REINFORCING GENERAL REASONING WITHOUT VERIFIERS

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

023

025

026027028

029

031

033 034

037

040

041

042

047

051

052

Paper under double-blind review

ABSTRACT

The recent paradigm shift towards training large language models (LLMs) using DeepSeek-R1-Zero-style reinforcement learning (RL) on verifiable rewards has led to impressive advancements in code and mathematical reasoning. However, this methodology is limited to tasks where rule-based answer verification is possible and does not naturally extend to real-world domains such as chemistry, healthcare, engineering, law, biology, business, and economics. Current practical workarounds use an additional LLM as a model-based verifier; however, this introduces issues such as reliance on a strong verifier LLM, susceptibility to reward hacking, and the practical burden of maintaining the verifier model in memory during training. To address this and extend DeepSeek-R1-Zero-style training to general reasoning domains, we propose a verifier-free method (VeriFree) that bypasses answer verification and instead directly maximizes the probability of generating the reference answer, derived in a principled way from the RL objective. We compare VeriFree with verifier-based methods and demonstrate that, in addition to its significant practical benefits and reduced compute requirements, VeriFree matches and even surpasses verifier-based methods on extensive evaluations across MMLU-Pro, GPQA, SuperGPQA, and math-related benchmarks.

Figure 1: The general reasoning capability significantly improves when we apply VeriFree to finetune Qwen3 base models on a general reasoning dataset. Notably, VeriFree can match or even surpass the instruct models and the models RL-tuned from base with a specialized LLM verifier.

1 Introduction

DeepSeek-R1-Zero (Guo et al., 2025) recently demonstrated that training large language models (LLMs) using reinforcement learning (RL) with verifiable rewards can be extremely effective in improving reasoning capabilities. In this RL with verifiable rewards (RLVR) framework (Lambert et al., 2024), the LLM generates a reasoning trace (i.e., chain of thoughts, CoT) followed by a final answer. A rule-based program then extracts and evaluates the final answer, assigning a reward of 1 to the response if the final answer is correct and 0 otherwise. The model is then trained with RL using GRPO (Shao et al., 2024)—a simplified variant of PPO (Schulman et al., 2017).

Figure 2: VeriFree enables R1-Zero-style LLM training without requiring access to a verifier. In the case of a single correct answer format, VeriFree optimizes exactly the same objective as R1-Zero with a lower variance gradient estimator.

The simplicity of this approach, coupled with impressive performance improvements in mathematical reasoning tasks, has sparked a wave of follow-up works in this paradigm of *RL with rule-based verifiable rewards* (Liu et al., 2025c; Luo et al., 2025b; Yu et al., 2025), which we will refer to as the *R1-Zero-style training* in the following. However, these methods remain limited to domains such as math and code, where rule-based verification is feasible. Reasoning is critical far beyond math and coding; however, the difficulty of answer verification in general reasoning tasks poses a major obstacle to applying this training paradigm to broader domains. To address this limitation, we investigate how to extend R1-Zero-style training to tasks where rule-based answer verification is not possible.

A natural extension, as explored in recent general reasoning works (Su et al., 2025; Ma et al., 2025), is to introduce a specialized LLM as a verifier, similar to the reward model used in RL from human feedback (RLHF) (Ziegler et al., 2019; Ouyang et al., 2022). In these methods, the *model-based verifier* is queried to determine whether the generated answer is equivalent to the reference answer. Although this approach bypasses the need for rule-based evaluation, it introduces several potential drawbacks (as in standard RLHF): it depends on the availability of a strong verifier LLM, it converts the R1-Zero-style paradigm into optimizing a model-based reward, which makes it vulnerable to reward hacking (Gao et al., 2023), and it adds computational overhead by requiring an additional model to be held in memory and queried during training.

In this work, we propose an alternative: a verifier-free approach that preserves the benefits of the RL paradigm while removing the reliance on explicit rule-based or model-based verification. Starting from a principled objective, we derive a method that directly maximizes the likelihood of generating reference answers. The gradient naturally decomposes into two terms: one analogous to RLVR with likelihood as a reward signal, and the other resembling to supervised training on reference answers. Fig. 2 illustrates our method, which we term VeriFree, as it does not rely on verifiers.

This approach has several appealing properties. First, when there is a unique correct answer string, our method is equivalent in expectation to the objective in RLVR, but with lower variance, which can be viewed as a form of reward shaping (Ng et al., 1999; Randlov & Alstrøm, 1998). Even when multiple valid answers exist, we show empirically that using just one as a reference provides a sufficient learning signal to elicit strong reasoning behavior. Additionally, this framework can be viewed through a variational lens as a neat way of optimizing over latent reasoning traces.

To make this work in practice, we identify and address several subtle challenges, including effective variance reduction and precise handling of tokenization at the reasoning-answer patching point. We conduct comprehensive ablations to understand the impact of each design choice. We benchmark our method across a diverse set of general reasoning tasks, and the results are striking: as shown in Fig. 1, VeriFree not only matches but often outperforms verifier-based alternatives, while being simpler, faster, less memory-intensive, and more robust.

2 METHODOLOGY

2.1 Preliminaries: Verifier-Based Reinforcement Learning

In RL applied to LLMs, the language model is treated as a policy π_{θ} that generates an output o autoregressively in response to an input question x. The goal is typically to optimize π_{θ} to maximize a given reward function R(x, o):

$$\theta \in \arg \max_{\theta} \mathbb{E}_{\boldsymbol{o} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \left[R(\boldsymbol{x}, \boldsymbol{o}) \right].$$
 (1)

In R1-Zero-style RL, the reward is computed by first parsing the response o into a reasoning trace z and a final answer y. A verifier then checks y against the ground-truth reference answer y^* and assigns a binary reward based on correctness, namely $R_{\text{Verifier}}(y; y^*) = \mathbb{1}_{\{y \equiv y^*\}}$. Decomposing the model output as o = (z, y), we can rewrite the objective in Eq. (1) as:

$$J_{\text{Verifier}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star}) = \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})} [R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star})], \tag{2}$$

which separates the sampling of the reasoning trace and the final answer. To maximize this objective, the model π_{θ} is typically updated using the policy gradient estimator (Sutton & Barto, 2018):

$$\nabla_{\theta} J_{\text{Verifier}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star}) = \underset{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})}{\mathbb{E}} \underset{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})}{\mathbb{E}} \left[R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star}) \left[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \right] \right]. \tag{3}$$

However, this approach requires evaluating answer correctness via $R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^*) = \mathbb{1}_{\{\boldsymbol{y} = \boldsymbol{y}^*\}}$, which is often nontrivial. While in domains such as math and code, this evaluation is feasible via rules (Guo et al., 2025; Liu et al., 2025c) or test cases (Gehring et al., 2024), accurate verification in general reasoning tasks is substantially more difficult. As a result, recent advances in R1-Zero-style training have largely been restricted to verifiable domains, leaving reasoning tasks in general domains underexplored. In light of this, we present an alternative verifier-free approach which naturally extends this training paradigm to broader reasoning domains.

2.2 VERIFREE POLICY OPTIMIZATION

We begin with the standard objective in Eq. (2) and show that, in the case of a single correct answer, we can derive an equivalent objective that does not require a verifier. Moreover, we compare the gradient estimators of this new objective and the verifier-based objective (Eq. (3)), and demonstrate that our verifier-free gradient estimator has the additional benefit of lower variance.

Starting from Eq. (2) and assuming a unique correct answer such that $R_{\text{Verifier}}(\boldsymbol{y};\boldsymbol{y}^*) = \mathbb{1}_{\{\boldsymbol{y}=\boldsymbol{y}^*\}}$ (i.e., exact match rather than semantic equivalence $\mathbb{1}_{\{\boldsymbol{y}=\boldsymbol{y}^*\}}$), the VeriFree objective is derived as:

$$J_{\text{Verifier}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star}) = \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \left[\mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})} \left[\mathbb{1}_{\{\boldsymbol{y} = \boldsymbol{y}^{\star}\}} \right] \right]$$

$$= \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \left[\sum_{\boldsymbol{y}} \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \mathbb{1}_{\{\boldsymbol{y} = \boldsymbol{y}^{\star}\}} \right]$$

$$= \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \left[\underbrace{\pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})}_{\triangleq R_{\text{VeriFree}}(\boldsymbol{z}; \boldsymbol{x}, \boldsymbol{y}^{\star})} \right] \triangleq J_{\text{VeriFree}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star}). \tag{4}$$

This can be interpreted as follows: if only one answer y^* is correct and receives a reward of 1 (while all others receive 0), then the expected reward given a reasoning trace z can be computed directly as the probability assigned to y^* , effectively marginalizing out y. The corresponding gradient estimator is given by (see Appendix B.1 for a full derivation):

$$\nabla_{\theta} J_{\text{VeriFree}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star}) = \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \left[R_{\text{VeriFree}}(\boldsymbol{z}; \boldsymbol{x}, \boldsymbol{y}^{\star}) \left[\underbrace{\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x})}_{\text{reasoning term}} + \underbrace{\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})}_{\text{reference answer term}} \right] \right]. \quad (5)$$

Both the objective and its gradient estimator (Eq. (4) and (5)) are equivalent in expectation to their verifier-based counterparts (Eq. (2) and (3)). Intuitively, the "reasoning term" in Eq. (5) can be

¹We use ' \equiv ' to denote semantic equivalence, where multiple expressions can be judged correct. For example, if $y^* = \frac{8}{5}$ ', then ' $\frac{8}{5}$ ', '1.6', and ' $\frac{8}{5}$ ' are all considered correct.

Verifier-based (R1-Zero)	VeriFree (Ours)
Model generates the reasoning trace z and answer y .	Model generates the reasoning trace z .
Extract the answer y .	Patch in the correct answer y^* .
Check answer using a verifier.	Evaluate probability $\pi_{ heta}(oldsymbol{y}^{\star} oldsymbol{x},oldsymbol{z}).$
Reward $R_{\text{Verifier}} = 1$ if correct, 0 otherwise.	Reward $R_{\text{VeriFree}} = \pi_{\theta}(\boldsymbol{y}^{\star} \boldsymbol{x},\boldsymbol{z}).$
Train with gradient estimator $\nabla_{\theta} J_{\text{Verifier}}$ (Eq. 3).	Train with gradient estimator $\nabla_{\theta} J_{\text{VeriFree}}$ (Eq. 5).

Figure 3: A pseudocode-like comparison of VeriFree (ours) and the standard R1-Zero approach.

interpreted as a policy gradient where the reward for a reasoning trace z (i.e., $R_{\text{VeriFree}}(z; x, y^*)$) is the probability that the policy will generate the correct answer y^* given z, while the "reference answer term" can be viewed as a reward-weighted supervised learning term for y^* given z. We will further elaborate on this interpretation in Sec. 2.3. In addition to bypassing the need for a verifier, our VeriFree gradient estimator also benefits from reduced variance:

Theorem 1. (Variance Reduction) Let $\hat{G}_{Verifier}(x, y^*, z, y)$ and $\hat{G}_{VeriFree}(x, y^*, z)$ denote the single-sample Monte Carlo estimators of $\nabla_{\theta} J_{Verifier}$ and $\nabla_{\theta} J_{VeriFree}$ given x and y^* , respectively. Then we have

$$Var_{z \sim \pi_{\theta}(\cdot|x)} [\hat{G}_{VeriFree}(x, y^{\star}, z)] \leq Var_{z \sim \pi_{\theta}(\cdot|x), y \sim \pi_{\theta}(\cdot|x, z)} [\hat{G}_{Verifier}(x, y^{\star}, z, y)].$$
 (6)

This reduction in variance arises from Rao-Blackwellization (Casella & Robert, 1996). For intuition, the variance in the Monte Carlo estimate of $\nabla_{\theta} J_{\text{Verifier}}$ stems from the randomness in sampling $z \sim \pi_{\theta}(\cdot|z)$ and $y \sim \pi_{\theta}(\cdot|z)$, while for estimating $\nabla_{\theta} J_{\text{VeriFree}}$ we analytically marginalizes out y, thereby removing this source of randomness. We provide a full proof in Appendix B.2.

Our gradient estimator $\nabla_{\theta} J_{\text{VeriFree}}(\theta; \boldsymbol{x}, \boldsymbol{y}^*)$ is fully compatible with other variance reduction techniques, including RLOO (Ahmadian et al., 2024), GRPO (Shao et al., 2024) reward normalizations, and the PPO (Schulman et al., 2017) clipping operation. As such, we sample multiple responses for each prompt and apply the RLOO baseline to the reasoning term in Eq. (5). We also adopt the corrected response-length normalization from Liu et al. (2025c). The final on-policy gradient estimator is as follows:

$$\nabla_{\theta} J_{\text{VeriFree}}(\theta) = \frac{1}{G} \sum_{i=1}^{G} \left[A_i \cdot \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z}_i | \boldsymbol{x}) + R_i \cdot \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^* | \boldsymbol{x}, \boldsymbol{z}_i) \right], \tag{7}$$

where $z_i \sim \pi_{\theta}(\cdot|x)$, $R_i = \pi_{\theta}(y^*|x, z_i)$, and $A_i = \pi_{\theta}(y^*|x, z_i) - \frac{1}{G-1} \sum_{j \neq i} \pi_{\theta}(y^*|x, z_j)$. We also provide the PPO-based off-policy variant in Appendix C.

2.3 Comparison to Existing Approaches

There have been two main prior works that, although derived from a different perspective, arrive at related alternative gradient estimators: JEPO (Tang et al., 2025) and LaTRO (Chen et al., 2024b).

$$\nabla_{\theta} J_{\text{Verifier}} = \mathbb{E}_{\boldsymbol{z},\boldsymbol{y}} \left[\begin{array}{c} \mathbb{1}_{\{\boldsymbol{y} \equiv \boldsymbol{y}^{\star}\}} \end{array} \right] \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z}|\boldsymbol{x}) + \mathbb{1}_{\{\boldsymbol{y} \equiv \boldsymbol{y}^{\star}\}} \end{array} \right] \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{z}) \right]$$
(R1-Zero)
$$\nabla_{\theta} J_{\text{VeriFree}} = \mathbb{E}_{\boldsymbol{z}} \left[\begin{array}{c} \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) \\ \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z}|\boldsymbol{x}) + \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) \end{array} \right] \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) \right]$$
(Ours)
$$\nabla_{\theta} J_{\text{JEPO}} = \mathbb{E}_{\boldsymbol{z}} \left[\begin{array}{c} \log \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) \\ \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z}|\boldsymbol{x}) + 1 \end{array} \right] \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) \right]$$
(JEPO)
$$\nabla_{\theta} J_{\text{LaTRO}} = \mathbb{E}_{\boldsymbol{z}} \left[\begin{array}{c} (\log \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) - \log \frac{\pi_{\theta}(\boldsymbol{z}|\boldsymbol{x})}{\pi_{\text{ref}}(\boldsymbol{z}|\boldsymbol{x})} \end{array} \right) \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z}|\boldsymbol{x}) + 1 \cdot \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}) \right]$$
(LaTRO)

Both JEPO and LaTRO treat the reasoning trace z as a latent variable and extend the standard supervised learning objective (log-likelihood) to optimize lower bounds on $\log(E_{z\sim\pi_{\text{ref}}(\cdot|\boldsymbol{x})}\left[\pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},z)\right])$ and $\log(E_{z\sim\pi_{\text{ref}}(\cdot|\boldsymbol{x})}\left[\pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},z)\right])$, respectively. The primary difference is that JEPO samples z from the learned policy π_{θ} , while LaTRO uses a fixed reference policy π_{ref} . Despite originating

from different perspectives, these methods arrive at similar gradient estimators, as shown in above comparisons. However, as reported in Tang et al. (2025), these verifier-free, variational-inference-based methods consistently underperform the standard verifier-based R1-Zero approach. In contrast, our method matches or outperforms the verifier-based baselines. We also include experimental comparison with JEPO and LaTRO in Appendix E.2.

One possible explanation is that our method *exactly* recovers the original verifier-based objective under the single-correct-answer assumption, whereas JEPO and LaTRO optimize subtly different objectives. For example, JEPO effectively uses a reward of $R = \log \pi_{\theta}(y^*|x,z)$, as highlighted in the gradient expressions above. Another distinction lies in the weighting of the "reference answer term" $\nabla_{\theta} \log \pi_{\theta}(y^*|x,z)$. In our method, this term is weighted by the probability $\pi_{\theta}(y^*|x,z)$, which is the likelihood of the reference answer given the sampled reasoning trace. In contrast, both JEPO and LaTRO use a fixed weight of 1, thereby increasing the probability of y^* regardless of the quality of the reasoning trace z. We hypothesize that this behavior could promote poor reasoning. For instance, suppose the model generates the reasoning trace "... minus 2 apples, finally resulting in a total of 7 apples" when the correct answer is "6". The JEPO and LaTRO objectives would still push the model to output "6" from that flawed trace, reinforcing a mismatch between reasoning and answer. Our method avoids this by down-weighting contributions from low-quality traces. Due to space constraints, more related work is deferred to Appendix A.

2.4 How to handle the tokenization at patching point?

A critical consideration when extracting reasoning traces z from model responses (z, y) stems from the fact that LLMs operate on token sequences, not raw text strings. While human-readable outputs (e.g., "...<answer> \\boxed{...} </answer>" as in Template 1) suggest splitting reasoning traces z at specific text patterns like "<answer>", such text-based splitting strategy may cause tokenization inconsistencies. For example, the ">" character might be tokenized differently depending on its surrounding context in y versus y^* . While one potential solution is to introduce special tokens to enforce consistent tokenization boundaries, these novel tokens could harm model performance due to their absence from the base model's pretraining vocabulary.

Instead, we resolve this by defining the end of z at the token corresponding to <answer" (i.e., without ">"), leveraging the fact that the pattern "r>" does not appear in standard tokenizer vocabularies. This ensures consistent token-space alignment between sampling and optimization, avoiding instability due to off-policy mismatches (Yao et al., 2025). Notably, this approach is operationally equivalent to setting "<answer" (instead of "<answer>") as the stop word during sampling, a mechanism natively supported by modern inference engines like vLLM (Kwon et al., 2023). In this case, we can sample reasoning traces z directly, instead of first generating the full response (z, y) and then extracting z post hoc.

3 EXPERIMENTS

In this section, we empirically evaluate VeriFree across multiple model scales and reasoning benchmarks. We show that VeriFree improves general reasoning capabilities over verifier-based baselines, achieves higher learning efficiency, transfers to math reasoning tasks without math-specific supervision, and benefits from its key design choices, including tokenization-aware reasoning trace extraction and the RLOO variance reduction technique.

3.1 SETUP

Training. Following the "Zero" setting widely adopted in recent work (Guo et al., 2025; Hu et al., 2025; Liu et al., 2025c; Ma et al., 2025), we directly fine-tune the base LLM, skipping the intermediate stage of supervised fine-tuning (SFT). We implement our training pipeline using Oat (Liu et al., 2024) by instantiating their base modules and incorporate our algorithmic changes. Our experiments are conducted using Qwen3 (Team, 2025) base models across multiple scales, including 1.7B, 4B, and 8B parameters. We adopt the prompt template shown in Template 1. We do not employ KL regularization losses or KL penalties in rewards, as recent studies suggest that removing KL terms does not have a significant impact (Liu et al., 2025c; Hu et al., 2025). As a result, our method does not require maintaining a reference model in memory.

Table 1: Accuracy comparison on the MMLU-Pro benchmark.

Method	Len.	Avg.	CS	Math	Chem	Eng	Law	Bio	Health	Phys	Bus	Phil	Econ	Other	Psy	Hist
Qwen3-1.7B-Base	618	33.3	34.6	38.9	32.2	21.0	17.3	56.1	33.5	32.0	38.5	21.8	45.7	28.4	44.4	21.0
Qwen3-1.7B (w/o thinking)	893	46.1	49.5	64.4	48.0	35.9	22.9	64.9	38.0	49.7	53.5	33.7	53.9	36.4	51.6	31.2
Qwen3-1.7B (w/ thinking)	3904	52.0	56.1	76.4	57.6	27.0	21.9	67.9	47.7	57.5	61.3	38.9	64.5	42.5	59.2	32.3
Qwen3-1.7B-Base-Verifier	875	47.0	48.8	64.4	52.7	38.1	18.7	62.9	41.2	51.9	54.9	31.9	55.2	38.6	53.3	30.2
Qwen3-1.7B-Base-VeriFree	856	<u>46.9</u>	46.8	64.1	51.7	41.8	20.0	64.0	39.7	52.1	55.6	29.5	53.1	37.5	53.0	29.9
Qwen3-4B-Base	825	47.2	42.9	67.1	55.5	40.0	22.5	56.9	43.6	55.4	54.9	27.5	52.7	34.3	48.6	34.7
Qwen3-4B (w/o thinking)	838	60.0	65.9	79.1	65.8	45.7	29.0	76.6	57.0	65.1	66.7	48.9	69.2	52.1	64.3	44.6
Qwen3-4B (w/ thinking)	3456	62.7	70.0	84.8	66.6	38.6	28.7	81.3	60.4	67.4	69.2	53.7	75.1	57.8	67.9	49.6
Qwen3-4B-Base-Verifier	921	<u>63.0</u>	66.1	81.3	69.7	52.8	29.1	79.8	62.8	67.6	71.2	48.5	73.1	52.8	68.5	45.4
Qwen3-4B-Base-VeriFree	1241	63.5	64.4	82.2	70.1	55.6	30.7	81.7	59.2	71.0	71.0	47.1	71.7	53.4	66.8	47.5
Qwen2.5-7B	519	47.8	48.3	59.5	44.4	33.4	25.1	63.6	50.4	48.0	55.9	34.7	60.6	46.0	58.2	38.3
Qwen2.5-7B-SimpleRL-Zoo	705	51.2	51.2	52.0	50.2	40.8	30.5	69.5	54.3	52.5	57.3	41.9	62.8	52.6	60.8	42.3
Qwen2.5-Math-7B-Oat-Zero	556	40.5	47.6	47.7	46.9	32.1	18.1	53.6	25.7	49.4	52.9	29.5	54.7	32.8	43.0	22.8
Qwen2.5-7B-Instruct	481	55.3	56.6	70.4	55.6	42.7	29.8	69.3	55.1	57.9	63.5	41.5	63.4	53.6	62.4	43.6
General-Reasoner-7B	867	58.7	63.4	73.7	63.3	44.9	35.2	72.0	56.6	61.5	66.7	43.1	68.1	52.8	62.8	47.8
Qwen3-8B-Base	613	59.8	61.2	75.0	66.2	46.7	31.4	75.9	60.4	62.1	65.9	48.7	69.0	54.3	63.9	47.2
Qwen3-8B (w/o thinking)	1032	61.9	65.6	71.9	62.8	46.2	34.7	79.9	66.1	63.7	69.3	55.9	72.9	58.9	67.9	52.5
Qwen3-8B (w/ thinking)	3952	66.9	71.5	83.8	68.0	38.7	39.2	85.2	72.1	69.8	73.3	57.5	79.2	66.3	71.8	57.7
Qwen3-8B-Base-Verifier	594	65.9	63.9	81.8	71.1	56.9	35.4	81.9	64.9	71.6	74.1	53.9	74.2	58.4	68.4	54.3
Qwen3-8B-Base-VeriFree	776	67.2	71.5	85.3	73.5	55.7	37.3	81.9	64.3	73.1	74.1	54.9	74.8	59.6	67.7	54.6

Template 1 (for Ours).

```
<|im_start|>user\n{question}\nPlease reason step by step,
and put your final answer within <answer> \\boxed{}
</answer>.<|im_end|>\n<|im_start|>assistant\n
```

For the 1.7B and 4B models, we conduct fine-tuning for approximately 4,000 policy gradient steps; for the 8B models, we fine-tune for around 3,000 policy gradient steps. During each step, the policy model (i.e., the LLM) generates 8 responses for each question (i.e., group_size=8), with 16 questions processed per step. We use the sampling configurations temperature=1.0, top_p=1, and max_tokens=3000 for the rollout process. The responses are then parsed into reasoning traces and model-predicted answers. We replace the model-predicted answers with the reference answers from the training dataset. Subsequently, a single forward pass is executed to compute the conditional probability of the reference answer, conditioned on all preceding tokens including the prompt and the reasoning trace. This procedure introduces only a minimal additional computational cost, as the forward pass of the LLM does not require autoregressive decoding and does not require storing intermediate states for backpropagation. All collected samples from each step are used for one optimization step. The training is conducted on a single node with 8×H100 GPUs.

Dataset. To support general reasoning, we begin with the dataset curated by Ma et al. (2025), sourced from WebInstruct (Yue et al., 2024). To improve data quality and reliability and reduce size, we retain samples with answers that consist of fewer than seven tokens, and use Qwen2.5-72B-Instruct (Yang et al., 2024a) to filter out low-quality and noisy data. This process results in approximately 61,000 data samples spanning diverse domains, which we refer to as **WebData**. The category distribution is visualized in Fig. 7.

Evaluation. In line with prior work (Ma et al., 2025), we employ multiple-choice questions for evaluation to facilitate verification. To assess general reasoning abilities, we utilize the following benchmarks: **MMLU-Pro** (Wang et al., 2024), a challenging multi-task understanding benchmark designed to evaluate the capabilities of LLMs across various domains; **SuperGPQA** (Du et al., 2025), a large-scale benchmark consisting of graduate-level reasoning questions spanning 285 diverse disciplines; and **GPQA-Diamond** (Rein et al., 2024), which focuses on graduate-level question-answering and is designed to resist shallow pattern-matching and memorization. While our primary focus is not on enhancing mathematical abilities, we also evaluate math reasoning using a suite of standard math reasoning benchmarks. This suite includes **MATH-500** (Hendrycks et al., 2021), **OlympiadBench** (He et al., 2024), **Minerva Math** (Lewkowycz et al., 2022), **GSM8K** (Cobbe et al., 2021), **AMC** and **AIME24** (Li et al., 2024). We utilize Math-Verify² to check for an

²https://github.com/huggingface/Math-Verify

Table 2: Accuracy comparison on the SuperGPQA benchmark.

Method	Len.	Avg.	Eng.	Med.	Sci.	Phil.	M.S.	Econ.	Mgmt.	Socio.	L/A	Hist.	Agron.	Law	Edu.
Qwen3-1.7B-Base	997	17.4	17.7	18.6	16.0	27.4	27.3	20.5	22.4	23.1	15.5	11.1	18.1	20.6	21.3
Qwen3-1.7B (w/o thinking)	1152	23.3	22.6	22.8	24.3	30.3	31.2	24.3	27.5	23.8	19.0	18.1	20.8	24.5	28.1
Qwen3-1.7B (w/ thinking)	4799	23.6	21.8	25.3	23.6	33.1	33.7	29.6	27.5	32.2	19.0	18.0	25.0	26.2	31.6
Qwen3-1.7B-Base-Verifier	1049	24.5	26.0	23.9	24.4	30.8	26.8	26.9	27.0	26.6	18.9	16.6	22.3	22.6	27.3
Qwen3-1.7B-Base-VeriFree	964	24.8	25.7	24.7	24.9	26.5	30.2	25.9	27.9	28.0	20.4	15.9	22.9	25.0	28.9
Qwen3-4B-Base	902	24.7	25.7	23.6	26.0	23.6	25.4	28.8	28.4	19.6	16.4	16.8	20.6	25.6	24.0
Qwen3-4B (w/o thinking)	1397	31.6	32.0	31.5	32.3	37.5	36.1	37.8	33.7	33.6	24.3	20.6	28.3	31.4	33.5
Qwen3-4B (w/ thinking)	4568	31.7	30.7	33.2	32.1	41.2	31.7	41.7	35.9	32.9	24.5	22.4	30.9	35.7	35.3
Qwen3-4B-Base-Verifier	1045	<u>34.3</u>	35.4	35.5	34.5	39.2	41.0	39.1	36.7	37.1	26.6	22.3	33.8	33.1	35.3
Qwen3-4B-Base-VeriFree	1451	35.1	36.3	34.5	36.9	35.7	37.1	39.1	38.3	31.5	24.7	22.0	33.0	33.2	34.1
Qwen2.5-7B	716	23.8	24.2	27.0	21.8	28.8	31.2	27.6	29.1	22.4	20.8	20.2	24.5	27.4	30.2
Qwen-2.5-7B-SimpleRL-Zoo	850	26.3	26.4	30.5	23.8	32.6	32.2	33.0	31.9	28.7	24.1	21.4	27.2	29.6	32.9
Qwen2.5-Math-7B-Oat-Zero	638	21.3	23.1	16.4	21.5	23.1	21.5	25.9	27.2	25.2	17.7	15.9	21.4	18.8	24.8
Qwen2.5-7B-Instruct	604	28.4	27.7	32.2	27.6	33.7	32.2	32.4	32.9	32.9	24.5	22.1	29.7	30.6	32.4
General-Reasoner-7B	1047	30.8	31.5	32.2	29.9	35.2	41.5	38.4	33.1	35.0	25.5	22.7	28.9	32.5	35.5
Qwen3-8B-Base	825	31.0	31.3	34.0	30.6	36.0	37.1	34.7	37.5	35.0	24.2	20.0	28.5	31.4	36.4
Qwen3-8B (w/o thinking)	1638	32.4	32.6	36.5	31.2	39.5	42.0	37.7	37.3	38.5	25.0	22.6	33.2	34.3	38.4
Qwen3-8B (w/ thinking)	4995	35.0	33.6	42.1	33.5	44.4	37.6	44.2	42.7	42.7	27.9	24.9	37.9	38.7	40.7
Qwen3-8B-Base-Verifier	713	<u>37.1</u>	38.2	39.5	37.2	39.5	39.5	43.0	40.1	38.5	28.9	24.8	34.2	34.8	38.2
Qwen3-8B-Base-VeriFree	951	38.0	38.3	39.1	39.6	37.5	42.9	41.8	41.7	44.8	28.6	23.3	33.6	36.3	38.6

swer equivalence. Except for AIME24, where we employ a temperature=1.0 and repeat each question 32 times, all other benchmarks are evaluated using temperature=0.0. We use max_tokens=8192 for all evaluations.

Baselines. Our primary baseline, denoted **Verifier**, is a verifier-based approach using the verifier from Ma et al. (2025). The verifier is initialized from Qwen2.5-Math-1.5B (Yang et al., 2024b) and fine-tuned on data generated by Gemini 2.0 Flash to assess equivalence between the reference and predicted answers, conditioned on the question. We apply Dr. GRPO (Liu et al., 2025c) as the optimization algorithm for the baseline, ensuring that all other settings are consistent with our approach. Following Ma et al. (2025), the reward definition incorporates additional factors beyond verifier correctness, including format compliance and the length of generated answers. If the format is incorrect (e.g., missing \boxed{} boxed{} in the model response), a negative reward of -0.5 is applied. Moreover, a length penalty of $-0.05 \times \min(10, \text{ abs (length_of_correct_answer} - \text{length_of_answer}))$ is added.

We also report the results for the base and the instruct models of Qwen-3-1.7B/4B/8B (Team, 2025) and Qwen2.5-7B (Yang et al., 2024a), as well as the checkpoints released by Qwen2.5-7B-SimpleRL-Zoo (Zeng et al., 2025), Qwen2.5-Math-7B-Oat-Zero (Liu et al., 2025c), and General-Reasoner-7B (Ma et al., 2025). Notably, Qwen3 integrates both a *thinking* mode (for complex, multi-step reasoning) and a *non-thinking* mode (for rapid, context-driven responses) within a unified framework. We report results of both modes on Qwen3 instruct models.

3.2 MAIN RESULTS

VeriFree improves general reasoning capabilities. We begin by evaluating the effectiveness of VeriFree in enhancing the general reasoning capabilities of LLMs using the MMLU-Pro and SuperGPQA benchmarks. Table 1 presents a detailed comparison across model scales and domains in the MMLU-Pro benchmark. Starting from base models, applying RL with VeriFree yields substantial gains in average accuracy (ranging from 12% to 40%), demonstrating that VeriFree effectively fine-tunes LLMs to improve general reasoning performance. See Appendix E for more results.

Similar improvements are observed on the SuperGPQA benchmark, as shown in Table 2, where VeriFree consistently enhances the performance of base models by a significant margin. Notably, VeriFree achieves performance comparable to, or even surpassing, that of the instruct model in

³Qwen2.5 and Qwen3 use different naming conventions in their official release. For base models: Qwen2.5 has no suffix (e.g., Qwen2.5-7B), whereas Qwen3 adds "-Base" (e.g., Qwen3-8B-Base). For instruct models: Qwen2.5 uses "-Instruct" (e.g., Qwen2.5-7B-Instruct), while Qwen3 omits the suffix (e.g., Qwen3-8B). We follow these conventions consistently in the paper.

Figure 4: Left: MMLU-Pro accuracy of VeriFree and the baseline fine-tuned from Qwen3-8B base model along training steps. The curve is smoothed by a moving average with an interval of 384. **Right**: The dynamics of MMLU-Pro evaluation accuracy and average model confidence $\pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z})$ along training based on Qwen3-8B base model. Raw data points are depicted with more transparency, while smoothed data using a Gaussian filter is shown with less transparency for emphasis. Darker colors represent larger training steps.

thinking mode and the Verifier baseline (i.e., the RL-tuned model learned with an additional modelbased verifier), without relying on any explicit verification signals.

In addition to accuracy gains, we also observe an increase in response length after tuned by VeriFree, suggesting that the model explores longer reasoning traces to arrive at more accurate answers, which is a behavior reminiscent of DeepSeek-R1-Zero (Guo et al., 2025). Results on the GPQA benchmark are provided in Appendix E due to space constraints.

VeriFree leads to better learning efficiency. We compare VeriFree with the baseline that learns from a model-based verifier reward (i.e., Verifier). As shown in Fig. 4 (Left), VeriFree consistently outperforms the baseline, achieving higher accuracy with fewer training steps. We attribute this improved learning efficiency to reduced gradient variance, enabled by VeriFree's continuous reward signals and the RLOO objective. While both approaches optimize the same reward signal in expectation, VeriFree provides more stable and informative policy gradients, which accelerate convergence and leads to better final performance.

Model confidence is a good reasoning capability proxy. Our analysis based on Qwen3-8B base model reveals a strong positive correlation ($\rho=0.82$) between MMLU-Pro accuracy and the average model confidence $\pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z})$ during training (Fig. 4, Right). This empirically demonstrates that the model's self-estimated confidence in the correct answer, i.e., $\pi_{\theta}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z})$, serves as an effective metric for quantifying emergent reasoning capabilities in LLMs.

VeriFree learns transferable reasoning skills. To evaluate the transferability of reasoning acquired through VeriFree, we train a model on a dataset with all math-related examples removed, and assess its performance on both general and math-specific benchmarks. As shown in Fig. 5, VeriFree not only improves reasoning performance on general tasks, as expected, but also demonstrates strong transfer to math benchmarks—despite the absence of math supervision during training. This highlights VeriFree's ability to induce general reasoning capabilities that extend across domains.

Figure 5: VeriFree enhances reasoning transfer to math without math training. When trained only on non-math data, the model improves on general benchmarks and effectively transfers to math-specific tasks.

3.3 ABLATION STUDY

To systematically evaluate method components and offer a comprehensive understanding of VeriFree, we conduct ablation studies based on Qwen3-1.7B base models as follows.

Figure 6: **Left**: MMLU-Pro evaluation accuracy of VeriFree against ablation variants (w/o RLOO, w/o tokenization-aware split strategy) along training steps. All models are based on Qwen3-1.7B base models. **Right**: Effects of introducing the equivalent class to VeriFree on model performance.

Effects of extraction strategy for reasoning trace z. Our method requires precise separation between reasoning path z and answer y to enable answer replacement. While human-readable splits using <answer> seem intuitive, we instead define z to end at "<answer" (omitting ">"), ensuring consistent tokenization boundaries (see Sec. 2.4). We compare with a variant using text-based splitting (denoted as "VeriFree w/o token split") on Qwen3-1.7B via MMLU-Pro (Fig. 6). Our tokenization-aware approach achieves superior convergence, while the variant suffers optimization instability due to effectively introducing off-policy data.

Effects of RLOO. As observed in Fig. 6 (Left), removing RLOO leads to a consistent drop in performance throughout training, with final accuracy more than 3% lower than that of the full method. This highlights the importance of RLOO in stabilizing learning and guiding the model toward better generalization. Without RLOO, the model converges prematurely and fails to reach the same peak accuracy.

Effects of equivalence class. As mentioned in Sec. 2.1, verifier-based RL typically assesses answer correctness as rewards. Correct answers within a specific class often form an equivalence class. Our method, however, utilizes model confidence by focusing on a single reference answer for a given question and the model's reasoning trace. To explore the potential advantages of integrating an "equivalence class" into our approach, we conducted ablation studies as follows. We employed a model fine-tuned on the MATH-12k dataset (Hendrycks et al., 2021; Lightman et al., 2024) from Qwen3-8B base model through Dr. GRPO (Liu et al., 2025c) with rule-based verification to sample answers on MATH-12k, subsequently verifying answer correctness using Math-Verify. This approach enabled us to create an extended dataset with a set of equivalent correct answers for each question. We then fine-tuned Owen3-1.7B base models using our method on both the original and the extended MATH-12k datasets incorporating equivalence classes. These models are evaluated on GSM8K, MATH-500, Minerva Math, and OlympiadBench to assess the impact of including equivalence classes. The results, shown in Fig. 6 (Right), indicate that considering equivalence classes in our method offers slight performance improvements, aligning with our expectations. This highlights a minor limitation of our current formulation and motivates future work on algorithms that can better leverage answer equivalence.

4 Conclusions

In this paper, we rethink reinforcement learning with verifiable rewards (RLVR) for LLMs from a novel perspective. By leveraging the gradient equivalence under the unique answer assumption, we derive a new optimization objective that eliminates the need for explicit verification, whether rule-based or model-based. Our proposed method, VeriFree, is particularly well-suited for general reasoning tasks, where rule-based verifiers are infeasible and model-based verifiers are both expensive and vulnerable to reward hacking. Through extensive experiments and ablations, we demonstrate the effectiveness and robustness of VeriFree on a wide range of general reasoning benchmarks. We hope our work offers a fresh viewpoint for the LLM RL community and provides a practical approach for building future general-purpose reasoners.

REFERENCES

- Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human feedback in Ilms. *arXiv preprint arXiv:2402.14740*, 2024.
- George Casella and Christian P. Robert. Rao-blackwellisation of sampling schemes. *Biometrika*, 83 (1):81–94, 1996.
- Changyu Chen, Zichen Liu, Chao Du, Tianyu Pang, Qian Liu, Arunesh Sinha, Pradeep Varakantham, and Min Lin. Bootstrapping language models with dpo implicit rewards. In *International Conference on Learning Representations (ICLR)*, 2025.
- Guiming Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or Ilms as the judge? a study on judgement bias. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8301–8327, 2024a.
- Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky Ho, Phil Mui, Silvio Savarese, Caiming Xiong, et al. Language models are hidden reasoners: Unlocking latent reasoning capabilities via self-rewarding. *arXiv preprint arXiv:2411.04282*, 2024b.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate disciplines. *arXiv preprint arXiv:2502.14739*, 2025.
- Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.
- Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning. arXiv preprint arXiv:2410.02089, 2024.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems, 2024.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to reproducibility. *arXiv preprint arXiv:2504.07086*, 2025.
- Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, and Nikolay Malkin. Amortizing intractable inference in large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Ouj6p4ca60.

- Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base model, 2025. URL https://arxiv.org/abs/2503.24290.
 - Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jordan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening mechanism. *arXiv preprint arXiv:2412.01951*, 2024.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.
 - Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.
 - Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with language models. *Advances in Neural Information Processing Systems*, 35:3843–3857, 2022.
 - Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*, 13:9, 2024.
 - Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=v8L0pN6EOi.
 - Qianchu Liu, Sheng Zhang, Guanghui Qin, Timothy Ossowski, Yu Gu, Ying Jin, Sid Kiblawi, Sam Preston, Mu Wei, Paul Vozila, Tristan Naumann, and Hoifung Poon. X-reasoner: Towards generalizable reasoning across modalities and domains, 2025a. URL https://arxiv.org/abs/2505.03981.
 - Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, and Min Lin. Oat: A research-friendly framework for llm online alignment. https://github.com/sail-sg/oat, 2024.
 - Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not be aha moment in r1-zero-like training a pilot study. https://oatllm.notion.site/oat-zero, 2025b. Notion Blog.
 - Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*, 2025c.
 - Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source 14b coder at o3-mini level, 2025a. Notion Blog.
 - Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b model by scaling rl, 2025b. Notion Blog.
 - Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner: Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.
 - A. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *International Conference on Machine Learning*, 1999. URL https://api.semanticscholar.org/CorpusID:5730166.

- OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/learning-to-reason-with-llms/.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022.
 - Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero. https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.
 - Du Phan, Matthew Douglas Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via latent-variable inference. *Advances in Neural Information Processing Systems*, 36:72819–72841, 2023.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
 - Jette Randlov and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and shaping. pp. 463–471, 01 1998.
 - David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 - Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu. Expanding rl with verifiable rewards across diverse domains. *arXiv preprint arXiv:2503.23829*, 2025.
 - Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press, second edition, 2018.
 - Yunhao Tang, Sid Wang, and Rémi Munos. Learning to chain-of-thought with jensen's evidence lower bound. *arXiv preprint arXiv:2503.19618*, 2025.
 - Qwen Team. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/.
 - Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multitask language understanding benchmark. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024a.
 - An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

- Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao. Your efficient rl framework secretly brings you off-policy rl training, August 2025. URL https://fengyao.notion.site/off-policy-rl.
- Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or prejudice? quantifying biases in LLM-as-a-judge. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=3GTtZFiajM.
- Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.
- Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. Self-rewarding language models. *International Conference on Machine Learning*, 2024. doi: 10.48550/arXiv.2401.10020.
- Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun Cho, Yuandong Tian, Jason E Weston, et al. Naturalreasoning: Reasoning in the wild with 2.8 m challenging questions. *arXiv preprint arXiv:2502.13124*, 2025.
- Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language models. *arXiv preprint arXiv:2308.01825*, 2023.
- Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the web. *Advances in Neural Information Processing Systems*, 37:90629–90660, 2024.
- Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient. https://hkust-nlp.notion.site/simplerl-reason, 2025. Notion Blog.
- Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv* preprint arXiv:1909.08593, 2019.
- Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint arXiv:2504.16084, 2025.

APPENDIX

A RELATED WORKS

DeepSeek-R1-Zero-like reinforcement learning. DeepSeek-R1-Zero (Guo et al., 2025), Tülu (Lambert et al., 2024) and OpenAI's o1 (OpenAI, 2024) recently demonstrated that applying RL to learn directly from binary verification-based rewards can be extremely powerful in enhancing the reasoning capabilities of base LLMs. Since then several works have reproduced R1-Zero-like training on smaller scales (Zeng et al., 2025; Pan et al., 2025; Liu et al., 2025b; Hu et al., 2025; Luo et al., 2025b;a). The aforementioned works all focus on math and coding, domains where verifiable rewards are readily available. By contrast, our work aims to extend the R1-Zero-like training paradigm to general domains where verifiable rewards are not available.

Reasoning beyond verifiable domains. Previous work on reasoning without access to verifiable rewards has been based around employing an additional LLM to act as a proxy verifier or reward model. NaturalReasoning (Yuan et al., 2025) introduces a large, multi-domain dataset and presents baselines trained using RFT (Yuan et al., 2023) and DPO (Rafailov et al., 2023), leveraging a second LLM as a reward model, while Su et al. (2025) and General-Reasoner (Ma et al., 2025) similarly incorporate a separate LLM to serve as a verifier. X-Reasoner (Liu et al., 2025a) also investigates general reasoning but circumvents the lack of rule-based verification by dropping the R1-Zero-style training paradigm, instead training via SFT (Grattafiori et al., 2024) on responses sampled from more capable models.

Self-improving language models. Several works have explored training LLMs using signals based on the model's own outputs. Yuan et al. (2024) propose to prompt the model to judge and rank different responses and select the best and worst for preference learning. Chen et al. (2025) leverage the DPO implicit rewards for more efficient and robust self-alignment via iterative DPO (Rafailov et al., 2023). Zuo et al. (2025) use majority voting to construct self-labeled rewards for RL to further improve well-trained models during test time, which can be understood as a form of sharpening (Huang et al., 2024). Another line of research (Phan et al., 2023; Chen et al., 2024b; Tang et al., 2025; Hu et al., 2024) approaches LLM reasoning from the direction of variational optimization, treating the reasoning trace as a latent variable. Despite starting from a different viewpoint our method has interesting and close connections to this perspective which we discuss in detail in Sec. 2.3.

B THEORETICAL ANALYSIS

B.1 Derivation of Gradient Estimators

Here we provide derivations of Eq. (5) for the gradient estimator of VeriFree. We also include the corresponding derivation for the standard verifier-based gradient estimator for completeness.

Proof. The gradient estimator for J_{Verifier} is derived as follows:

$$\nabla_{\theta} J_{\text{Verifier}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star})$$

$$= \nabla_{\theta} \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \Big[\mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})} \big[R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star}) \big] \Big]$$

$$= \nabla_{\theta} \sum_{\boldsymbol{z}, \boldsymbol{y}} R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star}) \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x})$$

$$= \sum_{\boldsymbol{z}, \boldsymbol{y}} R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star}) \big[\pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \nabla_{\theta} \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \nabla_{\theta} \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \big]$$

$$= \sum_{\boldsymbol{z}, \boldsymbol{y}} R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star}) \big[\pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \big]$$

$$= \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \Big[\mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})} \Big[R_{\text{Verifier}}(\boldsymbol{y}; \boldsymbol{y}^{\star}) \big[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \big] \Big] \Big]$$

The gradient estimator for J_{VeriFree} is derived as follows:

$$\nabla_{\theta} J_{\text{VeriFree}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star}) \\
= \nabla_{\theta} \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} [R_{\text{VeriFree}}(\boldsymbol{z}; \boldsymbol{x}, \boldsymbol{y}^{\star})] \\
= \nabla_{\theta} \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} [\pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})] \\
= \nabla_{\theta} \sum_{\boldsymbol{z}} \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \\
= \sum_{\boldsymbol{z}} [\pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \nabla_{\theta} \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \nabla_{\theta} \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})] \\
= \sum_{\boldsymbol{z}} [\pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})] \\
= \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} [\pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) [\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})] \\
= \mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} [R_{\text{VeriFree}}(\boldsymbol{z}; \boldsymbol{x}, \boldsymbol{y}^{\star}) [\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z})] \end{bmatrix}$$

B.2 PROOF OF LOWER VARIANCE

Here we provide a full proof of Theorem 1, the reduced variance property of VeriFree. We show that the policy gradient estimator derived from $J_{\text{VeriFree}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star})$ has variance less than or equal to that of the estimator derived from $J_{\text{Verifier}}(\theta; \boldsymbol{x}, \boldsymbol{y}^{\star})$ for any given $\boldsymbol{x}, \boldsymbol{y}^{\star}$. The same relationship will hold for the global objectives averaged over $(\boldsymbol{x}, \boldsymbol{y}^{\star}) \sim \mathcal{D}$.

Proof. The global objective functions are:

$$\begin{split} J_{\text{Verifier}}(\theta) &= \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y}^{\star}) \sim \mathcal{D}} \left[\mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \Big[\mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})} \big[\mathbb{1} \{ \boldsymbol{y} = \boldsymbol{y}^{\star} \} \big] \Big] \right] \\ J_{\text{VeriFree}}(\theta) &= \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y}^{\star}) \sim \mathcal{D}} \Big[\mathbb{E}_{\boldsymbol{z} \sim \pi_{\theta}(\cdot | \boldsymbol{x})} \big[\pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \big] \Big] \end{split}$$

For a given $(x, y^*) \sim \mathcal{D}$, the single-sample Monte Carlo gradient estimators are:

$$\hat{G}_{\text{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star},\boldsymbol{z},\boldsymbol{y}) = \mathbb{1}\{\boldsymbol{y} = \boldsymbol{y}^{\star}\}\big[\nabla_{\theta}\log\pi_{\theta}(\boldsymbol{z}|\boldsymbol{x}) + \nabla_{\theta}\log\pi_{\theta}(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{z})\big]$$

where $z \sim \pi_{\theta}(\cdot | x)$, $y \sim \pi_{\theta}(\cdot | x, z)$, and

$$\hat{G}_{\text{VeriFree}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}) = \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \big[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \big]$$

where $z \sim \pi_{\theta}(\cdot | x)$.

The proof relies on the law of total variance and the relationship between $\hat{G}_{\text{Verifier}}$ and $\hat{G}_{\text{VeriFree}}$.

First, we show that $\hat{G}_{\text{VeriFree}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z})$ is the conditional expectation of $\hat{G}_{\text{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}, \boldsymbol{y})$ given $\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}$. The expectation is taken over $\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})$:

$$\mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot|\boldsymbol{x},\boldsymbol{z})} \left[\hat{G}_{\text{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}, \boldsymbol{y}) | \boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z} \right]$$

$$= \mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot|\boldsymbol{x},\boldsymbol{z})} \left[\mathbb{I} \{ \boldsymbol{y} = \boldsymbol{y}^{\star} \} \left[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) \right] \middle| \boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z} \right]$$

$$= \sum_{\boldsymbol{y}'} \pi_{\theta}(\boldsymbol{y}' | \boldsymbol{x}, \boldsymbol{z}) \left[\mathbb{I} \{ \boldsymbol{y}' = \boldsymbol{y}^{\star} \} \left[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}' | \boldsymbol{x}, \boldsymbol{z}) \right] \right]$$

$$= \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \left[\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{z} | \boldsymbol{x}) + \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{y}^{\star} | \boldsymbol{x}, \boldsymbol{z}) \right]$$

$$= \hat{G}_{\text{VeriFree}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z})$$

We denote $\mathbb{E}_{\boldsymbol{y} \sim \pi_{\theta}(\cdot | \boldsymbol{x}, \boldsymbol{z})} [\hat{G}_{\text{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}, \boldsymbol{y}) | \boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}]$ as $\mathbb{E}_{\boldsymbol{y} | \boldsymbol{z}} [\hat{G}_{\text{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}, \boldsymbol{y})]$ for brevity in the following, since \boldsymbol{x} and \boldsymbol{y}^{\star} are already given and fixed. Thus, we have

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{z}}[\hat{G}_{\text{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}, \boldsymbol{y})] = \hat{G}_{\text{VeriFree}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z})$$
(8)

The law of total variance states that for a random variable W and conditioning variables S, $Var(W) = \mathbb{E}_S[Var[W|S]] + Var_S[\mathbb{E}[W|S]]$. Let $W = \hat{G}_{Verifier}(\boldsymbol{x}, \boldsymbol{y}^\star, \boldsymbol{z}, \boldsymbol{y})$. Given \boldsymbol{x} and \boldsymbol{y}^\star , the sources of randomness for $\hat{G}_{Verifier}$ are \boldsymbol{z} and \boldsymbol{y} . Let $S = \boldsymbol{z}$ be the conditioning variables. The randomness in $\hat{G}_{Verifier}$ given S comes from $\boldsymbol{y} \sim \pi_{\theta}(\cdot|\boldsymbol{x}, \boldsymbol{z})$. Applying the law:

$$\mathrm{Var}_{\boldsymbol{z},\boldsymbol{y}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star}\!,\boldsymbol{z},\boldsymbol{y})\big] = \mathbb{E}_{\boldsymbol{z}}\!\Big[\mathrm{Var}_{\boldsymbol{y}|\boldsymbol{z}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star}\!,\boldsymbol{z},\boldsymbol{y})\big]\Big] + \mathrm{Var}_{\boldsymbol{z}}\!\Big[\mathbb{E}_{\boldsymbol{y}|\boldsymbol{z}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star}\!,\boldsymbol{z},\boldsymbol{y})\big]\Big]$$

The expectation \mathbb{E}_{z} is over $z \sim \pi_{\theta}(\cdot|x)$. The conditional variance $\text{Var}_{y|z}$ and expectation $\mathbb{E}_{y|z}$ are over $y \sim \pi_{\theta}(\cdot|x,z)$ for fixed x, y^{\star}, z .

Substituting the result from Eq. (8) into the law of total variance:

$$\mathrm{Var}_{\boldsymbol{z},\boldsymbol{y}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star}\!,\boldsymbol{z},\boldsymbol{y})\big] = \mathbb{E}_{\boldsymbol{z}}\!\Big[\mathrm{Var}_{\boldsymbol{y}|\boldsymbol{z}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star}\!,\boldsymbol{z},\boldsymbol{y})\big]\Big] + \mathrm{Var}_{\boldsymbol{z}}\big[\hat{G}_{\mathrm{VeriFree}}(\boldsymbol{x},\boldsymbol{y}^{\star}\!,\boldsymbol{z})\big]$$

The second term, $\operatorname{Var}_{\boldsymbol{z}} \left[\hat{G}_{\operatorname{VeriFree}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}) \right]$, is the definition of the variance of the estimator $\hat{G}_{\operatorname{VeriFree}}$. The first term, $\mathbb{E}_{\boldsymbol{z}} \left[\operatorname{Var}_{\boldsymbol{y}|\boldsymbol{z}} \left[\hat{G}_{\operatorname{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}) \right] \right]$, is an expectation of a variance. Since variance is always non-negative, $\operatorname{Var}_{\boldsymbol{y}|\boldsymbol{z}} \left[\hat{G}_{\operatorname{Verifier}}(\boldsymbol{x}, \boldsymbol{y}^{\star}, \boldsymbol{z}) \right] \geq 0$. Therefore, its expectation is also non-negative:

$$\mathbb{E}_{\boldsymbol{z}}\Big[\mathrm{Var}_{\boldsymbol{y}|\boldsymbol{z}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star},\boldsymbol{z})\big]\Big] \geq 0$$

Thus, we have:

$$\mathrm{Var}_{\boldsymbol{z},\boldsymbol{y}}\big[\hat{G}_{\mathrm{Verifier}}(\boldsymbol{x},\boldsymbol{y}^{\star},\boldsymbol{z},\boldsymbol{y})\big] = (\text{a non-negative term}) + \mathrm{Var}_{\boldsymbol{z}}\big[\hat{G}_{\mathrm{VeriFree}}(\boldsymbol{x},\boldsymbol{y}^{\star},\boldsymbol{z})\big]$$

This implies:

$$\operatorname{Var}_{oldsymbol{z},oldsymbol{y}} \left[\hat{G}_{\operatorname{Verifier}}(oldsymbol{x},oldsymbol{y}^{\star},oldsymbol{z},oldsymbol{y})
ight] \geq \operatorname{Var}_{oldsymbol{z}} \left[\hat{G}_{\operatorname{Verifree}}(oldsymbol{x},oldsymbol{y}^{\star},oldsymbol{z})
ight]$$

The variance of the policy gradient estimator $\hat{G}_{\text{VeriFree}}$ is less than or equal to that of $\hat{G}_{\text{Verifier}}$. This is an instance of Rao-Blackwellization, where analytically integrating out a source of randomness (the sampling of y) by using its conditional expectation reduces variance.

C OFF-POLICY GRADIENT ESTIMATORS

In the main paper we provide an expression for the gradient estimator when the data is fully onpolicy. VeriFree is also fully compatible with PPO-style gradient clipping for the case when data is reused to improve sample efficiency. In this case the gradient estimator is:

$$\nabla_{\theta} J_{\text{VeriFree}}(\theta) = \frac{1}{G} \sum_{i=1}^{G} \left[\sum_{t=1}^{|\boldsymbol{z}_{i}|} \text{Clip} \left\{ \frac{\pi_{\theta} \left(\boldsymbol{z}_{i,t} \mid \boldsymbol{x}, \boldsymbol{z}_{i, < t}\right)}{\pi_{\theta_{\text{old}}} \left(\boldsymbol{z}_{i,t} \mid \boldsymbol{x}, \boldsymbol{z}_{i, < t}\right)} \right\} A_{i} + \sum_{t'=1}^{|\boldsymbol{y}^{\star}|} \text{Clip} \left\{ \frac{\pi_{\theta} \left(\boldsymbol{y}_{t}^{\star} \mid \boldsymbol{x}, \boldsymbol{z}_{i}\right)}{\pi_{\theta_{\text{old}}} \left(\boldsymbol{y}_{t}^{\star} \mid \boldsymbol{x}, \boldsymbol{z}_{i}\right)} \right\} R_{i} \right],$$

where $\pi_{\theta_{\text{old}}}$ is the sampling policy, $A_i = \pi_{\theta_{\text{old}}}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}_i) - \frac{1}{G-1}\sum_{j\neq i}\pi_{\theta_{\text{old}}}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}_j), R_i = \pi_{\theta_{\text{old}}}(\boldsymbol{y}^{\star}|\boldsymbol{x},\boldsymbol{z}_i)$, and $\text{Clip}\{\cdot\}$ denotes the PPO clipping operation.

D DATASET DETAILS

The category distribution in WebData (our training data) is visualized in Fig. 7.

Figure 7: Category distributions in WebData. A breakdown of the "grouped" category (right) shows detailed distribution of various domains with fewer data samples.

E EXTENDED EMPIRICAL RESULTS

E.1 MATH-RELATED BENCHMARKS AND GPOA-DIAMOND

In Tables 1 and 2, we provide detailed benchmark results for MMLU-Pro and SuperGPQA using domain name abbreviations. The full nomenclature is as follows:

MMLU-Pro (Table 1):

CS (Computer Science), Math (Mathematics), Chem (Chemistry), Eng (Engineering), Law (Law), Bio (Biology), Health (Health), Phys (Physics), Bus (Business), Phil (Philosophy), Econ (Economics), Other (Other), Psy (Psychology), Hist (History).

SuperGPQA (Table 2):

Eng. (Engineering), Med. (Medicine), Sci. (Science), Phil. (Philosophy), M.S. (Military Science), Econ. (Economics), Mgmt. (Management), Socio. (Sociology), L/A (Literature and Arts), Hist. (History), Agron. (Agronomy), Law (Law), Edu (Education).

In Table 3, we present an accuracy comparison across six math evaluation benchmarks and GPQA-Diamond. Models trained with VeriFree demonstrate consistent and significant improvements over the base models, further validating the effectiveness of our approach.

Table 3: Accuracy comparison on math evaluation suite and GPQA-Diamond.

Method		1E24	Al	МC	GSI	M8K	MAT	H-500	Min	erva	Olyn	npiad	GP(QA-D
	Acc.	Len.	Acc.	Len.	Acc.	Len.	Acc.	Len.	Acc.	Len.	Acc.	Len.	Acc.	Len.
Qwen3-1.7B-Base	1.7	1287	40.0	1001	71.4	343	58.8	1094	19.5	1071	23.3	1737	17.7	1355
Qwen3-1.7B (w/o thinking)	10.9	2552	40.0	2291	83.3	312	72.8	1021	27.9	776	39.1	1970	19.2	1885
Qwen3-1.7B (w/ thinking)	20.9	7855	57.5	5973	89.0	2220	77.4	4525	36.8	5606	40.9	6497	17.7	7104
Qwen3-1.7B-Base-Verifier	8.4	2317	42.5	1712	81.7	405	66.2	1057	30.5	1357	29.8	1885	36.4	1317
Qwen3-1.7B-Base-VeriFree	10.7	1783	37.5	1522	76.2	447	63.8	972	21.0	867	29.8	1484	30.3	1147
Qwen3-4B-Base	5.2	1312	50.0	1001	73.1	393	73.4	724	29.4	1027	39.6	1202	24.7	1275
Qwen3-4B (w/o thinking)	20.4	3146	67.5	2047	92.1	308	82.2	1143	41.2	822	49.5	2593	29.8	2127
Qwen3-4B (w/ thinking)	33.0	7750	62.5	6123	92.9	2261	84.4	4370	41.5	5352	47.3	6432	31.8	6504
Qwen3-4B-Base-Verifier	15.6	2407	57.5	1566	72.5	377	73.8	1023	24.6	1088	45.9	1576	44.4	1266
Qwen3-4B-Base-VeriFree	16.9	2706	65.0	1904	87.5	682	74.8	1269	25.4	1444	44.9	1899	42.4	1619
Qwen2.5-7B	2.2	869	32.5	922	84.6	260	63.2	582	26.8	819	30.2	963	24.2	595
Qwen-2.5-7B-SimpleRL-Zoo	15.5	1285	57.5	1097	92.1	331	78.6	690	36.4	795	43.4	1083	23.7	990
Qwen2.5-Math-7B-Oat-Zero	28.3	1115	65.0	846	90.8	386	79.0	652	33.1	655	43.0	860	24.7	722
Qwen2.5-7B-Instruct	11.2	993	52.5	986	91.7	318	78.2	649	37.9	690	39.9	1123	31.8	643
General-Reasoner-7B	13.1	1363	52.5	1083	81.7	408	74.6	858	23.5	968	39.3	1303	34.8	1199
Qwen3-8B-Base	6.5	1213	65.0	917	91.7	304	77.0	671	38.2	884	41.3	1189	38.9	887
Qwen3-8B (w/o thinking)	24.6	2897	62.5	1919	93.3	293	82.2	1087	36.4	751	49.5	2422	27.8	2204
Qwen3-8B (w/ thinking)	31.0	7789	62.5	6201	95.3	2203	83.0	4414	43.8	5410	45.2	6554	37.4	6681
Qwen3-8B-Base-Verifier	17.8	1954	57.5	1265	93.4	307	76.2	784	39.0	698	41.8	1201	43.9	733
Qwen3-8B-Base-VeriFree	25.2	2461	67.5	1542	91.6	375	80.8	1024	30.5	902	50.2	1778	44.4	1080

E.2 EMPIRICAL COMPARISON WITH RELATED APPROACHES

In Sec. 2.3, we have discussed the methodological differences between our work and related approaches, LaTRO and JEPO. In this section, we present an experimental comparison with these methods.

We first evaluate JEPO as a new baseline by fine-tuning the Qwen3 base model on our curated dataset (WebData) as introduced in Sec. 3.1. During fine-tuning, we observe that the number of reasoning tokens in the model's responses progressively decreases, eventually leaving almost no valid reasoning tokens (only answer tokens). The resulting performance is worse than that of the base model, so we do not report these results here. A similar trend is observed for LaTRO. We hypothesize that this degradation stems from two factors: (1) potential noise in the training data (which is preprocessed from Web Instruct and filtered by an LLM), and (2) the lack of robustness in LaTRO/JEPO, as these methods apply uniform weighting to answer token gradients. This may force the model to prioritize reference answers even when the reasoning quality is poor (see Sec. 2.3 for further analysis).

To further investigate, we evaluate JEPO and our method on the cleaner math12k dataset (Hendrycks et al., 2021) for mathematical reasoning tasks. We fine-tune the Qwen3-4B-Base model using four approaches: (1) RL with rule-based verification (denoted as RLVR), (2) LaTRO, (3) JEPO, and (4) VeriFree. Evaluation across multiple mathematical reasoning benchmarks (see Table 4) shows that our method consistently outperforms JEPO and matches the performance of RL with rule-based verification.

Table 4: Accuracy comparison on math tasks. All methods are **trained on math12k** (Hendrycks et al., 2021) based on **Qwen3-4B-Base**. The best results are highlighted using **bold text**.

Method	MATH500	AIME24	AMC	Minerva	Olympiad	GSM8K
Qwen3-4B-Base	73.4	5.2	50	29.4	38.6	73.1
RLVR	83.8	18.54	62.5	42.65	50.07	92.7
LaTRO	82.6	16.67	60.0	37.9	45.9	90.8
JLB	83	16.67	60.0	39.0	47.7	92.0
VeriFree	84.6	21.46	62.5	42.65	50.22	92.57

For a direct comparison with General Reasoner (Ma et al., 2025) which also focuses on general domain reasoning, we evaluate their newly released General-Reasoner-4B (also fine-tuned from Qwen3-4B-Base) on MMLU-Pro, SuperGPQA, and GPQA-Diamond. These benchmarks are designed to assess reasoning capabilities across diverse general domains. The results, presented in Table 5, demonstrate that our method matches or surpasses other approaches of a comparable model scale.

Table 5: Accuracy comparison on general domain reasoning tasks. All methods are based on **Qwen3-4B-Base**. The best results are highlighted using **bold text**. Note that [†] indicates results reported by Ma et al. (2025).

Model	MMLU-Pro	SuperGPQA	GPQA-D
Qwen3-4B-Base [†]	51.6	25.4	26.3
Qwen3-4B (non-think) [†]	61.8	32.1	41.7
General-Reasoner-4B	62.8	32.5	42.9
Qwen3-4B-Base-Verifier	63.0	34.3	44.4
Qwen3-4B-Base-VeriFree	63.5	35.1	42.4

E.3 EVALUATION RESULTS WITH DIFFERENT SAMPLING PARAMETERS

The sampling parameters used in our main experiment (detailed in Sec. 3.1) follow the configuration from Ma et al. (2025). Recent works (Hochlehnert et al., 2025; Team, 2025) suggest that greedy decoding may be suboptimal for reasoning models that generate extended thinking traces. To address

this concern, we conduct a comprehensive evaluation on GPQA-Diamond using various sampling configurations.

We provide additional evaluation results on GPQA-Diamond using six distinct sampling configurations, including those recommended in the Qwen3 official report (Team, 2025):

- S1: temperature=0 (i.e., greedy decoding) and 8k token budget (same as Ma et al. (2025))
- S2: temperature=0 (i.e., greedy decoding) and 32k token budget
- S3: temperature=0.7, top_p=0.8, top_k=20, min_p=0, n_repeats=10, and 8k token budget
- S4: temperature=0.7, top_p=0.8, top_k=20, min_p=0, n_repeats=10, and 32k token budget
- S5: temperature=0.6, top_p=0.95, top_k=20, min_p=0, n_repeats=10, and 8k token budget
- S6: temperature=0.6, top_p=0.95, top_k=20, min_p=0, n_repeats=10, and 32k token budget

We report the results in Table 6. As the results show, our method consistently matches or surpasses both the counterpart with the model-based verifier and also the Qwen (w/o thinking) across most settings. Qwen3 (w/ thinking) shows strong results when given extremely large token budgets (32k). Note that Qwen3 (w/ thinking) is trained with multiple stages, including cold start with distillation data, while our method and the counterparts with verifiers are directly trained from the base model ("zero" setting).

Table 6: Performance comparison with different sampling configurations on GPQA-Diamond. The best results are highlighted using **bold text**.

Model	S1	S2	S 3	S4	S5	S 6
Qwen3-4B-Base	28.79	28.28	29.85	29.39	29.49	28.99
Qwen3-4B (w/o thinking)	36.87	31.31	38.99	40.05	37.88	38.43
Qwen3-4B (w/ thinking)	29.29	47.47	36.26	55.15	35.66	54.19
Qwen3-4B-Base-Verifier	42.42	43.43	41.57	42.37	42.07	41.41
Qwen3-4B-Base-VeriFree	40.91	45.45	43.03	42.88	43.99	42.88
Qwen3-8B-Base	37.37	37.88	34.75	36.87	36.62	34.85
Qwen3-8B (w/o thinking)	35.86	32.32	37.02	36.46	36.41	37.83
Qwen3-8B (w/ thinking)	36.36	58.59	37.37	61.26	37.83	62.27
Qwen3-8B-Base-Verifier	40.91	44.95	46.52	47.27	45.76	47.68
Qwen3-8B-Base-VeriFree	48.48	43.94	47.22	46.46	46.01	47.37

F DISCUSSION

This section provides a detailed discussion of the advantages and limitations of our proposed method, VeriFree.

F.1 ADVANTAGES

VeriFree offers distinct advantages over other verification paradigms for general LLM reasoning tasks. While rule-based verification is effective, its applicability is restricted to specialized domains like mathematics and coding. In contrast, model-based verifiers (e.g., LLM-as-judge methods) offer broader applicability but introduce practical challenges, including substantial resource overhead (e.g., additional training data, increased computation, and memory usage) and inherent risks such as reward hacking and various biases (Ye et al., 2025; Chen et al., 2024a). A prominent example is length bias, where LLMs systematically favor longer responses irrespective of quality. The fact that methods like General Reasoner (Ma et al., 2025) must explicitly incorporate length-based penalties (Sec. 3.1) underscores the pervasiveness of this issue. VeriFree circumvents these issues by directly optimizing the conditional likelihood of the reference answer, eliminating the need for an auxiliary verifier model. So it avoids these pitfalls entirely, providing a more robust and efficient alternative.

Although VeriFree is trained using only a single reference answer, it remains highly effective even when multiple correct solutions exist. This is because the pretrained base model learns a generalized

understanding of correctness and reasoning logic, rather than merely memorizing a specific answer format. Much like in supervised fine-tuning, where models develop broad instruction-following ability despite being trained on fixed-style examples, VeriFree captures the underlying principles of valid reasoning, enabling it to recognize correctness across varied expressions. This demonstrates VeriFree's superiority in generalization without relying on multiple references during training.

F.2 LIMITATIONS

The primary limitation of VeriFree is its dependency on direct question-answer pairs for supervision (note that VeriFree does not require any reference reasoning traces). This requirement constrains its applicability in scenarios where such supervised pairs are unavailable. For instance, in certain coding tasks, only test cases may be provided without corresponding reference implementations. In such settings, rule-based verification or other methods that do not rely on reference answers may represent the only viable alternatives.

G CASE STUDY

In this section, we provide some examples of reasoning traces produced by the model trained by our method on training questions. And we also provide an example with both our model's and base model's responses on the test dataset.

Example question in training dataset (category: Chemistry)

Prompt:

```
<|im\_start|>user
Label or a placard colored black and white with a skull and
crossbones falls under which class
Please reason step by step, and put your final answer within
<answer> \boxed{} </answer>.<|im\_end|>
<|im\_start|>assistant
```

Our Model's Response:

A label or placard colored black and white with a skull and crossbones indicates the class of hazardous materials known as **Class 6**. Class 6 is specifically divided into two divisions:

- **Division 6.1**: Toxic substances. These are materials that can cause injury or death if ingested or inhaled.

- **Division 6.2**: Infectious substances. These are materials that contain pathogens and can cause disease in humans or animals.

The skull and crossbones symbol is universally recognized as

representing toxicity, which corresponds to **Division 6.1** of Class 6 hazardous materials. <answer> \boxed{Class 6} </answer>

Reference Answer:

Class 6

Example question in training dataset (category: Physics)

Prompt:

```
<|im_start|>user
For what type of object is the period-luminosity relation used for
determining distances?
Please reason step by step, and put your final answer within
<answer> \boxed{} </answer>.<|im_end|>
<|iim_start|>assistant
```

Our Model's Response:

The period-luminosity relation is a fundamental tool in astronomy used to determine distances, particularly for a specific type of star known as Cepheid variables.

Cepheid variables are pulsating stars that exhibit a regular pattern of expansion and contraction. This pulsation causes them to vary in luminosity, and the key insight about these stars is that the period of

their luminosity variation is directly related to their intrinsic luminosity (absolute magnitude). In other words, the longer the period of pulsation, the more intrinsically luminous the star is.

This period-luminosity relation was first discovered by Henrietta Leavitt in 1908 by studying Cepheid variables in the Large Magellanic Cloud. Because Cepheids are so bright intrinsically, they can be used as "standard candles" to measure distances within our galaxy and to nearby galaxies.

Here's how the period-luminosity relation is used to determine distances:

- 1. **Observe the Period**: First, astronomers measure the period of the star's brightness variation, which is the time it takes for the star to go from brightest to dimmest and back to brightest.
- 2. **Determine Intrinsic Luminosity**: Using the period-luminosity relation, they can then determine the star's intrinsic luminosity. This relation is usually given in a form where a graph or a formula relates period to absolute magnitude (a measure of intrinsic brightness).
- 3. **Compare to Apparent Luminosity**: The apparent magnitude (how bright the star appears from Earth) can be measured directly.
- 4. **Calculate Distance**: Using the inverse square law for light, which relates the intrinsic luminosity, apparent brightness, and distance, astronomers can then calculate the distance to the Cepheid variable.

This method is crucial for measuring distances in astronomy because it provides a way to gauge how far away these stars are with a high degree of accuracy. The distances determined using Cepheid variables are themselves used to calibrate other distance measurement techniques, such as those involving supernovae.

Given these details, the type of object for which the period-luminosity relation is used for determining distances is Cepheid variables. <answer> \boxed{Cepheid variables} </answer>

Reference Answer:

cepheid variable stars

Example question in MMLU-Pro benchmark (category: Psychology)

Prompt (Here we ignore the prompt template and only show the question for brevity):

During the second stage of Kohlberg's preconventional level of moral development, children obey rules because:
Options are:

- A. they are taught that rules are unbreakable.
- B. they enjoy following the rules.
- C. they are rewarded for following rules.

1134 1135 D. they feel they have a personal duty to uphold rules and laws. 1136 E. doing so helps them satisfy their personal needs. F. they understand the concept of fairness and justice. 1137 G. doing so helps them avoid punishment. 1138 H. everyone else is doing it. 1139 I. they believe in the inherent goodness of rules. 1140 J. they fear societal disapproval. 1141 Our Model's Response: 1142 1143 In Kohlberg's theory of moral development, the preconventional 1144 level is the first stage of moral reasoning, and it is primarily 1145 focused on self-interest. This level is divided into two stages: 1146 1147 1. **Stage 1: Obedience and Punishment Orientation** In this stage, children obey rules to avoid punishment. Their 1148 reasoning is fear-based, and they view rules as set by 1149 authority figures. The focus is on the consequences of 1150 following or breaking rules, specifically the avoidance of 1151 punishment. 1152 2. **Stage 2: Individualism and Exchange** 1153 In this stage, which is the second stage of the 1154 preconventional level, children recognize that different 1155 people have different needs and interests. They obey rules 1156 only when it is in their own interest or when they can benefit 1157 from doing so. This stage is often described as the "what's in it for me?" stage. Children at this level understand the 1158 concept of exchange and may follow rules if it leads to a 1159 reciprocal benefit. 1160 1161 Now, let's evaluate the options: 1162 (A) they are taught that rules are unbreakable. 1163 - This does not align with either stage of the preconventional 1164 level. 1165 1166 (B) they enjoy following the rules. - Enjoyment of rules is more characteristic of conventional 1167 levels of moral development. 1168 1169 (C) they are rewarded for following rules. 1170 - While this could be somewhat related to Stage 2, the primary 1171 focus in Stage 2 is on personal benefit rather than external 1172 rewards. 1173 (D) they feel they have a personal duty to uphold rules and laws. 1174 - This is more aligned with the conventional level, 1175 specifically the intermediate stage. 1176 1177 (E) doing so helps them satisfy their personal needs. - This could be seen as related to Stage 2, but it is not the 1178 most precise description. 1179 1180 (F) they understand the concept of fairness and justice. 1181 - Understanding fairness and justice is more associated with the conventional and post-conventional levels. 1182

(H) everyone else is doing it.

(G) they avoid punishment.

Stage 2.

1183

1184

1185

1186 1187 - This describes Stage 1 of the preconventional level, not

- This is more related to conformity and is not a key characteristic of Kohlberg's stages. (I) they believe in the inherent goodness of rules. - This is more characteristic of the post-conventional level. (J) they fear societal disapproval. - Fear of societal disapproval is more related to the conventional level. The best fit for Stage 2 of the preconventional level is (E) doing so helps them satisfy their personal needs, as it reflects the idea of mutual benefit and personal interest. However, (G) they avoid punishment describes Stage 1 more accurately. Given the typical interpretations of Kohlberg's stages, (E) is the more appropriate choice for Stage 2. But let's double-check: According to Kohlberg, in Stage 2, children's moral reasoning is based on the notion of exchange and the satisfaction of self-interest. Therefore, (E) is the most accurate option. <answer> \boxed{E} </answer> **Base Model's Response:** During the second stage of Kohlberg's preconventional level of moral development, children obey rules because they understand the concept of fairness and justice. This stage is characterized by a focus on the consequences of actions and the desire to avoid punishment or gain rewards. Children at this stage begin to recognize that rules are not absolute and can be negotiated based on the situation and the needs of the individual. They start to consider the perspectives of others and the fairness of the rules, which is a significant step towards more advanced moral reasoning. Therefore, the correct answer is: \boxed{F} **Reference Answer:**

H LLM USAGE

 We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g., column alignment, caption length, placement). The LLM did not contribute to research ideation, experimental design, implementation, data analysis, or technical content beyond surface-level edits. All outputs were reviewed and edited by the authors, who take full responsibility for the final text and visuals.