.12 0.61 20.95

Table 1: Main results on four classification datasets. All attack and defense methods are carried out at the embedding
layer. Task denotes the metric for the task performance, we report accuracy for IMDB and AGNEWS, F1 score
for CoNLL2003 and Ontonotes5.0. Top-1, Top-5, Rouge, and Token-Hit are the privacy leakage metric. For task
performance, higher is better; for privacy leakage metric, lower is better. The best performance and privacy in
defense methods are highlighted in bold.

4 Experimental Results

In this section, we show the results of privacy and
task performance in §4.1 and the ablation study in
§4.2. We also design three specific privacy attacks
for TextMixer and show the attack results in §4.3.
The inference cost is shown in Appendix F.

4.1 Main Results
Main results on baselines and TextMixer are
listed in Table 1. From the result, we can see
that (1) Normal word representations without any
defense method suffer from privacy leakage risk.
Almost all privacy attacks achieve a 100% success
rate in fine-tuning, which means that privacy is
completely leaked to attackers. (2) Preserving
privacy in the embedding layer is an extremely
challenging task. Despite compromising signif-
icant performance, most baselines are unable to
provide satisfactory privacy protection. This is due
to the inherent contradiction of removing private
word information from word representations, as
discussed in the introduction. (3) Our proposed
TextMixer achieves better task performance and

lower privacy leakage than most baselines across
all datasets. With the help of our proposed
encryption strategy and MIMO network, TextMixer
avoids contradictory behavior, thus achieving good
performance while preserving privacy.

Previous works usually require deploying mul-
tiple transformer layers in users’ devices to
achieve satisfying performance. But when applied
to the embedding layer, we observe that most
baselines are difficult to provide privacy protection.
CAPE and DPNR usually need to trade a lot
of task performance for the ability to protect
privacy, which can be attributed to the inherent
contradiction that we discussed above. SanText+
relies on word replacement to protect privacy, but
word replacement cannot handle token-level tasks,
which require much token information, and tasks
with long sequences, which require lots of words
to be replaced, such as IMDB. TextFusion fuses
most words to reduce Top-1, resulting in serious
performance degradation. But the performance
of Top-5 and MLC of TextFusion remains high,
indicating privacy risk is still high under our strict



privacy setting. DataMix fails to perform well
on most datasets, and we believe there are two
reasons. First, its encryption mechanism is friendly
to convolutional networks but not suitable for
PLMs that involve more non-linear operations.
Second, DataMix is designed for images, whereas
we require encrypting a representation sequence,
which is a harder task. These two difficulties cause
it to fail on PLMs and textual data.

4.2 Ablation Study
In this subsection, we explore the effect of
encryption strategy and synthetic input generation.
We also show the effect of mixed inputs number
and noise scale in Appendix E.

Effect of encryption strategy. From Table 2, we
can see that mixing Encryption plays an important
role in privacy. Without mixing encryption, privacy
attackers can easily identify the space of real
input and accurately restore the original words,
resulting in high privacy leakage. Representation
Encryption prevents privacy attackers by adding
noise to representation. Similar to the previous
work, adding noise hurts task performance, but
an appropriate noise would not result in much
performance loss. This is acceptable as it
contributes largely to privacy. Position Encryption
is not designed to prevent attackers from restoring
words, but it can significantly reduce readability,
resulting in a substantial decrease in Rouge scores.
From the above results, it can be observed that
our proposed encryption techniques reduce privacy
leakage risks from different perspectives while
having minimal impact on performance.

Dataset Method Task
KNN InvBert

Top-1 Rouge Top-1 Rouge

AGNews

TextMixer 92.32 0.00 0.00 2.22 0.10
- Mix. 91.73 0.00 0.00 89.22 2.07
- Repr. 92.63 0.00 0.00 6.57 0.13
- Pos. 92.32 0.00 0.00 2.22 2.19

CoNLL03

TextMixer 86.24 0.00 0.00 4.14 0.93
- Mix. 86.64 0.00 0.00 88.64 5.89
- Repr. 86.69 0.00 0.00 15.53 1.34
- Pos. 86.24 0.00 0.00 4.14 4.20

Table 2: Effect of different encryption strategies. Mix.
means Mixing Encryption, Repr. means Representation
Encryption and Pos. means Position Encryption.

Effect of Synthetic Inputs. From Figure 3, we
surprisingly find that the similarity-based methods
do not confuse the inversion model but instead
lead to more severe privacy leakage. We speculate
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Figure 3: Effect of different synthetic inputs. Privacy
metric is Top-1 under InvBert attack. Performance
metric is accuracy for AGNews and F1 for CoNLL03.

that these synthetic inputs differ significantly
from the words that would appear in the real
world. During the training process, the powerful
inversion model gradually eliminates this irrelevant
information and identifies the feature of the real
input, resulting in a successful attack. Real Data
and Input Itself achieve first and second rankings in
preserving privacy. Both of these synthetic inputs
are generated based on real data, which enlightens
us that the closer synthetic inputs approximate
real-world scenarios, the greater their potential
to mislead privacy attackers. The substitution
of synthetic inputs has only a marginal impact
on performance, both in token-level tasks and
sentence-level tasks, indicating users can replace
the synthetic inputs generation method at any time
without the need for retraining.

4.3 Stronger Privacy Attacks

Although TextMixer can defend the powerful
embedding inversion attack, there are still concerns
about potential privacy leakage under stronger
privacy attacks. Therefore, we design some attacks
for our encryption method.

Dataset PIA DMA
Acc. Top-1 Top-5 Rouge

AGNews 53.64 0.00 0.00 0.00
CoNLL03 48.09 0.00 0.43 0.00

Table 3: Results of DeMixing Attack (DMA) and
Position Inversion Attack (PIA).

DeMixing Attack is designed for Mixing Encryp-
tion. We verify whether DeMix and dj , which are
used to demix the outputs, are helpful to demix the
mixed input. We assume the privacy attacker knows
the exact order of the real input. For instance, they
know the j-th input is the real one, thus they can
use DeMix and dj to demix the mixed input and
obtain the word representations of j-th input. Then



Train\Test Real Data Input Itself High Similarity Low Similarity

Real Data 4.14 4.21 21.74 0.19
Input Itself 3.48 9.03 23.09 0.02

High Similarity 4.13 5.18 59.74 0.00
Low Similarity 0.60 0.17 0.86 59.50

Table 4: Results of Cross Inversion Attack on CoNLL03.
Columns represent the training data for InvBert, while
the rows represent the testing data.

they use an InvBert to predict real words and train
DeMix, dj and InvBert jointly. However, attack
results (DMA) shown in Table 3 show that DeMix
is not helpful for restoring real input, this attack
performs even worse than using InvBert directly.
We speculate that this is because DeMix is trained
to demix the output instead of input, it strongly
interferes with the inversion model, making it
impossible to attack successfully at all.
Position Inversion Attack is designed for Position
Encryption. It aims to restore the original word
position from the encrypted input. Similar to
InvBert, we train a model to predict the original
position of each encrypted representation and show
attack results (PIA) in Table 3. The accuracy of
restoring the original position is only 50%, and
the readability of such a sentence remains low.
Within TextMixer, it is not a threat since embedding
inversion attacks can only restore a few words from
encrypted representations.
Cross Inversion Attack is designed for synthetic
input generation, which verifies whether the
InvBert trained on one synthetic input generation
method works better on another one. From Table
4, we can see that all transferred InvBerts perform
worse than InvBert trained and tested in the same
synthetic input indicating its poor generalization
ability. Privacy attacks’ performance primarily
depends on the synthetic input used during testing.

5 Related Work

5.1 Plaintext Privacy during Inference

Privacy Threats. Most PLM services require
users to upload their plaintext data to the cloud
to perform PLM inference, which leads to a serious
risk of privacy leakage (Jegorova et al., 2022).
Privacy attackers could be the service provider
themselves, they aim to collect users’ textual input
for their own purposes. For example, they can
use these data to train a better model or extract
users’ private information, such as personal details
and confidential business information, even if it
is prohibited by law. Recent literature (Song

and Shmatikov, 2019; Pan et al., 2020) shows
that even uploading word representations can
still leak privacy, as the embedding inversion
attack (Höhmann et al., 2021) can restore word
representations to their original words.

Privacy-preserving Methods. To avoid users’
private plaintext from leaking to privacy attack-
ers, many existing works adopt cryptographic
techniques such as Homomorphic Encryption
(Gentry, 2009; Chen et al., 2022) and Secure
Multiparty Computation (Evans et al., 2018; Li
et al., 2022) into PLM (Hao et al.; Zheng et al.,
2023). Although theoretically guaranteed, these
methods typically require much higher time and
communication costs than standard PLM. For
example, Hao et al. shows that an encrypted BERT-
tiny model requires about 50 seconds and 2GB of
communication cost to process a 30 words sentence.
An alternative that does not require additional
inference costs is to employ adversarial training
(Li et al., 2018; Coavoux et al., 2018; Plant et al.,
2021) and differential privacy (Lyu et al., 2020a;
Hoory et al., 2021; Yue et al., 2021) to remove
private information in representations. However,
the perturbed word representations, which lack
sufficient information for privacy attackers to
identify their original words, are also insufficient
for the model to achieve high performance on
downstream tasks (Zhou et al., 2022). Therefore,
in this work, we propose mixing inputs rather than
removing word information to preserve plaintext
privacy during the inference phase.

Comparison with Similar Works. Huang et al.
(2020) propose TextHide, which mixes up inputs
during the training phase to protect the privacy
of training data. Our work focuses on users’
plaintext privacy and mixes inputs during the
inference phase, which brings new challenges. Liu
et al. (2020) propose Datamix to mix multiple
inputs during inference and encrypt them with
random coefficients. Our encryption method is
different from Datamix, and Datamix is designed
for image data and convolutional networks, which
not performs well in text data and PLM. Recently,
Zhou et al. (2022) propose TextFusion, which
fuses parts of word representations within the same
sentence to prevent privacy attackers from training
a targeted inversion model. Differently, our method
mixes representations from different sentences and
our privacy setting is more challenging. We discuss



it in Appendix C.

5.2 Multi-input Multi-output Network

Multi-input Multi-output network aims to use one
neural network to process multiple inputs and
obtain their predictions in one forward pass. Havasi
et al. (2020) and Ramé et al. (2021) try to improve
robustness by ensembling multiple predictions in
a MIMO convolutional network. Murahari et al.
(2022) propose a transformer-based MIMO model
for efficient inference and further improve its
performance through pre-training (Murahari et al.,
2023). Our work does not focus on robustness or
efficiency but rather utilizes the MIMO network
as a tool to construct partial encryption strategies,
thereby achieving privacy-preserving inference.

6 Conclusion

In this paper, we propose a novel privacy-
preserving inference framework TextMixer. Our
framework is inspired by k-anonymity and makes
real input indistinguishable by mixing multiple
inputs during the inference phase. Specifically,
TextMixer adopts a pre-trained MIMO network,
which can process representation composed
of multiple inputs and obtain multiple outputs
simultaneously, to handle mixed representations.
We further propose the privacy mixer to encrypt
not only the mixing but also the two dimensions of
representation and word position. We also explore
various ways to automatically generate synthetic
inputs. At the embedding layer, TextMixer
outperforms the existing privacy-preserving
methods by a large margin, regardless of token
and sentence classification tasks. The detailed
ablation and analysis experiments also show
TextMixer is an effective privacy-preserving
inference framework.

Limitations

We have summarized three limitations of
TextMixer. (1) TextMixer is designed to protect
plaintext privacy, and we have only conducted
experiments to evaluate its privacy under
embedding inversion attacks. However, TextMixer
provides the k-anonymity by mixing multiple
inputs, it has the potential to address other privacy
concerns, such as resisting Attribute Inference
Attacks. (2) TextMixer’s privacy guarantee is
based on k-anonymity, which is not as rigorous as
homomorphic encryption. Although TextMixer’s

privacy has been empirically verified through the
powerful and widely used embedding inversion
attack, and we have provided privacy proof
in Appendix B. (3) TextMixer has only been
evaluated at the BERT-like model and has not been
migrated to larger models like GPT-3. Limited
by computational resources, we can only use the
pre-trained MIMO network provided by Murahari
et al. (2023). However, we believe that service
providers can train more powerful MIMO networks
with more parameters and extend them to more
tasks, such as text generation.
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A Datasets

we conduct experiments on 4 classification tasks
and the statistics of datasets in our experiments are
shown in Table 5. For all the datasets, we use the
test data for evaluation. We illustrate the details of
each dataset as follows:

IMDB (Maas et al., 2011) contains a large
collection of movie reviews along with their
corresponding sentiment labels, indicating whether
the review is positive or negative.

AGNEWS (Zhang et al., 2015) provides a
balanced distribution of articles across the World,
Sports, Business, and Science/Technology, making
it suitable for training and evaluating text classifi-
cation models.

CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) is a popular benchmark dataset for named
entity recognition (NER) tasks. It consists of
English and German news articles annotated with
named entity labels such as person names, loca-
tions, organizations, and miscellaneous entities.

OntoNotes5 (Weischedel et al., 2013) contains
text from various domains, including news, con-
versations, and web data, and is annotated with
detailed named entity labels such as person names,
locations, organizations, and more.

Dataset # Train #Test #Labels #Average Length

IMDB 25000 25000 2 272.26
AGNEWS 120000 7600 4 51.80

CoNLL2003 14041 3453 9 19.21
OntoNotes5 59924 8262 37 21.19

Table 5: Statistics of the datasets.

B Privacy Analysis

Given a real input X = [x1,x2, ...,xn] with length
n and its synthetic inputs {Xi}ki=1.

Mixing Encryption Mixing encryption mixes k
word representations based on Eq. 1 and Eq. 2.
There are a total of k possible word representations
(1 real + k1 synthetic). All representations are
assumed to be equally likely. Besides that, The
mixed representation is more confusing than the
isolated representation, which further reduces the
success rate of attacks. Hence, the probability
of correctly guessing the real input is less than
the reciprocal of the total number of inputs,
P(Mix_Attack) ≤ 1

k .

https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/2022.emnlp-main.572
https://aclanthology.org/2022.emnlp-main.572
https://aclanthology.org/2022.emnlp-main.572


Representation Encryption Representation en-
cryption adds random noise to a random represen-
tation before mixing. "This encryption method
draws on differential privacy, which increases the
level of confusion in the representation. Although
it is difficult to analyze the theoretical privacy
protection capability, we provide empirical results
on the impact of different noise scales on privacy
and performance in Appendix E.

Position Encryption Given a shuffled sentence
of length n, there are n! (n factorial) ways to
arrange n items. All arrangements are assumed
to be equally likely. Hence, the probability of
correctly guessing the original order should be
the reciprocal of the total number of arrangements:
P(Pos_Attack) =

1
n! . Although attackers can exploit

rules such as grammar and positional information
to eliminate and increase the success rate of attacks,
there would still be many confusing candidates left.
We also designed privacy attacks in §4.2 to verify
this.

C Discussion about TextFusion

TextFusion (Zhou et al., 2022) aims to fuse
token representations and prevent privacy attackers
from collecting ideal data and training a one-to-
one inversion model. In their privacy setting,
privacy attackers come primarily from third parties.
However, our setting is stricter than TextFusion,
service providers can also be potential privacy
attackers, they release the model weights, can
design special attack methods, and collect any
training data if they want. We propose a simple
attack method and use it in our experiments. For
token-level tasks, we train an inversion model that
only restores unfused tokens and directly uses this
model to attack. For sentence-level tasks, we train
an inversion to restore one original word from fused
representations. As shown in Table 1, the success
rates of both attack methods are considerably high,
indicating that our scenario necessitates stronger
methods for privacy protection.

D Discussion about Position Encryption

In §2.3, we mention that Xmix
PE and Xmix are

equivalent for PLM, which means that even if the
word positions are shuffled, it does not affect the
subsequent model inference. Here we provide a
brief explanation, we use a Bert-like model, and
no relative position embedding is used. As a

Num. ϵ Task ↑ Privacy ↓

2
1 89.5 64.1

0.5 88.22 32.24
0.2 81.29 4.48

5
1 87.15 6.96

0.5 86.65 3.94
0.2 83.32 1.62

10
1 84.39 1.64

0.5 83.49 1.57
0.2 81.91 1.26

Table 6: Effects of mixed inputs number and noise scale
in CoNLL03. "Num." denotes the number of mixed
inputs. "ϵ" represents the noise parameter. A smaller
value of ϵ corresponds to a larger noise scale. "Task"
means task performance, specifically the F1 score for
CoNLL03. "Privacy" refers to the privacy metric, which
is the Top-1 accuracy of the Inversion attack. ↑ indicates
that higher values are better, while ↓ suggests that lower
values are better.

result, the position information is only provided by
position embedding, which is added to each input
before mixing. During the inference phase, the
subsequent calculations (self-attention, softmax,
feed-forward layer, etc.) are independent of the
explicit representation position and only depend
on the implicit positional features within the
representation. As a result, we can shuffle the
mixed representations without any impact on
performance. However, the shuffled word positions
can reduce the readability for humans, which
confuses privacy attackers and enhances privacy.

E Effect of Mixed Inputs Number and
Noise Scale

In this section, we show the utility-privacy trade-off
caused by the number of mixed inputs and noise
scale. We conducted experiments on CoNLL03,
and Table 6 shows the experimental results for
mixed inputs numbers of [2, 5, 10] and noise
parameters ϵ of [1, 0.5, 0.2]. lower ϵ means larger
noise. It can be observed that increasing the
noise scale appropriately can significantly prevent
privacy leakage (64.1 -> 32.24 for N=2) with
an acceptable decrease in performance (89.5 -
> 88.22 for N=2). In addition to this, we can
observe that incorporating mixed inputs results in a
more favorable balance between utility and privacy,
underscoring the significance of mixing.



Method
FLOPS FLOPS Inference Communication
(User) (Server) Time Cost

Fine-tuning (Devlin et al., 2018) 0.0003G 10.88G 0.077 s 384 KB
PUMA* (Dong et al., 2023) - - 33.91 s 10.77GB
TextFusion (Zhou et al., 2022) 0.0075G 5.45G 0.047 s 192KB
TextMixer (N=5) 0.1080G 10.88G 0.079 s 384KB
TextMixer (N=10) 0.2157G 10.88G 0.089 s 384KB

Table 7: Inference cost of different privacy-preserving methods. FLOPs stands for floating point operations.
Inference Time represents the total inference time of the entire model, measured in seconds. N represents the
number of mixed words. * denotes results are directly taken from (Dong et al., 2023).

F Comparison of Inference Cost

To show the efficiency of TextMixer, we compare
the inference cost of different types of privacy-
preserving methods, including Fine-tuning,
encryption-based methods, TextFusion and
TextMixer. The communication cost is how much
data the users send. Because inference time
can vary depending on different platforms and
implementations, we use both inference time
and FLOPs (floating-point operations) as two
metrics to measure computational costs. We use a
sentence of length 128 to query a bert-base model,
all experiments are conducted on the same CPU
unless otherwise specified.

From Table 7, we can find that TextMixer
only introduces a few additional computation and
communication costs compared to fine-tuning. The
fast encryption-based method, PUMA, still requires
33.91 seconds and 10.77GB communication cost,
which is not convenient in real applications.

G Implementation Details

The pre-trained MIMO network is released by
(Murahari et al., 2023)3, BERT-base are used as pre-
trained MIMO network to implement TextMixer.
To ensure consistency, all baseline methods are
implemented using the BERT-base model. All the
experiments are conducted on NVIDIA GeForce
RTX 3090. Implementation details and the Hyper-
Parameters of both attack and defense methods are
introduced as follows.

Defence Methods Our implementation is based
on the Hugging Face Transformer models 4 and
is replication with publicly available code. At
training time, we use the AdamW optimizer

3https://github.com/princeton-nlp/datamux-pretraining/
4https://huggingface.co/

(Loshchilov and Hutter, 2019) and a linear learning
rate scheduler, as suggested by the Hugging Face
default setup. For all defense methods, we choose
Laplace noise to disturb the representation and
train 30 epochs to guarantee convergence. We
prioritize privacy while considering performance
when selecting the most favorable outcomes from
the experimental results for reporting. The
optimized hyperparameters, which yielded the best
results, are presented in Table 8.

For TextMixer, the hyperparameters we tune
include the number of mixing instances and
the scale of Laplace noise of Representation
Encryption. We train TextMixer with the number
of instances N in [2, 5, 10] and the scale of Laplace
noise ϵ in [1, 2, 2.5, 5, 6, 7, 8, 10]. For all datasets,
we use Real Data as the synthetic inputs due to the
better privacy-performance trade-off.

For DPNR5, we take the scale of Laplace noise
and the nullification rate for word dropout strategy
as hyperparameters, we search the scale of the noise
ϵ in [0.2, 1, 2, 10, 20] and the nullification rate nu
in [0, 0.1, 0.3, 0.5].

For CAPE6, during the progress of adversarial
training weight, the coefficient λadv for the
adversarial training loss is searched within the
range of [0.01, 0.05, 0.1, 0.5, 1, 5] and the scale of
the noise ϵ in [0.2, 1, 2, 10, 20].

For Santext+7, our approach aligns with the
author’s methodology, utilizing GloVe (Pennington
et al., 2014) for word substitution guidance. By
default, the probability of non-sensitive words
being replaced is set at 0.3 (denoted as p), while
the percentage of sensitive words to be sanitized is
set at 0.9 (denoted as w). We conduct a search for
privacy parameter α within the range of [1, 2, 3].

5https://github.com/xlhex/dpnlp
6https://github.com/NapierNLP/CAPE
7https://github.com/xiangyue9607/SanText



For DataMix, we implement the method our-
selves based on the original paper, we search the
number of mixing instances in the range of [2, 4,
8].

For TextFusion, we focus on adjusting the
misleading weight during the fusion process. we
vary the misleading weight λml within the range
of [0.05, 0.5, 1, 5, 10, 15].To enhance privacy on
sentence-level tasks, we increase the weight of the
misleading loss term.

Attack Methods To carry out the KNN Attack
in our implementation, we utilized the embedding
matrix of the BERT-base model. This embedding
matrix was employed to compute the Euclidean
distance between the client representations. In
the case of InvBert Attack and MLC Attack,
we employ the BERT-base model to construct the
inversion model and train 20 epochs to guarantee
convergence. We also perform a search for the
optimal learning rate within the range of [1e-4, 1e-
5, 2e-5, 1e-6]. For baselines, we use a learning rate
of 2e-5 to train the inversion model. For TextMixer,
the best learning rate we tuned is 1e-4 in most
cases.

bsz lr N ϵ nu λadv α λml

IMDB:
Fine-tuning 32 2e-5 - - - - - -
DPNR 32 2e-5 - 5 0 - - -
CAPE 32 5e-5 - 10 - 1 - -
SanText+ 64 1e-5 - - - - 3 -
DataMix 32 2e-5 4 - - - - -
TextFusion 32 5e-5 - - - - - 15
TextMixer 32 5e-5 5 0.4 - - - -

AGNEWS:
Fine-tuning 32 2e-5 - - - - - -
DPNR 32 2e-5 - 1 0 - - -
CAPE 32 5e-5 - 2 - 0.1 - -
SanText+ 64 1e-5 - - - - 1 -
DataMix 32 2e-5 2 - - - - -
TextFusion 32 5e-5 - - - - - 15
TextMixer 32 5e-5 10 6 - - - -

CoNLL2003:
Fine-tuning 32 2e-5 - - - - - -
DPNR 32 2e-5 - 1 0 - - -
CAPE 32 5e-5 - 5 - 0.1 - -
SanText+ 64 1e-5 - - - - 3 -
DataMix 32 2e-5 2 - - - - -
TextFusion 32 5e-5 - - - - - 1
TextMixer 32 5e-5 5 0.5 - - - -

OntoNotes5:
Fine-tuning 32 2e-5 - - - - - -
DPNR 32 2e-5 - 1 0 - - -
CAPE 32 5e-5 - 5 - 0.1 - -
SanText+ 64 1e-5 - - - - 3 -
DataMix 32 2e-5 4 - - - - -
TextFusion 32 5e-5 - - - - - 1
TextMixer 32 5e-5 5 0.4 - - - -

Table 8: Hyperparameter settings for our method and
baseline methods. - represents the hyperparameter is
not used in this method. N is the number of mixing
instances used in TextMixer and DataMix. ϵ is the noise
scale used in TextMixer, DPNR and CAPE. nu is the
nullification rate of word dropout for DPNR. λadv is the
weight of the adversarial training loss for CAPE. α is the
privacy parameter for Santext+. λml is the misleading
loss weight used in TextFusion.


