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Abstract

Visual perception relies on inference of 3D scene properties such as shape, pose, and
lighting. To understand how visual sensory neurons enable robust perception, it is crucial
to characterize their selectivity to such physically interpretable factors. However, current
approaches mainly operate on 2D pixels, making it difficult to isolate selectivity for physical
scene properties. To address this limitation, we introduce a differentiable rendering pipeline
that optimizes deformable meshes to obtain MEIs directly in 3D. The method parameterizes
mesh deformations with radial basis functions and learns offsets and scales that maximize
neuronal responses while enforcing geometric regularity. Applied to models of monkey area
V4, our approach enables probing neuronal selectivity to interpretable 3D factors such
as pose and lighting. This approach bridges inverse graphics with systems neuroscience,
offering a way to probe neural selectivity with physically grounded, 3D stimuli beyond
conventional pixel-based methods.

Keywords: Visual cortex, Macaque V4, Neural selectivity, Differentiable rendering, In-
verse graphics, 3D scene representation, Maximally Exciting Inputs (MEIs)

1. Introduction

Primate visual sensory neurons are selective to a wide range of features, from simple edges
and luminance to complex attributes such as shape, color, texture, and lighting conditions
(Hubel and Wiesel, 1968; Hegdé and Van Essen, 2000; Pasupathy, 2006; Arcizet et al.,
2009; Kim et al., 2019). Area V4, for example, contains neurons tuned to curvature, material
properties, and 3D shape cues, reflecting the growing complexity of representations along the
ventral stream (Pasupathy et al., 2020; Roe et al., 2012; Pasupathy et al., 2019; Srinath et al.,
2021). Recent work has shown that optimized input images—such as Maximally Exciting
Inputs (MEIs)—can reveal aspects of neuronal selectivity and invariances (Bashivan et al.,
2019; Walker et al., 2019; Ding et al., 2023; Franke et al., 2022; Bashiri et al., 2025).
However, these approaches operate in 2D pixel space, entangling multiple visual factors
and making it difficult to isolate interpretable 3D properties. To study whether and how
neurons show selectivity to physically interpretable factors, we would ideally synthesize the
underlying 3D scene factors directly and observe the resulting neuronal responses.

Here, we introduce a differentiable rendering-based pipeline to obtain 3D Maximally
Exciting MEIs (3D-MEI): an approach that optimizes directly in 3D object space (meshes,
textures, poses) through a differentiable renderer. This grounds selectivity in physically re-
alizable structure and enables systematic tests of tuning and invariances—such as tolerance
to viewpoint, lighting, or material—that pixel-based MEIs do no capture explicitly. Testing
our approach on modeled V4 neurons of the macaque visual cortex, we 1 show that our
pipeline can generate physically meaningful objects that resemble the pixel based MEI and
strongly drive the neuronal response, 2 demonstrate the potential of our approach to study
neuron encoding to complex scene parameters such as lighting conditions.
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B. 3D-MEIs for Modeled Macaque V4 NeuronsA. Schema,c Representa,on of Proposed Pipeline
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Figure 1: A. Schematic overview of the differentiable rendering pipeline. Starting from an
initial mesh and scene parameters (lighting, camera, background), the pipeline
iteratively deforms the mesh using radial basis function offsets and optimizes
scene parameters to maximize model responses. Losses and regularizers enforce
smoothness, uniform surface areas, edge-length preservation, and locally rigid de-
formations. B. 3D Maximally exciting images (3D-MEIs) generated for multiple
selected model macaque V4 neurons. For each selected neuron (unit), we show
the pixel based EGG MEI and the 3D-MEI, as well as their 3D views. Right:
Bar plots comparing activation values for EGG and 3D-MEI. A 2D-to-3D model
(VGGT) applied to EGG MEIs fails to generate meaningful 3D structures.

2. Methods

Our pipeline (Fig. 1A) operates mainly in 3D object space, deforming an initial mesh to
optimize its shape with respect to a neuron’s response. The neuron’s response is obtained
using an image-computable response-predictive model. Given a response-predictive (en-
coding) model f , a differentiable renderer R, and a parameterized 3D mesh M = (V, F )
with vertices V and faces F , the pipeline optimizes V such that the rendered projection
I = R(M) maximizes the neural model output f(I). For f , we use deep encoding model
from Pierzchlewicz et al. (2023), which contains a task driven core with Gaussian readout
(see Appendix C for details), and use PyTorch3D (Ravi et al., 2020) as differentiable ren-
derer R. Meshes are initialized as either a sheet or a sphere, and are placed at the origin
while the camera is fixed overhead at a height z at (0, 0, z). A fixed lighting is provided
by a point light source positioned near the camera (see Fig. 3D) and the scene is rendered
against a uniform gray background. I is normalized to match training mean and std, and
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Figure 2: Response profile of Unit 521 to variations in 3D pose and lighting direction. A.
Heatmap of model responses to pose variations (azimuth × elevation) relative to
the original view, showing tolerance to moderate rotations. B. Light-direction
tuning of the same unit. Responses are shown for selected light positions on
the hemisphere, grouped into high, mid, and low response sets (labels indicate
azimuth/elevation in degrees and response values).

scaled to have a fixed norm of 25 which was used by Pierzchlewicz et al. (2023). The current
pipeline does not optimize surface texture and color of objects.

Mesh Deformation via RBF Kernels To discourage uncontrolled mesh deformations,
we use a set of K radial basis function (RBF) kernels (Buhmann, 2003) centered at control
points ck distributed uniformly over the mesh. Each RBF has a learnable scale σk and
offset δk, which control the scale and the direction of the displacement, respectively. The
deformation ∆v at any vertex v is then expressed as a weighted sum over all kernel offsets
∆v =

∑K
k=1 δk · exp

(
−∥v − ck∥2/(2σ2

k)
)
. Here, we use all vertices as control points.

Loss Functions and regularization Our goal is to maximize the neuronal response.
However, unconstrained optimization can yield degenerate meshes. To prevent this, we
incorporate a set of geometric regularizers. Specifically, we use 1 Laplacian smoothing
(Llap) (Sorkine et al., 2004) to encourage smooth surface curvature, 2 uniform edge length
loss (Ledge) to penalize large variation in edge lengths of the triangles in the mesh, 3

triangle area loss (Larea) to encourage uniform triangle areas to avoid collapse, and finally,
4 As-Rigid-As-Possible Loss (Larap) adapted from Sorkine and Alexa (2007) to maintain
local surface geometry by penalizing non-rigid deformations. Details on the loss function
and regularizers can be found in Appendix B. The total loss and optimization objective is
L = −f(I)+λlap · Llap+λedge · Ledge+λarea · Larea+λarap · Larap, which we optimize using
the Adam optimizer (Kingma and Ba, 2014). λ∗ coefficients were found by a grid search.

3. Experiments and Results

First, we verified that our pipeline can recognizably reconstruct known 3D shapes (Fig. 3A),
as well as models of simple and complex cells whose optimal stimuli are pre-defined Gabor
patterns (Fig. 3C). Our pipeline successfully recovers the underlying Gabor structures. For
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a complex cell, which is phase invariant, the optimization also yields different phase variants
of the Gabor under different initialization seeds, which shows the potential of the pipeline
to capture invariances. Next, we apply our pipeline to a set of V4 neurons modeled via
deep encoding model (Pierzchlewicz et al., 2023). We manually selected neurons based on
their visual appearance of their pixel optimized MEIs and picked neurons that exhibited
geometric, shape-like features.

The synthesized 3D-MEIs closely resemble pixel based MEIs synthesized with energy
guided diffusion (EGG, Pierzchlewicz et al., 2023, Fig. 1B). Compared to pixel MEIs, 3D-
MEIs elicit lower activation in the model neurons (Fig. 1B right). We attribute this to
the fact that the current 3D-MEIs do not contain textures, whereas pixel optimized MEIs
have texture information. This can limit the maximum activation value achievable with the
pipeline since V4 neurons are believed to encode both texture and shape (Kim et al., 2019;
Pasupathy et al., 2020). While our approach can be extended to optimize texture and color,
we chose to focus on shape optimization for now. We also compared our method against
a 2D-to-3D model such as VGGT (Wang et al., 2025) that is trained to “lift” images of
objects to 3D point clouds, by applying it to pixel optimized MEIs. However, the resulting
geometry lacked meaningful 3D structure (see Fig. 1B).

Exploring Tuning Properties via Scene Manipulation Once the mesh is optimized,
the scene can be systematically manipulated along physically meaningful axes, enabling
interpretable exploration of neuronal tuning properties in 3D space. Importantly, these
tuning properties cannot easily be explored in images space, since pixel manipulations do
not directly capture physical transformations.

To showcase this possibility, we explore tuning of an example neuron along different
poses and lighting directions separately, varying one at a time while keeping the other scene
parameters fixed. To assess tuning along pose variations, we systematically rotated the
object around azimuth and elevation axes and recorded the model responses (Fig. 2A). To
assess tuning along lighting directions, we move the point light source along the forward
facing half dome and record the model responses for each location of point light (Fig. 2B
polar heatmap). For the selected neuron, we observe a strong near-frontal preference, skewed
toward the upper-right quadrant of the dome. We also visualize the rendered scenes in three
categories: high response, mid response and low response. The curved geometry—a tuning
feature in area V4—is visible in almost all light directions but the neuron only prefers
certain shadings (Fig. 2B right side) consistent with a shape-light-direction combination
that resemble this units preferred stimulus.

Summary

We present a proof-of-concept showing that differentiable rendering can probe neural rep-
resentations in ways inaccessible to pixel-based MEIs. By operating directly in 3D space,
our approach enables the dissection of invariances and sensitivities in relation to physically
grounded factors such as shape, curvature, and illumination. Our pipeline opens up a new
way to probe the inner workings of visual representations, and disentangle tuning of neurons
to geometry from other visual features such as texture. We believe that by optimizing phys-
ically plausible 3D stimuli, we can move beyond the limitations of pixel space to understand
biological vision.
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Mohammad Bashiri, Luca Baroni, Ján Antoĺık, and Fabian H Sinz. Learning and align-
ing single-neuron invariance manifolds in visual cortex. In The Thirteenth International
Conference on Learning Representations, 2025.

Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep
image synthesis. Science, 364(6439):eaav9436, 2019.

Martin D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge
University Press, 2003.

Zhiwei Ding, Dat T Tran, Kayla Ponder, Erick Cobos, Zhuokun Ding, Paul G Fahey, Eric
Wang, Taliah Muhammad, Jiakun Fu, Santiago A Cadena, Stelios Papadopoulos, Saumil
Patel, Katrin Franke, Jacob Reimer, Fabian H Sinz, Alexander S Ecker, Xaq Pitkow, and
Andreas S Tolias. Bipartite invariance in mouse primary visual cortex. bioRxiv, page
2023.03.15.532836, March 2023.

Katrin Franke, Konstantin F Willeke, Kayla Ponder, Mario Galdamez, Na Zhou, Taliah
Muhammad, Saumil Patel, Emmanouil Froudarakis, Jacob Reimer, Fabian H Sinz, and
Andreas S Tolias. State-dependent pupil dilation rapidly shifts visual feature selectivity.
Nature, 610(7930):128–134, October 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.
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Appendix A. Supplementary Results

A. Expressivity of Pipeline
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Figure 3: Validation of the pipeline on simulated data. A. RBF-based mesh deformation
produces complex targets such as the Stanford Bunny (from a sphere) and Utah
Teapot (from a torus) by minimizing Chamfer loss (Ravi et al., 2020) between
the input and target meshes. B. Optimization curves for simulated simple and
complex cells with “sheet” and “sphere” initializations approach to the upper
bound of 1. C. 3D-MEI results for a simulated simple cell a. and complex cell
b.. Outputs recover the ground-truth filters; for the phase-invariant complex
cell, different initializations yield Gabor-like patterns in distinct phases (example
shown). D. World setup of the differentiable renderer R, showing world and
camera axes. The base ring (z=0) marks the base of half-dome used in light-
direction tuning.

Appendix B. Details on Loss Function and Regularizers

Given a response-predictive model f , a differentiable renderer R, and a parameterized 3D

mesh M = (V, F ) with vertices V , (where V = {vi}|V |
i=1, vi ∈ R3) and faces F , (where

F = {ft = (i, j, k)}|F |
t=1, ft ∈ {1, . . . , |V |}3), the pipeline optimizes V such that the rendered

projection I = R(M) maximizes the model output f(I). The total loss and optimization
objective of our pipeline is

L = −f(I) + λlap · Llap + λedge · Ledge + λarea · Larea + λarap · Larap

7



Extended Abstract Track
where, Llap is the Laplacian smoothing loss, Ledge is uniform edge length loss, Larea is
triangle area loss and Larap is the simplified and adapted version of the classical As Rigid
as Possible loss.

We use Laplacian smoothing loss Llap (Sorkine et al., 2004) to enforce local smoothness
of the surface by penalizing deviations of each vertex vi from the mean position of its 1-ring
neighbors N (i).

Llap =
1

|V |

|V |∑
i=1

∥∥∥∥∥∥ vi − 1

|N (i)|
∑

j∈N (i)

vj

∥∥∥∥∥∥
2

(1)

We define uniform edge length loss Ledge to discourage edges from becoming dispropor-
tionately long or short compared to others. Without it, the mesh could stretch, shear, or
collapse. By penalizing variance in edge lengths, the mesh maintains spatial regularity and
stable deformations.

Ledge =
1

|E|
∑

(i,j)∈E

(
∥vi − vj∥ − ℓ̄

)2
, ℓ̄ =

1

|E|
∑

(i,j)∈E

∥vi − vj∥ (2)

where, E is the edge set extracted from F .

Similarly, triangle area loss Larea enforces uniformity in the areas of all the triangu-
lar faces. As the vertices move, some triangles can become skinny or even degenerate.
By penalizing the variance in the area of triangles, Larea promotes evenly sized triangles,
preserving mesh quality and preventing local collapse.

Larea =
1

|F |
∑
t∈F

(
At − Ā

)2
, At =

1
2 ∥(vj − vi)× (vk − vi)∥ , Ā =

1

|F |
∑
t∈F

At (3)

While uniform edge length loss and triangle area losses regularize local distances and
face sizes, they do not directly constrain changes in edge orientation. To address this,
we use a direction-preserving variant of the As-Rigid-As-Possible (ARAP) energy (Sorkine
and Alexa, 2007) that penalizes deviations of each deformed edge from its original direction.

Specifically, each edge vector vi−vj is projected onto its initial unit vector ê
(0)
ij =

̂
v
(0)
i − v

(0)
j ,

and we penalize the residual orthogonal component:

Larap =
1

|E|
∑

(i,j)∈E

∥∥∥∥(vi − vj)− proj
ê
(0)
ij

(vi − vj)

∥∥∥∥2 (4)

This preserves the original orientation of the edges while ignoring changes in magnitude.

Appendix C. Response predictive V4 model

We use the “Gaussian model” defined in Pierzchlewicz et al. (2023) as the image computable
encoding model for macaque V4 neurons. The model contains a pre-trained robust ResNet50
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(L2, ε = 0.1) (He et al., 2016; Salman et al., 2020) core and a Gaussian readout (Lurz et al.,
2020). The model uses 3 layers with 1024 channels, resulting in a 1024 dimension feature
space, followed by batch normalization(Ioffe and Szegedy, 2015) and ReLU non-linearity.
The EGG based pixel optimized MEIs shown in Fig 1 is also generated from this model.
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