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ABSTRACT

Machine learning models are known to be susceptible to adversarial perturbation.
One famous attack is the adversarial patch, a sticker with a particularly crafted
pattern that makes the model incorrectly predict the object it is placed on. This
attack presents a critical threat to cyber-physical systems that rely on cameras
such as autonomous cars. Despite the significance of the problem, conducting
research in this setting has been difficult; evaluating attacks and defenses in the
real world is exceptionally costly while synthetic data are unrealistic. In this
work, we propose the REAP (REalistic Adversarial Patch) Benchmark, a digital
benchmark that allows the user to evaluate patch attacks on real images, and under
real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark
contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric
and lighting transformations, which can be used to apply a digitally generated
patch realistically onto the sign, while matching real-world conditions. Using our
benchmark, we perform the first large-scale assessments of adversarial patch attacks
under realistic conditions. Our experiments suggest that adversarial patch attacks
may present a smaller threat than previously believed and that the success rate of
an attack on simpler digital simulations is not predictive of its actual effectiveness
in practice.

1 INTRODUCTION

Research has shown that machine learning models lack robustness against adversarially chosen
perturbations. The pioneering work of Szegedy et al. (2014) first demonstrated that one can engineer
perturbations that are indiscernible to the human eye which can cause neural networks to misclassify
images with high confidence. Since then, there has been a large body of academic work on understand-
ing the robustness of neural networks to such attacks Goodfellow et al. (2015); Moosavi-Dezfooli
et al. (2016); Tanay & Griffin (2016); Carlini & Wagner (2017); Kurakin et al. (2017); Tramèr et al.
(2017); Madry et al. (2018); Bubeck et al. (2019); Ilyas et al. (2019).

One particularly concerning type of attack is the adversarial patch attack (Brown et al., 2018; Eykholt
et al., 2018; Karmon et al., 2018; Sitawarin et al., 2018; Chen et al., 2019; Jan et al., 2019; Liu et al.,
2019b; Patel et al., 2019; Sharma et al., 2019; Zhao et al., 2019; Huang et al., 2020; Wu et al., 2020).
These are real-world attacks, where the objective of the attacker is to print out a patch, physically
place it in a scene, and cause a vision network processing the scene to malfunction. These attacks are
especially concerning because of the impact they could have on autonomous vehicles. The worry is
that a malicious agent could, for instance, produce a sticker so that, when it is placed on a stop sign, a
self-driving car would believe it is (say) a speed limit sign, and fail to stop. Indeed, similar attacks
have already been demonstrated both in academic settings (Liu et al., 2019a; Evtimov et al., 2017;
Sato et al., 2021), as well as on real-world autonomous vehicles (Tencent Keen Security Lab, 2019).

However, despite the significant risks that adversarial patch attacks pose, to a certain extent, research
on these attacks has stalled. This is in large part because quantitatively evaluating the significance
of this threat is challenging. The most accurate approach would be to conduct experiments in the
real world, but this is very expensive, and at present, not practical to do at a large scale. (Compare to
research on computer vision, where the availability of benchmarks such as ImageNet have reduced
the barriers to research and spurred tremendous innovation.) As a result, it is difficult to accurately
assess the effectiveness of new patch attacks and defenses against patch attacks.
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Our Benchmark

Adversarial Patch Evaluation in Previous Work

Figure 1: We provide a more realistic way to evaluate patch attacks. Past work (top row) ignores
many real-world factors and thus might yield a misleading evaluation. We develop a benchmark
(bottom row) that supports a more realistic simulation of the effect of a real-world patch attack on
road signs, simulating the effect of the pose, location, and lighting on rendering and image capture.

Instead, researchers in this area turn to one of two techniques: either, they physically create their
attacks and try them out on a small number of real-world examples by physically attaching them to
objects, or they digitally evaluate patch attacks using digital images containing simulated patches.
Both of these approaches have major drawbacks. Although the former approach simulates more
realistic conditions, the sample size they obtain is very small, and typically one cannot draw statistical
conclusions from the results. Additionally, because of the ad-hoc nature of these evaluations, it is
impossible to compare the results across different papers. Ultimately, such experiments can only
serve as a proof of concept that under some situations, the proposed attacks and/or defenses work,
but do not serve as a rigorous evaluation of their effectiveness.

In contrast, a digital simulation of the attacks and/or defenses can allow us to obtain some quantitative
measures. However, it is difficult to ensure that the simulation accurately captures all of the challenges
that arise in the real world. Past work on defending against patch attacks has often made unrealistic
assumptions, such as that the patch is square, axis-aligned, can be located anywhere on the image, and
is fully under the control of the attacker, and has ignored many effects, such as noise and variation in
lighting and pose. This is because evaluations have been done on standard computer vision datasets,
which do not possess the tooling necessary for more realistic simulation. Consequently, it is unclear
if the numbers obtained are actually reflective of what would happen in real-world scenarios. See
Fig. 1 (top row) for examples of past works, where the patch is not constrained to be on the target
object, does not respect the pose and shape of the object, and/or ignores the lighting conditions.

1.1 OUR CONTRIBUTIONS

The REAP Benchmark: In this work, we propose the REalistic Adversarial Patch Benchmark
(REAP), the first large-scale standardized benchmark for security against patch attacks, that has
tooling which allows us to model realistic patch attacks. Given the significance of adversarial patch
attacks for autonomous vehicles in particular, we choose to focus on computer vision systems for
recognizing road signs. Motivated by the aforementioned shortcomings of prior evaluations, REAP
was designed with the following principles in mind:

1. Large scale evaluation: REAP consists of a collection of 14,651 images of road signs drawn
from the Mapillary Vistas dataset. This allows us to use REAP to draw quantitative conclusions
about the effectiveness of attacks on the dataset.

2. Realistic patch rendering: REAP has tooling, which, for every road sign in the dataset, allows us
to realistically render any digital patch onto the sign, matching factors such as where to place the
patch, the camera angle, lighting conditions, etc. Importantly, this transformation is differentiable,
and so one can still perform backpropagation through the rendering process.
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3. Realistic image distribution: REAP consists of images of signs taken under realistic conditions,
mimicking for instance what a self-driving car would see from its sensors. As a result, the
images consist of road signs of many varying sizes and distances from the camera sensor, and
under various lighting conditions and degrees of occlusion. We also take steps to minimize the
distributional shift from the original Mapillary Vistas dataset.

We believe that REAP will help support research in patch attacks by enabling a more accurate
evaluation of new attacks and defenses. We plan to release REAP publicly before the conference.

Evaluations with REAP: With our new benchmark in hand, we also perform the first large-scale
evaluations of existing attacks on object detectors under realistic conditions. We consider the “per-
class” threat model where the goal of the attacker is, for a single type of sign, to devise a patch that
causes the object detector to fail to detect signs of that type. We evaluate existing attacks on two
different object detection architectures, and we find the following conclusions:

1. Existing patch attacks are not that effective. Perhaps surprisingly, our first conclusion is that
on our benchmark, existing attacks do not succeed on a majority of images. This is in contrast
to simpler attack models such as ℓp-bounded perturbations where we can typically obtain nearly
100% attack success rate, and even to previously reported numbers for patch attacks on simpler
benchmarks, which were much higher than what we see on REAP. This latter point is related to
our next conclusion, which is:

2. Performance on synthetic data is not reflective of performance on REAP. We find that the
success rates of attacks on synthetic versions of our benchmark and the full REAP are only poorly
correlated. We conclude that performance on simple synthetic benchmarks is not predictive of
attack success rate in more realistic conditions.

3. Lighting and patch placement are particularly important. Finally, we investigate what
transforms in the patch rendering are the most important, in terms of the effect on the attack
success rate. We find that the most significant first-order effects are from the lighting transform,
as well as the positioning of the patch. In contrast, the perspective transforms—while still
important—seem to affect the attack success rate somewhat less.

While we believe these conclusions are already quite interesting, they are only the tip of the iceberg
of what can be done with REAP. We believe that going forward, the REAP benchmark can serve as a
very useful tool for both understanding the power of physical world patch attacks, as well as for the
development of better defenses against such attacks.

2 RELATED WORK

The literature on adversarial patches, and adversarial attacks more generally, is vast and a full review
is beyond the scope of this paper. For conciseness, here we will only survey the most relevant works.
Since their introduction in Brown et al. (2018); Karmon et al. (2018); Eykholt et al. (2018), there
have been a variety of adversarial patch attacks proposed in the literature (Sitawarin et al., 2018;
Chen et al., 2019; Jan et al., 2019; Liu et al., 2019b; Patel et al., 2019; Sharma et al., 2019; Zhao
et al., 2019; Huang et al., 2020; Wu et al., 2020). Of particular interest to us are the attacks on object
detection of road signs (Eykholt et al., 2018; Chen et al., 2019; Zhao et al., 2019). There have also
been a slew of proposed defenses for such attacks, see e.g., (Zhang et al., 2020; Xiang & Mittal, 2021;
Rao et al., 2020; McCoyd et al., 2020; Mu & Wagner, 2021).

2.1 EXISTING BENCHMARKS AND EVALUATION

Existing evaluations of adversarial patch attacks and defenses fit into one of two categories:

Small scale, real-world tests. A common methodology used to test the transferability of the
adversarial patch to the physical world is to print it out, physically place it onto an object, and capture
pictures or videos of the patch for evaluation (Brown et al., 2018; Eykholt et al., 2018; Chen et al.,
2019; Zhao et al., 2019; Hoory et al., 2020; Huang et al., 2020; Wu et al., 2020). While this method
provides the most realistic evaluation of the adversarial patches, it has a number of downsides. First,
this evaluation methodology is by nature very time-consuming and hence limits the number of images
that can be used for testing. Consequently, one cannot extract quantitative conclusions from the
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results of these tests. Additionally, the methodologies vary across different papers, and so it is hard to
compare their results. For instance, the pictures of the adversarial patches are taken under different
angles, lighting conditions, or from varying distances. Sometimes, the adversarial patches themselves
are printed using different printers (Chen et al., 2019; Zhao et al., 2019).

Digital simulation. The other approach is to simulate the effects of the adversarial patch by digitally
inserting it into the image. As mentioned previously, this has the advantage that it can be done more
scalably. This has been done to varying degrees of sophistication. One of the most common, but also
simplest, ways this is done is to simply apply the patch to the image at some random position, and with
some simple transformations, for instance, those induced by expectation over transformation (Brown
et al., 2018; Eykholt et al., 2018; Karmon et al., 2018; Liu et al., 2019b; Hoory et al., 2020; Zhang
et al., 2020; Rao et al., 2020; McCoyd et al., 2020; Xiang & Mittal, 2021; Wang et al., 2021). In
contrast, our benchmark positions the patches realistically, and with more realistic transformations.

Arguably the benchmarks most similar to the one we propose are the ones in Zhao et al. (2019) and
Huang et al. (2020). In Zhao et al. (2019), they use a synthetic benchmark where stop signs with
patches are digitally inserted into images with realistic camera angles. However, their benchmark
does not account for lighting conditions. In contrast, all signs in our dataset are real, and we also
produce a transformation to match lighting conditions. The former allows us to more realistically
model how real-world agents would interact with signs, and the latter is particularly important since
we find that matching lighting is particularly important to obtain results that reflect the effectiveness
of patches in realistic conditions.

In Huang et al. (2020), they produce a benchmark of 20 fully virtual scenes, over which a user can
control multiple cameras and lighting conditions. In these scenes, the user can then place adversarial
patches and study their effectiveness under various perspective/lighting transformations. We view this
benchmark as somewhat orthogonal to ours: their benchmark allows one to study the effectiveness
of an attack in a very controlled space but on a small scale, whereas our benchmark allows for a
quantitative measure of the effectiveness of the attack under realistic scenarios, in many different
contexts. Also, they do not consider road signs and corresponding attacks on autonomous vehicles.

We also note that photorealistic simulation frameworks have been proposed to study the reliability of
computer vision systems in related settings (Leclerc et al., 2021). However, to our knowledge, these
frameworks do not have the tooling necessary for evaluating adversarial patches.

3 ADVERSARIAL PATCH BENCHMARK

3.1 OVERVIEW

Our dataset consists of a collection of images containing traffic signs. Each sign comes with a
segmentation mask, and we label them with a class (based on their shape and size).

So far, this is more or less standard. The main additional feature of our benchmark is that, for each sign,
we also provide an associated rendering transformation. Given a digital patch, this transformation
allows us to apply the patch on the sign in a way that respects the scaling, orientation, and lighting of
the sign in the image. We emphasize that a separate transformation is inferred individually for each
sign, in order to ensure that the transformation is accurate for every image. Moreover, the rendering
transformation is fully differentiable, which allows our dataset to be used to generate patch attacks
and to apply adversarial defenses along the line of adversarial training.

Fig. 2 and Fig. 4 give an overview of the process to obtain these transformations which we will
describe in Section 3.4.1 and Section 3.4.2. We produce candidate annotations, visually inspect all
of them individually, and manually fix any wrong annotation. In total, we label 14,651 traffic signs
across 8,433 images.

3.2 DATASETS

We build our benchmark using images from the Mapillary Vistas dataset (Neuhold et al., 2017).1
The Mapillary dataset includes 20,000 street-level images from around the world which have been

1www.mapillary.com/dataset/vistas
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Figure 2: The automated procedure we use to extract the keypoints from each traffic sign.

annotated with bounding boxes of 124 object categories, including traffic signs. We use images from
the Mapillary training and validation sets and discard images that do not contain any traffic sign.

3.3 TRAFFIC SIGN CLASSIFICATION

For our benchmark, we want to test adversarial patches on traffic signs of different shapes and
sizes. Unfortunately, the Mapillary Vistas dataset does not include such labels, i.e., all traffic signs
are grouped under one class. Instead of labeling these signs by hand, we train a ResNet-18 on
another similar dataset, Mapillary Traffic Sign (MTSD) (Ertler et al., 2020), to classify samples from
Mapillary Vistas. MTSD contains granular labeling of over 300 traffic sign classes with bounding
box annotations, but we cannot use it in place of Vistas because it lacks segmentation labels.

We group the signs into 11 classes by shape and size, namely circle, triangle, upside-down triangle,
diamond (S), diamond (L), square, rectangle (S), rectangle (M), rectangle (L), pentagon, and octagon.
The remaining signs that do not belong to one of these classes are labeled as a background class
or “others” which will be ignored when we compute the metrics. After training the ResNet-18,
which achieves about 97% accuracy on the validation set of MTSD, we use it to infer the first set of
candidate class labels of Mapillary Vistas.

In addition to extending the problem to a multi-class setting, we use sign classification to determine
the physical size of different signs. Since we hope to specify the patch size in real units (e.g., inches)
instead of pixels, this allows the patch to scale (approximately) correctly when applied to the signs.
A limitation is that a single type of sign may come in different sizes, e.g., stop signs can be 24”, 30”,
36”, or 48”, depending on the type of road they are located on. We pick a canonical size for each type
of sign based on the size specified for “Expressway” according to the official U.S. Department of
Transportation’s guideline.2 Appendix A describes our design decision in detail.

3.4 TRANSFORMATIONS

The traffic signs in our dataset vary in shape, size, rotation, and orientation. When digitally applying
a patch to a sign, we first need to apply a perspective or 3D transform to the adversarial patch to
simulate the orientation. Next, we take into account the fact that pictures of real-world traffic signs
are taken under different lighting conditions by applying a relighting transform to the patch. The
importance of these transformations is highlighted in Fig. 3.

3.4.1 GEOMETRIC TRANSFORMATION

To determine the parameters of the perspective transform, we need four keypoints for each sign in our
dataset. We infer the keypoints for a particular traffic sign using only its segmentation mask (which is
provided in the Mapillary Vistas dataset) by following the four steps below (also visualized in Fig. 2):

1. Find contours: First, we find the edge or the contour of the segmentation mask.
2. Compute convex hull: Then, we find the convex hull of the contour to correct annotation errors

and occlusion. This does not affect the already correct masks which should already be convex.
2https://mutcd.fhwa.dot.gov/htm/2003/part2/part2b1.htm
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Figure 3: Example ablation of the geometric and relighting transforms in our dataset. The rightmost
stop sign has a patch rendered with a perspective and relighting transform which makes it more
realistic. The first and second images have patches that are too bright whereas the first and third
images have patches that do not respect the sign’s orientation.

3. Fit polygon and ellipse: We try to fit an ellipse to the convex hull, to find circular signs. If the
fitted ellipse results in a larger error than some threshold, we know that the sign is not circular and
therefore fit a polygon instead.

4. Cross verify: We verify that the shape obtained from the previous step matches with the ResNet’s
prediction. If not, the sign is flagged for manual inspection.

The last step is finding the keypoints. For polygons, we first match the vertices to the canonical ones
and then simply take the four predefined vertices as the keypoints. For circular signs, we use the
ends of their major and minor axes as the four keypoints. Then, we use these keypoints to infer a
perspective transform appropriate for this sign. Triangular signs are a special case as we can only
identify a maximum of three keypoints which means we can only infer a unique affine transform
(six degrees of freedom). Note that this transform is a linear transformation, and hence is fully
differentiable. Lastly, we manually check all annotations and correct any errors.

3.4.2 RELIGHTING TRANSFORMATION

Histogram of
pixel values

𝑡!(⋅	; 𝛼, 𝛽)
0 1 𝛽 𝛼 + 𝛽

0 1 𝛽 𝛼 + 𝛽

Figure 4: Computing relighting parameters
(top) and applying the transform (bottom).

Each traffic sign in our dataset has two associated
relighting parameters, α, β ∈ R. Given a patch P, its
relighted version Prelighted = αP + β is rendered on
the scene as depicted on the bottom row of Fig. 4. We
infer α, β by matching the histogram of the original
sign (e.g., the real stop sign on the upper-right of
Fig. 4) to a canonical image (e.g., the synthetic stop
sign on the upper-left): in particular, we set β as
the 10th percentile of all the pixel values (aggregated
over all three RGB channels) on that sign and α as the
difference between the 10th and 90th percentile. In
doing so, we make an assumption that the relighting
can be approximated with a linear transform where α
and β represent contrast and brightness adjustments, respectively. We choose the 10th and the 90th
percentiles, instead of the 1st and the 99th, to filter noise in the real image. Finally, note that like
before, since this transformation is linear, it is differentiable.

4 EXPERIMENTS ON OUR BENCHMARK

Our benchmark can be used to evaluate attacks and defenses under various threat models, e.g., making
objects appear vs disappear, using a universal patch vs a targeted attack, etc. In this paper, we pick
one typical setting where the adversary tries to make a traffic sign disappear or be misclassified.

4.1 EXPERIMENT SETUP

Traffic sign detectors. We experiment with two object detection models: Faster R-CNN (Ren et al.,
2015) and YOLOv5 (Jocher et al., 2022). Both models are trained on the MTSD dataset to predict
bounding boxes for all 11 traffic sign classes plus one background class. We follow the training
method and hyperparameters from Neuhold et al. (2017) to train both models. The performance of
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Table 1: Performance of the models on two different datasets without attacks. “MTSD” represents
the test set of the MTSD dataset on which the models are trained. mAP is the mean average precision,
commonly used to represent performance in object detection tasks. We follow COCO’s method for
computing mAP (Lin et al., 2014). mAPw is the class-weighted version analogous to mFNR and
mFNRw which are defined in Section 4.2.

Datasets Faster R-CNN YOLOv5

mFNR ↓ mFNRw ↓ mAP ↑ mAPw ↑ mFNR ↓ mFNRw ↓ mAP ↑ mAPw ↑
MTSD 29.9 29.7 55.0 56.0 17.2 14.7 69.3 71.3
Our Benchmark 16.2 17.4 67.0 64.4 14.2 14.5 69.7 69.6

the models on benign data is reported in Table 1. As mentioned in Section 4.2, we report the false
negative rate (FNR) in addition to the commonly used mAP scores. For FNR, the score threshold is
chosen as one that yields the maximum F1 score on the validation set of MTSD.

Synthetic Benchmark. We use canonical synthetic signs, one per class, as a baseline to compare
our REAP benchmark to. Similarly to Eykholt et al. (2018), the synthetic sign is placed at a random
location in the image and randomly rotated between 0 and 15 degrees. The synthetic benchmark can
be used for both generating and testing the adversarial patch. For testing, we use a total of 5,000
images randomly selected from our REAP benchmark.

Attack algorithms. We use the RP2 attack (Eykholt et al., 2018) to generate adversarial patches
for YOLOv5, and the Shapeshifter attack (Chen et al., 2019) for Faster R-CNN, as each attack was
created for a specific type of model. We generate one patch per one sign class. We assume that the
adversary has access to 50 held-out images from our benchmark. Each of the 11 classes in our dataset
has a specific set of 50 images which are all guaranteed to contain at least one sign of the class that is
being attacked. Thus, an adversarial patch for a sign can be generated using these 50 images from
our benchmark. We also generate an adversarial patch using a synthetic sign from that class, as has
been done in prior work. Finally, we use whichever patch performs better (i.e., has a higher attack
success rate). For more detail on the setup, please see Appendix B.

4.2 EVALUATION METRICS

Here, we define a successful attack as a patch that makes the sign either (i) undetected or (ii) classified
to a wrong class (i.e., one of the other 11 classes, or the background class). Similarly to previous
work, we measure the effectiveness of an attack by the attack success rate (ASR), defined as follows.
Given a list of signs {xi}Ni=1 and the corresponding perturbed version (i.e., with an adversarial patch
applied to it) {x′

i}Ni=1,

Attack Success Rate =

∑N
i=1 1xiis detected ∧ 1x′

iis not detected∑N
i=1 1xiis detected

. (1)

Additionally, we also report false negative rate (FNR), which is simply the fraction of signs that the
model fails to detect and classify correctly. We report both metrics for each class of the signs as well
as their average (mFNR and mASR). We also compute an average of the metrics weighted by the
number of samples in each class (mFNRw and mASRw).

4.3 RESULTS

Patch attacks against road signs are less effective than previously believed. From Table 2,
a 10”×10” adversarial patch only succeeds for about 18% and 25% of the signs on our realistic
benchmark. Even though we use undefended models that were normally trained without any
special data augmentation that would enhance the robustness, attacks are not very effective. For
comparison, a universal adversarial perturbation under ℓ2 and ℓ∞ norms achieves above 80% success
rate (Moosavi-Dezfooli et al., 2017).
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Table 2: ASR and FNR of the adversarial patches on the two traffic sign detectors. One adversarial
patch is generated per class of traffic signs. For sign-specific metrics, see Table 5.

Patch Size Benchmarks Faster R-CNN YOLOv5

mFNR mFNRw mASR mASRw mFNR mFNRw mASR mASRw

No patch Synthetic 11.8 17.4 n/a n/a 10.8 9.6 n/a n/a
Ours 16.2 17.4 n/a n/a 14.2 14.5 n/a n/a

Small
(10”×10”)

Synthetic 54.4 67.3 49.6 61.8 75.9 73.6 72.2 70.4
Ours 35.1 30.5 24.7 17.7 46.1 32.5 44.4 24.9

Medium
(10”×20”)

Synthetic 69.7 87.3 67.7 85.6 88.2 90.8 85.0 88.3
Ours 47.9 42.6 40.5 32.4 60.1 48.6 58.7 42.6

Large
(two 10”×20”)

Synthetic 98.1 98.1 99.5 99.5 100 100 100 100
Ours 79.3 84.2 76.2 81.7 85.9 90.0 85.0 89.3

Figure 5: Examples of Small (10" x 10"), Medium (10" x 20") and Large (two 10" x 20") patches
applied to random signs from our benchmark.

A 10”×10” patch is likely easily noticeable to humans, so such an attack might be easily detected and
might soon be removed. Adversarial attacks are most troubling when they are imperceptible; patches
as large as 10”×10” (or larger) are likely to draw attention, which may make them less of a threat in
practice. As shown in Fig. 7, nearly all sign classes seem to resist attack at least to some extent.

Our findings are consistent with prior works that investigate physical-world attacks on stop signs.
In these works, the attack is often clearly visible. For instance, Eykholt et al. (2018) and Zhao et al.
(2019) use a patch that is close to our two 10”×20” patches which is why they observe a high attack
success rate similar to our results with the larger patch size.

We also experimented with a “per-image” attack where we generate one adversarial patch for each
instance of traffic sign, as opposed to one patch per class (see Table 9). ASR for the “per-image”
attack is much higher than a per-class patch (40% relative increase on average). While such attacks
are harder to generate and might be more fragile in practice, this result suggests that better attack
algorithms may exist and that a specifically targeted adversary could still be an important threat.

ASR measured on synthetic data is not predictive of ASR measured on our realistic benchmark.
We compared our benchmark to a synthetic benchmark intended to be representative of methodology
often found in prior work: we take a single synthetic image of a road sign, then generate attacks
against it (instead of a real image). Table 2 and Fig. 6 show that there is a large difference between
metrics as measured on such a synthetic benchmark compared to our benchmark. The gap can be up
to 50 percentage points on average or even up to 5× difference for the smallest patch size.

Fig. 6 and Table 5 in Appendix C compares ASR on the two benchmarks by class of the traffic signs.
If the two ASRs were similar, all data points would be close to the diagonal dashed line. Instead,
most of the data points are below the line, suggesting that the synthetic benchmark consistently
overestimates the ASR. Moreover, there is no clear relationship between the two measurements of
ASR. The ordering is not preserved, and the gap varies significantly among different sign classes.

The lighting transform affects the attack’s effectiveness more than the geometric transform.
Table 3 shows results from an ablation study showing how the transformations our benchmark applies
to the patch affect its ASR. For both YOLOv5 and Faster R-CNN, our realistic lighting transform has
a much larger effect than the geometric transform. Without the lighting transform, the average ASR
increases by approximately 10 percentage points for YOLOv5, and 15 pp for Faster R-CNN. This
observation explains why the synthetic benchmark as well as synthetic evaluations in previous works
overestimate ASR, as prior works do not consider lighting.
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(a) Faster R-CNN

0 20 40 60 80 100
ASR on Synthetic Benchmark

0

20

40

60

80

100

AS
R 

on
 O

ur
 R

EA
P 

Be
nc

hm
ar

k

(b) YOLOv5

Figure 6: Comparison of ASR on synthetic benchmark vs on our realistic benchmark for the two
models. The dashed line marks the points with an equal ASR on both synthetic and our benchmarks.
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(a) Synthetic benchmark
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Figure 7: ASR of all sign classes at different patch sizes on Faster R-CNN. ASR is higher on the
synthetic benchmark than our benchmark, for all patch sizes and almost every traffic sign class.

Table 3: Attack success rate on our realistic benchmark when other choices of transformations
are applied, for some representative classes of signs. “No 3D” means the perspective transform is
replaced by only translation and scaling. “No light” means there is no relighting transform, but we
still apply the perspective transform. The full table is included in the supplementary material.

Models Transforms Circles Triangles Diamonds(L) Squares Rectangles(L) Octagons mASR mASRw

Faster
R-CNN

No 3D 13.0 24.8 2.7 55.2 17.2 2.7 24.7 18.0
No light 30.8 44.1 6.3 62.5 47.6 6.1 36.5 32.3
Ours 12.7 24.6 2.2 52.0 16.7 2.5 24.7 17.7

YOLOv5
No 3D 16.6 49.8 11.4 61.3 39.9 16.0 46.0 26.8
No light 26.7 60.0 14.8 62.8 55.0 22.6 52.0 34.6
Ours 14.2 51.7 11.0 52.9 37.0 17.8 44.4 24.9

5 CONCLUSION

We construct the first large-scale benchmark for evaluating adversarial patches. Our benchmark
consists of over 14,000 signs from real driving scenes, and each sign is annotated with the trans-
formations necessary to render an adversarial patch realistically onto it. Using this benchmark, we
experiment with adversarial patch attacks on two object detectors. We find that adversarial patches of
a clearly visible size fool undefended models on less than 25% of the signs, where attacks are much
more successful. This is in contrast to similar settings such as adversarial examples with bounded
ℓp-norms. We hope that our benchmark will provide a foundation for more realistic evaluation of
patch attacks and drive future research on defenses against them.
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Adversarial Patch               Mask

1. Canonical form 3. Match keypoint2. Lighting transform

4. Geometric transform
5. Apply patch using mask

Original image

Figure 8: REAP’s procedure for applying lighting and geometric transforms to a digitally generated
adversarial patch.

Table 4: Dimension of the sign by classes in the REAP benchmark.

Traffic Sign Class Width (mm) Height (mm) Number of Samples in REAP

Circle 750 750 7971
Triangle 900 789 636
Upside-down triangle 1220 1072 824
Diamond (S) 600 600 317
Diamond (L) 915 915 1435
Square 600 600 1075
Rectangle (S) 458 610 715
Rectangle (M) 762 915 544
Rectangle (L) 915 1220 361
Pentagon 915 915 133
Octagon 915 915 637

A ADDITIONAL DETAILS OF THE BENCHMARK

A.1 TRAFFIC SIGN CLASSIFICATION

To train the ResNet-18 for classifying the traffic signs, we first collect the cropped signs from the
MTSD dataset. The cropped signs leave 10% of padding on each side of the sign size and are resized
to 128×128 pixels. We trained the ResNet-18 with a batch size of 128, a learning rate of 0.1, and a
weight decay of 5× 10−4. The categorization of the signs along with their dimension and number of
samples are in Table 4 and Fig. 9.

A.2 APPLYING THE TRANSFORMS

Fig. 8 summarizes the steps to apply an adversarial patch using our REAP benchmark. Given a patch
and a corresponding mask with respect to the canonical sign, we first apply relighting transform on
the patch. Then, we use the annotated keypoints of the target sign to determine the parameters of the
perspective transform which is then applied to both the patch and the mask. Throughout this paper,
we use bilinear interpolation for any geometric transform. Finally, the transformed patch is applied to
the image using the transformed mask.

To be precise, let X , P , and M denote the original image, the adversarial patch, and the patch mask,
respectively. The final image X ′ is obtained by the following equation

X ′ = tg (M)⊙ tg (tl (P )) + (1− tg (M))⊙X (2)

where tg(·) and tl(·) are the geometric and the relighting transforms which in fact, depend on the
annotated parameters associated with X .
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Figure 9: Class distribution of the traffic signs in our REAP benchmark.

We note that the mask is concatenated to the patch, and both are applied with the same geometric
transform and interpolation. Therefore, tg (M) is no longer a binary mask like M . This creates an
effect where the transformed patch blends in more cleanly with the sign than the nearest interpolation
does. Additionally, we also clip the pixel values after applying each transform to ensure that they
always stay between 0 and 1.

B DETAILED EXPERIMENT SETUP

Here, we describe hyperparameters of the attack as well as the benchmarks. We re-implement both
the RP2 and the ShapeShifter attacks based on the description provided in the paper. The ShapeShifter
attack has an official and publicly available implementation in Tensorflow so we are able to compare
our code to theirs directly.3

For both attacks, our default hyperparameters include 64×64 patch and object dimension, EoT
rotation with a maximum 15 degrees, no color jitter for EoT. We use Adam optimizer with a step
size of 0.01 for 1,000 iterations. The λ parameter used to encourage low-frequency patterns is set to
10−5. We find that the choices of the patch dimension and λ do not affect the ASR when varying in a
reasonable range. We use the same set of hyperparameters when generating adversarial patches from
both our REAP and the synthetic benchmark.

C ADDITIONAL EXPERIMENTS

ASR by Classes for All Patch Sizes. Table 5, Table 6, and Table 7 contain a breakdown of ASR by
sign class for the three patch sizes in Table 2. It is evident that the synthetic data do not overestimate
the ASR on average but consistently across almost every traffic sign class. The trend is also consistent
for all patch sizes. The gap becomes narrower for the two 10× 20 patches as the ASR reaches 100%
on both the synthetic and our benchmarks. However, it is almost undeniable that a patch of this size
covers the majority of the sign area and is, in no way, inconspicuous.

ASR under varying hyperparameters of the synthetic benchmark. We conduct an additional
ablation study to compare the effects of the hyperparameters of the synthetic benchmark as mentioned

3https://github.com/shangtse/robust-physical-attack
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Table 5: Attack success rates by sign classes under synthetic vs our REAP benchmarks. “Avg” is an
average, and “WAvg” is a weighted average by the number of samples in each class in our benchmark.
The patch size is 10′′ × 10′′.

Models Bench Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg WAvg

Faster
R-CNN

Syn 69.3 95.2 5.4 98.9 37.4 100.0 99.7 21.2 17.0 0.1 1.0 49.6 61.8
REAP 12.7 24.6 0.8 68.3 2.2 52.0 62.0 27.4 16.7 2.8 2.5 24.7 17.7

YOLOv5 Syn 69.7 82.3 16.6 90.7 80.0 86.3 98.6 87.3 81.3 86.5 14.9 72.2 70.4
REAP 14.2 51.7 7.7 59.5 11.0 52.9 86.9 66.7 37.0 83.3 17.8 44.4 24.9

Table 6: Attack success rates by sign classes under synthetic vs our REAP benchmarks with the patch
size is 10”×20”.

Models Bench Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg WAvg

Faster
R-CNN

Syn 98.0 99.7 0.3 100.0 75.7 100.0 100.0 92.7 71.0 1.6 5.4 67.7 85.6
REAP 27.8 63.2 0.6 89.7 7.1 64.7 87.4 54.8 39.2 6.9 3.6 40.5 32.4

YOLOv5 Syn 96.2 95.0 21.6 99.8 71.3 100.0 100.0 97.3 99.2 99.6 55.3 85.0 88.3
REAP 36.7 69.4 7.8 78.0 13.1 82.6 92.4 78.8 58.0 91.3 37.9 58.7 42.6

in Appendix B. Fig. 10 shows a similar scatter plot to Fig. 6a but with all the hyperparameters we
have swept. This plot further strengthens the conclusions that the synthetic benchmark overestimates
ASR and that it is not predictive of the ASR on our REAP benchmark. These observations persist
across all the hyperparameter choices.

Additionally, Fig. 10 demonstrates that there is a large variation in the ASRs measured by the synthetic
benchmark when the hyperparameters vary. For instance, changing the rotation can affect the ASR
up to 20%–40% for many signs. This emphasizes that results reported on a synthetic benchmark
are sensitive to its hyperparameters, and we should take special care when using one. On the other
hand, our REAP benchmark does not have a similar set of hyperparameters to sweep over since the
transformations as well as the sign sizes are fixed with respect to each image.

An ablation study on the transforms used in our REAP benchmark. Here, we report the full
results by class of Table 3 in Table 8. The relighting transform still affects the effectiveness of the
patch attack to a greater degree than the geometrics transform.

Per-image attack. As another ablation study, we experiment with the worst-case possible attack on
our benchmark where the adversary can generate a unique adversarial patch for each image and is
also aware of how the patch will appear in the image exactly. This setting is similar to the commonly
studied “white-box” attack in the adversarial example literature. This threat model is particularly
unrealistic for patch attacks because, in the real world, the adversary cannot predict apriori how
the video or the image of the patch will be taken. Nonetheless, theoretically, this measurement is
useful because the ASR in this setting should be the upper bound of any other setting including the
“per-class” threat model we have considered throughout the paper.

Table 9 reports the per-image ASR on our REAP benchmark. We only compute the ASR for Faster
R-CNN because this experiment is computationally expensive even when we reduce the attack
iterations from 1,000 to 200. This experiment takes about 10 days to finish on an Nvidia GTX V100
GPU. On average, the per-image attack results in about 10 percentage points higher ASR than the
per-class attack. This is a significant increase (about 40% relatively).

However, in the absolute sense, the ASR is only 35%, i.e., the patch attack only succeeds about
one-third of the time in the worst-case scenario. There are two ways to interpret this observation:
first, it could mean that an object detection model may be more robust to physical attacks than the
researchers expect, and this makes coming up with an effective defense easier. The second way to
view this result is that the previously proposed attack algorithms are far from optimal, and there is a
large room for improvement from the attacker’s side.
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Table 7: Attack success rates by sign classes under synthetic vs our REAP benchmarks with two
patches of size 10”×20”.

Models Bench Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg WAvg

Faster
R-CNN

Syn 100 100 99.9 100 100 100 100 100 79.6 100 100 98.1 99.5
REAP 88.2 86.7 20.1 99.6 53.5 99.7 100.0 95.5 40.5 63.9 90.3 76.2 81.7

YOLOv5 Syn 100 100 100 100 100 100 100 100 100 100 100 100 100
REAP 97.7 85.3 37.6 99.0 64.5 98.6 100.0 98.4 58.0 98.4 97.9 85.0 89.3
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(b) Rotation degrees
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Figure 10: A scatter plot similar to Fig. 6a where each point denotes a pair of ASRs measured by
the synthetic and our REAP benchmark for each class of the signs and also for each hyperparameter
choice for the synthetic benchmark. Particularly, we sweep three hyperparameters that control (a)
patch and object dimension, (b) the range of rotation degree used in EoT, and (c) the color jitter
intensity used in EoT.

D ADDITIONAL VISUALIZATION OF THE BENCHMARK
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Table 8: Attack success rate on our realistic benchmark when other choices of transformations are
applied. “No 3D” means the perspective transform is replaced by only translation and scaling. “No
light” means there is no relighting transform, but we still apply the perspective transform.

Models Transform Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct mASR mASRw

Faster
R-CNN

No 3D 13.0 24.8 0.3 62.6 2.7 55.2 62.0 25.6 17.2 5.6 2.7 24.7 18.0
No light 30.8 44.1 1.5 77.0 6.3 62.5 80.8 41.7 47.6 2.8 6.1 36.5 32.3
Ours 12.7 24.6 0.8 68.3 2.2 52.0 62.0 27.4 16.7 2.8 2.5 24.7 17.7

YOLOv5
No 3D 16.6 49.8 8.1 57.2 11.4 61.3 90.6 66.2 39.9 88.9 16.0 46.0 26.8
No light 26.7 60.0 8.5 70.1 14.8 62.8 92.6 72.1 55.0 86.5 22.6 52.0 34.6
Ours 14.2 51.7 7.7 59.5 11.0 52.9 86.9 66.7 37.0 83.3 17.8 44.4 24.9

Table 9: Attack success rate of the per-image attack on our realistic benchmark. The model is Faster
R-CNN, and the patch size is 10′′ × 10′′.

Metrics Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg. WAvg.

FNR 34.2 42.4 7.6 87.5 16.6 76.1 94.1 53.9 42.5 15.4 9.6 43.6 37.9
ASR 20.1 35.3 1.7 86.4 3.7 72.5 88.1 44.2 22.0 8.3 5.0 35.2 26.4
AP 46.3 55.7 63.9 29.4 65.1 26.3 3.9 46.2 56.2 61.5 77.5 48.4 47.1
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(a) Circle (b) Triangle

(c) Diamond (L) (d) Square

(e) Rectangle (L) (f) Octagon

Figure 11: Examples of images from our benchmark after applying the 10”×10” patch. The sub-
caption indicates the target sign class. We try to select images that the signs are large enough to see
on the printed paper.
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