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ABSTRACT

The recent paradigm shift towards training large language models (LLMs) us-
ing DeepSeek-R1-Zero-style reinforcement learning (RL) on verifiable rewards
has led to impressive advancements in code and mathematical reasoning. How-
ever, this methodology is limited to tasks where rule-based answer verification is
possible and does not naturally extend to real-world domains such as chemistry,
healthcare, engineering, law, biology, business, and economics. Current practical
workarounds use an additional LLM as a model-based verifier; however, this in-
troduces issues such as reliance on a strong verifier LLM, susceptibility to reward
hacking, and the practical burden of maintaining the verifier model in memory
during training. To address this and extend DeepSeek-R1-Zero-style training to
general reasoning domains, we propose a verifier-free method (VeriFree) that by-
passes answer verification and instead directly maximizes the probability of gen-
erating the reference answer, derived in a principled way from the RL objective.
We compare VeriFree with verifier-based methods and demonstrate that, in addi-
tion to its significant practical benefits and reduced compute requirements, Ver-
iFree matches and even surpasses verifier-based methods on extensive evaluations
across MMLU-Pro, GPQA, SuperGPQA, and math-related benchmarks.
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Figure 1: The general reasoning capability significantly improves when we apply VeriFree to fine-
tune Qwen3 base models on a general reasoning dataset. Notably, VeriFree can match or even sur-
pass the instruct models and the models RL-tuned from base with a specialized LLM verifier.

1 INTRODUCTION

DeepSeek-R1-Zero (Guo et al., 2025) recently demonstrated that training large language models
(LLMs) using reinforcement learning (RL) with verifiable rewards can be extremely effective in
improving reasoning capabilities. In this RL with verifiable rewards (RLVR) framework (Lambert
et al., 2024), the LLM generates a reasoning trace (i.e., chain of thoughts, CoT) followed by a final
answer. A rule-based program then extracts and evaluates the final answer, assigning a reward of
1 to the response if the final answer is correct and 0 otherwise. The model is then trained with RL
using GRPO (Shao et al., 2024)—a simplified variant of PPO (Schulman et al., 2017).
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Question

VeriFree (Ours)
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Find </think> (end of reasoning) and patch in reference answer
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generated reasoning trace answer from data

<think> reasoning ……</think> Reference Answer 𝝅𝜽( )reference
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1 if correct
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Reward = 

Figure 2: VeriFree enables R1-Zero-style LLM training without requiring access to a verifier. In the
case of a single correct answer format, VeriFree optimizes exactly the same objective as R1-Zero
with a lower variance gradient estimator.

The simplicity of this approach, coupled with impressive performance improvements in mathemati-
cal reasoning tasks, has sparked a wave of follow-up works in this paradigm of RL with rule-based
verifiable rewards (Liu et al., 2025c; Luo et al., 2025b; Yu et al., 2025), which we will refer to as the
R1-Zero-style training in the following. However, these methods remain limited to domains such as
math and code, where rule-based verification is feasible. Reasoning is critical far beyond math and
coding; however, the difficulty of answer verification in general reasoning tasks poses a major obsta-
cle to applying this training paradigm to broader domains. To address this limitation, we investigate
how to extend R1-Zero-style training to tasks where rule-based answer verification is not possible.

A natural extension, as explored in recent general reasoning works (Su et al., 2025; Ma et al., 2025),
is to introduce a specialized LLM as a verifier, similar to the reward model used in RL from human
feedback (RLHF) (Ziegler et al., 2019; Ouyang et al., 2022). In these methods, the model-based
verifier is queried to determine whether the generated answer is equivalent to the reference answer.
Although this approach bypasses the need for rule-based evaluation, it introduces several potential
drawbacks (as in standard RLHF): it depends on the availability of a strong verifier LLM, it converts
the R1-Zero-style paradigm into optimizing a model-based reward, which makes it vulnerable to
reward hacking (Gao et al., 2023), and it adds computational overhead by requiring an additional
model to be held in memory and queried during training.

In this work, we propose an alternative: a verifier-free approach that preserves the benefits of the RL
paradigm while removing the reliance on explicit rule-based or model-based verification. Starting
from a principled objective, we derive a method that directly maximizes the likelihood of generating
reference answers. The gradient naturally decomposes into two terms: one analogous to RLVR with
likelihood as a reward signal, and the other resembling to supervised training on reference answers.
Fig. 2 illustrates our method, which we term VeriFree, as it does not rely on verifiers.

This approach has several appealing properties. First, when there is a unique correct answer string,
our method is equivalent in expectation to the objective in RLVR, but with lower variance, which
can be viewed as a form of reward shaping (Ng et al., 1999; Randlov & Alstrøm, 1998). Even
when multiple valid answers exist, we show empirically that using just one as a reference provides
a sufficient learning signal to elicit strong reasoning behavior. Additionally, this framework can be
viewed through a variational lens as a neat way of optimizing over latent reasoning traces.

To make this work in practice, we identify and address several subtle challenges, including effective
variance reduction and precise handling of tokenization at the reasoning-answer patching point. We
conduct comprehensive ablations to understand the impact of each design choice. We benchmark
our method across a diverse set of general reasoning tasks, and the results are striking: as shown
in Fig. 1, VeriFree not only matches but often outperforms verifier-based alternatives, while being
simpler, faster, less memory-intensive, and more robust.
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2 METHODOLOGY

2.1 PRELIMINARIES: VERIFIER-BASED REINFORCEMENT LEARNING

In RL applied to LLMs, the language model is treated as a policy πθ that generates an output o
autoregressively in response to an input question x. The goal is typically to optimize πθ to maximize
a given reward function R(x,o):

θ ∈ argmax
θ

Eo∼πθ(·|x) [R(x,o)] . (1)

In R1-Zero-style RL, the reward is computed by first parsing the response o into a reasoning trace
z and a final answer y. A verifier then checks y against the ground-truth reference answer y⋆ and
assigns a binary reward based on correctness, namely RVerifier(y;y

⋆)=1{y≡y⋆}.1 Decomposing the
model output as o=(z,y), we can rewrite the objective in Eq. (1) as:

JVerifier(θ;x,y
⋆) = Ez∼πθ(·|x)Ey∼πθ(·|x,z)[RVerifier(y;y

⋆)], (2)

which separates the sampling of the reasoning trace and the final answer. To maximize this objective,
the model πθ is typically updated using the policy gradient estimator (Sutton & Barto, 2018):

∇θJVerifier(θ;x,y
⋆) = E

z∼πθ(·|x)
E

y∼πθ(·|x,z)

[
RVerifier(y;y

⋆)
[
∇θ log πθ(z|x) +∇θ log πθ(y|x,z)

]]
. (3)

However, this approach requires evaluating answer correctness via RVerifier(y;y
⋆)=1{y≡y⋆}, which

is often nontrivial. While in domains such as math and code, this evaluation is feasible via rules (Guo
et al., 2025; Liu et al., 2025c) or test cases (Gehring et al., 2024), accurate verification in general
reasoning tasks is substantially more difficult. As a result, recent advances in R1-Zero-style training
have largely been restricted to verifiable domains, leaving reasoning tasks in general domains under-
explored. In light of this, we present an alternative verifier-free approach which naturally extends
this training paradigm to broader reasoning domains.

2.2 VERIFREE POLICY OPTIMIZATION

We begin with the standard objective in Eq. (2) and show that, in the case of a single correct answer,
we can derive an equivalent objective that does not require a verifier. Moreover, we compare the
gradient estimators of this new objective and the verifier-based objective (Eq. (3)), and demonstrate
that our verifier-free gradient estimator has the additional benefit of lower variance.

Starting from Eq. (2) and assuming a unique correct answer such that RVerifier(y;y
∗)=1{y=y⋆} (i.e.,

exact match rather than semantic equivalence 1{y≡y⋆}), the VeriFree objective is derived as:

JVerifier(θ;x,y
⋆) = Ez∼πθ(·|x)

[
Ey∼πθ(·|x,z)[

RVerifier︷ ︸︸ ︷
1{y=y⋆} ]

]
= Ez∼πθ(·|x)

[∑
y

πθ(y|x, z)1{y=y⋆}

]
= Ez∼πθ(·|x)

[
πθ(y

⋆|x, z)︸ ︷︷ ︸
≜RVeriFree(z;x,y⋆)

]
≜ JVeriFree(θ;x,y

⋆). (4)

This can be interpreted as follows: if only one answer y⋆ is correct and receives a reward of 1 (while
all others receive 0), then the expected reward given a reasoning trace z can be computed directly as
the probability assigned to y⋆, effectively marginalizing out y. The corresponding gradient estimator
is given by (see Appendix B.1 for a full derivation):

∇θJVeriFree(θ;x,y
⋆) = Ez∼πθ(·|x)

[
RVeriFree(z;x,y

⋆)
[
∇θ log πθ(z|x)︸ ︷︷ ︸

reasoning term

+∇θ log πθ(y
⋆|x,z)︸ ︷︷ ︸

reference answer term

]]
. (5)

Both the objective and its gradient estimator (Eq. (4) and (5)) are equivalent in expectation to their
verifier-based counterparts (Eq. (2) and (3)). Intuitively, the “reasoning term” in Eq. (5) can be

1We use ‘≡’ to denote semantic equivalence, where multiple expressions can be judged correct. For exam-
ple, if y⋆ = ‘8/5’, then ‘8/5’, ‘1.6’, and ‘\frac{8}{5}’ are all considered correct.

3
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Verifier-based (R1-Zero) VeriFree (Ours)
Model generates the reasoning trace z and answer y. Model generates the reasoning trace z.
Extract the answer y. Patch in the correct answer y⋆.
Check answer using a verifier. Evaluate probability πθ(y

⋆|x,z).
Reward RVerifier = 1 if correct, 0 otherwise. Reward RVeriFree = πθ(y

⋆|x,z).
Train with gradient estimator ∇θJVerifier (Eq. 3). Train with gradient estimator ∇θJVeriFree (Eq. 5).

Figure 3: A pseudocode-like comparison of VeriFree (ours) and the standard R1-Zero approach.

interpreted as a policy gradient where the reward for a reasoning trace z (i.e., RVeriFree(z;x,y
⋆))

is the probability that the policy will generate the correct answer y⋆ given z, while the “reference
answer term” can be viewed as a reward-weighted supervised learning term for y⋆ given z. We will
further elaborate on this interpretation in Sec. 2.3. In addition to bypassing the need for a verifier,
our VeriFree gradient estimator also benefits from reduced variance:

Theorem 1. (Variance Reduction) Let ĜVerifier(x,y
⋆, z,y) and ĜVeriFree(x,y

⋆, z) denote the
single-sample Monte Carlo estimators of ∇θJVerifier and ∇θJVeriFree given x and y⋆, respectively.
Then we have

Varz∼πθ(·|x)
[
ĜVeriFree(x,y

⋆, z)
]
≤ Varz∼πθ(·|x),y∼πθ(·|x,z)

[
ĜVerifier(x,y

⋆, z,y)
]
. (6)

This reduction in variance arises from Rao-Blackwellization (Casella & Robert, 1996). For intuition,
the variance in the Monte Carlo estimate of ∇θJVerifier stems from the randomness in sampling
z ∼ πθ(·|x) and y ∼ πθ(·|x, z), while for estimating ∇θJVeriFree we analytically marginalize out y,
thereby removing this source of randomness. We provide a full proof in Appendix B.2.

Our gradient estimator ∇θJVeriFree(θ;x,y
⋆) is fully compatible with other variance reduction tech-

niques, including RLOO (Ahmadian et al., 2024), GRPO (Shao et al., 2024) reward normalizations,
and the PPO (Schulman et al., 2017) clipping operation. As such, we sample multiple responses for
each prompt and apply the RLOO baseline to the reasoning term in Eq. (5). We also adopt the cor-
rected response-length normalization from Liu et al. (2025c). The final on-policy gradient estimator
is as follows:

∇θJVeriFree(θ) =
1

G

G∑
i=1

[Ai · ∇θ log πθ(zi|x) +Ri · ∇θ log πθ(y
⋆|x, zi)] , (7)

where zi ∼ πθ(·|x), Ri = πθ(y
⋆|x, zi), and Ai = πθ(y

⋆|x, zi) − 1
G−1

∑
j ̸=i πθ(y

⋆|x, zj). We
also provide the PPO-based off-policy variant in Appendix C.

2.3 COMPARISON TO EXISTING APPROACHES

There have been two main prior works that, although derived from a different perspective, arrive at
related alternative gradient estimators: JEPO (Tang et al., 2025) and LaTRO (Chen et al., 2024b).

∇θJVerifier = Ez,y

[
1{y≡y⋆}

reasoning term︷ ︸︸ ︷
∇θ log πθ(z|x)+ 1{y≡y⋆}

answer term︷ ︸︸ ︷
∇θ log πθ(y|x, z)

]
(R1-Zero)

∇θJVeriFree = Ez

[
πθ(y

⋆|x, z) ∇θ log πθ(z|x) + πθ(y
⋆|x, z)

reference answer term︷ ︸︸ ︷
∇θ log πθ(y

⋆|x, z)
]

(Ours)

∇θJJEPO = Ez

[
log πθ(y

⋆|x, z) ∇θ log πθ(z|x) + 1 · ∇θ log πθ(y
⋆|x, z)

]
(JEPO)

∇θJLaTRO = Ez

[
(log πθ(y

⋆|x, z)− log πθ(z|x)
πref(z|x) ) ∇θ log πθ(z|x) + 1 · ∇θ log πθ(y

⋆|x, z)
]

(LaTRO)

Both JEPO and LaTRO treat the reasoning trace z as a latent variable and extend the standard super-
vised learning objective (log-likelihood) to optimize lower bounds on log(Ez∼πθ(·|x) [πθ(y

⋆|x, z)])
and log(Ez∼πref(·|x) [πθ(y

⋆|x, z)]), respectively. The primary difference is that JEPO samples z
from the learned policy πθ, while LaTRO uses a fixed reference policy πref. Despite originating

4
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from different perspectives, these methods arrive at similar gradient estimators, as shown in above
comparisons. However, as reported in Tang et al. (2025), these verifier-free, variational-inference-
based methods consistently underperform the standard verifier-based R1-Zero approach. In contrast,
our method matches or outperforms the verifier-based baselines. We also include experimental com-
parison with JEPO and LaTRO in Appendix E.2.

One possible explanation is that our method exactly recovers the original verifier-based objective un-
der the single-correct-answer assumption, whereas JEPO and LaTRO optimize subtly different ob-
jectives. For example, JEPO effectively uses a reward of R = log πθ(y

⋆|x, z), as highlighted in the
gradient expressions above. Another distinction lies in the weighting of the “reference answer term”
∇θ log πθ(y

⋆|x, z). In our method, this term is weighted by the probability πθ(y
⋆|x, z), which is

the likelihood of the reference answer given the sampled reasoning trace. In contrast, both JEPO
and LaTRO use a fixed weight of 1, thereby increasing the probability of y⋆ regardless of the qual-
ity of the reasoning trace z. We hypothesize that this behavior could promote poor reasoning. For
instance, suppose the model generates the reasoning trace “... minus 2 apples, finally
resulting in a total of 7 apples” when the correct answer is “6”. The JEPO and
LaTRO objectives would still push the model to output “6” from that flawed trace, reinforcing a
mismatch between reasoning and answer. Our method avoids this by down-weighting contributions
from low-quality traces. Due to space constraints, more related work is deferred to Appendix A.

2.4 HOW TO HANDLE THE TOKENIZATION AT PATCHING POINT?

A critical consideration when extracting reasoning traces z from model responses (z,y) stems from
the fact that LLMs operate on token sequences, not raw text strings. While human-readable out-
puts (e.g., “...<answer> \\boxed{...} </answer>” as in Template 1) suggest splitting
reasoning traces z at specific text patterns like “<answer>”, such text-based splitting strategy may
cause tokenization inconsistencies. For example, the “>” character might be tokenized differently
depending on its surrounding context in y versus y⋆. While one potential solution is to introduce
special tokens to enforce consistent tokenization boundaries, these novel tokens could harm model
performance due to their absence from the base model’s pretraining vocabulary.

Instead, we resolve this by defining the end of z at the token corresponding to <answer” (i.e.,
without “>”), leveraging the fact that the pattern “r>” does not appear in standard tokenizer vocabu-
laries. This ensures consistent token-space alignment between sampling and optimization, avoiding
instability due to off-policy mismatches (Yao et al., 2025). Notably, this approach is operationally
equivalent to setting “<answer” (instead of “<answer>”) as the stop word during sampling, a
mechanism natively supported by modern inference engines like vLLM (Kwon et al., 2023). In this
case, we can sample reasoning traces z directly, instead of first generating the full response (z, y)
and then extracting z post hoc.

3 EXPERIMENTS

In this section, we empirically evaluate VeriFree across multiple model scales and reasoning bench-
marks. We show that VeriFree improves general reasoning capabilities over verifier-based base-
lines, achieves higher learning efficiency, transfers to math reasoning tasks without math-specific
supervision, and benefits from its key design choices, including tokenization-aware reasoning trace
extraction and the RLOO variance reduction technique.

3.1 SETUP

Training. Following the “Zero” setting widely adopted in recent work (Guo et al., 2025; Hu et al.,
2025; Liu et al., 2025c; Ma et al., 2025), we directly fine-tune the base LLM, skipping the intermedi-
ate stage of supervised fine-tuning (SFT). We implement our training pipeline using Oat (Liu et al.,
2024) by instantiating their base modules and incorporate our algorithmic changes. Our experiments
are conducted using Qwen3 (Team, 2025) base models across multiple scales, including 1.7B, 4B,
and 8B parameters. We adopt the prompt template shown in Template 1. We do not employ KL
regularization losses or KL penalties in rewards, as recent studies suggest that removing KL terms
does not have a significant impact (Liu et al., 2025c; Hu et al., 2025). As a result, our method does
not require maintaining a reference model in memory.
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Table 1: Accuracy comparison on the MMLU-Pro benchmark.
Method Len. Avg. CS Math Chem Eng Law Bio Health Phys Bus Phil Econ Other Psy Hist

Qwen3-1.7B-Base 618 33.3 34.6 38.9 32.2 21.0 17.3 56.1 33.5 32.0 38.5 21.8 45.7 28.4 44.4 21.0
Qwen3-1.7B (w/o thinking) 893 46.1 49.5 64.4 48.0 35.9 22.9 64.9 38.0 49.7 53.5 33.7 53.9 36.4 51.6 31.2
Qwen3-1.7B (w/ thinking) 3904 52.0 56.1 76.4 57.6 27.0 21.9 67.9 47.7 57.5 61.3 38.9 64.5 42.5 59.2 32.3
Qwen3-1.7B-Base-Verifier 875 47.0 48.8 64.4 52.7 38.1 18.7 62.9 41.2 51.9 54.9 31.9 55.2 38.6 53.3 30.2
Qwen3-1.7B-Base-VeriFree 856 46.9 46.8 64.1 51.7 41.8 20.0 64.0 39.7 52.1 55.6 29.5 53.1 37.5 53.0 29.9

Qwen3-4B-Base 825 47.2 42.9 67.1 55.5 40.0 22.5 56.9 43.6 55.4 54.9 27.5 52.7 34.3 48.6 34.7
Qwen3-4B (w/o thinking) 838 60.0 65.9 79.1 65.8 45.7 29.0 76.6 57.0 65.1 66.7 48.9 69.2 52.1 64.3 44.6
Qwen3-4B (w/ thinking) 3456 62.7 70.0 84.8 66.6 38.6 28.7 81.3 60.4 67.4 69.2 53.7 75.1 57.8 67.9 49.6
Qwen3-4B-Base-Verifier 921 63.0 66.1 81.3 69.7 52.8 29.1 79.8 62.8 67.6 71.2 48.5 73.1 52.8 68.5 45.4
Qwen3-4B-Base-VeriFree 1241 63.5 64.4 82.2 70.1 55.6 30.7 81.7 59.2 71.0 71.0 47.1 71.7 53.4 66.8 47.5

Qwen2.5-7B 519 47.8 48.3 59.5 44.4 33.4 25.1 63.6 50.4 48.0 55.9 34.7 60.6 46.0 58.2 38.3
Qwen2.5-7B-SimpleRL-Zoo 705 51.2 51.2 52.0 50.2 40.8 30.5 69.5 54.3 52.5 57.3 41.9 62.8 52.6 60.8 42.3
Qwen2.5-Math-7B-Oat-Zero 556 40.5 47.6 47.7 46.9 32.1 18.1 53.6 25.7 49.4 52.9 29.5 54.7 32.8 43.0 22.8
Qwen2.5-7B-Instruct 481 55.3 56.6 70.4 55.6 42.7 29.8 69.3 55.1 57.9 63.5 41.5 63.4 53.6 62.4 43.6
General-Reasoner-7B 867 58.7 63.4 73.7 63.3 44.9 35.2 72.0 56.6 61.5 66.7 43.1 68.1 52.8 62.8 47.8
Qwen3-8B-Base 613 59.8 61.2 75.0 66.2 46.7 31.4 75.9 60.4 62.1 65.9 48.7 69.0 54.3 63.9 47.2
Qwen3-8B (w/o thinking) 1032 61.9 65.6 71.9 62.8 46.2 34.7 79.9 66.1 63.7 69.3 55.9 72.9 58.9 67.9 52.5
Qwen3-8B (w/ thinking) 3952 66.9 71.5 83.8 68.0 38.7 39.2 85.2 72.1 69.8 73.3 57.5 79.2 66.3 71.8 57.7
Qwen3-8B-Base-Verifier 594 65.9 63.9 81.8 71.1 56.9 35.4 81.9 64.9 71.6 74.1 53.9 74.2 58.4 68.4 54.3
Qwen3-8B-Base-VeriFree 776 67.2 71.5 85.3 73.5 55.7 37.3 81.9 64.3 73.1 74.1 54.9 74.8 59.6 67.7 54.6

Template 1 (for Ours).
<|im start|>user\n{question}\nPlease reason step by step,
and put your final answer within <answer> \\boxed{}
</answer>.<|im end|>\n<|im start|>assistant\n

For the 1.7B and 4B models, we conduct fine-tuning for approximately 4,000 policy gradient steps;
for the 8B models, we fine-tune for around 3,000 policy gradient steps. During each step, the policy
model (i.e., the LLM) generates 8 responses for each question (i.e., group size=8), with 16
questions processed per step. We use the sampling configurations temperature=1.0, top p=1,
and max tokens=3000 for the rollout process. The responses are then parsed into reasoning
traces and model-predicted answers. We replace the model-predicted answers with the reference
answers from the training dataset. Subsequently, a single forward pass is executed to compute the
conditional probability of the reference answer, conditioned on all preceding tokens including the
prompt and the reasoning trace. This procedure introduces only a minimal additional computational
cost, as the forward pass of the LLM does not require autoregressive decoding and does not require
storing intermediate states for backpropagation. All collected samples from each step are used for
one optimization step. The training is conducted on a single node with 8×H100 GPUs.

Dataset. To support general reasoning, we begin with the dataset curated by Ma et al. (2025),
sourced from WebInstruct (Yue et al., 2024). To improve data quality and reliability and reduce
size, we retain samples with answers that consist of fewer than seven tokens, and use Qwen2.5-
72B-Instruct (Yang et al., 2024a) to filter out low-quality and noisy data. This process results in
approximately 61,000 data samples spanning diverse domains, which we refer to as WebData. The
category distribution is visualized in Fig. 7.

Evaluation. In line with prior work (Ma et al., 2025), we employ multiple-choice questions for eval-
uation to facilitate verification. To assess general reasoning abilities, we utilize the following bench-
marks: MMLU-Pro (Wang et al., 2024), a challenging multi-task understanding benchmark de-
signed to evaluate the capabilities of LLMs across various domains; SuperGPQA (Du et al., 2025),
a large-scale benchmark consisting of graduate-level reasoning questions spanning 285 diverse
disciplines; and GPQA-Diamond (Rein et al., 2024), which focuses on graduate-level question-
answering and is designed to resist shallow pattern-matching and memorization. While our primary
focus is not on enhancing mathematical abilities, we also evaluate math reasoning using a suite of
standard math reasoning benchmarks. This suite includes MATH-500 (Hendrycks et al., 2021),
OlympiadBench (He et al., 2024), Minerva Math (Lewkowycz et al., 2022), GSM8K (Cobbe
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Table 2: Accuracy comparison on the SuperGPQA benchmark.
Method Len. Avg. Eng. Med. Sci. Phil. M.S. Econ. Mgmt. Socio. L/A Hist. Agron. Law Edu.

Qwen3-1.7B-Base 997 17.4 17.7 18.6 16.0 27.4 27.3 20.5 22.4 23.1 15.5 11.1 18.1 20.6 21.3
Qwen3-1.7B (w/o thinking) 1152 23.3 22.6 22.8 24.3 30.3 31.2 24.3 27.5 23.8 19.0 18.1 20.8 24.5 28.1
Qwen3-1.7B (w/ thinking) 4799 23.6 21.8 25.3 23.6 33.1 33.7 29.6 27.5 32.2 19.0 18.0 25.0 26.2 31.6
Qwen3-1.7B-Base-Verifier 1049 24.5 26.0 23.9 24.4 30.8 26.8 26.9 27.0 26.6 18.9 16.6 22.3 22.6 27.3
Qwen3-1.7B-Base-VeriFree 964 24.8 25.7 24.7 24.9 26.5 30.2 25.9 27.9 28.0 20.4 15.9 22.9 25.0 28.9

Qwen3-4B-Base 902 24.7 25.7 23.6 26.0 23.6 25.4 28.8 28.4 19.6 16.4 16.8 20.6 25.6 24.0
Qwen3-4B (w/o thinking) 1397 31.6 32.0 31.5 32.3 37.5 36.1 37.8 33.7 33.6 24.3 20.6 28.3 31.4 33.5
Qwen3-4B (w/ thinking) 4568 31.7 30.7 33.2 32.1 41.2 31.7 41.7 35.9 32.9 24.5 22.4 30.9 35.7 35.3
Qwen3-4B-Base-Verifier 1045 34.3 35.4 35.5 34.5 39.2 41.0 39.1 36.7 37.1 26.6 22.3 33.8 33.1 35.3
Qwen3-4B-Base-VeriFree 1451 35.1 36.3 34.5 36.9 35.7 37.1 39.1 38.3 31.5 24.7 22.0 33.0 33.2 34.1

Qwen2.5-7B 716 23.8 24.2 27.0 21.8 28.8 31.2 27.6 29.1 22.4 20.8 20.2 24.5 27.4 30.2
Qwen-2.5-7B-SimpleRL-Zoo 850 26.3 26.4 30.5 23.8 32.6 32.2 33.0 31.9 28.7 24.1 21.4 27.2 29.6 32.9
Qwen2.5-Math-7B-Oat-Zero 638 21.3 23.1 16.4 21.5 23.1 21.5 25.9 27.2 25.2 17.7 15.9 21.4 18.8 24.8
Qwen2.5-7B-Instruct 604 28.4 27.7 32.2 27.6 33.7 32.2 32.4 32.9 32.9 24.5 22.1 29.7 30.6 32.4
General-Reasoner-7B 1047 30.8 31.5 32.2 29.9 35.2 41.5 38.4 33.1 35.0 25.5 22.7 28.9 32.5 35.5
Qwen3-8B-Base 825 31.0 31.3 34.0 30.6 36.0 37.1 34.7 37.5 35.0 24.2 20.0 28.5 31.4 36.4
Qwen3-8B (w/o thinking) 1638 32.4 32.6 36.5 31.2 39.5 42.0 37.7 37.3 38.5 25.0 22.6 33.2 34.3 38.4
Qwen3-8B (w/ thinking) 4995 35.0 33.6 42.1 33.5 44.4 37.6 44.2 42.7 42.7 27.9 24.9 37.9 38.7 40.7
Qwen3-8B-Base-Verifier 713 37.1 38.2 39.5 37.2 39.5 39.5 43.0 40.1 38.5 28.9 24.8 34.2 34.8 38.2
Qwen3-8B-Base-VeriFree 951 38.0 38.3 39.1 39.6 37.5 42.9 41.8 41.7 44.8 28.6 23.3 33.6 36.3 38.6

et al., 2021), AMC and AIME24 (Li et al., 2024). We utilize Math-Verify2 to check for an-
swer equivalence. Except for AIME24, where we employ a temperature=1.0 and repeat
each question 32 times, all other benchmarks are evaluated using temperature=0.0. We use
max tokens=8192 for all evaluations. For the multiple-domain benchmarks (MMLU-Pro and
SuperGPQA), we report a micro-average. This metric computes a global average by aggregating
contributions across all classes, rather than calculating a macro-average (which would average per-
class scores and assign equal weight to each domain).

Baselines. Our primary baseline, denoted Verifier, is a verifier-based approach using the verifier
from Ma et al. (2025). The verifier is initialized from Qwen2.5-Math-1.5B (Yang et al., 2024b)
and fine-tuned on data generated by Gemini 2.0 Flash to assess equivalence between the reference
and predicted answers, conditioned on the question. We apply Dr. GRPO (Liu et al., 2025c) as
the optimization algorithm for the baseline, ensuring that all other settings are consistent with our
approach. Following Ma et al. (2025), the reward definition incorporates additional factors beyond
verifier correctness, including format compliance and the length of generated answers. If the format
is incorrect (e.g., missing \\boxed{} in the model response), a negative reward of -0.5 is applied.
Moreover, a length penalty of -0.05 × min(10, abs(length of correct answer -
length of answer)) is added.

We also report the results for the base and the instruct models of Qwen-3-1.7B/4B/8B (Team,
2025) and Qwen2.5-7B (Yang et al., 2024a), as well as the checkpoints released by Qwen2.5-7B-
SimpleRL-Zoo (Zeng et al., 2025), Qwen2.5-Math-7B-Oat-Zero (Liu et al., 2025c), and General-
Reasoner-7B (Ma et al., 2025).3 Notably, Qwen3 integrates both a thinking mode (for complex,
multi-step reasoning) and a non-thinking mode (for rapid, context-driven responses) within a unified
framework. We report results of both modes on Qwen3 instruct models.

3.2 MAIN RESULTS

VeriFree improves general reasoning capabilities. We begin by evaluating the effectiveness of
VeriFree in enhancing the general reasoning capabilities of LLMs using the MMLU-Pro and Su-
perGPQA benchmarks. Table 1 presents a detailed comparison across model scales and domains in
the MMLU-Pro benchmark. Starting from base models, applying RL with VeriFree yields substan-

2https://github.com/huggingface/Math-Verify
3Qwen2.5 and Qwen3 use different naming conventions in their official release. For base models: Qwen2.5

has no suffix (e.g., Qwen2.5-7B), whereas Qwen3 adds “-Base” (e.g., Qwen3-8B-Base). For instruct models:
Qwen2.5 uses “-Instruct” (e.g., Qwen2.5-7B-Instruct), while Qwen3 omits the suffix (e.g., Qwen3-8B). We
follow these conventions consistently in the paper.
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Figure 4: Left: MMLU-Pro accuracy of VeriFree and the baseline fine-tuned from Qwen3-8B
base model along training steps. The curve is smoothed by a moving average with an interval
of 384. Right: The dynamics of MMLU-Pro evaluation accuracy and average model confidence
πθ(y

⋆|x, z) along training based on Qwen3-8B base model. Raw data points are depicted with
more transparency, while smoothed data using a Gaussian filter is shown with less transparency for
emphasis. Darker colors represent larger training steps.

tial gains in average accuracy (ranging from 12% to 40%), demonstrating that VeriFree effectively
fine-tunes LLMs to improve general reasoning performance. See Appendix E for more results.

Similar improvements are observed on the SuperGPQA benchmark, as shown in Table 2, where
VeriFree consistently enhances the performance of base models by a significant margin. Notably,
VeriFree achieves performance comparable to, or even surpassing, that of the instruct model in
thinking mode and the Verifier baseline (i.e., the RL-tuned model learned with an additional model-
based verifier), without relying on any explicit verification signals.

In addition to accuracy gains, we also observe an increase in response length after tuned by VeriFree,
suggesting that the model explores longer reasoning traces to arrive at more accurate answers, which
is a behavior reminiscent of DeepSeek-R1-Zero (Guo et al., 2025). Results on the GPQA benchmark
are provided in Appendix E due to space constraints.

VeriFree leads to better learning efficiency. We compare VeriFree with the baseline that learns
from a model-based verifier reward (i.e., Verifier). As shown in Fig. 4 (Left), VeriFree consistently
outperforms the baseline, achieving higher accuracy with fewer training steps. We attribute this
improved learning efficiency to reduced gradient variance, enabled by VeriFree’s continuous reward
signals and the RLOO objective. While both approaches optimize the same reward signal in expecta-
tion, VeriFree provides more stable and informative policy gradients, which accelerate convergence
and leads to better final performance.

Model confidence is a good reasoning capability proxy. Our analysis based on Qwen3-8B base
model reveals a strong positive correlation (ρ = 0.82) between MMLU-Pro accuracy and the average
model confidence πθ(y

⋆|x, z) during training (Fig. 4, Right). This empirically demonstrates that
the model’s self-estimated confidence in the correct answer, i.e., πθ(y

⋆|x, z), serves as an effective
metric for quantifying emergent reasoning capabilities in LLMs.

MMLU-Pro GPQA SuperGPQA Math-Eval-Suite
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Qwen3-8B-Base
Qwen3-8B-Base-VeriFree-NoMath

Figure 5: VeriFree enhances reasoning transfer to
math without math training. When trained only on
non-math data, the model improves on general bench-
marks and effectively transfers to math-specific tasks.

VeriFree learns transferable reasoning
skills. To evaluate the transferability of rea-
soning acquired through VeriFree, we train
a model on a dataset with all math-related
examples removed, and assess its perfor-
mance on both general and math-specific
benchmarks. As shown in Fig. 5, Ver-
iFree not only improves reasoning perfor-
mance on general tasks, as expected, but
also demonstrates strong transfer to math
benchmarks—despite the absence of math
supervision during training. This highlights
VeriFree’s ability to induce general reason-
ing capabilities that extend across domains.
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Figure 6: Left: MMLU-Pro evaluation accuracy of VeriFree against ablation variants (w/o RLOO,
w/o tokenization-aware split strategy) along training steps. All models are based on Qwen3-1.7B
base models. Right: Effects of introducing the equivalent class to VeriFree on model performance.

3.3 ABLATION STUDY

To systematically evaluate method components and offer a comprehensive understanding of Ver-
iFree, we conduct ablation studies based on Qwen3-1.7B base models as follows.

Effects of extraction strategy for reasoning trace z. Our method requires precise separation
between reasoning path z and answer y to enable answer replacement. While human-readable
splits using <answer> seem intuitive, we instead define z to end at “<answer” (omitting “>”),
ensuring consistent tokenization boundaries (see Sec. 2.4). We compare with a variant using text-
based splitting (denoted as “VeriFree w/o token split”) on Qwen3-1.7B via MMLU-Pro (Fig. 6). Our
tokenization-aware approach achieves superior convergence, while the variant suffers optimization
instability due to effectively introducing off-policy data.

Effects of RLOO. As observed in Fig. 6 (Left), removing RLOO leads to a consistent drop in
performance throughout training, with final accuracy more than 3% lower than that of the full
method. This highlights the importance of RLOO in stabilizing learning and guiding the model
toward better generalization. Without RLOO, the model converges prematurely and fails to reach
the same peak accuracy.

Effects of equivalence class. As mentioned in Sec. 2.1, verifier-based RL typically assesses answer
correctness as rewards. Correct answers within a specific class often form an equivalence class.
Our method, however, utilizes model confidence by focusing on a single reference answer for a
given question and the model’s reasoning trace. To explore the potential advantages of integrating
an “equivalence class” into our approach, we conducted ablation studies as follows. We employed
a model fine-tuned on the MATH-12k dataset (Hendrycks et al., 2021; Lightman et al., 2024) from
Qwen3-8B base model through Dr. GRPO (Liu et al., 2025c) with rule-based verification to sample
answers on MATH-12k, subsequently verifying answer correctness using Math-Verify. This ap-
proach enabled us to create an extended dataset with a set of equivalent correct answers for each
question. We then fine-tuned Qwen3-1.7B base models using our method on both the original and
the extended MATH-12k datasets incorporating equivalence classes. These models are evaluated on
GSM8K, MATH-500, Minerva Math, and OlympiadBench to assess the impact of including equiv-
alence classes. The results, shown in Fig. 6 (Right), indicate that considering equivalence classes in
our method offers slight performance improvements, aligning with our expectations. This highlights
a minor limitation of our current formulation and motivates future work on algorithms that can better
leverage answer equivalence.

4 CONCLUSIONS

In this paper, we rethink reinforcement learning with verifiable rewards (RLVR) for LLMs from a
novel perspective. By leveraging the gradient equivalence under the unique answer assumption, we
derive a new optimization objective that eliminates the need for explicit verification, whether rule-
based or model-based. Our proposed method, VeriFree, is particularly well-suited for general rea-
soning tasks, where rule-based verifiers are infeasible and model-based verifiers are both expensive
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and vulnerable to reward hacking. Through extensive experiments and ablations, we demonstrate the
effectiveness and robustness of VeriFree on a wide range of general reasoning benchmarks. We hope
our work offers a fresh viewpoint for the LLM RL community and provides a practical approach for
building future general-purpose reasoners.
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APPENDIX

A RELATED WORKS

DeepSeek-R1-Zero-like reinforcement learning. DeepSeek-R1-Zero (Guo et al., 2025), Tülu
(Lambert et al., 2024) and OpenAI’s o1 (OpenAI, 2024) recently demonstrated that applying RL
to learn directly from binary verification-based rewards can be extremely powerful in enhancing
the reasoning capabilities of base LLMs. Since then several works have reproduced R1-Zero-like
training on smaller scales (Zeng et al., 2025; Pan et al., 2025; Liu et al., 2025b; Hu et al., 2025; Luo
et al., 2025b;a). The aforementioned works all focus on math and coding, domains where verifi-
able rewards are readily available. By contrast, our work aims to extend the R1-Zero-like training
paradigm to general domains where verifiable rewards are not available.

Reasoning beyond verifiable domains. Previous work on reasoning without access to verifiable
rewards has been based around employing an additional LLM to act as a proxy verifier or reward
model. NaturalReasoning (Yuan et al., 2025) introduces a large, multi-domain dataset and presents
baselines trained using RFT (Yuan et al., 2023) and DPO (Rafailov et al., 2023), leveraging a second
LLM as a reward model, while Su et al. (2025) and General-Reasoner (Ma et al., 2025) similarly
incorporate a separate LLM to serve as a verifier. X-Reasoner (Liu et al., 2025a) also investigates
general reasoning but circumvents the lack of rule-based verification by dropping the R1-Zero-style
training paradigm, instead training via SFT (Grattafiori et al., 2024) on responses sampled from
more capable models.

Self-improving language models. Several works have explored training LLMs using signals based
on the model’s own outputs. Yuan et al. (2024) propose to prompt the model to judge and rank dif-
ferent responses and select the best and worst for preference learning. Chen et al. (2025) leverage the
DPO implicit rewards for more efficient and robust self-alignment via iterative DPO (Rafailov et al.,
2023). Zuo et al. (2025) use majority voting to construct self-labeled rewards for RL to further im-
prove well-trained models during test time, which can be understood as a form of sharpening (Huang
et al., 2024). The aforementioned works differ from our approach. They do not require reference an-
swers or labels, whereas our method requires reference answers in the training dataset. Furthermore,
as shown in Sec. 2.2, it is proven that VeriFree is equivalent to RLVR under the single reference an-
swer assumption. Another line of research (Phan et al., 2023; Chen et al., 2024b; Tang et al., 2025;
Hu et al., 2024) approaches LLM reasoning from the direction of variational optimization, treating
the reasoning trace as a latent variable. Despite starting from a different viewpoint our method has
interesting and close connections to this perspective which we discuss in detail in Sec. 2.3.

B THEORETICAL ANALYSIS

B.1 DERIVATION OF GRADIENT ESTIMATORS

Here we provide derivations of Eq. (5) for the gradient estimator of VeriFree. We also include the
corresponding derivation for the standard verifier-based gradient estimator for completeness.

Proof. The gradient estimator for JVerifier is derived as follows:

∇θJVerifier(θ;x,y
⋆)

=∇θEz∼πθ(·|x)

[
Ey∼πθ(·|x,z)

[
RVerifier(y;y

⋆)
]]

=∇θ

∑
z,y

RVerifier(y;y
⋆)πθ(y|x, z)πθ(z|x)

=
∑
z,y

RVerifier(y;y
⋆)
[
πθ(y|x, z)∇θπθ(z|x) + πθ(z|x)∇θπθ(y|x, z)

]
=

∑
z,y

RVerifier(y;y
⋆)
[
πθ(y|x, z)πθ(z|x)∇θ log πθ(z|x) + πθ(z|x)πθ(y|x, z)∇θ log πθ(y|x, z)

]
=Ez∼πθ(·|x)

[
Ey∼πθ(·|x,z)

[
RVerifier(y;y

⋆)
[
∇θ log πθ(z|x) +∇θ log πθ(y|x, z)

]]]
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The gradient estimator for JVeriFree is derived as follows:

∇θJVeriFree(θ;x,y
⋆)

=∇θEz∼πθ(·|x)[RVeriFree(z;x,y
⋆)]

=∇θEz∼πθ(·|x)[πθ(y
⋆|x, z)]

=∇θ

∑
z

πθ(y
⋆|x, z)πθ(z|x)

=
∑
z

[
πθ(y

⋆|x, z)∇θπθ(z|x) + πθ(z|x)∇θπθ(y
⋆|x, z)

]
=

∑
z

[
πθ(y

⋆|x, z)πθ(z|x)∇θ log πθ(z|x) + πθ(z|x)πθ(y
⋆|x, z)∇θ log πθ(y

⋆|x, z)
]

=Ez∼πθ(·|x)

[
πθ(y

⋆|x, z)
[
∇θ log πθ(z|x) +∇θ log πθ(y

⋆|x, z)
]]

=Ez∼πθ(·|x)

[
RVeriFree(z;x,y

⋆)
[
∇θ log πθ(z|x) +∇θ log πθ(y

⋆|x, z)
]]

B.2 PROOF OF LOWER VARIANCE

Here we provide a full proof of Theorem 1, the reduced variance property of VeriFree. We show that
the policy gradient estimator derived from JVeriFree(θ;x,y

⋆) has variance less than or equal to that
of the estimator derived from JVerifier(θ;x,y

⋆) for any given x,y⋆. The same relationship will hold
for the global objectives averaged over (x,y⋆) ∼ D.

Proof. The global objective functions are:

JVerifier(θ) = E(x,y⋆)∼D

[
Ez∼πθ(·|x)

[
Ey∼πθ(·|x,z)

[
1{y = y⋆}

]]]
JVeriFree(θ) = E(x,y⋆)∼D

[
Ez∼πθ(·|x)

[
πθ(y

⋆|x, z)
]]

For a given (x,y⋆) ∼ D, the single-sample Monte Carlo gradient estimators are:

ĜVerifier(x,y
⋆, z,y) = 1{y = y⋆}

[
∇θ log πθ(z|x) +∇θ log πθ(y|x, z)

]
where z ∼ πθ(·|x), y ∼ πθ(·|x, z), and

ĜVeriFree(x,y
⋆, z) = πθ(y

⋆|x, z)
[
∇θ log πθ(z|x) +∇θ log πθ(y

⋆|x, z)
]

where z ∼ πθ(·|x).

The proof relies on the law of total variance and the relationship between ĜVerifier and ĜVeriFree.

First, we show that ĜVeriFree(x,y
⋆, z) is the conditional expectation of ĜVerifier(x,y

⋆, z,y) given
x,y⋆, z. The expectation is taken over y ∼ πθ(·|x, z):

Ey∼πθ(·|x,z)
[
ĜVerifier(x,y

⋆, z,y)|x,y⋆, z
]

=Ey∼πθ(·|x,z)

[
1{y = y⋆}

[
∇θ log πθ(z|x) +∇θ log πθ(y|x, z)

]∣∣∣x,y⋆, z
]

=
∑
y′

πθ(y
′|x, z)

[
1{y′ = y⋆}

[
∇θ log πθ(z|x) +∇θ log πθ(y

′|x, z)
]]

=πθ(y
⋆|x, z)

[
∇θ log πθ(z|x) +∇θ log πθ(y

⋆|x, z)
]

= ĜVeriFree(x,y
⋆, z)
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We denote Ey∼πθ(·|x,z)
[
ĜVerifier(x,y

⋆, z,y)
∣∣x,y⋆, z

]
as Ey|z

[
ĜVerifier(x,y

⋆, z,y)
]

for brevity in
the following, since x and y⋆ are already given and fixed. Thus, we have

Ey|z
[
ĜVerifier(x,y

⋆, z,y)
]
= ĜVeriFree(x,y

⋆, z) (8)

The law of total variance states that for a random variable W and conditioning variables S,
Var(W ) = ES [Var[W |S]] + VarS [E[W |S]]. Let W = ĜVerifier(x,y

⋆, z,y). Given x and y⋆,
the sources of randomness for ĜVerifier are z and y. Let S = z be the conditioning variables. The
randomness in ĜVerifier given S comes from y ∼ πθ(·|x, z). Applying the law:

Varz,y
[
ĜVerifier(x,y

⋆, z,y)
]
= Ez

[
Vary|z

[
ĜVerifier(x,y

⋆, z,y)
]]
+Varz

[
Ey|z

[
ĜVerifier(x,y

⋆, z,y)
]]

The expectation Ez is over z ∼ πθ(·|x). The conditional variance Vary|z and expectation Ey|z are
over y ∼ πθ(·|x, z) for fixed x,y⋆, z.

Substituting the result from Eq. (8) into the law of total variance:

Varz,y
[
ĜVerifier(x,y

⋆, z,y)
]
= Ez

[
Vary|z

[
ĜVerifier(x,y

⋆, z,y)
]]

+ Varz
[
ĜVeriFree(x,y

⋆, z)
]

The second term, Varz
[
ĜVeriFree(x,y

⋆, z)
]
, is the definition of the variance of the estimator ĜVeriFree.

The first term, Ez

[
Vary|z

[
ĜVerifier(x,y

⋆, z)
]]

, is an expectation of a variance. Since variance is al-

ways non-negative, Vary|z
[
ĜVerifier(x,y

⋆, z)
]
≥ 0. Therefore, its expectation is also non-negative:

Ez

[
Vary|z

[
ĜVerifier(x,y

⋆, z)
]]

≥ 0

Thus, we have:

Varz,y
[
ĜVerifier(x,y

⋆, z,y)
]
= (a non-negative term) + Varz

[
ĜVeriFree(x,y

⋆, z)
]

This implies:

Varz,y
[
ĜVerifier(x,y

⋆, z,y)
]
≥ Varz

[
ĜVeriFree(x,y

⋆, z)
]

The variance of the policy gradient estimator ĜVeriFree is less than or equal to that of ĜVerifier. This is
an instance of Rao-Blackwellization, where analytically integrating out a source of randomness (the
sampling of y) by using its conditional expectation reduces variance.

C OFF-POLICY GRADIENT ESTIMATORS

In the main paper we provide an expression for the gradient estimator when the data is fully on-
policy. VeriFree is also fully compatible with PPO-style gradient clipping for the case when data is
reused to improve sample efficiency. In this case the gradient estimator is:

∇θJVeriFree(θ) =
1

G

G∑
i=1

[ |zi|∑
t=1

Clip
{

πθ (zi,t | x, zi,<t)

πθold (zi,t | x, zi,<t)

}
Ai +

|y⋆|∑
t′=1

Clip
{

πθ (y
⋆
t | x, zi)

πθold (y
⋆
t | x, zi)

}
Ri

]
,

where πθold is the sampling policy, Ai = πθold(y
⋆|x, zi) − 1

G−1

∑
j ̸=i πθold(y

⋆|x, zj), Ri =

πθold(y
⋆|x, zi), and Clip{·} denotes the PPO clipping operation.

D DATASET DETAILS

The category distribution in WebData (our training data) is visualized in Fig. 7.
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Figure 7: Category distributions in WebData. A breakdown of the “grouped” category (right) shows
detailed distribution of various domains with fewer data samples.

E EXTENDED EMPIRICAL RESULTS

E.1 MATH-RELATED BENCHMARKS AND GPQA-DIAMOND

In Tables 1 and 2, we provide detailed benchmark results for MMLU-Pro and SuperGPQA using
domain name abbreviations. The full nomenclature is as follows:

MMLU-Pro (Table 1):
CS (Computer Science), Math (Mathematics), Chem (Chemistry), Eng (Engineering),
Law (Law), Bio (Biology), Health (Health), Phys (Physics), Bus (Business),
Phil (Philosophy), Econ (Economics), Other (Other), Psy (Psychology), Hist (History).

SuperGPQA (Table 2):
Eng. (Engineering), Med. (Medicine), Sci. (Science), Phil. (Philosophy),
M.S. (Military Science), Econ. (Economics), Mgmt. (Management), Socio. (Sociology),
L/A (Literature and Arts), Hist. (History), Agron. (Agronomy), Law (Law), Edu (Education).

In Table 3, we present an accuracy comparison across six math evaluation benchmarks and GPQA-
Diamond. Models trained with VeriFree demonstrate consistent and significant improvements over
the base models, further validating the effectiveness of our approach.

Table 3: Accuracy comparison on math evaluation suite and GPQA-Diamond.

Method AIME24 AMC GSM8K MATH-500 Minerva Olympiad GPQA-D

Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.

Qwen3-1.7B-Base 1.7 1287 40.0 1001 71.4 343 58.8 1094 19.5 1071 23.3 1737 17.7 1355
Qwen3-1.7B (w/o thinking) 10.9 2552 40.0 2291 83.3 312 72.8 1021 27.9 776 39.1 1970 19.2 1885
Qwen3-1.7B (w/ thinking) 20.9 7855 57.5 5973 89.0 2220 77.4 4525 36.8 5606 40.9 6497 17.7 7104
Qwen3-1.7B-Base-Verifier 8.4 2317 42.5 1712 81.7 405 66.2 1057 30.5 1357 29.8 1885 36.4 1317
Qwen3-1.7B-Base-VeriFree 10.7 1783 37.5 1522 76.2 447 63.8 972 21.0 867 29.8 1484 30.3 1147

Qwen3-4B-Base 5.2 1312 50.0 1001 73.1 393 73.4 724 29.4 1027 39.6 1202 24.7 1275
Qwen3-4B (w/o thinking) 20.4 3146 67.5 2047 92.1 308 82.2 1143 41.2 822 49.5 2593 29.8 2127
Qwen3-4B (w/ thinking) 33.0 7750 62.5 6123 92.9 2261 84.4 4370 41.5 5352 47.3 6432 31.8 6504
Qwen3-4B-Base-Verifier 15.6 2407 57.5 1566 72.5 377 73.8 1023 24.6 1088 45.9 1576 44.4 1266
Qwen3-4B-Base-VeriFree 16.9 2706 65.0 1904 87.5 682 74.8 1269 25.4 1444 44.9 1899 42.4 1619

Qwen2.5-7B 2.2 869 32.5 922 84.6 260 63.2 582 26.8 819 30.2 963 24.2 595
Qwen-2.5-7B-SimpleRL-Zoo 15.5 1285 57.5 1097 92.1 331 78.6 690 36.4 795 43.4 1083 23.7 990
Qwen2.5-Math-7B-Oat-Zero 28.3 1115 65.0 846 90.8 386 79.0 652 33.1 655 43.0 860 24.7 722
Qwen2.5-7B-Instruct 11.2 993 52.5 986 91.7 318 78.2 649 37.9 690 39.9 1123 31.8 643
General-Reasoner-7B 13.1 1363 52.5 1083 81.7 408 74.6 858 23.5 968 39.3 1303 34.8 1199
Qwen3-8B-Base 6.5 1213 65.0 917 91.7 304 77.0 671 38.2 884 41.3 1189 38.9 887
Qwen3-8B (w/o thinking) 24.6 2897 62.5 1919 93.3 293 82.2 1087 36.4 751 49.5 2422 27.8 2204
Qwen3-8B (w/ thinking) 31.0 7789 62.5 6201 95.3 2203 83.0 4414 43.8 5410 45.2 6554 37.4 6681
Qwen3-8B-Base-Verifier 17.8 1954 57.5 1265 93.4 307 76.2 784 39.0 698 41.8 1201 43.9 733
Qwen3-8B-Base-VeriFree 25.2 2461 67.5 1542 91.6 375 80.8 1024 30.5 902 50.2 1778 44.4 1080
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E.2 EMPIRICAL COMPARISON WITH RELATED APPROACHES

In Sec. 2.3, we have discussed the methodological differences between our work and related ap-
proaches, LaTRO and JEPO. In this section, we present an experimental comparison with these
methods.

We first evaluate JEPO as a new baseline by fine-tuning the Qwen3 base model on our curated
dataset (WebData) as introduced in Sec. 3.1. During fine-tuning, we observe that the number of
reasoning tokens in the model’s responses progressively decreases, eventually leaving almost no
valid reasoning tokens (only answer tokens). The resulting performance is worse than that of the
base model, so we do not report these results here. A similar trend is observed for LaTRO. We
hypothesize that this degradation stems from two factors: (1) potential noise in the training data
(which is preprocessed from Web Instruct and filtered by an LLM), and (2) the lack of robustness
in LaTRO/JEPO, as these methods apply uniform weighting to answer token gradients. This may
force the model to prioritize reference answers even when the reasoning quality is poor (see Sec. 2.3
for further analysis).

To further investigate, we evaluate JEPO and our method on the cleaner math12k dataset (Hendrycks
et al., 2021) for mathematical reasoning tasks. We fine-tune the Qwen3-4B-Base model using four
approaches: (1) RL with rule-based verification (denoted as RLVR), (2) LaTRO, (3) JEPO, and (4)
VeriFree. Evaluation across multiple mathematical reasoning benchmarks (see Table 4) shows that
our method consistently outperforms JEPO and matches the performance of RL with rule-based
verification.

Table 4: Accuracy comparison on math tasks. All methods are trained on math12k (Hendrycks
et al., 2021) based on Qwen3-4B-Base. The best results are highlighted using bold text.

Method MATH500 AIME24 AMC Minerva Olympiad GSM8K

Qwen3-4B-Base 73.4 5.2 50 29.4 38.6 73.1
RLVR 83.8 18.54 62.5 42.65 50.07 92.7
LaTRO 82.6 16.67 60.0 37.9 45.9 90.8
JLB 83 16.67 60.0 39.0 47.7 92.0
VeriFree 84.6 21.46 62.5 42.65 50.22 92.57

For a direct comparison with General Reasoner (Ma et al., 2025) which also focuses on general
domain reasoning, we evaluate their newly released General-Reasoner-4B (also fine-tuned from
Qwen3-4B-Base) on MMLU-Pro, SuperGPQA, and GPQA-Diamond. These benchmarks are de-
signed to assess reasoning capabilities across diverse general domains. The results, presented in
Table 5, demonstrate that our method matches or surpasses other approaches of a comparable model
scale.

Table 5: Accuracy comparison on general domain reasoning tasks. All methods are based on
Qwen3-4B-Base. The best results are highlighted using bold text. Note that † indicates results
reported by Ma et al. (2025).

Model MMLU-Pro SuperGPQA GPQA-D

Qwen3-4B-Base† 51.6 25.4 26.3
Qwen3-4B (non-think)† 61.8 32.1 41.7
General-Reasoner-4B 62.8 32.5 42.9
Qwen3-4B-Base-Verifier 63.0 34.3 44.4
Qwen3-4B-Base-VeriFree 63.5 35.1 42.4

E.3 EVALUATION RESULTS WITH DIFFERENT SAMPLING PARAMETERS

The sampling parameters used in our main experiment (detailed in Sec. 3.1) follow the configuration
from Ma et al. (2025). Recent works (Hochlehnert et al., 2025; Team, 2025) suggest that greedy
decoding may be suboptimal for reasoning models that generate extended thinking traces. To address
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this concern, we conduct a comprehensive evaluation on GPQA-Diamond using various sampling
configurations.

We provide additional evaluation results on GPQA-Diamond using six distinct sampling configura-
tions, including those recommended in the Qwen3 official report (Team, 2025):

• S1: temperature=0 (i.e., greedy decoding) and 8k token budget (same as Ma et al. (2025))

• S2: temperature=0 (i.e., greedy decoding) and 32k token budget

• S3: temperature=0.7, top p=0.8, top k=20, min p=0, n repeats=10, and 8k token budget

• S4: temperature=0.7, top p=0.8, top k=20, min p=0, n repeats=10, and 32k token budget

• S5: temperature=0.6, top p=0.95, top k=20, min p=0, n repeats=10, and 8k token budget

• S6: temperature=0.6, top p=0.95, top k=20, min p=0, n repeats=10, and 32k token budget

We report the results in Table 6. As the results show, our method consistently matches or surpasses
both the counterpart with the model-based verifier and also the Qwen (w/o thinking) across most
settings. Qwen3 (w/ thinking) shows strong results when given extremely large token budgets (32k).
Note that Qwen3 (w/ thinking) is trained with multiple stages, including cold start with distillation
data, while our method and the counterparts with verifiers are directly trained from the base model
(“zero” setting).

Table 6: Performance comparison with different sampling configurations on GPQA-Diamond. The
best results are highlighted using bold text.

Model S1 S2 S3 S4 S5 S6

Qwen3-4B-Base 28.79 28.28 29.85 29.39 29.49 28.99
Qwen3-4B (w/o thinking) 36.87 31.31 38.99 40.05 37.88 38.43
Qwen3-4B (w/ thinking) 29.29 47.47 36.26 55.15 35.66 54.19
Qwen3-4B-Base-Verifier 42.42 43.43 41.57 42.37 42.07 41.41
Qwen3-4B-Base-VeriFree 40.91 45.45 43.03 42.88 43.99 42.88

Qwen3-8B-Base 37.37 37.88 34.75 36.87 36.62 34.85
Qwen3-8B (w/o thinking) 35.86 32.32 37.02 36.46 36.41 37.83
Qwen3-8B (w/ thinking) 36.36 58.59 37.37 61.26 37.83 62.27
Qwen3-8B-Base-Verifier 40.91 44.95 46.52 47.27 45.76 47.68
Qwen3-8B-Base-VeriFree 48.48 43.94 47.22 46.46 46.01 47.37

E.4 AVG@K PERFORMANCE ON SMALL BENCHMARKS

We note that the primary benchmarks in our evaluation are large in scale. For instance, MMLU-
Pro includes 12k test samples and SuperGPQA contains 26k. On these large benchmarks, VeriFree
generally achieves stronger performance.

We have also added evaluations on smaller benchmarks, as shown in Table 7. We report Avg@K,
where K is chosen such that the total number of samples after repetition is approximately 1k.

Table 7: Avg@K on small benchmarks. The best results are highlighted using bold text.

Model GPQA-D AIME24 MATH500 Minerva
Avg@4 Avg@32 Avg@2 Avg@4

Qwen3-4B-Base-Verifier 42.80 16.04 73.70 24.63
Qwen3-4B-Base-VeriFree 42.29 17.50 75.10 25.54
Qwen3-8B-Base-Verifier 44.07 18.96 77.20 36.50
Qwen3-8B-Base-VeriFree 45.45 25.52 81.10 34.67
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E.5 EXPERIMENTS ON OTHER MODEL FAMILIES

We have extended our evaluation to an additional model family, applying both our method and
the verifier-based baseline to OctoThinker-3B-Long-Base (Wang et al., 2025), a model mid-trained
from Llama-3. The performance is compared against the official RLVR-trained reasoning model
(OctoThinker-3B-Long-Zero) and the corresponding verifier-based baseline. All evaluations are
conducted under a zero-shot setting. Results are presented in Table 8. Our model can outperform
both the official RLVR model and our implemented counterpart with a model-based verifier. The
base model does not perform well due to poor instruction-following abilities.

Table 8: Accuracy comparison on general domain reasoning tasks. All methods are based on
OctoThinker-3B-Long-Base. The best results are highlighted using bold text.

Model MMLU-Pro SuperGPQA GPQA-D

OctoThinker-3B-Long-Base 5.2 2.1 0.0
OctoThinker-3B-Long-Zero 35.8 18.6 25.3
OctoThinker-3B-Long-Verifier 35.5 19.8 28.3
OctoThinker-3B-Long-VeriFree 36.2 20.5 30.3

E.6 EXPERIMENTS WITH LONGER ANSWERS

In our main experiments, the dataset preprocessing retains only short-phrase reference answers with
token lengths under 7. To investigate whether VeriFree can effectively handle longer answers, we
conduct an additional experiment using the training data from General Reasoner (Ma et al., 2025),
which includes examples with longer reference answers. We align the training and evaluation pro-
tocols with General Reasoner, and denote this variant as “Qwen3-4B-Base-VeriFree w/ GR data”.
The results are presented in Table 9.

Table 9: Experiments with longer reference answers. All methods are based on Qwen3-4B-Base.
The best results are highlighted using bold text.

Model GPQA-D MMLU-Pro SuperGPQA

Qwen3-4B-Base-Verifier 44.4 63.0 34.3
Qwen3-4B-Base-VeriFree w/ our data 42.4 63.5 35.1
General-Reasoner-4B 42.9 62.8 32.5
Qwen3-4B-Base-VeriFree w/ GR data 45.5 63.2 34.5

Even when trained on data containing longer reference answers, VeriFree continues to outperform
the baselines. It is also noteworthy that our method remains more computationally efficient.

F DISCUSSION

This section provides a detailed discussion of the advantages and limitations of our proposed
method, VeriFree.

F.1 ADVANTAGES

VeriFree offers distinct advantages over other verification paradigms for general LLM reasoning
tasks. While rule-based verification is effective, its applicability is restricted to specialized domains
like mathematics and coding. In contrast, model-based verifiers (e.g., LLM-as-judge methods) of-
fer broader applicability but introduce practical challenges, including substantial resource overhead
(e.g., additional training data, increased computation, and memory usage) and inherent risks such
as reward hacking and various biases (Ye et al., 2025; Chen et al., 2024a). A prominent example is
length bias, where LLMs systematically favor longer responses irrespective of quality. The fact that
methods like General Reasoner (Ma et al., 2025) must explicitly incorporate length-based penalties
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(Sec. 3.1) underscores the pervasiveness of this issue. VeriFree circumvents these issues by directly
optimizing the conditional likelihood of the reference answer, eliminating the need for an auxiliary
verifier model. So it avoids these pitfalls entirely, providing a more robust and efficient alternative.

Although VeriFree is trained using only a single reference answer, it remains highly effective even
when multiple correct solutions exist. This is because the pretrained base model learns a generalized
understanding of correctness and reasoning logic, rather than merely memorizing a specific answer
format. Much like in supervised fine-tuning, where models develop broad instruction-following
ability despite being trained on fixed-style examples, VeriFree captures the underlying principles of
valid reasoning, enabling it to recognize correctness across varied expressions. This demonstrates
VeriFree’s superiority in generalization without relying on multiple references during training.

F.2 LIMITATIONS

The primary limitation of VeriFree is its dependency on direct question-answer pairs for supervision
(note that VeriFree does not require any reference reasoning traces). This requirement constrains
its applicability in scenarios where such supervised pairs are unavailable. For instance, in certain
coding tasks, only test cases may be provided without corresponding reference implementations. In
such settings, rule-based verification or other methods that do not rely on reference answers may
represent the only viable alternatives.

G CASE STUDY

In this section, we provide some examples of reasoning traces produced by the model trained by
our method on training questions. And we also provide an example with both our model’s and base
model’s responses on the test dataset.

Example question in training dataset (category: Chemistry)

Prompt:
<|im\_start|>user
Label or a placard colored black and white with a skull and
crossbones falls under which class
Please reason step by step, and put your final answer within
<answer> \boxed{} </answer>.<|im\_end|>
<|im\_start|>assistant

Our Model’s Response:
A label or placard colored black and white with a skull and
crossbones indicates the class of hazardous materials known as
**Class 6**. Class 6 is specifically divided into two divisions:

- **Division 6.1**: Toxic substances. These are materials that can
cause injury or death if ingested or inhaled.
- **Division 6.2**: Infectious substances. These are materials
that contain pathogens and can cause disease in humans or animals.

The skull and crossbones symbol is universally recognized as
representing toxicity, which corresponds to **Division 6.1** of
Class 6 hazardous materials. <answer> \boxed{Class 6} </answer>

Reference Answer:
Class 6

Example question in training dataset (category: Physics)

Prompt:
<|im_start|>user
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For what type of object is the period-luminosity relation used for
determining distances?
Please reason step by step, and put your final answer within
<answer> \boxed{} </answer>.<|im_end|>
<|im_start|>assistant

Our Model’s Response:
The period-luminosity relation is a fundamental tool in astronomy
used to determine distances, particularly for a specific type of
star known as Cepheid variables.

Cepheid variables are pulsating stars that exhibit a regular
pattern of expansion and contraction. This pulsation causes them
to vary in luminosity, and the key insight about these stars is
that the period of
their luminosity variation is directly related to their intrinsic
luminosity (absolute magnitude). In other words, the longer the
period of pulsation, the more intrinsically luminous the star is.

This period-luminosity relation was first discovered by Henrietta
Leavitt in 1908 by studying Cepheid variables in the Large
Magellanic Cloud. Because Cepheids are so bright intrinsically,
they can be used as "standard candles" to measure distances within
our galaxy and to nearby galaxies.

Here’s how the period-luminosity relation is used to determine
distances:

1. **Observe the Period**: First, astronomers measure the period
of the star’s brightness variation, which is the time it takes for
the star to go from brightest to dimmest and back to brightest.

2. **Determine Intrinsic Luminosity**: Using the period-luminosity
relation, they can then determine the star’s intrinsic luminosity.
This relation is usually given in a form where a graph or a
formula relates period to absolute magnitude (a measure of
intrinsic brightness).

3. **Compare to Apparent Luminosity**: The apparent magnitude (how
bright the star appears from Earth) can be measured directly.

4. **Calculate Distance**: Using the inverse square law for light,
which relates the intrinsic luminosity, apparent brightness, and
distance, astronomers can then calculate the distance to the
Cepheid variable.

This method is crucial for measuring distances in astronomy
because it provides a way to gauge how far away these stars are
with a high degree of accuracy. The distances determined using
Cepheid variables are themselves used to calibrate other distance
measurement techniques, such as those involving supernovae.

Given these details, the type of object for which the
period-luminosity relation is used for determining distances is
Cepheid variables. <answer> \boxed{Cepheid variables} </answer>

Reference Answer:
cepheid variable stars
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Example question in MMLU-Pro benchmark (category: Psychology)

Prompt (Here we ignore the prompt template and only show the question for brevity):
During the second stage of Kohlberg’s preconventional level of
moral development, children obey rules because:
Options are:
A. they are taught that rules are unbreakable.
B. they enjoy following the rules.
C. they are rewarded for following rules.
D. they feel they have a personal duty to uphold rules and laws.
E. doing so helps them satisfy their personal needs.
F. they understand the concept of fairness and justice.
G. doing so helps them avoid punishment.
H. everyone else is doing it.
I. they believe in the inherent goodness of rules.
J. they fear societal disapproval.

Our Model’s Response:

In Kohlberg’s theory of moral development, the preconventional
level is the first stage of moral reasoning, and it is primarily
focused on self-interest. This level is divided into two stages:

1. **Stage 1: Obedience and Punishment Orientation**
In this stage, children obey rules to avoid punishment. Their
reasoning is fear-based, and they view rules as set by
authority figures. The focus is on the consequences of
following or breaking rules, specifically the avoidance of
punishment.

2. **Stage 2: Individualism and Exchange**
In this stage, which is the second stage of the
preconventional level, children recognize that different
people have different needs and interests. They obey rules
only when it is in their own interest or when they can benefit
from doing so. This stage is often described as the "what’s in
it for me?" stage. Children at this level understand the
concept of exchange and may follow rules if it leads to a
reciprocal benefit.

Now, let’s evaluate the options:

(A) they are taught that rules are unbreakable.
- This does not align with either stage of the preconventional
level.

(B) they enjoy following the rules.
- Enjoyment of rules is more characteristic of conventional
levels of moral development.

(C) they are rewarded for following rules.
- While this could be somewhat related to Stage 2, the primary
focus in Stage 2 is on personal benefit rather than external
rewards.

(D) they feel they have a personal duty to uphold rules and laws.
- This is more aligned with the conventional level,
specifically the intermediate stage.

(E) doing so helps them satisfy their personal needs.
- This could be seen as related to Stage 2, but it is not the
most precise description.

(F) they understand the concept of fairness and justice.
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- Understanding fairness and justice is more associated with
the conventional and post-conventional levels.

(G) they avoid punishment.
- This describes Stage 1 of the preconventional level, not
Stage 2.

(H) everyone else is doing it.
- This is more related to conformity and is not a key
characteristic of Kohlberg’s stages.

(I) they believe in the inherent goodness of rules.
- This is more characteristic of the post-conventional level.

(J) they fear societal disapproval.
- Fear of societal disapproval is more related to the
conventional level.

The best fit for Stage 2 of the preconventional level is (E) doing
so helps them satisfy their personal needs, as it reflects the
idea of mutual benefit and personal interest. However, (G) they
avoid punishment describes Stage 1 more accurately. Given the
typical interpretations of Kohlberg’s stages, (E) is the more
appropriate choice for Stage 2.
=
But let’s double-check: According to Kohlberg, in Stage 2,
children’s moral reasoning is based on the notion of exchange and
the satisfaction of self-interest. Therefore, (E) is the most
accurate option.

<answer> \boxed{E} </answer>

Base Model’s Response:
During the second stage of Kohlberg’s preconventional level of
moral development, children obey rules because they understand the
concept of fairness and justice. This stage is characterized by a
focus on the consequences of actions and the desire to avoid
punishment or gain rewards. Children at this stage begin to
recognize that rules are not absolute and can be negotiated based
on the situation and the needs of the individual. They start to
consider the perspectives of others and the fairness of the rules,
which is a significant step towards more advanced moral reasoning.

Therefore, the correct answer is:

\boxed{F}

Reference Answer:

E

H LLM USAGE

We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped
refine grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout
(e.g., column alignment, caption length, placement). The LLM did not contribute to research
ideation, experimental design, implementation, data analysis, or technical content beyond surface-
level edits. All outputs were reviewed and edited by the authors, who take full responsibility for the
final text and visuals.
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