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Fig. 1: For any grasp type in the GRASP taxonomy [6], any object, and any articulated hand, our pipeline efficiently
synthesizes contact-rich, penetration-free, and physically plausible dexterous grasps, starting from only one human-annotated
grasp template to specify an initial hand pose and contact information per hand and grasp type.

Abstract—Generalizable dexterous grasping with suitable
grasp types is a fundamental skill for intelligent robots. Devel-
oping such skills requires a large-scale and high-quality dataset
that covers numerous grasp types (i.e., at least those categorized
by the GRASP taxonomy), but collecting such data is extremely
challenging. Existing automatic grasp synthesis methods are often
limited to specific grasp types or object categories, hindering
scalability. This work proposes an efficient pipeline capable
of synthesizing contact-rich, penetration-free, and physically
plausible grasps for any grasp type, object, and articulated hand.
Starting from a single human-annotated template for each hand
and grasp type, our pipeline tackles the complicated synthesis
problem with two stages: optimize the object to fit the hand
template first, and then locally refine the hand to fit the object
in simulation. To validate the synthesized grasps, we introduce
a contact-aware control strategy that allows the hand to apply
the appropriate force at each contact point to the object. Those
validated grasps can also be used as new grasp templates to
facilitate future synthesis. Experiments show that our method
significantly outperforms previous type-unaware grasp synthesis
baselines in simulation. Using our algorithm, we construct a
dataset containing 10.7k objects and 9.5M grasps, covering
31 grasp types in the GRASP taxonomy. Finally, we train a
type-conditional generative model that successfully performs the
desired grasp type from single-view object point clouds, achieving
an 82.3% success rate in real-world experiments. Project page:
https://pku-epic.github.io/Dexonomy.

I. INTRODUCTION

Dexterous grasping is a fundamental skill for intelligent
robots, enabling flexible interaction with the environment.
However, most prior work focuses on whether a dexterous
hand can successfully grasp an object, rather than considering
how to grasp it. As a result, the dexterous hand loses its
dexterity and becomes functionally similar to a large parallel
gripper. True dexterous grasping is not merely about “grasping
with dexterous hands”, but about “grasping dexterously with
appropriate grasp types based on the task requirement”. For
example, when a robot needs to securely grasp an apple or
hold a knife to cut, it should use a power grasp to envelop the
object. Conversely, when grasping a lightweight or flat object
from the table, a precision grasp using the fingertips would be
more suitable.

To develop such intelligent skills, there are two key chal-
lenges: (1) selecting the appropriate grasp type based on the
task and (2) generating high-quality grasps for specified types
and objects. The first challenge is a high-level decision-making
problem and can take advantage of recent advances in large
vision-language models, e.g., GPT-4o [7], as a temporary
solution. However, the second challenge is less studied and

https://pku-epic.github.io/Dexonomy


represents a significant bottleneck, which is the main focus
of this paper. To address the problem of type-aware grasp
synthesis with data-driven methods, the first step is to build
a large-scale grasp dataset that at least includes most of the
grasp types in the GRASP taxonomy [6]. However, collecting
grasp data, particularly for multi-fingered hands in contact-rich
scenarios, remains a big challenge.

Several approaches have been explored for automatically
synthesizing a large-scale dexterous grasp dataset, but most
of them suffer from various limitations. Analytical grasp
synthesis methods [17, 16, 9, 3, 2] are often applicable
to any object, but most of them are type-unaware and the
synthesized grasps only belong to limited types. This is
because specifying flexible grasp types solely through ana-
lytical metrics is challenging. Moreover, these methods often
produce unnatural hand poses, as they prioritize force closure,
which does not always align with human habits. Another line
of research [21, 18, 19] focuses on transferring functional
dexterous grasps by mapping object contact regions. While
these methods generate more human-like grasps and support
a wider range of grasp types, they are limited to objects
that are geometrically similar or axis-aligned with the initial
demonstration, making them less scalable.

In this work, we propose a novel pipeline to address
these challenges. As shown in Figure 1, our algorithm can
efficiently synthesize high-quality dexterous grasps for any
grasp type, object, and articulated hand, requiring only one
human-annotated grasp template per hand and grasp type.
Our synthesized grasps achieve rich hand-object contact (e.g.,
> 10 hand links within 2 mm of the object for power
grasps), guarantee penetration-free poses via collision mesh
verification, and satisfy force closure under six-axis testing in
MuJoCo [15] — all with shared hyperparameters across grasp
types, objects, and hands.

Our key insight is that grasping can be framed as a geomet-
ric matching problem, where the hand and object should align
through contact points. We begin by introducing a human-
annotated grasp template that specifies the initial hand pose
and contact information (i.e., points and normals). Unlike
previous methods that directly adjust the hand pose to fit the
object, we first sample and optimize the object pose to match
the hand contacts defined in the grasp template. This stage
supports hundreds of thousands of initial samples processed
in parallel on a single GPU and leaves only a small number
of promising results for the next stage.

After aligning the object pose, the hand only needs a slight
refinement to get a good grasp. This dual-stage design not
only eases the hand refinement, but also ensures that the final
grasp remains similar to the initial grasp template and thus
remains natural. In contrast to most prior work [8, 17, 3, 2]
that develops custom objective functions and optimizers to
refine the hand pose, we propose a novel method based on
the transposed Jacobian control in MuJoCo. This approach is
key to achieving rich contacts while ensuring no penetration,
with minimal coding effort and parameter tuning.

Next, we evaluate the synthesized grasps in MuJoCo to

assess their ability to withstand external forces applied to the
object. Unlike previous work [17, 23] that designs heuristics to
squeeze the hand for applying force on the object, which is not
suitable for all grasp types, we design a contact-aware control
strategy that computes the desired forces for each contact point
and controls the hand to apply them approximately, also based
on the transposed Jacobian control. Finally, high-quality grasps
that pass the simulation tests can be used to construct new
grasp templates, reducing the need for human annotations and
broadening the range of objects that can be grasped.

Experiments show that our method greatly outperforms
previous type-unaware grasp synthesis baselines in simulation.
Using our proposed pipeline, we also build a large-scale
dataset covering different grasp types. This dataset further
enables training a type-conditional generative model that
generates desired grasp types for novel objects from single-
view point clouds, achieving a success rate of 82.3% on the
Shadow hand in real-world experiments. Finally, we show that
our algorithm can be used to develop an annotation UI for
collecting semantic grasps on the specified object regions with
only a few mouse clicks.

In summary, our main contributions are:
• An efficient pipeline to synthesize high-quality grasps

for any grasp type, object, and hand, starting from one
human-annotated template per hand and grasp type.

• A large-scale dataset with 9.5M grasps and 10.7k objects,
covering 31 grasp types in the GRASP taxonomy.

• A type-conditional generative model that can use the
specified grasp types to grasp novel objects in the real
world, with only a single-view point cloud as input.

• An annotation UI for collecting semantic grasps with only
a few mouse clicks.

II. METHOD

A. Grasp Template Definition

A grasp template consists of several components: the hand
joint configuration q ∈ Rq , hand contact points ph

i ∈ R3,
corresponding normals nh

i ∈ R3, and the link name for each
contact point (i = 1, 2, . . . ,m). Our algorithm requires a single
human-annotated grasp template for each hand and grasp type
as initialization.

B. Lightweight Global Alignment of Object Pose

In this stage, we simultaneously sample and optimize the
object pose to align with the selected template’s hand contacts
while keeping the hand pose fixed. The optimization variable is
the object’s transformation, parameterized by its scale so ∈ R,
rotation Ro ∈ S3, and translation to ∈ R3.

Before optimization, we begin with dense sampling. First, a
random grasp template is selected from the Grasp Template Li-
brary, and a random hand contact from the template is chosen.
Then, a random object is selected, and a random surface point
on the object is chosen. The object is initialized by aligning
the sampled hand and object contacts, where contact points
are matched and the contact normal directions are set opposite.
The object’s scale and in-plane rotation perpendicular to the



Fig. 2: The pipeline of Dexonomy. (1) Grasp Template Library initially requires one human-annotated template. (2) Lightweight
Global Alignment stage samples and optimizes the object poses in parallel on a GPU, to match the contact points and normals
of the selected grasp templates. (3) Simulation-based Local Refinement stage adjusts the hand pose to improve hand-object
contacts. (4) Simulation Validation tests force-closure grasps using our proposed contact-aware control strategy. (5) New
templates are constructed from successful grasps and added to the Grasp Template Library, used in the following iterations.

normal direction are sampled randomly. Our pipeline supports
parallelizing massive samples of different contacts, objects,
and grasp templates on a single GPU.

During each optimization iteration, each hand contact point
ph
i calculates the nearest point po

i on the object’s surface using
the differentiable library Warp [12]. To penalize the mismatch
between hand and object contacts, we optimize the object pose
by minimizing the following energy function:

L = kp

m∑
i=1

∥ph
i − po

i ∥2 + kn

m∑
i=1

∥nh
i − no

i ∥2 (1)

where kp and kn are hyperparameters. There is no other energy
used for optimization except Eq. 1.

After optimization, results are filtered using four criteria.
First, the final energy function must be below a threshold to
ensure a good match between hand-object contacts. Second,
severe penetration between the hand and object should be
avoided, which we efficiently detect using our proposed hand
collision skeletons parameterized by line segments (details
in SUPP). Third, the object contact quality, as measured by
the QP-based grasp energy from BODex [2], must exceed a
threshold. Finally, we apply a process similar to farthest point
sampling to filter out duplicate object transformations.

Our design, using only one energy during optimization
and leaving other checks for post-filtering, provides several
advantages. First, it reduces computational costs, enabling
maximized parallelization to benefit from dense sampling to
avoid local optimum traps. Second, it reduces sensitivity to
hyperparameters, as filtering criteria are applied sequentially,
while optimization energies need to be applied together.

C. Simulation-based Local Refinement of Hand Pose

In this stage, the object is fixed, and the hand pose is locally
refined to improve the hand-object contact. A virtual force fi is
needed at each hand point ph

i toward the corresponding nearest
object point po

i . To apply these virtual forces in MuJoCo,
they are transferred to the hand’s joint torque via simplified

transposed Jacobian control:

fi = kf (p
h
i − po

i ), τ =

m∑
i=1

JT
h,ifi (2)

where kf is a hyperparameter and JT
h,i ∈ Rq×3 is the transpose

of the hand contact Jacobian that maps force vectors from the
world to joint coordinates.

While Eq. 2 is a simplified control strategy with many as-
sumptions (e.g., no dynamics or gravity; joint torques mapped
from each contact force are independent and additive), it serves
our need for synthesizing contact-rich grasps in simulation.
This is easy to implement and works for other physics sim-
ulators. Eq. 2 is iteratively applied for 200 steps, with ph

i

remaining static in the hand link frame and po
i remaining static

in the world frame to avoid drift.
After optimization, we filter the results based on three

criteria. First, there should be no hand-object penetration,
measured using collision meshes. Second, all fingers that have
at least one annotated contact should touch the object, meaning
the minimal distance between hand links and object meshes
should be within 2 mm. Finally, the grasp quality must exceed
a threshold, as in the previous stage.

D. Simulation Validation with Contact-Aware Control

To validate the synthesized grasps in MuJoCo, the hand
should squeeze to hold the object stably, controlled by a
control signal of joint torques. Our contact-aware control
strategy first calculates the desired forces on each contact using
the quadratic programming (QP) [2], and then converts these
forces into joint torques using the same transposed Jacobian
control as in Eq. 2. A grasp is considered to succeed only
if the object remains stable under all six orthogonal external
forces for 2 seconds in simulation.

E. Construction of New Grasp Templates

Once a grasp successfully passes the simulation validation,
a new grasp template is constructed and added to the template
library. The joint configuration of the new template is taken



GSR (%) ↑ OSR (%) ↑ S (s−1) ↑ CLN ↑ CDC (mm) ↓ PD (mm) ↓ SPD (mm) ↓ D (%) ↓
DexGraspNet [17] 12.10 57.01 3.25 3.22 7.58 4.85 1.20 29.03
FRoGGeR [9] 10.34 55.70 2.98 2.51 4.95 0.22 0.00 27.01
SpringGrasp [3] 7.83 35.44 5.47 2.79 23.59 16.58 1.06 70.18
BODex [2] 49.23 96.56 403.9 3.85 3.03 0.63 0.02 32.50
Ours 60.50 96.53 323.4 4.38 0.21 0.00 0.00 34.17

TABLE I: Comparison with Type-Unaware Grasp Synthesis Baselines for Allegro Hand in Simulation. Most baselines,
except DexGraspNet, only synthesize fingertip grasps, so we also synthesize fingertip grasps for a fair comparison.
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Fig. 3: Real-World Gallery. Our trained type-conditional generative model synthesizes desired grasp types from single-view
object point clouds. All grasps succeed except the one in the red box, where the grasp type is unsuitable for the object.

from the successful grasp, while the contact information is
updated only if an actual contact is detected near the original
contact on the same hand link. This strategy prevents the new
template’s contact information from deviating too much from
the original. Newly added templates can be randomly selected
in the global alignment stage of the following loops.

III. EXPERIMENT

A. Type-Unaware Grasp Synthesis in Simulation

Although our work focuses on type-aware dexterous grasp
synthesis, there is no suitable baseline available for direct com-
parison. Therefore, we conduct experiments on type-unaware
grasp synthesis in simulation to demonstrate the effectiveness
of our pipeline.

Evaluation metrics. Eight metrics similar to BODex [2]
are used for a comprehensive evaluation: Grasp Success Rate
(GSR), Object Success Rate (OSR), Speed (S), Contact Link
Number (CLN), Contact Distance Consistency (CDC), Pene-
tration Depth (PD), Self-Penetration Depth (SPD), Diversity
(D). The detailed description of each metric is in SUPP.

Experiment setup. We use the Allegro hand and 5689
object assets from DexGraspNet, with six scales applied to
each normalized object: 0.05, 0.08, 0.11, 0.14, 0.17, and
0.20. Each method allows 20 attempts, where for our method
one attempt is defined as one valid result output by the
global alignment stage. The reported speed does not include
simulation validation, and the detailed time is in SUPP.

Result analysis. As shown in Table I, our method achieves
the highest grasp success rate and best performance on contact
and penetration. The penetration for our grasps is consistently
0 because we set a 1mm contact margin in MuJoCo, and
MuJoCo can resolve millimeter-level penetration. Our speed
is slightly lower than that of BODex, as their pipeline mainly

runs on GPUs, while our local refinement stage uses MuJoCo’s
CPU version. Our diversity is somewhat lower, as we use only
two similar templates and a smaller step number for refining
hand poses compared to the baselines. However, the overall
diversity of our synthesized grasps for all grasp types is much
better, as reported in SUPP. The success rates of baselines are
lower than those reported in BODex [2], primarily because
our objects have a higher mass (100g vs. 30g) and a larger
scale range ([0.05, 0.2] vs. [0.06, 0.12]).

B. Learning Type-Aware Grasp Synthesis
Using our proposed method, we generate a large-scale

dataset for Shadow Hand covering 31 grasp types in the
GRASP taxonomy. We also propose a type-conditional gener-
ative model based on normalizing flow [20, 2]. The main idea
is just to add a conditional codebook, where each grasp type
corresponds to a code in it. Since the learning model is just
used as proof-of-concept and not the main contribution of this
paper, the details are left in SUPP.

To perform a grasp, a single-view object point cloud seg-
mented by SAM2 [13] and the specified grasp type are taken
as input to the trained type-conditional generative model. The
model generates 100 candidates and we use the pre-grasp
poses as the target for collision-free motion planning with
CuRobo [14], filtering out failed ones. The remaining grasps
are ordered by the output probability of the normalizing flow,
and the top 3 are executed. In this way, we prevent the success
rate of motion planning from affecting the results, since it is
not the focus of this paper. After reaching the pre-grasp pose,
the hand moves to the grasp pose and then the squeeze pose to
grasp the object stably, and finally lift it. As shown in Fig. 3,
our model can correctly generate physically plausible grasps
for the specified types and achieves an overall success rate of
82.3% on 13 test objects.
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APPENDIX

A. Evaluation Metrics

The following metrics are used for a comprehensive evalu-
ation of the synthesis pipeline and grasp quality. All distances
are measured using collision meshes in MuJoCo.

Grasp Success Rate (GSR) (unit: %): The percentage of
successful grasps relative to the attempt number. For our
method, one attempt is defined as one valid result output
by the global alignment stage. A grasp succeeds only if it
resists six external forces in MuJoCo and does not have
severe penetrations (> 1 cm), since the penetration may cause
simulation failure and prevent the object from moving. The
object mass is 100g, and the success criteria for the object
pose are 5cm and 15◦.

Object Success Rate (OSR) (unit: %): The percentage of
objects that have at least one successful grasp. If the object
scales are fixed, different scales of the same object are treated
as separate objects.

Speed (S) (unit: second−1): The maximum number of
attempts completed per second on a server with 8 NVIDIA
RTX 3090 GPUs and 2 Intel Xeon Platinum 8255C CPUs
(48 cores, 96 threads). We report the time running on a server
because our method utilizes both GPUs and CPUs. This metric
excludes simulation validation.

Contact Link Number (CLN): The number of hand links
whose distance to the object surface is within 2 mm.

Contact Distance Consistency (CDC) (unit: mm): The
delta between the maximum and minimum signed distances
across all fingers. This metric quantifies the variation in contact
distance across different fingers and is invariant to penetration.

Penetration Depth (PD) (unit: mm): The maximum inter-
section distance between the hand and object for each grasp.

Self-Penetration Depth (SPD) (unit: mm): The maximum
self-intersection distance among different hand links.

Diversity (D) (unit: %): The proportion of total variance
explained by the first principal component in PCA, computed
as the ratio of the first eigenvalue to the sum of all eigenvalues.
PCA is performed on data points that include grasp translation
Tg , rotation Rg (in the axis-angle representation), and joint
angles qg .

B. Experiment: Type-unaware Grasp Synthesis

1) Visualization Comparison: Figure 4 illustrates the initial
hand pose and some synthesized grasps for each method.
Our method consistently synthesizes human-like and stable
grasps, even for objects with complex geometries (e.g., for
scales 0.11, 0.17, and 0.20). Notably, the synthesized grasp for

Fig. 4: Visualization of Synthesized Fingertip Grasps. Our
method synthesizes human-like and stable grasps, even for
objects with complex geometries (e.g., object scales = 0.11,
0.17, and 0.20).

template 1 and object scale 0.05 requires high precision and is
challenging for previous methods. Furthermore, the grasp for
template 2 and object scale 0.14 shows a much larger thumb-
to-other-tip distance than the initial human-annotated template,
demonstrating our method’s ability to adjust hand joint angles
across a large range.

For baseline methods, DexGraspNet [17] shows high uncer-
tainty, partly due to its randomness in selecting contact points.
While it occasionally generates good grasps (e.g., for scales
0.08 and 0.14), it often results in twisted fingers (e.g., for
scales 0.17 and 0.20) or large thumb-to-object distance (e.g.,
for scale 0.05). FRoGGeR [9] performs well on simple objects
but almost always fails on objects with complex geometries.
It also tends to generate grasps with different contact normals
for each fingertip (e.g., for scales 0.05 and 0.08), an issue
encouraged by many previous force closure metrics. Spring-
Grasp [3] suffers from severe penetration and inconsistent
contact distances, especially for the thumb. Additionally, their
grasps lack diversity, and their thumb joint frequently exceeds
the feasible range, which is not executable in both MuJoCo
and the real world. Although BODex [2] demonstrates high
success rates in simulation, their synthesized grasps rarely
involve finger bending, resulting in unnatural poses.

2) Comparison using a harder benchmark: The benchmark
in the main paper uses large friction coefficients and many



Method Attempt DGN object [17] Objaverse [5]
Number GSR↑ OSR↑ GSR↑ OSR↑

BODex 20 14.79 71.30 6.92 43.48
BODex 100 14.80 89.84 6.91 73.53
Ours 20 27.16 91.28 18.25 84.17
Ours 100 27.18 95.13 18.34 94.63

TABLE II: A Harder Benchmark for Fingertip Grasp Syn-
thesis. This benchmark uses smaller friction coefficients and
more diverse objects, and our method consistently outperforms
the baseline. DGN indicates DexGraspNet.

Fig. 5: Comparison with Functional Grasp Transfer Base-
lines. Our grasps involve more contact points while ensuring
no penetration, indicating higher stability, particularly for
scissors.

simple objects, which do not fully reflect the ability of
each method to synthesize very high-quality grasps in more
complex scenarios. To address this, we introduce a more
challenging benchmark by reducing the tangential and tor-
sional friction coefficients from 0.6 and 0.02 to 0.3 and 0.002,
respectively, and randomly selecting 5000 additional objects
from Objaverse [5] for testing. To mitigate the increased
difficulty, we allow each method more attempts per object
(from 20 to 100). We compare only with BODex, as other
baselines exhibit significantly lower success rates and slower
speeds.

As shown in Table II, our method significantly outperforms
BODex. Notably, our method achieves an object success
rate exceeding 94%, successfully grasping nearly all scaled
objects, while BODex fails on about 27% of the Objaverse
objects. This highlights our method’s stronger generalizability
to complex in-the-wild objects. Additionally, our grasp success
rate continues to improve with more attempts, benefiting
from continuous updates to our template repository, whereas
the performance of BODex remains unchanged. This further
demonstrates the adaptability of our approach.

C. Experiment: Type-aware Grasp Synthesis

1) Visual Comparison: Unfortunately, we didn’t acquire the
code of suitable baselines for comparison, as existing methods
either do not support robotic hands (e.g., Oakink [21]) or
have not made their code publicly available (e.g., LHFG [18]
and CCFG [19]) despite our requests through emails. Conse-
quently, we can only perform qualitative comparisons using

GSR(%)↑ OSR(%)↑ CLN↑ D(%)↓Normal Hard Normal Hard
Power 24.2 12.8 81.9 68.3 9.1 24.7

Intermediate 23.0 6.6 79.9 69.4 4.8 27.6
Precision 36.0 11.4 95.9 85.6 4.2 25.8

TABLE III: Statistics of Grasp Synthesis for the GRASP
Taxonomy. The success rate is lower than fingertip grasps
because many flexible grasp types are suitable only for specific
objects, e.g., Lateral (#16) grasps for flat objects.

figures from their papers. As shown in Fig. 5, previous base-
lines mainly use fingertips to grasp the object, particularly for
scissors. In contrast, our method achieves significantly more
contact points (approximately 10 for scissors and 7 for mugs),
resulting in more stable and human-like grasps. Additionally,
CCFG’s grasps show noticeable penetrations especially with
mugs, while LHFG reports a maximum penetration of about
1 cm in their paper. In contrast, our grasps do not have any
penetration.

2) Statistics analysis of our pipeline: In the absence of a
suitable baseline for comparison, we provide some quantitative
results in Table III, which were gathered while synthesizing
our Dexonomy dataset in Section F. The grasp types are cat-
egorized into three large groups, namely power, intermediate,
and precision grasps, according to the GRASP taxonomy [6].

The overall success rate is considerably lower than that
of fingertip grasp synthesis, as many flexible grasp types are
designed for specific object shapes. For instance, the Lateral
(#16) grasp is only used for flat and small objects. Among
different grasp types, precision grasps exhibit the highest
success rate under normal test conditions (i.e., with friction
coefficients of 0.6 and 0.02), since these grasps typically
involve only the fingertips and suit more objects. However,
the success rate of precision grasps drops more rapidly than
that of power grasps when the friction coefficients are reduced
to 0.3 and 0.002 (i.e., the hard test conditions), indicating that
power grasps offer higher stability due to more contact with
the object. Additionally, the overall diversity of grasps is better
than previous work reported in the main paper, owing to the
inclusion of many distinct grasp types.

D. Experiment: Learning-based Grasp Synthesis in Simula-
tion

In this section, we compare the influence of both the
grasping dataset and the learning method in simulation. The
10.7k objects in our Dexonomy dataset are randomly split
into training and test sets with a 4:1 ratio. While the object
scales used for training vary, we fix the scales during testing,
using the same six scale levels as described in Section ??.
To ensure a fair comparison, we also regenerate a dataset for
BODex using our objects and scales, resulting in 0.7M valid
grasps. Ours-type1 includes only the Large Diameter (#1)
grasp type from the Dexonomy dataset and contains 0.4M data
points, while Ours-all uses the full 9.5M dataset. For the type-
conditional model, we additionally train a classifier to select
the best grasp type based on each object’s point cloud. For



Dataset Hand Sim./Real Objects Grasps Grasp Types Force Closure Data Type Method
DexGraspNet [17] Shadow IsaacGym 5.4k 1.32M Random ✓ Grasp pose Optimization
RealDex [11] Shadow Real 52 59k Random ✗ Motion Teleoperation
GraspXL [22] Multiple RaiSim 500k 10M Random ✗ Motion RL
BODex [2] Shadow MuJoCo 2.4k 3.62M Fingertip ✓ Pre-grasp, grasp poses Optimization
Dexonomy (Ours) Shadow MuJoCo 10.7k 9.5M 31 types ✓ Pre-grasp, grasp, squeeze poses Sampling+opt.

TABLE IV: Dexterous Grasp Dataset Comparison. Our large-scale dataset aims to support the study of data-driven methods
for type-aware grasp synthesis.

Method Dataset GSR↑ OSR↑ CDC↓ PD↓ D↓

Type-uncond.

DGN [17] 8.32 44.3 20.5 15.9 29.1
BODex [2] 54.0 84.4 11.7 6.2 32.0
Ours-type1 55.5 85.9 10.8 8.4 31.5

Ours-all 24.5 73.2 15.6 11.6 28.0
Type-cond. Ours-all 63.9 91.3 13.9 8.6 25.7

TABLE V: Learning-based Grasp Synthesis from Single-
View Object Point Clouds in Simulation. Our type-
conditional model trained on our Dexonomy dataset signifi-
cantly outperforms baselines.

Fig. 6: An Annotation UI based on Our Algorithm for
Collecting Functional Grasp. (Left) The user clicks twice to
specify a contact point on the object and a grasp type. (Right)
A high-quality grasp is synthesized according to the user’s
needs within seconds.

each object, 100 candidate grasps are predicted and ranked by
their associated probabilities, with the top 10 selected as the
final outputs.

As shown in Table V, our type-conditional model trained on
the Dexonomy dataset significantly outperforms the BODex
baseline by around 10%, further highlighting the value of
our dataset. Notably, even when using only a single grasp
type with less data, the learned model still outperforms its
counterpart trained on BODex. Without type-conditional fea-
tures, the model struggles to learn from the diverse grasp data
and performs poorly. In contrast, the type-conditional model
successfully synthesizes the intended grasp types, as visualized
in Figure 3. The model trained on our dataset exhibits slightly
higher penetration, likely due to the fact that our grasps are
more contact-rich. Contact distance consistency is also higher
for Ours-all, as this metric considers all fingers, while some
grasp types do not involve every finger.

E. Application: Annotation UI

Although our algorithm is semantic-unaware and cannot
directly synthesize grasps to touch object regions specified
by human language commands, it can be used to develop an
efficient annotation system for collecting semantic dexterous

grasp data. Unlike widely used teleoperation methods, which
often require well-trained annotators and hardware depen-
dencies like data gloves, our annotation system has minimal
requirements, relying only on simple mouse clicks.

As shown in Figure 6, the annotator only needs to click
twice: once to specify a contact point on the object and once
to select a desired grasp type. Our algorithm will automatically
sample nearby object points and grasp templates from existing
libraries, and synthesize valid grasps, with the best results
displayed in the GUI within seconds. For a full demonstration,
please refer to our supplementary video. We plan to continue
improving this tool and hope it facilitates future research on
semantic grasping.

F. Dexonomy Dataset

Using our proposed grasp synthesis pipeline, we construct
a large-scale dataset for Shadow hand covering 31 grasp types
from the GRASP taxonomy [6]. This dataset is designed
to support research on data-driven methods for type-aware
grasp synthesis. Two grasp types in the taxonomy, Distal
Type (#19) and Tripod Variation (#21), are excluded due
to their specificity to object categories, namely scissors and
chopsticks, respectively.

As shown in Table IV, our dataset comprises 10.7k object
assets, including 5,697 objects from DexGraspNet [17] and
5,000 new objects randomly selected from Objaverse [5]. All
objects are normalized such that the diagonal of their axis-
aligned bounding box is 2 meters, with scales ranging between
[0.05, 0.2]. Only successful grasps are retained, resulting in
9.5M data points. The entire dataset was synthesized in less
than 3 days on a server with 8 NVIDIA RTX 3090 GPUs.
Additional statistics are provided in Table III.

Each data point includes three key poses:

• Grasp pose, obtained via local refinement.
• Pre-grasp pose for collision-free motion planning, gen-

erated after the grasp pose by enforcing a 2cm contact
margin in MuJoCo—pushing the hand away if it is within
2cm of the object.

• Squeeze pose, derived from the control signal used for
simulation validation, to apply force through hand-object
contacts.

These poses provide the minimal requirements for generating a
complete grasping trajectory (including reaching and squeez-
ing) and are compatible with diverse robot arms and initial
hand configurations.



Fig. 7: Dexonomy Dataset Visualization. Each color corre-
sponds to a different grasp type.
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Fig. 8: Type-Conditional Grasp Generative Model. With-
out the grasp-type codebook in the red dashed box, the
model becomes type-unconditional and is similar to previous
works [2, 23].

G. Type-Conditional Grasp Generative Model

To generate grasps from partial observations for real-
world deployment, data-driven methods are essential. Al-
though learning is not the main focus of this paper, we present
a simple model as an initial try. The model architecture is
very similar to previous works [23, 2], with the key difference
being the grasp-type codebook added as a conditional input to
specify a grasp type.

The input to the model consists of a single-view object
point cloud and a type feature f i

t selected from the grasp-
type codebook. The point cloud is encoded into a feature fv
using a Sparse3DConv network with MinkowskiEngine [4].
This vision feature fv , along with the type feature ft, are
concatenated to form a conditional feature fc. Conditioned on
fc, the Mobius normalizing flow [10] maps a random sample in
a base distribution to a grasp pose Rg and Tg , and calculates
a probability p indicating the pose quality. The predicted grasp
pose is then concatenated with fc and passed through an MLP
to predict a pre-grasp pose Rp, Tp, and three hand qpos
qp, qg , and qs for the pre-grasp, grasp, and squeeze poses,
respectively. The whole model is trained end-to-end and the
type feature f i

t is also optimizable.

H. Time Analysis

The times reported in Table 1 of the main paper represent
the maximum speed for synthesis without simulation valida-
tion. This section provides a more detailed time breakdown
of our proposed grasp synthesis pipeline.

First, the lightweight global alignment stage processes over
100,000 initial samples in approximately 3 seconds on a single

3090 GPU. The maximum number of intermediate results
generated for the next stage can be controlled via a hyperpa-
rameter. We typically process 10 objects in parallel, with 10
results per object. For grasp types that are commonly suitable
for many objects, this stage is usually not the bottleneck, as it
can synthesize over 200 intermediate results per second using
8 GPUs. However, for more challenging grasp types that are
hard to match, this stage can become the bottleneck, because
there may be less than 20 results per second.

The optimization step consistently takes around 1.2 seconds,
while the time cost of calculating the grasp quality metric
for post-filtering varies significantly, ranging from 0.3 to
1.5 seconds. When many samples are filtered out, leaving
only around 5,000 for energy calculation, the process takes
approximately 0.3 seconds. This speed is achieved by using
the batched Relu-QP [1] algorithm as in BODex [2], whereas
traditional CPU-based QP solvers are significantly slower. The
other operations are very fast.

Next, the simulation-based local refinement stage requires
200 simulation steps, which take less than 0.1 seconds. This
stage is highly efficient, easily synthesizing more than 200
grasps per second when utilizing 32 threads.

Finally, the simulation validation stage often becomes the
speed bottleneck, as it involves approximately 3,000 simu-
lation steps (6 external force directions, with 500 steps per
direction). Despite employing early-stop strategies to handle
failure cases, this stage can only process about 40 grasps
per second using 48 threads. The slow speed has nothing to
do with our proposed contact-aware control strategy and is
consistent for other synthesis baselines if they want to test in
MuJoCo. Future work may try to use GPU-based MuJoCo or
other faster physics simulators for testing.
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