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Abstract

Unsupervised relation extraction aims to ex-001
tract the relationship between entities from002
natural language sentences without prior in-003
formation on relational scope or distribution.004
Existing works either utilize self-supervised005
schemes to refine relational feature signals by006
iteratively leveraging adaptive clustering and007
classification that provoke gradual drift prob-008
lems, or adopt instance-wise contrastive learn-009
ing which unreasonably pushes apart those sen-010
tence pairs that are semantically similar. To011
overcome these defects, we propose a novel012
contrastive learning framework named HiURE,013
which has the capability to derive hierarchi-014
cal signals from relational feature space using015
cross hierarchy attention and effectively opti-016
mize relation representation of sentences un-017
der exemplar-wise contrastive learning. Exper-018
imental results on two public datasets demon-019
strate the advanced effectiveness and robust-020
ness of HiURE on unsupervised relation ex-021
traction when compared with state-of-the-art022
models.023

1 Introduction024

Relation Extraction (RE) aims to discover the se-025

mantic (binary) relation that holds between two026

entities from plain text. For instance, “Kisselhead027

was born in Adriantail ...", we can extract a re-028

lation /people/person/place_of_birth029

between the two head-tail entities. The extracted re-030

lations could be used in various downstream appli-031

cations such as information retrieval (Corcoglioniti032

et al., 2016), question answering (Bordes et al.,033

2014), and dialog systems (Madotto et al., 2018).034

Existing RE methods can achieve decent re-035

sults with high-quality manually annotated data or036

human-curated knowledge bases (KBs). While in037

practice, human annotation can be labor-intensive038

to obtain and hard to scale up to newly created rela-039

tions. Lots of efforts are devoted to alleviating the040

impact of human annotations in relation extraction.041

Unsupervised Relation Extraction (URE) is espe- 042

cially promising since it does not require any prior 043

information on relation scope and distribution. 044

The main challenge in URE is how to cluster 045

semantic information of sentences in the relational 046

feature space. Simon et al. (2019) adopted skew- 047

ness and dispersion losses to enforce relation clas- 048

sifier to be confident in the relational feature predic- 049

tion and ensure all relation types can be predicted 050

averagely in a minibatch. But it still requires the 051

exact number of relation types in advance, and the 052

relation classifier could not be improved by ob- 053

tained clustering results. Hu et al. (2020) encoded 054

relational feature space in a self-supervised method 055

that bootstraps relational feature signals by leverag- 056

ing adaptive clustering and classification iteratively. 057

Nonetheless, like other self-training methods, the 058

noisy clustering results will iteratively result in the 059

model deviating from the global minima, which is 060

also known as gradual drift problem (Curran et al., 061

2007; Zhang et al., 2016). 062

Peng et al. (2020) leveraged contrastive learning 063

to obtain a flat metric for sentence similarity in 064

a relational feature space. However, it only con- 065

siders the relational semantics in the feature space 066

from an instance perspective, which will treat each 067

sentence as an independent data point. As scal- 068

ing up to a larger corpus with potentially more 069

relations in a contrastive learning framework, it 070

becomes more frequent that sentence pairs shar- 071

ing similar semantics are undesirably pushed apart 072

in a flat relational feature space. Meanwhile, we 073

observe that many relation types can be organized 074

in a hierarchical structure. For example, the rela- 075

tions /people/person/place_of_birth 076

and /people/family/country share the 077

same parent semantic on /people, which means 078

that they belong to the same semantic cluster from 079

a hierarchical perspective. Unfortunately, these two 080

relations will be pushed away from each other in 081

an instance-wise contrastive learning framework. 082
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[HS] Derek Bell [HE] was born in [TS] Belfast [TE] .
[HS] Derek Bell [HE] was born in [TS] Belfast [TE] .
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Figure 1: Framework of HiURE. Sentence representations will be augmented through Random Spans with fixed Entities, then
transmitted into Propulsion and Momentum Encoder respectively. The HPC algorithm takes Momentum feature H as input and
generates L layers of clustering results together with L exemplar sets C. HiNCE takes H and H ′ for instance-wise while H and
C for exemplar-wise contrastive learning.

Therefore, our intuitive approach is to allevi-083

ate the dilemma of similar sentences being pushed084

apart in contrastive learning by leveraging the hi-085

erarchical cluster semantic structure of sentences.086

Nevertheless, traditional hierarchical clustering087

methods all suffer from the gradual drift prob-088

lem. Thereby, we try to exploit a new approach089

of hierarchical clustering by combining propaga-090

tion clustering and attention mechanism. We first091

define exemplar as a representative instance for a092

group of semantically similar sentences in certain093

clustering results. Exemplars can be in different094

granularities and organized in a hierarchical struc-095

ture. In order to enforce relational features to be096

more similar to their corresponding exemplars in097

all parent granularities than others, we propose098

HiURE, a novel contrastive learning framework099

for URE which combines both the instance-wise100

and exemplar-wise learning strategies, to gather101

more reasonable relation representations and better102

classification results.103

The proposed HiURE model is composed of two104

modules: Contextualized Relation Encoder and105

Hierarchical Exemplar Contrastive Learning. As106

shown in Figure 1, the encoder module leverages107

pre-trained BERT model to obtain two augmented108

entity-level relational features of each sentence for109

instance-wise contrastive learning, while the learn-110

ing module retrieves hierarchical exemplars in a111

top-down fashion for exemplar-wise contrastive112

learning and updates the features of sentences iter-113

atively according to the hierarchy. These updated114

features could be utilized to optimize the parame-115

ters of encoders by a combined loss function noted116

as Hierarchical ExemNCE (HiNCE) in this work.117

To summarize, the main contributions of this paper118

are as follows:119

• We develop a novel hierarchical exemplar con-120

trastive learning framework HiURE that in- 121

corporates top-down hierarchical propagation 122

clustering for URE. 123

• We demonstrate how to leverage the seman- 124

tic structure of sentences to extract hierarchi- 125

cal relational exemplars which could be used 126

to refine contextualized entity-level relational 127

features via HiNCE. 128

• We conduct extensive experiments on two 129

datasets and HiURE achieves better perfor- 130

mance than the existing state-of-the-art meth- 131

ods. This clearly shows the superior capability 132

of our model for URE by leveraging different 133

types of contrastive learning. Our ablation 134

analysis also shows the impacts of different 135

modules in our framework. 136

2 Proposed Model 137

The proposed model HiURE consists of two mod- 138

ules: Contextualized Relation Encoder and Hier- 139

archical Exemplar Contrastive Learning. As illus- 140

trated in Figure 1, the encoder module takes natural 141

language sentences as input, where named entities 142

are recognized and marked in advance, then em- 143

ploys the pre-trained BERT (Devlin et al., 2019) 144

model to output two contextualized entity-level fea- 145

ture sets H and H ′ for each sentence based on 146

Random Spans. The learning module takes these 147

relational features as input, and aims to retrieve 148

exemplars that represent a group of semantically 149

similar sentences in different granularities, denoted 150

as C. We leverage these exemplars to iteratively 151

update relational features of sentences in a hier- 152

archy and construct an exemplar-wise contrastive 153

learning loss called Hierarchical ExemNCE which 154

enforces the relational feature of a sentence to be 155

more similar to its corresponding exemplars than 156

others. 157
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2.1 Contextualized Relation Encoder158

The Contextualized Relation Encoder aims to ob-159

tain two relational features from each sentence160

based on the context information of two given en-161

tity pairs for instance-wise contrastive learning. In162

this work, we assume named entities in the sen-163

tence have been recognized in advance.164

For a sentence x = [w1, .., wT ] with T words165

where each wi represents a word and two entities166

Head and Tail are mentioned, we follow the label-167

ing schema adopted in Soares et al. (2019) and168

argument x with four reserved tokens to mark the169

beginning and the end of each entity. We introduce170

[HS], [HE], [TS], [TE] to represent the start or end171

position of head or tail entities respectively and172

inject them to x:173

x′ =
[
w1, ..., [HS], ..., wi, ..., [HE], ..., wSpan1, ...,

wSpanP , ..., [TS], ..., wj , ..., [TE], ..., wT

]
(1)

174

where x′ will be the input token sequence for the175

encoder and Span subscript indicates the Random176

Span words. Considering the relational features177

between entity pairs are normally embraced in the178

context, we use pre-trained BERT (Devlin et al.,179

2019) model to effectively encode every tokens in180

the sentence along with their contextual informa-181

tion, and get the token embedding bi = fBERT(wi),182

where i ∈ [1, T ] including the special tokens in x′183

and bi ∈ R·bR .184

We utilize the outputs bi corresponding to [HS]185

and [TS] as the contextualized entity-level features186

instead of using sentence-level marker [CLS] to187

get embedding for target entity pair. For contrastive188

learning purposes, we randomly select P words189

as Random Span from the context words except190

for those entity words between special tokens to191

augment the entity-level features as bSpan, where192

multiple different Random Span selections lead to193

different semantically invariant embedding of the194

same sentence. We concatenate them to derive a195

fixed-length relational feature h ∈ R(2+P )·bR :196

h = [b[HS],b[TS],bSpan1, ...,bSpanP ] (2)197

where h is the output of the Contextualized198

Relation Encoder which can be denoted as199

fθ(x,Head,Tail, Span).200

2.2 Hierarchical Exemplar Contrastive201

Learning202

In order to adaptively generate more positive sam-203

ples other than sentences themselves to introduce204

Algorithm 1 Hierarchical Propagation Clustering
Input: Encoder outputs H = {h1,h2, ...,hn},

Hierarchical cluster layers L
Output: Hierarchical clusters results C
1: H1 ← H, C ← [ ]
2: Initialize {sij |i, j ∈ [1, n]} by Eq. 3
3: ∀i ̸= j : p⊤ = min(sij), p⊥ = median(sij)

4: ps =
{
pl | pl = p⊤ + p⊥−p⊤

L−1 · (l − 1), l ∈ [1, L]
}

5: for l in [1, L] do
6: Update {sij} according to H l by Eq. 3
7: Set diagonal to preference sii = pl
8: for all iterations do
9: Update {rij} and {aij} by Eq. 4 and 5

10: ĉ=(ĉ1, . . . , ĉn) , ĉi=argmaxj(aij+rij)

11: Get exemplar set El={elĉi |e
l
ĉi
=hl

ĉi
, ĉi ∈ ĉ}

12: if Changes of El have converged then
13: break
14: end if
15: end for
16: C.add(El)
17: H l+1 ← (H l, El) by Eq. 8
18: end for
19: return C

more similarity information in contrastive learning, 205

we design hierarchical propagation clustering to ob- 206

tain multi-level cluster exemplars as positive sam- 207

ples of corresponding instances. We assume the 208

relation hierarchies are tree-structured and define 209

hierarchical exemplars as representative relational 210

features for a group of semantically similar sen- 211

tences with different granularities. The exemplar- 212

wise contrastive learning encourages relational fea- 213

tures to be more similar to their corresponding ex- 214

emplars than other exemplars. 215

The process is completed through Hierarchical 216

Propagation Clustering (HPC) to generate cluster 217

results of different granularities and Hierarchical 218

Exemplar Contrastive Loss (HiNCE) to optimize 219

the encoder. The main procedure of HPC consists 220

of Propagation Clustering and Cross Hierarchy At- 221

tention (CHA), as is elaborated in Algorithm 1, 222

which will be explained in detail below. 223

Propagation Clustering 224

We use propagation clustering to obtain hierar- 225

chical exemplars in an iterative, top-down fashion. 226

Traditional clustering methods such as k-means 227

cluster data points into specific cluster numbers, 228

however, these methods could not utilize hierar- 229

chical information in the dataset and require the 230
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specific cluster number in advance. Propagation231

clustering possesses the following advantages: 1) It232

considers all feature points as potential exemplars233

and uses their mutual similarity to extract potential234

tree-structured clusters. 2) It neither requires the235

actual number of target relations in advance nor the236

distribution of relations. 3) It will not be affected237

by the quality of the initial point selection.238

In practice, propagation clustering exchanges239

real-valued messages between points until a high-240

quality set of exemplars and corresponding clusters241

are generated. Inspired by Frey and Dueck (2007),242

we adopt similarity sij to measure the distance243

between points i and j, responsibility rij to indicate244

the appropriateness for j to serve as the exemplar245

for i and availability aij to represent the suitability246

for i to choose j as its exemplar:247

sij = −∥hi − hj∥2 (3)248

249 rij = sij −max
j′ ̸=j

(
sij′ + aij′

)
(4)250

251

aij =


∑

i′ ̸=imax
(
0, ri′j

)
, j = i

min

[
0, rjj +

∑
i′ /∈{i,j}

max
(
0, ri′j

)]
, j ̸= i

(5)252

where rij and aij will be updated through the prop-253

agation iterations until convergence (Lines 8-15)254

and a set of cluster centers , which is called ex-255

emplar, will be chosen as E (Line 11). Then we256

wish to find a set of L consecutive layers of cluster-257

ing, where the points to be clustered in layer l are258

closer to the corresponding exemplar of layer l− 1.259

We perform propagation clustering L times (Lines260

5-18) with different preferences (Lines 2-4) to gen-261

erate L different layers of clustering result, where a262

larger preference leads to more numbers of clusters263

(Moiane and Machado, 2018). The Hyperparam-264

eter Analysis part provides a detailed explanation265

about how to select L and the reason for building266

the preference sequence ps according to the for-267

mula in Line 4.268

Cross Hierarchy Attention269

The traditional hierarchical clustering method ei-270

ther merge fine-grained clusters into coarse-grained271

one or split coarse cluster into fine-grained ones,272

which will both cause the problem of error accumu-273

lation. Preference sequence leads to cluster results274

with the hierarchical number in propagation clus-275

tering but lost the interaction information between276

adjacent levels. Based on this intuition, we intro-277

duce CHA mechanism to leverage signals from278

coarse-grained exemplar to fine-grained clusters.279

Figure 2: Overview of cross hierarchy attention. The first
part shows original data. The second part divides data points
into two clusters and utilizes attention to update every points
which contribute to the next level of clustering. The dotted line
indicates negative sample pair while solid line with positive in
contrastive learning.

Formally, we derive a CHA matrix Al at layer l 280

where the element at (j, k) is obtained by a scaled 281

softmax: 282

αl
jk =

exp(λelj · elk)∑
k′ exp(λe

l
j · elk′)

(6) 283

where λ is a trainable scalar variable, not a hyper- 284

parameter (Luong et al., 2015). The attention 285

weight αl
jk reflects the proximity between exem- 286

plar j and exemplar k in layer l and measures the 287

influence and interactions to corresponding data 288

points between these exemplars. Typically, exem- 289

plars that are visually close to each other would 290

have higher attention weights. Then we derive at- 291

tended point representation at layer l+ 1 by taking 292

the attention weighted sum of its corresponding 293

exemplar from other exemplars: 294

ĥl+1
i =

∑
k

αl
jke

l
k (7) 295

where elj is the exemplar of hl
i. The attended repre- 296

sentation aggregates signals from other exemplars 297

weighted by how close they are to exemplar elj and 298

transfer the signals from layer l to l + 1. They 299

reflect how likely a neighboring cluster is relevant 300

or the point will get close to it. Then we combine 301

the attended representation with the original one to 302

obtain the CHA based embedding hl+1
i , defined as: 303

304

hl+1
i = hl

i + λattĥ
l+1
i (8) 305

where λatt is not a hyper-parameter, but a weight- 306

ing variable to be automatically trained. As illus- 307

trated in Figure 2, the CHA mechanism helps data 308
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points to get closer with corresponding exemplars309

in previous layer and thus perform better in the310

current layer.311

Hierarchical Exemplar Contrastive Loss312

Given a training set X = {x1, x2, ..., xn} of n sen-313

tences, Contextualized Relation Encoder can ob-314

tain two augmented relational features for each315

input sentences by randomly sampling spans twice316

for the same entity pair. We do this for all317

sentences and obtain H = {h1,h2, ...,hn} and318

H ′ = {h′
1,h

′
2, ...,h

′
n}. Traditional instance-wise319

contrastive learning treats two features as a nega-320

tive pair as long as they are from different instances321

regardless of their semantic similarity. It updates322

encoder by optimizing InfoNCE (Oord et al., 2018;323

Peng et al., 2020):324

LInfoNCE =
n∑

i=1

− log
exp(hi · h′

i/τ)∑J
j=1 exp(hi · h′

j/τ)
(9)325

where hi and h′
i are positive samples for instance326

i, while h′
j includes one positive sample and J − 1327

negative samples for other sentences, and τ is a328

temperature hyper-parameter (Wu et al., 2018).329

Compared with the traditional instance-wise con-330

trastive learning which unreasonably pushes apart331

many negative pairs that possess similar seman-332

tics, we employ the inherent hierarchical structure333

in relations. As illustrated in Figure ??, we per-334

form the HPC algorithm iteratively at each epoch335

to utilize hierarchical relational features. Note that336

the relational feature hi will be updated in each337

batch while training, but the exemplars will not be338

retrieved until the epoch is finished. To maintain339

the invariance of exemplars and avoid represen-340

tation shift problems with the relational features341

in an epoch, we need to smoothly update the pa-342

rameters of the encoder to ensure a fairly stable343

relational feature space. In practice, we construct344

two encoders: Momentum Encoder fθ and Propul-345

sion Encoder fθ′ , both of which is a instance of the346

Contextualized Relation Encoder. θ′ is updated by347

contrastive learning loss and θ is a moving average348

of the updated θ′ to ensure a smoothly update of349

relational features (He et al., 2020). We leverage350

HPC on the momentum features hi = fθ(xi) to351

obtain C (Line 19), which contains L layers of clus-352

ter results with cl exemplars respectively, where353

cl is the number of clusters at layer l. In order to354

enforce the relational features more similar to their355

corresponding exemplars compared to other exem-356

plars (Caron et al., 2020; Li et al., 2020), we define357

exemplar-wise contrastive learning as ExemNCE: 358

LExemNCE=−
n∑

i=1

1

L

L∑
l=1

log
exp(hi · elj/τ)∑cl
q=1 exp(hi · elq/τ)

(10) 359

where j ∈ [1, cl] and elj is the corresponding ex- 360

emplar of instance i at layer l. As we have ex- 361

plicitly constrained hi and elj into approximate 362

feature space, so the temperature parameter τ can 363

be shared here. The difference between InfoNCE 364

and ExemNCE is described in the second part of 365

Figure 2, where the solid line represents positive 366

while the dashed line represents negative. 367

Furthermore, we add InfoNCE loss to retain the 368

local smoothness which could help propagation 369

clustering. Overall, our objective named Hierarchi- 370

cal ExemNCE is defined as: 371

LHiNCE = LInfoNCE + LExemNCE (11) 372

After we update Propulsion Encoder fθ′ with 373

HiNCE, the Momentum Encoder fθ can be 374

propulsed by: 375

θ ← m · θ + (1−m) · θ′ (12) 376

where m ∈ [0, 1) is a momentum coefficient. The 377

momentum update in Eq. 12 makes θ evolve more 378

smoothly than θ′ especially when m is closer to 1. 379

3 Experiments 380

We conduct extensive experiments on real-world 381

datasets to prove the effectiveness of our model for 382

Unsupervised Relation Extraction tasks and give 383

a detailed analysis of each module to show the 384

advantages of HiURE. Implementation details and 385

evaluation metrics are illustrated in Appendix A 386

and B respectively. 387

3.1 Datasets 388

Following previous work (Simon et al., 2019; Hu 389

et al., 2020; Tran et al., 2020), we employ NYT+FB 390

to train and evaluate our model. The NYT+FB 391

dataset is generated via distant supervision, align- 392

ing sentences from the New York Times corpus 393

(Sandhaus, 2008) with Freebase (Bollacker et al., 394

2008) triplets. We follow the setting in Hu et al. 395

(2020); Tran et al. (2020) and filter out sentences 396

with non-binary relations. We get 41,685 labeled 397

sentences containing 262 target relations (including 398

no_relation) from 1.86 million sentences. 399

There are two more further concerns when we 400

use the NYT+FB dataset, which is also raised by 401
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Dataset Model B3 V-measure ARI
F1 Prec. Rec. F1 Hom. Comp.

NYT+FB

rel-LDA(Yao et al., 2011) 29.1±2.5 24.8±3.2 35.2±2.1 30.0±2.3 26.1±3.3 35.1±3.5 13.3±2.7

March(Marcheggiani and Titov, 2016) 35.2±3.5 23.8±3.2 67.1±4.1 27.0±3.0 18.6 ±1.8 49.6±3.1 18.7±2.6

UIE-PCNN(Simon et al., 2019) 37.5±2.9 31.1±3.0 47.4±2.8 38.7±3.2 32.6±3.3 47.8±2.9 27.6±2.5

UIE-BERT(Simon et al., 2019) 38.7±2.8 32.2±2.4 48.5±2.9 37.8±2.1 32.3±2.9 45.7±3.1 29.4±2.3

SelfORE(Hu et al., 2020) 41.4±1.9 38.5±2.2 44.7±1.8 40.4±1.7 37.8±2.4 43.3±1.9 35.0±2.0

EType(Tran et al., 2020) 41.9±2.0 31.3±2.1 63.7±2.0 40.6±2.2 31.8±2.5 56.2±1.8 32.7±1.9

MORE(Wang et al., 2021) 42.0±2.2 43.8±1.9 40.3±2.0 41.9±2.1 40.8±2.2 43.1±2.4 35.6±2.1

OHRE(Zhang et al., 2021) 42.5±1.9 32.7±1.8 60.7±2.3 42.3±1.8 34.8±2.1 53.9 ±2.5 33.6±1.8

EIURE(Liu et al., 2021) 43.1±1.8 48.4±1.9 38.8±1.8 42.7±1.6 37.7±1.5 49.2±1.6 34.5±1.4

HiURE w/o ExemNCE 40.2±1.4 37.4±1.6 43.5±1.5 39.5±1.6 34.2±1.7 46.7±1.6 32.9±1.1

HiURE w/o HPC 41.4±1.2 38.7±1.0 44.3±0.9 41.5±1.3 37.2±1.1 47.0±0.8 34.3±0.9

HiURE w. 10 clusters 44.3±0.5 39.9±0.6 49.8±0.5 44.9±0.4 40.0±0.5 51.2±0.4 38.3±0.6

HiURE 45.3±0.6 40.2±0.7 51.8±0.6 45.9±0.5 40.0±0.6 53.8±0.5 38.6±0.7

TACRED

rel-LDA(Yao et al., 2011) 35.6±2.6 32.9±2.5 38.8±3.1 38.0±3.5 33.7±2.6 43.6±3.7 21.9±2.6

March(Marcheggiani and Titov, 2016) 38.8±2.9 35.5±2.8 42.7±3.2 40.6±3.1 36.1±2.7 46.5±3.2 25.3±2.7

UIE-PCNN(Simon et al., 2019) 41.4±2.4 44.0±2.7 39.1±2.1 41.3±2.3 40.6±2.2 42.1±2.6 30.6±2.5

UIE-BERT(Simon et al., 2019) 43.1±2.0 43.1±1.9 43.2±2.3 49.4±2.1 48.8±2.1 50.1±2.5 32.5±2.4

SelfORE(Hu et al., 2020) 47.6±1.7 51.6±2.0 44.2±1.9 52.1±2.2 51.3±2.0 52.9±2.3 36.1±2.0

EType(Tran et al., 2020) 49.3±1.9 51.9±2.1 47.0±1.8 53.6±2.2 52.5±2.1 54.8±1.9 35.7±2.1

MORE(Wang et al., 2021) 50.2±1.8 56.9±2.2 44.9±1.8 57.4±2.1 56.7±1.8 58.1±2.3 37.3±1.9

OHRE(Zhang et al., 2021) 51.8±1.6 55.2±2.1 48.7±1.7 56.4±1.8 55.5±1.9 57.3±2.1 38.0±1.7

EIURE(Liu et al., 2021) 52.2±1.4 57.4±1.3 47.8±1.5 58.7±1.2 57.7±1.4 59.7±1.7 38.6±1.1

HiURE w/o ExemNCE 47.3±1.1 51.2±1.2 43.9±0.9 56.4±1.0 50.3±1.2 64.2±1.4 36.9±1.0

HiURE w/o HPC 48.4±0.9 50.3±0.8 46.7±1.2 58.1±1.1 51.8±1.4 66.2±1.5 37.8±0.8

HiURE w. 10 clusters 55.8±0.4 57.8±0.3 54.0±0.5 59.7±0.6 57.6±0.5 61.9±0.6 40.5±0.4

HiURE 56.7±0.4 58.4±0.5 55.0±0.3 61.3±0.5 59.5±0.6 63.1±0.4 42.2±0.5

Table 1: Quantitative performance evaluation on two datasets.

Tran et al. (2020). Firstly, the development and test402

sets contain lots of wrong/noisy labeled instances,403

where we found that more than 40 out of 100 ran-404

domly selected sentences were given the wrong re-405

lations. Secondly, the development and test sets are406

part of the training set. Even under the setting of un-407

supervised relation extraction, this is still not con-408

ducive to reflect the performance of models on un-409

seen data. Therefore, we follow Tran et al. (2020)410

and additionally evaluate all models on the test411

set of TACRED (Zhang et al., 2017), a large-scale412

crowd-sourced relation extraction dataset with 42413

relation types (including no_relation) and 18,659414

relation mentions in the test set.415

3.2 Baselines416

We use standard unsupervised evaluation metrics417

for comparisons with other eight baseline algo-418

rithms: 1) rel-LDA (Yao et al., 2011), generative419

model that considers the unsupervised relation ex-420

traction as a topic model. We choose the full rel-421

LDA with a total number of 8 features for compari-422

son. 2) MARCH(Marcheggiani and Titov, 2016)423

proposed a discretestate variational autoencoder424

(VAE) to tackle URE. 3) UIE (Simon et al., 2019)425

trains a discriminative RE model on unlabeled in-426

stances by forcing the model to predict each rela-427

tion with confidence and encourages the number 428

of each relation to be predicted on average, where 429

two base models (UIE-PCNN and UIE-BERT) are 430

considered. 4) SelfORE (Hu et al., 2020) is a self- 431

supervised framework that clusters self-supervised 432

signals generated by BERT adaptively and boot- 433

straps these signals iteratively by relation classifi- 434

cation. 5) EType (Tran et al., 2020) uses one-hot 435

vector of the entity type pair to ascertain the impor- 436

tant features in URE. 6) MORE (Wang et al., 2021) 437

utilizes deep metric learning to obtain rich supervi- 438

sion signals from labeled data and drive the neural 439

model to learn semantic relational representation 440

directly. 7) OHRE (Zhang et al., 2021) proposed a 441

dynamic hierarchical triplet objective and hierarchi- 442

cal curriculum training paradigm for open relation 443

extraction. 8) EIURE (Liu et al., 2021) is the state- 444

of-the-art method that intervenes on the context 445

and entities respectively to obtain the underlying 446

causal effects of them. 447

3.3 Results 448

Since most baseline methods adopted the setting by 449

clustering all samples into 10 relation classes (Si- 450

mon et al., 2019; Hu et al., 2020; Tran et al., 2020; 451

Liu et al., 2021), we adjust the p⊥ in Algorithm 1 to 452

get the same results for fair comparison, and name 453
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this setting HiURE w. 10 clusters. Although 10454

relation classes are lower than the number of true455

relation types in the dataset, it still reveals impor-456

tant insights about models’ ability to tackle skewed457

distribution.458

Table 1 demonstrates the average performance459

and standard deviation of the three runs of460

our model in comparison with the baselines on461

NYT+FB and TACRED. We can observe that462

EIURE achieves the best performance among all463

the baselines, which is considered as the previous464

state-of-the-art method. The proposed HiURE out-465

performs all baseline models consistently on B3466

F1, V-measure F1, and ARI. HiURE on average467

achieves 3.4% higher in B3 F1, 2.9% higher in468

V-measure F1, and 3.9% higher in ARI on two469

datasets when comparing with EIURE. The stan-470

dard deviation of HiURE is particularly lower than471

other baseline methods, which validates its robust-472

ness. Furthermore, the performance of HiURE on473

TACRED exceeds all the baseline methods by at474

least 2.1%. These performance gains are likely475

from both 1) higher-quality manually labeled sam-476

ples in TACRED and 2) an improved discriminative477

power of HiURE considering the variation and se-478

mantic shift from NYT+FB to TACRED.479

Effectiveness of HPC. HPC considers all data480

points and uses their mutual similarity to find the481

most suitable points as exemplars for each cluster,482

these exemplars could update the instances in their483

own clusters and transfer the relational features484

from high-level relations to base-level through the485

cross hierarchy attention. From Table 1, HiURE486

w/o HPC, which uses k-means instead of the pro-487

posed hierarchical clustering, gives 4.7% less per-488

formance in average over all metrics when compar-489

ing with HiURE.490

To intuitively show how tree-structured hierar-491

chical exemplars helps learn better contextualized492

relational features for URE, we visualize the fea-493

ture space R4·hR after dimension reduction using494

t-SNE (Maaten and Hinton, 2008) in Appendix C.495

Effectiveness of Cross Hierarchy Attention. In496

order to explore how CHA helps data points to ob-497

tain the semantics of exemplars as training signals498

in HPC, Figure 3(a) illustrates the log loss values499

of HiNCE during the training epochs. Based on the500

loss curve, using Cross Hierarchy Attention leads501

to consistently lowered loss value, which implies502

that it provides high-quality signals to help train a503

better relational clustering model.504
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Figure 3: Effect of Cross Hierarchy Attention on NLL loss on
NYT+FB dataset (left) and HiNCE on average performance
of two datasets (right) while training.

Considering that our exemplars correspond to 505

specific data points and relations, we further show 506

the hierarchical relations the model derived from 507

the dataset. From Figure 4, we can observe a three- 508

layer exemplars structure the model derives from 509

the NYT+FB dataset without any prior knowledge. 510

The high-level relations and base-level relations 511

belonging to an original cluster convey similar rela- 512

tion categories, which demonstrates the rationality 513

of exemplars in relational feature clustering. As 514

the number of exemplars between different layers 515

increases, some exemplars are adaptively replaced 516

with more fine-grained ones in the sub-layer. 517

Effectiveness of HiNCE. The main purpose of 518

HiNCE is to leverage exemplar-wise contrastive 519

learning in addition to instance-wise. HiNCE 520

avoids the pitfall where many instance-wise neg- 521

ative pairs share similar semantics but are unde- 522

sirably pushed apart in the feature space. We first 523

conduct an ablation study to demonstrate the effec- 524

tiveness of this module. From Table 1, HiURE w/o 525

HiNCE gives us 6.3% less performance averaged 526

over all metrics. Then we report the average per- 527

formance on B3 F1, V-measure F1, and ARI on the 528

two datasets changing with epochs, which reflects 529

the quality and purity of the clusters generated by 530

HiURE. From Figure 3(b), compared to InfoNCE 531

alone, training on HiNCE can improve the perfor- 532

mance as training epochs increase, indicating that 533

better representations are obtained to form more 534

semantically meaningful clusters. 535

Hyperparameter Analysis. We have explicitly 536

introduced two hyperparameters P in the encoder 537

and L in the HPC algorithm. We first study the 538

number of [Span] words P which affects the fixed- 539

length of relation representation in Eq. 2 by chang- 540

ing P from 1 to 4 and report the average perfor- 541

mance on NYT+FB and TACRED. From Table 2, 542

the fluctuation results indicate that both informa- 543

tion deficiency and redundancy of relation represen- 544

tations will affect the model’s performance. Using 545
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1. people/person/place_lived
2. business/company/industry
3. music/artist/genre
4. architecture/structure/architectural_style
5. people/family/country
6. music/artist/label
7. music/album/label
8. people/person/religion
9. people/person/place_of_birth
10. business/industry/companies
11. business/company/locations
12. music/album/artist
13. book/book/genre
14. architecture/architectural_style/examples
15. architecture/architect/structures_designed

Figure 4: Relation hierarchy derived from the feature space
on the NYT+FB dataset.

Dataset / P 1 2 3 4 5
NYT+FB 40.9 42.5 41.3 40.6 39.2
TACRED 51.2 52.4 51.4 50.6 49.8

Dataset / L 2 3 4 5 3+M
NYT+FB 38.6 42.5 40.9 39.2 42.5
TACRED 48.8 52.4 50.4 49.6 52.1

Table 2: Average performance with different number of P and
L on NYT+FB and TACRED.

short [Span] words will introduce less-information546

relational features so that is hard to transfer repre-547

sentations from a large scale of sentences, while548

long [Span] words will cause high computational549

complexity and lead to information redundancy.550

Then, we study the level of L hierarchical layers551

as well as the way of building preference sequence552

to form them, so as to discover the most suitable553

tree-structured hierarchical relations for the data554

distribution. We change L from 2 to 5 with fixed555

top preference p⊤ and bottom preference p⊥ to556

get the effect of L and report the average perfor-557

mance in Table 2. The fluctuation here implies that558

fewer layers fail to transfer more information while559

more layers may cause exemplar-level information560

conflicts between different coarse-grained layers.561

(Moiane and Machado, 2018) has shown that the562

minimum and median value of similarity matrix are563

best preferences for propagation clustering, so we564

manually adjust the preference sequence between565

them multiple times with L = 3 and get the average566

results as 3+M to compare with the automatically567

generated ones by Line 3-4 in HPC. The results568

show that the bottom layer is not so sensitive to569

the preference sequence as long as it is reasonable,570

which proves the practicability and effectiveness of571

the equation in Line 4.572

4 Related Work573

Unsupervised relation extraction has received at-574

tention recently (Simon et al., 2019; Tran et al.,575

2020; Hu et al., 2020), due to the ability to discover576

relational knowledge without access to annotations 577

or external resources. Unsupervised models either 578

1) cluster the relation features extracted from the 579

sentence, or 2) make more assumptions as learning 580

signals to discover better relational representations. 581

Among clustering models, an important mile- 582

stone is the self-supervised learning approach 583

(Wiles et al., 2018; Caron et al., 2018; Hu et al., 584

2020), assuming the cluster assignments as pseudo- 585

labels and a classification objective is optimized. 586

However, these works heavily rely on a frequently 587

re-initialized linear classification layer which in- 588

terferes with representation learning. Zhan et al. 589

(2020) proposes Online Deep Clustering that per- 590

forms clustering and network update simultane- 591

ously rather than alternatingly to tackle this con- 592

cern, however, the noisy pseudo labels still affect 593

feature clustering when updating the network. 594

Inspired by the success of contrastive learning 595

in computer vision tasks (He et al., 2020; Li et al., 596

2020; Caron et al., 2020), instance-wise contrastive 597

learning in information extraction tasks (Peng et al., 598

2020), and large pre-trained language models that 599

show great potential to encode meaningful seman- 600

tics for various downstream tasks (Devlin et al., 601

2019; Soares et al., 2019), we proposed a hierarchi- 602

cal exemplar contrastive learning schema for unsu- 603

pervised relation extraction. It has the advantages 604

of supervised learning to capture high-level seman- 605

tics in the relational features instead of exploiting 606

base-level sentence differences to strengthen dis- 607

criminative power and also keeps the advantage of 608

unsupervised learning to handle the cases where 609

the number of relations is unknown in advance. 610

5 Conclusion 611

In this paper, we propose a contrastive learning 612

framework model HiURE for unsupervised rela- 613

tion extraction. Different from conventional self- 614

supervised models which either endure gradual 615

drift or perform instance-wise contrastive learning 616

without considering hierarchical relation structure, 617

our model leverages HPC to obtain hierarchical 618

exemplars from relational feature space and fur- 619

ther utilizes exemplars to hierarchically update re- 620

lational features of sentences and is optimized by 621

performing both instance and exemplar-wise con- 622

trastive learning through HiNCE and propagation 623

clustering iteratively. Experiments on two pub- 624

lic datasets show the effectiveness of HiURE over 625

competitive baselines. 626
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A Implementation Details800

In the encoder phase, we set the number P of ran-801

domly selected words in the [Span] to 2, the reason802

of which is illustrated in parameter analysis. There-803

fore the output entity-level features hi and h′
i pos-804

sess the dimension of 4 · bR, where bR = 768. We805

use the pretrained BERT-Base-Cased model806

to initialize both the Momentum Encoder and807

Propulsion Encoder respectively, and use AdamW808

(Loshchilov and Hutter, 2017) to optimize the loss.809

The encoder is trained for 20 epochs with 1e−5810

learning rate. In the HPC phase, we set the num-811

bers of layers L to 3 after parameter analysis and812

the maximum iterations at Line 8 to 400 to make813

sure the algorithm terminates in time and make the814

converge condition as El not change for 10 iter-815

ations. We set temperature parameter τ = 0.02816

and momentum parameter m = 0.999 following817

(He et al., 2020) and adjust the number of negative818

samples J to 512 to accommodate smaller batches.819

B Evaluation metrics820

We follow previous works and use B3 (Bagga821

and Baldwin, 1998), V-measures (Rosenberg and822

Hirschberg, 2007) and Adjusted Rand Index (ARI)823

(Hubert and Arabie, 1985) as our end metrics. B3824

uses precision and recall to measure the correct rate825

of assigning data points to its cluster or clustering826

all points into a single class. We use V-measures827

(Rosenberg and Hirschberg, 2007) to calculate ho-828

mogeneity and completeness, which is analogous829

to B3 precision and recall. These two metrics pe-830

nalize small impurities in a relatively “pure” cluster831

more harshly than in less pure ones. We also report832

the F1 value, which is the harmonic mean of Hom.833

and Comp. Adjusted Rand Index (ARI) (Hubert834

and Arabie, 1985) measures the similarity of pre-835

dicted and golden data distributions. The range of836

ARI is [-1,1]. The larger the value, the more consis-837

tent the clustering result is with the real situation.838

C Visualization839

Visualize Hierarchical Contextualized Features840

To further intuitively show how tree-structured hier-841

archical exemplars help learn better contextualized842

relational features on entity pairs for URE, we visu-843

alize the contextual representation space R(2+P )·bR844

after dimension reduction using t-SNE (Maaten and845

Hinton, 2008). We randomly choose 400 relations846

from TACRED dataset and the visualization results847

are shown in Figure 5.848

(a) HiURE (higher-level rela-
tions)

(b) HiURE

(c) HiURE w/o ExemNCE (d) HiURE w/o HPC

Figure 5: Visualizing contextualized entity-level features after
t-SNE dimension reduction on TACRED dataset.

From Figure 5 (a), we can see that HiURE can 849

give proper clustering results to the high-level rela- 850

tional features generated by propagation clustering, 851

and features are colored according to their cluster- 852

ing labels. In order to explore how our modules 853

utilize high-level relation features to guide the clus- 854

tering of base-level relations, we still use the cor- 855

responding high-level clustering relation labels as 856

the color series, while base-level clustering rela- 857

tion labels with different shapes to get Figure 5 (b) 858

(c) (d). HiURE in (b) learns denser clusters and 859

discriminitaive features. However, HiURE w/o Hi- 860

erarchical ExemNCE in (c) is difficult to obtain the 861

semantics of the sentences without exemplar-wise 862

information, which makes the clustering results 863

loose and error-prone. When Hierarchical Prop- 864

agation Clustering is not applied as (d), k-means 865

is adopted to perform clustering on the high-level 866

relational features, which could not use exemplars 867

to update relational features or mutual similarity 868

between feature points. On that occasion, HiURE 869

w/o HPC gives the results where the points between 870

clusters are more likely to be mixed. The outcomes 871

revealed above prove the effectiveness of HiURE 872

to obtain the semantics of sentences while distin- 873

guishing between similar and dissimilar sentences. 874
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