
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCHUR’S POSITIVE-DEFINITE NETWORK:
DEEP LEARNING IN THE SPD CONE WITH STRUCTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating matrices in the symmetric positive-definite (SPD) cone is of interest
for many applications ranging from computer vision to graph learning. While
there exist various convex optimization-based estimators, they remain limited in
expressivity due to their model-based approach. The success of deep learning
motivates the use of learning-based approaches to estimate SPD matrices with
neural networks in a data-driven fashion. However, designing effective neural
architectures for SPD learning is challenging, particularly when the task requires
additional structural constraints, such as element-wise sparsity. Current approaches
either do not ensure that the output meets all desired properties or lack expressivity.
In this paper, we introduce SpodNet, a novel and generic learning module that
guarantees SPD outputs and supports additional structural constraints. Notably,
it solves the challenging task of learning jointly SPD and sparse matrices. Our
experiments illustrate the versatility and relevance of SpodNet layers for such
applications.

1 INTRODUCTION

The estimation of symmetric positive-definite (SPD) matrices is a major area of research, due to their
crucial role in various fields such as optimal transport (Bonet et al., 2023), graph theory (Lauritzen,
1996), computer vision (Nguyen et al., 2019) or finance (Ledoit and Wolf, 2003). While various
statistical estimators, i.e. model-based, have been developed for specific tasks (Ledoit and Wolf, 2004;
Banerjee et al., 2008; Cai et al., 2011), recent advancements focus on applying generic learning-
based approaches to estimate appropriate SPD matrices with neural networks in a data-driven fashion
(Huang and Van Gool, 2017; Gao et al., 2020).

Training neural networks while enforcing non-trivial structural constraints such as positive-
definiteness is a difficult task. There have been many efforts in this direction in recent years,
often in an ad-hoc manner and each with their own shortcomings (see Section 2 for more details).
Building on the seminal work of Gregor and LeCun (2010) in sparse coding, a promising research
direction involves designing neural networks architectures from the unrolling of an optimization
algorithm (Chen and Pock, 2016; Monga et al., 2021; Chen et al., 2022; Shlezinger et al., 2023). In
the case of SPD matrices, algorithm unrolling presents several challenges. First, algorithms operating
in the SPD cone usually rely on heavy operations such as retractions (Boumal, 2023), SVD or line
search (Rolfs et al., 2012). These operations do not integrate well into a neural network architecture,
making these algorithms difficult to unroll.

Additionally, and more importantly, many applications require further structural constraints on the
learned matrix. Elementwise sparsity is a typical example of such constraints (Banerjee et al., 2008),
which significantly increases the complexity of the task: learning functions that simultaneously
enforce SPDness and sparsity of the output is known to be challenging (Guillot and Rajaratnam,
2015; Sivalingam, 2015). There are currently no neural architectures that enable learning jointly
SPD and sparse matrices.

In this paper, we bridge this gap and make the following contributions:

• We introduce a new SPD-to-SPD neural network architecture that also supports enforcing
additional constraints on the output. We refer to it as SpodNet for Schur’s Positive-Definite
Network. As a particular case, we show that SpodNet is able to learn jointly SPD and sparse

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A SpodNet layer chains p updates of column-row pairs and diagonals using neural networks.
The matrices remain SPD at all times via Schur’s condition.

matrices. To the best of our knowledge, SpodNet is the first architecture to provide strict
guarantees for both properties.

• We demonstrate the framework’s relevance through applications in sparse precision matrix
estimation. We highlight the limitations of other learning-based approaches and show how
SpodNet addresses these issues. Our experiments validate SpodNet’s effectiveness in jointly
learning SPD-to-SPD and sparsity-inducing functions, yielding competitive results across
various performance metrics.

Notation We reserve the bold uppercase for matrices Θ, bold lowercase θ for vectors and standard
lowercase θ for scalars. The soft-thresholding function is STγ(·) = sign(·) max(|·|−γ, 0) for γ ≥ 0;
it acts elementwise on vectors or matrices. On matrices, ‖·‖1 is the sum of absolute values of the
matrix coefficients. The cone of p by p SPD matrices is denoted Sp++.

2 RELATED WORKS

We first review existing approaches for estimating SPD matrices, which can be broadly divided into
three categories, all suffering the same limitation of not being able to handle additional structural
constraints.

Riemannian approaches Riemannian optimization provides tools to build algorithms whose iter-
ates lie on Riemannian manifolds, such as the SPD manifold (Absil et al., 2008). Many have adopted
these tools to design neural architectures that operate on the manifold of SPD matrices (Huang and
Van Gool, 2017; Gao et al., 2020; 2022). However, a common and significant bottleneck of these
methods is the use of Riemannian operators, which are notoriously expensive to compute. Beyond
this computational hindrance, and more importantly, current Riemannian methods are not able to
impose additional sparsity on the learned matrices without breaking the SPD guarantee.

SPD layers Neural layers with SPD outputs have also been proposed in Dong et al. (2017); Nguyen
et al. (2019). A first line of work rely on the linear mappingXk+1 = WkXkW

>
k (with the layer’s

weightsWk having full row-rank), while some others rely on clipping the eigenvalues of their output.
Unfortunately, there are no obvious ways to incorporate additional structure such as elementwise
sparsity on the matrices without risking breaking their SPD guarantee. For instance, hard-thresholding
the off-diagonal entries of a SPD matrix does not in general preserve the SPD property (Guillot and
Rajaratnam, 2012) and, more generally, elementwise functions preserving this property are very
limited (Guillot and Rajaratnam, 2015).

Unrolled neural architectures In order to ensure that a network’s output strictly respects some
desired properties, a successful direction is to unroll convex optimization algorithms (Chen et al.,
2022; Shlezinger et al., 2023). This unrolling procedure acts as an “inductive bias” on the architecture,
naturally forcing the model to explore suitable solutions within the space of imposed properties.
In SPD learning, this approach has been exploited by Shrivastava et al. (2020) who unrolled an
optimization algorithm to train neural networks to estimate inverses of covariance matrices. Whilst

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

algorithm unrolling is a very powerful approach to learn specific matrices, it proves difficult to
actually enforce several constraints simultaneously on these matrices. We provide further details
about the limits of this approach in Section 4.1.

3 THE SPODNET FRAMEWORK

We now introduce our core contribution, the
SpodNet layer. Essentially, it is an SPD-to-SPD
mapping parameterized by neural networks. A
SpodNet layer operates by cycling through the p
column-row pairs individually by

(i) updating the corresponding column-
row with a neural network,

(ii) updating the diagonal element to satisfy
the SPD constraint (see Figure 1).

Crucially, the neural network used at step (i)
can update the column-row to any value without
compromising the SPD guarantee. Consequently,
one is free to exploit a spectrum of approaches
for those updates, depending on other desired
structural properties of the output matrix. In par-
ticular, we describe in Section 4 three specific
implementations of SpodNet that enforce ele-
mentwise sparsity for learning sparse precision
matrices.

Algorithm 1 The SpodNet layer

1: Input: Θin ∈ Sp++ andWin = Θ−1
in

2: for column i ∈ {1, · · · , p} do
3: Extract blocks: W11, w12, w22

4: Compute [Θ11]−1 = W11 − 1
w22
w12w

>
12

5: New column θ+
12 = f(Θ)

6: New diagonal value θ+
22 = g(Θ) +

θ+
12

>
[Θ11]−1θ+

12
7: Update Θ = Θ+,W = W+ as in Equa-

tions (2) and (3)
8: end for
9: Output: Θout ∈ Sp++ andWout = Θ−1

out

Blocks

3.1 ALGORITHMIC FOUNDATIONS

The key to preserving the positive-definiteness Θ ∈ Sp++ of the matrix upon after changing its i-th
column and row is an appropriate update of the diagonal entry Θii based on Schur’s condition for
positive-definiteness. In the following, a + superscript on a variable (e.g. θ+) indicates an update
value of this variable (e.g. outputted by a neural network). The following proposition shows that
SpodNet’s output is guaranteed to be SPD.
Proposition 3.1. Suppose the updated column-row pair is the last one (i = p). We partition Θ as

Θ =

[
Θ11 θ12

θ21 θ22

]
, with Θ11 ∈ R(p−1)×(p−1), θ12 ∈ Rp−1, θ21 = θ>12, θ22 ∈ R . (1)

(for a generic column i, Θ11 refers to Θ without its i-th row and i-th column, θ12 is the i-th row of
Θ without its i-th value, and θ22 is Θii as illustrated below Algorithm 1).

Suppose that Θ ∈ Sp++. Let u ∈ Rp−1 and v > 0 be any vector and strictly positive scalar
respectively. Then, updating the i-th row and column of Θ as

Θ+ ,

[
Θ11 θ+

12 , u
θ+

21 , u> θ+
22 , v + u>[Θ11]−1u

]
, (2)

preserves the SPD property, i.e. Θ+ ∈ Sp++.

Since positivity of Θ+ is guaranteed for any choice of u and v as long as v > 0, the principle of
SpodNet updates is to learn these quantities as function of the current iterate, i.e. from the value of
Θ, Θ11, θ12, etc (explicit forms for each variant will be given in Section 4.2). For simplicity, though
they can depend on additional information, we write u = f(Θ) and v = g(Θ), with f and g being
learned mappings.

Proof. Since Θ is symmetric positive-definite, so is its leading principal submatrix Θ11. It follows
that Θ+ is well-defined, and obviously symmetric. Its positive-definiteness ensues from Schur’s
condition for positive-definiteness. Indeed Θ+ is SPD when Θ11 � 0 and θ+

22−θ
+>
12 [Θ11]−1θ+

12 > 0
(Zhang, 2006, Theorem 1.12). The latter condition is ensured as the left hand side is equal to v, which
is strictly positive by assumption.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Finally, one SpodNet layer chains p updates of the form Equation (2), sequentially updating all
column-row pairs one after the other as summarized in Algorithm 1. A full SpodNet architecture then
stacks K SpodNet layers, and, in practice, the first layer takes as input Θin = (S + Ip)

−1 where S
is the empirical covariance matrix. The overall architecture is schematized in Figure 1 for K = 2.

The expressivity of SpodNet comes from the flexibility to use any arbitrary functions f and g in the
updates whilst guaranteeing that Θ remains in the SPD cone. Namely, additional structure such as
sparsity can trivially be imposed on Θ through f . We next detail the computational cost of fully
updating Θ through one SpodNet layer.

3.2 IMPROVING THE UPDATE COMPLEXITY

The diagonal update of Equation (2) a priori requires inverting the matrix Θ11 which comes with
a prohibitive cost of O(p3) for each column-row update. Fortunately, we are able to leverage the
column-row structure of the updates to decrease the cost to a mere O(p2), by maintaining the matrix
W = Θ−1 up-to-date along the iterations.

Proposition 3.2. LetW be the inverse of Θ, adopting the same block structureW =

[
W11 w12

w>12 w22

]
.

Then [Θ11]−1 = W11 − 1
w22
w12w

>
12. In addition, if Θ is updated as Θ+ following Equation (2)

with v = g(Θ), then the update ofW defined by

W+ ,

[Θ11]−1 +
[Θ11]−1θ+

12θ
+
21[Θ11]−1

g(Θ) − [Θ11]−1θ+
12

g(Θ)(
− [Θ11]−1θ+

12

g(Θ)

)>
1/g(Θ)

 . (3)

can be computed in O(p2) and satisfies [W+]−1 = Θ+.

Proof. By the Banachiewicz inversion formula on Schur’s complement (Zhang, 2006, Thm 1.2),

[
W11 w12

w21 w22

]
=

[
Θ11 θ12

θ21 θ22

]−1

=


[Θ11]−1 + [Θ11]−1θ12θ21[Θ11]−1

θ22−θ21[Θ11]−1θ12
− [Θ11]−1θ12
θ22−θ21[Θ11]−1θ12(

− [Θ11]−1θ12
θ22−θ21[Θ11]−1θ12

)>
1

θ22−θ21[Θ11]−1θ12

 .
(4)

Identifying all blocks (namely g(Θ) with θ22 − θ21[Θ11]−1θ12, w12 with − [Θ11]−1θ12
θ22−θ21[Θ11]−1θ12

and
w22 with 1

g(Θ)) yields [Θ11]−1 = W11 − 1
w22
w12w

>
12 which can be computed in O(p2) if one has

access toW . This can be achieved using Equation (3), and involves only operations in O(p2). The
property Θ+ = [W+]−1 is satisfied by using the same inversion formula.

A full update of Θ can thus be achieved with cost O(p3) (p column-row updates of cost O(p2)).

4 USING SPODNET TO LEARN SPARSE PRECISION MATRICES

So far, we have not specified which choices of column and diagonal updates f(Θ) and g(Θ) we
would use in practice. We now leverage the general framework of the SpodNet layer for learning
SPD matrices with additional structure and propose three specific architectures for learning sparse
and SPD matrices, with applications to sparse precision matrix learning.

4.1 INFERRING SPARSE PRECISION MATRICES

Consider a dataset of n observed signals x1, . . . ,xn where each xi ∈ Rp follows a certain (centered)
distribution with covariance matrix Σ ∈ Sp++. The problem of precision matrix estimation arises
when attempting to identify the conditional dependency graph of the p variables of this dataset. In
Gaussian graphical models (Lauritzen, 1996), this graph is associated with the so-called precision
matrix Θ = Σ−1 ∈ Sp++. In this case Θij = 0 iff the variables i and j are conditionally independent
given the other variables. This estimation problem involves determining Θ given the empirical

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: GLAD’s limitations. Smallest eigenvalue (orange), density degree (green) and relative
discrepancy of the two matrices (blue) for an output (Zout,Θout) of GLAD. Θout and Zout are
different, Θout is not sparse, and Zout is not positive-definite.

covariance matrix S = 1
n

∑n
i=1 xix

>
i . In most practical scenarios, the matrix Θ is sparse due to

limited conditional dependencies, which leads to a sparse SPD matrix estimation problem. For this
problem, a very popular estimator is the Graphical Lasso (GLasso) (Banerjee et al., 2008; Friedman
et al., 2008) that solves

min
Θ�0

− log det(Θ) + 〈S,Θ〉+ λ‖Θ‖1,off , (5)

where ‖Θ‖1,off denote the off-diagonal `1 norm of Θ, equal to
∑
i 6=j |Θij |. The data fidelity term

− log det(Θ) + 〈S,Θ〉 is the negative log-likelihood under Gaussian assumption, while the `1
penalty enforces sparsity. It can be efficiently computed (Rolfs et al., 2012; Mazumder and Hastie,
2012; Hsieh et al., 2014) but suffers from the known limitations from the model-based approaches
(Adler and Öktem, 2018; Arridge et al., 2019). To circumvent these limitations, two learning-based
approaches have been proposed. Belilovsky et al. (2017) introduced DeepGraph, a CNN that directly
maps empirical covariance matrices to the graph structures (i.e. to the support of the precision matrix).
We emphasize that this model does not estimate Θ but only its support. Shrivastava et al. (2020)
proposed GLAD, a neural architecture based on unrolling an alternating minimization algorithm for
solving the GLasso. Based on a Lagrangian relaxation, GLAD iterates over two matrices Z and Θ
while learning step-size and thresholding parameters (see Appendix B.2 for more details). Out of
these two matrices Z is sparse and Θ is SPD, but GLAD fails to learn a single matrix that is both
sparse and SPD. This limitation is highlighted in Figure 2 showing that, during training, Θ and Z
differ, Θ is not sparse and Z is not SPD.

4.2 SPODNET FOR SPARSE SPD LEARNING

We now show how SpodNet overcomes the limitations of current methods for learning both sparse
and SPD matrices. By order of complexity, we introduce three new neural architectures, each corre-
sponding to a specific choice of the functions f, g for learning the values of u and v in Equation (2).

Our choices for f, g are inspired by an unrolling of a proximal block coordinate descent applied to
the GLasso problem, where the blocks are column-row pairs described in Section 3. A proximal
coordinate gradient descent step on the GLasso objective updates the value of θ12 with

θ+
12 = STγλ(θ12 − γ(s12 −w12)) , (6)

where γ > 0 is a step-size. This stems from the fact that the gradient of Θ 7→ − log det(Θ)+〈S,Θ〉is
−Θ−1 + S (Boyd and Vandenberghe, 2004, Section A.4.1), which restricted to the θ12-block gives
−[Θ−1]12+s12 = −w12+s12. Together with the fact that the proximal operator of the `1 norm is the
soft-thresholding (Parikh et al., 2014) we get Equation (6). Because (full) proximal gradient descent
on the GLasso is called Graphical ISTA (Rolfs et al., 2012), we coin Equation (6) Block-Graphical
ISTA. We can now introduce our three architectures.

Unrolled Block Graphical-ISTA (UBG) First, we propose to learn the stepsizes and soft-
thresholding levels when unrolling the Block Graphical ISTA iterations Equation (6). In a learning-
based approach, we use as updating function f ,

fUBG : θ12 7→ STλ+(θ12 − γ+(s12 −w12)) , (7)

where the step-size γ+ = NN1(θ12) > 0 and the soft-thresholding parameters λ+ = NN2(θ12 −
γ+(s12−w12)) ∈ Rp−1. NN1 and NN2 are small multilayer perceptrons with architectures provided

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Fr
a
ct

io
n
 o

f
ze

ro
 e

n
tr

ie
s

Figure 3: Training dynamics of our 3 models (on test data described in Section 5.1). Left: The
outputs of our 3 models remain positive-definite. Middle: The conditioning remains stable. Right:
The outputs are sparse. Overall our models produce jointly sparse + SPD outputs.

in Appendix A.2. We emphasize that this is different from hyperparameter tuning, since γ+ and λ+

are predicted at each update instead of being global parameters. UBG exhibits the highest inductive
bias among the models, as its architecture is directly derived from unrolling an iterative optimization
algorithm designed to minimize a model-based loss.

As highlighted in Section 3, one can plug any update functions and still get SPD outputs. This
motivates extending UBG to a more expressive architecture.

Plug-and-Play Block Graphical-ISTA (PNP) Precisely, we extend UBG to a Plug-and-Play-like
setting (Venkatakrishnan et al., 2013; Romano et al., 2017). In a nutshell, these methods replace the
proximal operator in first-order algorithms by a denoiser, usually implemented by a neural network.
In our context, this corresponds to replacing the soft-thresholding of UBG by a neural network
Ψ : Rp−1 → Rp−1, that is,

fPnP : θ12 7→ Ψ(θ12 − γ+(s12 −w12)) . (8)

To promote sparsity of the output of fPnP, the last layer of Ψ performs an elementwise soft-
thresholding. The parameter for this soft-thresholding is also learned from data and given by
the same multilayer perceptron that predicts λ+ in UBG (Appendix A.2).

End-to-end updates (E2E) Finally, we propose a fully-flexible architecture without any algorithm-
inspired assumptions. Precisely, we consider

fE2E : θ12 7→ Φ(θ12) , (9)

where Φ takes in the current state of the column θ12 and learns to predict an adequate column update
θ+

12. Intuitively, the neural network Φ acts as learning both the forward and the backward steps of a
forward-backward iteration (Combettes and Pesquet, 2011). As for PNP, sparsity of the predictions is
enforced by a soft-thresholding non-linearity in the last layer of Φ.

Finally, for all models, we use for g a small neural network that takes as input θ22, s22 and
(θ+

12)>[Θ11]−1θ+
12. Its positivity is ensured by using an absolute value function as final nonlin-

earity. These input features are based on the intuition that the network should exploit information
from the current state of the diagonal of Θ, the diagonal of S which is closely related to the diagonal
of the GLasso estimator at convergence, and Schur’s complement which is added to the output of g.

Improving training stability Although the positive definiteness of Θ is guaranteed to be preserved
at each update for any positive-valued function g, we have empirically observed that its smallest
eigenvalue could approach 0 as visible in Appendix B.1. In practice this leads to instability in training.
Below, we provide an interpretation of this phenomenon and provide a solution to address it. Each
column-row update inside a SpodNet layer can be written as the rank-2 update

Θ+ =

[
Θ11 θ12

θ21 θ22

]
︸ ︷︷ ︸

=Θ

+

[
0 θ+

12 − θ12

(θ+
12 − θ12)> θ+

22 − θ22

]
︸ ︷︷ ︸

,∆Θ

. (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Moreover, the nonzero eigenvalues of the perturbation ∆Θ are given by λ± =
(θ+22−θ22)±

√
(θ+22−θ22)2+4‖θ+

12−θ12‖2
2 , and by the Bauer-Fike theorem, we can quantify the evolution

of Θ’s spectrum by

|λk(Θ)− λk(Θ+)| ≤ ‖∆Θ‖op , (11)

where λk denotes the k-th largest eigenvalue of a SPD matrix. Hence, one way to ensure that the
perturbation of the spectrum is small is to control ‖∆Θ‖op, for instance, by limiting the magnitude
of the updates. Experimentally, the most successful approach to control ‖∆Θ‖op is to limit the
magnitude of θ+

22, which is not a trivial task as the updated value θ+
22 = g(Θ) + θ+

21[Θ11]−1θ+
12 must

satisfy θ+
22 − θ

+
21[Θ11]−1θ+

12 > 0. Thus, we propose to scale θ+
12 by scaling the preactivation1 z of

the last layer of f by
√
ζ√

z>[Θ11]−1z
. The hyperparameter ζ > 0 acts as a form of regularization that

handles a compromise between stability and expressivity of the model; in all of our experiments we
use ζ = 1. As visible in Figure 3 this scaling ensures a smooth training of the network, with stable
condition number of the Θ matrix.

5 EXPERIMENTS

We now illustrate SpodNet’s ability to learn SPD matrices with additional structure by using our
three derived graph learning models (UBG, PNP and E2E) to learn sparse precision matrices, on
both synthetic and real data. Additional details regarding the experimental setups can be found in
Appendix A. PyTorch implementations are provided with the submission and will be made public
upon acceptance.

5.1 SPARSE PRECISION MATRIX RECOVERY

Our goal in this section is to evaluate our models’ performance and generalization ability regarding
the recovery of sparse precision matrices on synthetic data. The following experiments serve several
purposes: (1) compare learning-based methods against traditional model-based methods, (2) evaluate
our models’ reconstruction performance in terms of matrix estimation and support recovery.

Data & training We use synthetic data to train our SpodNet models as in Belilovsky et al.
(2017); Shrivastava et al. (2020). We generate N sparse SPD p × p matrices using sklearn’s
make_sparse_spd_matrix function (Pedregosa et al., 2011), of which we ensure proper con-
ditioning by adding 0.1 · Ip. These matrices are treated as ground truth precision matrices Θ

(i)
true

for i ∈ [N]. The sparsity degree of each matrix is controlled through the one imposed on their
Cholesky factors during their generation: in the strongly sparse setting Θtrue has roughly 90 %
of zero entries while in the weakly sparse setting this value is around 25 %. For each of these
N ground truth precision matrices Θtrue, we sample n i.i.d. centered Gaussian random vectors
xj ∼ N (0, (Θ

(i)
true)−1), which are used to compute an empirical covariance matrix S(i). The dataset

thus comprises couples (S(i),Θ
(i)
true) where each S(i) stems from a different ground truth precision

matrix. For all the experiments, we generate Ntrain = 1000 different (S,Θtrue) couples for the
training set and Ntest = 100 couples for the testing set on which we validate our models. Further
details on the parameters used during the data generation are in Appendix A.1.

We train our three models (UBG, PNP and E2E) to minimize a reconstruction error LMSE =
1

Ntrain

∑Ntrain

i=1 ‖Θ̂(i) −Θ
(i)
true‖2F in the vein of Gregor and LeCun (2010); Shrivastava et al. (2020),

where Θ̂ is the model’s output. All three models are trained using ADAM with default hyperparame-
ters (Kingma and Ba, 2014).

Baselines We compare our three models to various other approaches throughout our experiments:
learning-based, Riemannian and model-based estimators. As performed in Belilovsky et al. (2017);
Shrivastava et al. (2020), we use the three most popular methods for estimating precision matrices as
our core baselines: the GLasso (Friedman et al., 2008), the inverse Ledoit-Wolf estimator (Ledoit

1Experimentally scaling the preactivation works better than scaling the network’s output.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: **Increased figure size**Learning-based (in variations of blue) vs traditional methods (in
variations of red). Dotted curves indicate when one of the constraints (SPDness or sparsity) is not
guaranteed. First row: Strongly sparse Θtrue. Second row: Weakly sparse Θtrue.

and Wolf, 2004) and the inverse OAS (Chen et al., 2010). The Ledoit-Wolf and OAS estimators are
covariance matrix estimators, for which we take the inverse for estimating the precision (we simply
refer to them as Ledoit-Wolf and OAS). All three approaches guarantee the positive-definiteness of
the estimated matrix but the GLasso is the only one to additionally ensure sparse predictions. For the
GLasso, for each matrix S(i) a sparsity-regulating hyperparameter λ(i) is chosen using sklearn’s
GraphicalLassoCV cross-validation procedure, that relies only on the samples used in S(i). In
the same vein, we use dedicated Ledoit-Wolf and OAS estimators for each S(i). We also compare our
approaches to the GLAD model (Shrivastava et al., 2020), considering both its Θ and Z outputs. We
recall that Z is not guaranteed to be positive-definite and its validity as a precision matrix estimator
is therefore debatable. GLAD is trained with the same loss, data and optimizer as our models.

We compare the performance of the different approaches in terms of Normalized MSE on the test set:

NMSE = 1
Ntest

∑Ntest

i=1
‖Θ̂(i)−Θ

(i)
true‖

2
F

‖Θ(i)
true‖2F

and F1 score for assessing support recovery. For the latter,

false positives correspond to Θ̂ij 6= 0, (Θtrue)ij = 0 (and similarly for true positives and false
negatives).

As shown in Figure 4, at convergence, the learning-based methods show to be more suited for the
actual reconstruction of Θtrue as they significantly outperform traditional methods. This superior
performance is especially pronounced as the dimensionality of the data grows and the sparsity of the
ground truth decreases. In the most challenging scenario (p = 100 and n = 100 with weakly sparse
Θtrue), the traditional methods perform poorly, with NMSE around 90%.

Figure 4 also suggests that our models perform especially well in terms of NMSE in the low-samples
regime (n ≤ p), which is a common setting in various real-world applications, such as neuroscience
time-series analysis or financial temporal network inference. In Figure 5, we thus study the influence
of the number of samples n on the performance of each method. The results show that although all
methods achieve excellent recovery in the large sample regime (down to around 2.5% NMSE in the
lower dimensional p = 20 setting), our models are especially more suited for matrix reconstruction
in case of sample-deficiency, especially so in the higher dimensional (p = 100) setting. In terms of
support recovery, our models achieve significantly better F1 scores than the GLasso as the number of
sample n grows, with up to 25% improvement in certain tested settings. In the lower dimensional
setting (p = 20), we are even able to achieve a F1 score of over 0.75 with our UBG model. Finally,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: **Increased figure size** Comparing models in sample deficient regimes (n ≤ p) up
to large-sample regimes (n � p), evaluated in terms of NMSE and F1 score for support recovery.
Dotted curves indicate when one of the constraints (SPDness or sparsity) is not guaranteed. In large
dimension, GLAD’s Z performs well, but is never SPD; GLAD’s Θ is SPD, but performs badly.

although GLAD’s Z performs well, an additional experiment in Appendix B.3 shows that those
matrices turn out to never be SPD in various settings, making them unsuited as precision matrix
estimators.

5.2 APPLICATION TO UNSUPERVISED GRAPH LEARNING ON A REAL-WORLD DATASET

We finally evaluate the performance of SpodNet in a graph learning context using a real-world
dataset and under an unsupervised scenario. The aim of this experiment is twofold: (1) to assess the
generalization capabilities of SpodNet, and (2) to determine if it can yield an accurate graph topology
when trained solely on synthetic data, following the idea of Belilovsky et al. (2017).

Data & training We consider the Animals dataset (Lake and Tenenbaum, 2010), which comprises
p = 33 animal species, each characterized by responses to n = 102 binary questions (e.g., "Has
teeth?", "Is poisonous?"). The objective is to infer a graph of connections between these p animals
based on the n responses. We train our UBG model by minimizing the MSE on the synthetic data
detailed in Section 4.2, with p = 33, n = 102 and various levels of sparsity. We generate 1000
training matrices and train the model for 100 epochs. The predicted precision matrix is then computed
by inputting the empirical covariance matrix from the Animals dataset into SpodNet.

Baselines We compare our approach with the GLasso (with the regularization parameter selected
by cross-validation), GLAD (which is trained with the same data as our model), and the Elliptical
Graphical Factor Model (EGFM) proposed by Hippert-Ferrer et al. (2023). The latter is a Riemannian
optimization method specifically designed to identify clusters within the data by estimating a precision
matrix whose inverse is modeled as a low-rank matrix plus a positive diagonal. For a fair comparison,
we adopt the same hyperparameters as outlined in the original paper, setting the rank and regularization
parameter to 10.

Each method yields a precision matrix, which is used to construct a graph representing the connections
between the p animals. The graph is constructed by considering the absolute values of the precision
matrix coefficients, which represent the strength of the connections, and by removing the diagonal
elements to eliminate self-loops. The results are illustrated in Figure 6, where the nodes of the graphs
are partitioned using the Louvain algorithm (Blondel et al., 2008). Qualitatively, we observe that UBG
produces a coherent graph, with outcomes comparable to those of the three baselines. Additionally,
the graph learned by our UBG model exhibits a cleaner structure compared to GLasso, with a sparser
representation and finer clusters, such as the grouping of (Chimp, Gorilla). To quantitatively assess
the quality of the obtained graphs, we calculate the modularity m of the partitions: higher modularity
values indicate better separation of the graph into distinct subcomponents (Newman, 2006). We find
that the graph produced by UBG achieves a higher modularity (m = 0.78) than GLasso (m = 0.61)
and GLAD (m = 0.72), and slightly lower than EGFM (m = 0.86). It is important to note that
the EGFM is specifically designed to obtain clustered graphs, whereas our UBG model has no
such inductive bias. These combined quantitative and qualitative results demonstrate that SpodNet
generalizes effectively to unseen data and produces a coherent graph structure.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

UBG (m = 0.78)

Figure 6: Graphs estimation on the Animals dataset with the GLasso, EGFM, GLAD and our UBG
model. The last three yield cleaner and more interpretable clusters than the GLasso, but EGFM is
specifically tailored for this task as opposed to our UBG model or GLAD.

6 CONCLUSION

We have proposed Schur’s Positive-Definite Network (SpodNet), a novel learning module compatible
with other standard architectures, offering strict guarantees of SPD outputs. The principal novelty
of SpodNet comes from its ability to handle additional desirable structural constraints, such as
elementwise sparsity which we used as an illutrative example throughout this paper. To the best
of our knowledge, SpodNet layers are the first to offer strict guarantees of such highly non-trivial
structure in the outputs. In future works, SpodNet could be leveraged to learn other additional
structures beyond sparsity. We have shown how to leverage SpodNet to build neural architectures
that outperform traditional methods in the context of sparse precision matrix estimation in various
settings. Future research will be dedicated to improving the computational cost of our framework,
theoretical understanding of the eigenvalues’ dynamics during training and of SpodNet’s expressivity,
and deriving formal convergence guarantees.

7 REPRODUCIBILITY STATEMENT

We believe this paper fully discloses the information needed to reproduce the main experimental
results. Our core contribution is the SpodNet layer: its general algorithmic framework is presented in
Algorithm 1. Three specific models built using this framework for learning sparse and SPD matrices
are introduced in Section 4.2, and the exact architectures used for each of them throughout our
experiments are explained in detail in Appendix A.2. The conducted experiments are described in
Section 5 with additional details in Appendix A. PyTorch implementations are provided along with
the submission.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

C. Bonet, B. Malézieux, A. Rakotomamonjy, L. Drumetz, T. Moreau, M. Kowalski, and N. Courty.
Sliced-wasserstein on symmetric positive definite matrices for m/eeg signals. In ICML. PMLR,
2023.

S. L. Lauritzen. Graphical models. Clarendon Press, 1996.

X. S. Nguyen, L. Brun, O. Lézoray, and S. Bougleux. A neural network based on spd manifold
learning for skeleton-based hand gesture recognition. In CVPR, 2019.

O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock returns with an
application to portfolio selection. Journal of empirical finance, 2003.

O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices.
Journal of multivariate analysis, 2004.

O. Banerjee, L. El-Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood
estimation for multivariate gaussian or binary data. JMLR, 2008.

T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to sparse precision matrix
estimation. Journal of the American Statistical Association, 2011.

Z. Huang and L. Van Gool. A Riemannian network for SPD matrix learning. In Proceedings of the
AAAI conference on artificial intelligence, 2017.

Z. Gao, Y. Wu, Y. Jia, and M. Harandi. Learning to optimize on spd manifolds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML, 2010.

Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE transactions on pattern analysis and machine intelligence, 2016.

V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning for
signal and image processing. IEEE Signal Processing Magazine, 2021.

T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin. Learning to optimize: A primer
and a benchmark. JMLR, 2022.

N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis. Model-based deep learning. Proceedings
of the IEEE, 2023.

N. Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.

B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki. Iterative thresholding algorithm for
sparse inverse covariance estimation. NeurIPS, 2012.

D. Guillot and B. Rajaratnam. Functions preserving positive definiteness for sparse matrices. Trans-
actions of the American Mathematical Society, 2015.

R. Sivalingam. Sparse models for positive definite matrices. PhD thesis, University of Minnesota,
2015.

P-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton
University Press, 2008.

Z. Gao, Y. Wu, X. Fan, M. Harandi, and Y. Jia. Learning to optimize on riemannian manifolds. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Z. Dong, S. Jia, C. Zhang, M. Pei, and Y. Wu. Deep manifold learning of symmetric positive definite
matrices with application to face recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2017.

D. Guillot and B. Rajaratnam. Retaining positive definiteness in thresholded matrices. Linear algebra
and its applications, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

H. Shrivastava, X. Chen, B. Chen, G. Lan, S. Aluru, H. Liu, and L. Song. Glad: Learning sparse
graph recovery. In ICLR, 2020.

F. Zhang. The Schur complement and its applications, volume 4. Springer Science & Business Media,
2006.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 2008.

R. Mazumder and T. Hastie. The graphical lasso: New insights and alternatives. Electronic journal
of statistics, 2012.

C-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. Ravikumar, et al. Quic: quadratic approximation for sparse
inverse covariance estimation. JMLR, 15, 2014.

Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE transactions on medical
imaging, 37(6):1322–1332, 2018.

Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse problems
using data-driven models. Acta Numerica, 28:1–174, 2019.

E. Belilovsky, K. Kastner, G. Varoquaux, and M. Blaschko. Learning to discover sparse graphical
models. In ICML. PMLR, 2017.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and trends R© in Optimization, 2014.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors for model based
reconstruction. In 2013 IEEE global conference on signal and information processing. IEEE,
2013.

Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by denoising (red).
SIAM Journal on Imaging Sciences, 2017.

P. L. Combettes and J-C. Pesquet. Proximal splitting methods in signal processing. Fixed-point
algorithms for inverse problems in science and engineering, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero. Shrinkage algorithms for mmse covariance
estimation. IEEE transactions on signal processing, 2010.

B. Lake and J. Tenenbaum. Discovering structure by learning sparse graphs. In Proceedings of the
Annual Meeting of the Cognitive Science Society, 2010.

A. Hippert-Ferrer, F. Bouchard, A. Mian, T. Vayer, and A. Breloy. Learning graphical factor models
with riemannian optimization. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2023.

V. D. Blondel, J-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in
large networks. Journal of statistical mechanics: theory and experiment, 2008.

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 2006.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 SYNTHETIC DATA GENERATION

Here we provide additional details on the experiment of Section 5.1. The sparsity degree of each
matrix is controlled through the one imposed on their Cholesky factors during their generation,
with the alpha parameter of the function. Throughout our experiments, we consider alpha
∈ {0.7, 0.95}; this is the probability of a 0 entry on the Cholesky factor of the generated matrix
and not the actual fraction of null elements of Θ. Although the numbers vary with the dimension p,
α = 0.95 roughly leads to 90 % of zero entries, while α = 0.7 leads to 25 % of zero entries.

A.2 ARCHITECTURES FOR UBG, PNP AND E2E

The function g for all three models is a MLP with two hidden layers of 3 neurons each with a ReLU
activation function. It takes as input θ22, s22 and (θ+

12)>[Θ11]−1θ+
12.

UBG Its γ+ parameter is predicted by a MLP that takes as input the current state of the θ12 block
(of dimension p− 1) and has a single hidden layer of bp/2c neurons with a ReLU activation function.
The (single) output neuron has an absolute value activation, in order to keep it positive since it predicts
a step-size.

UBG involves another MLP to learn the vector λ+ of elementwise soft-thresholding parameters. This
MLP has a single hidden layer of 5 neurons, with ReLU activation function. For the same reason as
before, the output layer also has an absolute value activation.

PNP First, the step-size γ+ is predicted by a MLP with the exact same architecture as the one
in UBG. The learned operator Ψ takes as input θ12 − γ+(s12 − w12), passes it through a single
hidden layer of 2p neurons, followed by a ReLU activation function, and projects it back into a p− 1
dimensional vector.

The architecture to predict λ is the same as for UBG. Our experiments show that multiplying its
output by 0.1 helps avoid local minimas and improves convergence.

E2E The neural network Φ is a MLP that takes as input θ12, passes it through a single hidden layer
of 10p neurons follow by a ReLU activation function, and projects it back into a p− 1 dimensional
vector. The architecture to predict λ is the same as for UBG and PNP. Our experiments show that
multiplying its output by 0.1 helps avoiding local minimas and improves convergence.

GLAD We use the authors’ original implementation retrieved from the authors repository at
https://github.com/Harshs27/GLAD, with the default hyperparameters.

All four models are implemented with K = 1 layer throughout all the experiments, since our
results show that this was enough to yield competitive to outperforming results in the settings under
consideration.

A.3 DETAILS ON FIGURES 4 AND 5

For the weakly sparse settings, we use a learning rate of 10−3 for all three of our own models. For
the strongly sparse settings, we use a learning rate of 10−2. GLAD’s learning rate is set to 10−2 in
all settings. All four models are trained on the same 1000 training matrices, using a batch-size of 10,
with ADAM’s default parameters. The models are tested on the same 100 matrices as mentioned in
Section 5.1.

For Figure 5 We use the strongly sparse ground truths in order for the F1 score to be more sensical,
and to better illustrate the relevancy of the learned sparsity patterns. We use a learning rate of 10−2

for all three of them in every setting for p = 100, and of 5 · 10−3, 10−2, 10−3, 3 · 10−2 in the p = 20
setting for respectively n = 10, n = 20, n = 100, n = 200 and n = 500.

13

https://github.com/Harshs27/GLAD

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 7: Potential instabilities without normalization. Along column update indices, we plot the
smallest eigenvalue (blue), largest diagonal value (orange) and conditioning (green) of a Θ.

B ADDITIONAL DETAILS ON MODELS

B.1 SPODNET’S POTENTIAL INSTABILITIES WITHOUT NORMALIZATION

We show in Figure 7 the evolution of the conditioning of an example of Θ during training that
becomes unstable if we do not use the stabilization procedure described in Section 4. We observe
that although the matrix remains SPD as predicted by Proposition 3.1 but gets increasingly closer to
being singular during the updates.

B.2 GLAD’S UPDATE RULES

GLAD unrolls an algorithm that solves the following optimization problem:

min
Θ,Z∈Sp++

− log det (Θ) + 〈S,Θ〉+ λ‖Z‖1 +
α

2
‖Z −Θ‖2F . (12)

Each iteration of GLAD, which can be seen as an individual layer in a deep learning perspective,
updates several running variables:

α+ = f̃(‖Z −Θ‖2F , α) , (13)

Y + =
1

α+
S −Z , (14)

Θ+ =
1

2

(
−Y + +

√
Y +>Y + +

4

α+
Id

)
, (15)

λ+
ij = h̃(Θ+

ij , Sij , Zij) , (16)

Z+
ij = STλ+

ij

(
Θ+
ij

)
, ∀i, j ∈ [p] , (17)

in which the functions f̃ : R2 → R and h̃ : R3 → R are two small neural networks that are trained
to predict adequate parameters for each layer. By construction, Θ+ is always SPD and a sparsity
structure is enforced on Z+, but the converse is not true.

B.3 GLAD’S NON-SPD OUTPUTS

As Figure 8 shows, in the setting of Figure 4, GLAD’s best performing outputsZ are SPD in virtually
0% if the case strongly sparse case with p = 100.

Additionally, Z loses its sparsity if projected onto the SPD cone and additionally becomes singular
(since it is actually projected onto the closed cone of semi-definite matrices). Going the other way
around and trying to sparsify Θ instead, by thresholding its off-diagonal entries following the support
found by Z, breaks its positive-definiteness guarantee (Figure 9).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

10 100 200 500
Number of samples

0

25

50

75

100

%
 o

f S
PD Z

p=100
Strongly sparse

Figure 8: Percentage of SPD outputs among GLAD’s Z and Θ outputs at convergence. As detailed
in Section 4.1, Z is not guaranteed to be sparse.

Figure 9: First row: Projecting GLAD-Z onto the PSD cone. Second row: Thresholding GLAD-Θ
following the support of GLAD-Z.

15

	Introduction
	Related works
	The SpodNet framework
	Algorithmic foundations
	Improving the update complexity

	Using SpodNet to learn sparse precision matrices
	Inferring sparse precision matrices
	SpodNet for sparse SPD learning

	Experiments
	Sparse precision matrix recovery
	Application to unsupervised graph learning on a real-world dataset

	Conclusion
	Reproducibility statement
	Experimental details
	Synthetic data generation
	Architectures for UBG, PNP and E2E
	Details on fig:nmseperformance,fig:sampleefficiency

	Additional details on models
	SpodNet's potential instabilities without normalization
	GLAD's update rules
	GLAD's non-SPD outputs

