

000 001 002 003 004 005 006 DECOUPLED-VALUE ATTENTION FOR PRIOR-DATA 007 FITTED NETWORKS: GP INFERENCE FOR PHYSICAL 008 EQUATIONS

009
010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT 031

032 Prior-data fitted networks (PFNs) are a promising alternative to time-consuming
033 Gaussian process (GP) inference for creating fast surrogates of physical systems.
034 PFN reduces the computational burden of GP-training by replacing Bayesian in-
035 ference in GP with a single forward pass of a learned prediction model. However,
036 with standard Transformer attention, PFNs show limited effectiveness on high-
037 dimensional regression tasks. We introduce Decoupled-Value Attention (DVA)–
038 motivated by the GP property that the function space is fully characterized by
039 the kernel over inputs and the predictive mean is a weighted sum of training tar-
040 get. DVA computes similarities from inputs only and propagates labels solely
041 through values. Thus, the proposed DVA mirrors the GP update while remaining
042 kernel-free. We demonstrate that PFNs are backbone architecture invariant and the
043 crucial factor for scaling PFNs is the attention rule rather than the architecture it-
044 self. Specifically, our results demonstrate that (a) localized attention consistently
045 reduces out-of-sample validation loss in PFNs across different dimensional set-
046 tings, with validation loss reduced by more than 50% in five- and ten-dimensional
047 cases, and (b) the role of attention is more decisive than the choice of backbone
048 architecture, showing that CNN, RNN and LSTM-based PFNs can perform at
049 par with their Transformer-based counterparts. The proposed PFNs provide 64-
050 dimensional power flow equation approximations with a mean absolute error of
051 the order of 10^{-3} , while being over 80× faster than exact GP inference.
052
053

054 1 INTRODUCTION 055

056 Bayesian inference provides a powerful framework for reasoning under uncertainty, with methods
057 like Gaussian processes (GPs) offering well-calibrated predictions and principled uncertainty esti-
058 mates (Williams & Rasmussen, 2006). However, the practical application of these methods is often
059 hindered by the heavy computational burden of learning kernel hyperparameters. For example, exact
060 GP inference scales cubically with the number of data points, making its deployment infeasible for
061 large datasets or problems requiring repeated training. Consider a physical system where a surrogate
062 GP is chosen due to its uncertainty estimates and differentiable closed-form expressions. However,
063 the underlying input dataset and configuration changes frequently, and the surrogate is supposed
064 to work for these new, previously unseen variations. For example, changes in underlying physical
065 networks for power grids Tan et al. (2025). In such conditions, GP needs to be trained repeatedly,
066 incurring significant computing cost, each time the dataset changes.
067

068 To address this, Prior-Data Fitted Networks (PFNs) have emerged as a method (Müller et al., 2022)
069 that uses large-scale pre-training to approximate the Bayesian posterior predictive in a single forward
070 pass. Note that unlike sparse GP approximations Daskalakis et al. (2022), PFNs eliminate kernel
071 parameter training step. Although Low-rank approximations reduce GP cost to $\mathcal{O}(nm^2)$, where
072 m is a user-defined parameter, PFNs need only a forward pass at deployment. This advantage
073 grows when multiple GPs must be learned, as training K GPs scales to $\mathcal{O}(Knm^2)$, with each m
074 requiring tuning. PFNs avoid these issues by directly predicting the posterior distribution in one step
075 in a forward pass of the trained network. However, PFNs face scaling and bias issues in problems
076 with high input dimensions due to their joint input–output embedding strategy Müller et al. (2022);
077 Hollmann et al. (2025); Wang et al. (2025); Nagler (2023). Attention over concatenated (\mathbf{x}, \mathbf{y})
078 embeddings, as done in PFNs, degrade locality and similarity measures as input dimension grows
079

054 Further, they are almost exclusively built using Transformer architectures, which have high memory
 055 requirements. These challenges in existing PFNs motivate this work.
 056

057 In this work, we propose **Decoupled-Value Attention (DVA)**, an input localized attention mecha-
 058 nism to scale PFNs with different architectures. We provide evidence that the attention mechanism is
 059 the primary driver of PFN performance, and it can be built using different architectures Convolution
 060 Neural Networks (CNNs) as well along with Transformers. The proposed DVA computes attention
 061 affinities (queries and keys) purely from the input space, while propagating information from the
 062 output space exclusively through the values. This aligns directly with the functional-space view of
 063 a GP, where the influence of training outputs y_i on a test prediction is weighted by the similarity of
 064 their corresponding inputs x_i Williams & Rasmussen (2006). This is a significant deviation from
 065 the standard attention mechanism applied in existing PFN works where affinities are calculated from
 066 a concatenated input-output vector Müller et al. (2022); Hollmann et al. (2022). This, combining
 067 inputs and outputs, increases the computational load, reducing PFNs ability to learn when the di-
 068 mensions of input space grow. We note the observation made by Nagler (2023) that the convergence
 069 of PFNs is due to the attention mechanism, while bias¹ is a function of architecture choice. More
 070 importantly, it argues that a *post-hoc localization mechanism* is needed to reduce bias. **We provide**
 071 **both theoretical and empirical evidence that the proposed localized attention weights are pro-**
 072 **portional to the query–context distance during PFN inference.** Further, the reduction in PFN validation
 073 loss is consistent across architectures. Experimental studies show that DVA performs better than
 074 standard Vanilla Attention (VA) used in PFN literature, across dimensions and architectures. Our
 075 main contributions are:
 076

- 077 • **A Localized Attention Mechanism for GP-PFNs:** We introduce DVA, which explicitly enforces
 078 input-only localization and reduces difference between predicted and true posterior distributions
 079 in PFN training by more than 50% for the inputs of 5D and 10D². This design leads to substantially
 080 lower validation loss and improves predictive performance on high-dimensional regression tasks
 081 compared to standard PFN attention, without requiring additional data or compute resources. **We**
 082 **prove the localization property of DVA both theoretically and empirically.**
- 083 • **Attention is More Important than Architecture:** We show that PFNs can also be constructed
 084 using CNN as backbone architecture, and with DVA, the choice of backbone architecture becomes
 085 secondary. This confirms that the attention mechanism is the primary driver of bias reduction. The
 086 proposed CNN-DVA, **RNN-DVA** and **LSTM-DVA** based PFN achieves accuracy comparable to
 087 a Transformer-DVA based PFN across input dimensions upto 64D. Overall, changes in attention
 088 produce a more pronounced reduction in validation loss and predicted error than changes in the
 089 backbone architecture. **We also show that DVA version of linear attention Choromanski et al.**
 090 **(2022) works considerably better than VA, while being less effective than proposed softmax-DVA.**
- 091 • **Scaling PFNs to High-Dimensional Learning Problems:** Standard PFNs with joint in-
 092 put–output attention fail to generalize beyond ~ 10 input dimensions (10D), saturating at high
 093 validation loss. In contrast, DVA enables successful inference up to 64D on power flow learning
 094 task. The CNN+DVA achieves Mean Squared Error of order 10^{-5} even with 50% load uncertainty
 095 levels, and Mean Absolute Error on the order of 10^{-3} – at $80\times$ the speed of exact GP inference.
 096

097 **Positioning:** We want to highlight that our goal is not to claim a novel, general-purpose atten-
 098 tion mechanism. Rather, DVA is a specialized design intended to create scalable and robust PFNs
 099 via localization and emulation of GP inference. We also note that there are many efficient atten-
 100 tion mechanisms, including linearized kernels Katharopoulos et al. (2020), Nyström approximations
 101 Xiong et al. (2021), random feature expansions Choromanski et al. (2021), and cross-kernel atten-
 102 tion Wang & Others (2025), which are kernel-based. These attentions are designed to incorporate
 103 GP and kernel advantages into Transformer-based language and vision models, along with scaling
 104 approximations like Peng et al. (2021); Bui et al. (2025). In contrast, the proposed DVA is designed
 105 to develop scalable PFNs Hollmann et al. (2022) that is suitable for physical equations in particular.
 106 Further, our sole focus is not on scaling PFNs with Transformer-like Wang et al. (2025), instead a
 107

108 ¹Here, we use the definition of bias as the difference between the parametrized PPD and the true PPD, with
 109 variance vanishing as the number of inference-time samples increases Nagler (2023). Since our experiments
 110 operate in this low-variance regime—as also evidenced by the negligible variance observed in our robustness
 111 results in Appendix D—any decrease in NLL necessarily reflects a reduction in this bias.

112 ²We use D to indicate dimension; for example, ND means N-dimensional.

108 highlight that attention is the critical component in PFNs over architectures and b) bias reduction in
 109 PFNs can be achieved via attention without post-hoc localization Nagler (2023). **Since localization**
 110 **of attention for PFNs is the central idea of proposed work, we show that linear attention Choroman-**
 111 **ski et al. (2022) for PFN in decoupled fashion improves performance—relative to coupled linear**
 112 **attention, although softmax-DVA achieves the lowest validation loss.** More importantly, DVA is
 113 intentionally designed to remain *kernel-free* because forcing a single kernel type can lead to signif-
 114 icant model mismatch for physics problems. For instance, the functions governing AC power flow
 115 are best modeled by specialized kernels distinct from standard choices (Liu & Srikantha, 2022), and
 116 the optimal kernel can even change with operating conditions (Pareek & Nguyen, 2021). By learn-
 117 ing a data-driven similarity metric, DVA remains flexible and robust, avoiding the need for manual
 118 kernel selection.

119 1.1 RELATED WORKS

120 **Prior-data Fitted Networks:** There are several works on PFNs (Hollmann et al., 2025; Wang et al.,
 121 2025; Nagler, 2023; Adriaensen et al., 2023; Li et al., 2023), most of which rely on the Transformer
 122 architecture (Vaswani et al., 2017), applying self-attention over concatenated (x_i, y_i) embeddings.
 123 While this design has shown strong performance on certain tasks, it presents two key limitations that
 124 remain largely unaddressed. First, these works implicitly assume that the Transformer backbone is
 125 crucial to PFN success. Second—and more importantly—the standard attention mechanism does not
 126 scale well to high-dimensional problems: training becomes unstable, and performance deteriorates
 127 quickly as dimensionality increases Wang et al. (2025). Although Wang et al. (2025) introduced a
 128 Boosting-based method that splits the dataset into smaller subsets and trains an ensemble of PFNs,
 129 this was primarily intended to handle longer input sequences, not to address high-dimensional scal-
 130 ing issues or architectural dependence of PFNs.

131 **Physical Equation Surrogates for Power Flow:** Efficiently solving power flow equations is crucial
 132 for integrating renewable energy and electric vehicles Barry et al. (2022), a key area where machine
 133 learning can help mitigate climate change Rolnick et al. (2022). Faster analytical approximations of
 134 nonlinear alternating current power flow (ACPF) equations exist, but come at the cost of accuracy
 135 Molzahn et al. (2019). To address this, various ML models—including physics-informed meth-
 136 ods—have been developed for ACPF learning and uncertainty quantification Chen et al. (2025).
 137 Among these, GPs have gained prominence for building explainable surrogates with closed-form
 138 predictions Tan et al. (2025). However, such modeling is extremely sensitive to GP kernels, as
 139 shown by Liu & Srikantha (2022) by showing that specialized kernels outperform standard options
 140 like squared-exponential or polynomial kernels Pareek & Nguyen (2021).

141 2 BACKGROUND

142 2.1 GAUSSIAN PROCESSES (GP)

143 GP is a non-parametric, probabilistic framework for modeling functions from a functional space
 144 perspective. Given data (x_i, y_i) , we assume $y_i = f(x_i) + \varepsilon_i$, where $\varepsilon_i \sim \mathcal{N}(0, \sigma_\varepsilon^2)$. For
 145 N inputs $x = (x_1, \dots, x_N)$, the function values $\mathbf{f}(x) = [f(x_1), \dots, f(x_N)]^\top$ follow a joint
 146 Gaussian distribution as $\mathbf{f}(x) \sim \mathcal{N}(\mathbf{m}(x), K(x, x'))$, with mean function $m(x)$ and covariance
 147 matrix $K(x, x')$. By definition, a GP is a collection of random variables such that any finite
 148 subset is jointly Gaussian, denoted $f \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$. The observation distribution is then
 149 $\mathbb{P}(y) \sim \mathcal{N}(m(x), K(x, x') + \sigma_\varepsilon^2 \mathbf{I})$, with \mathbf{I} as identity matrix of appropriate size. Thus, given train-
 150 ing data y at x , the predictive distribution of f^* at a new input x^* is Gaussian with closed-form mean
 151 and covariance. The choice of kernel (covariance) function $k(x, x')$ encodes prior assumptions about
 152 f , while hyperparameters are typically learned by maximizing the marginal log-likelihood. How-
 153 ever, the closed-form of exact inference only works when the likelihood is Gaussian and inversion of
 154 kernel matrix presents training bottleneck. A key property of GPs, central to the design of DVA, is
 155 that the kernel $k(\cdot, \cdot)$ measures similarity solely between input data Williams & Rasmussen (2006).

156 2.2 PRIOR-DATA FITTED NETWORK (PFN)

157 PFNs (Müller et al., 2022) are neural predictors trained to approximate the *posterior predictive dis-*
 158 *tribution* (PPD) of a Bayesian model in a single forward pass. Rather than fitting a single static

dataset, a PFN is trained on multiple *synthetic datasets*— drawn from a prior over data-generating mechanisms. Given a prior distribution $p(\mathcal{D})$ over supervised learning tasks, PFNs repeatedly sample datasets $\mathcal{D}^k \cup \{(\mathbf{x}^k, \mathbf{y}^k)\} \sim p(\mathcal{D})$ for $k = 1 \dots K$ and train the model to minimize

$$\text{Negative Log-Likelihood (NLL)} \quad \ell_\theta = \sum_{k=1}^K \left[-\log q_\theta(\mathbf{y}^k \mid \mathbf{x}^k, \mathcal{D}^k) \right]. \quad (1)$$

Here, $q_\theta(\cdot)$ represents the Transformer prediction. This procedure treats entire datasets \mathcal{D} ’s as inputs and optimizes the model parameters θ to predict a held-out label conditioned on the remaining data. Thus, fitting the PPD without explicitly computing posteriors. Further, PFNs represent the output distribution using a discrete set of *buckets* (bins) for the target \mathbf{y} , essentially posing regression as a classification problem. After training, the PFN performs *amortized Bayesian inference*: given a new dataset $\mathcal{D}_{\text{train}}$ and query point x_{test} , it outputs $q_{\theta^*}(y_{\text{test}} \mid x_{\text{test}}, \mathcal{D}_{\text{train}}) \approx p(y_{\text{test}} \mid x_{\text{test}}, \mathcal{D}_{\text{train}})$ in a single forward pass, where θ^* is optimal Transformer parameters Müller et al. (2022).

2.3 LIMITATIONS OF EXISTING PFN ARCHITECTURES WITH JOINT ATTENTIONS

PFNs offer a promising framework for amortized Bayesian inference, though their application to *high-dimensional regression* has so far been relatively limited Hollmann et al. (2025); Wang et al. (2025). The common recipe of using a Transformer backbone that performs self-attention over joint (\mathbf{x}, \mathbf{y}) embeddings has a scaling issue. The design choice of representing each training example (x, y) in PFNs as a joint embedding $\text{enc}(x) + \text{enc}(y)$ can be traced back to the way attention-based models have historically treated their basic units of computation. In natural language processing, the Transformer architecture Vaswani et al. (2017) encodes each token as a self-contained representation, i.e. “token as full carrier of information”. In this lineage, PFNs adopt the same strategy by concatenating or summing input and output encodings to form a single token while removing positional encoding Müller et al. (2022). Below, we examine the this PFN recipe’s structural limitations.

Firstly, attention computation based on the standard PFN initial embedding strategy, of joint representation $\mathbf{z}_i = \text{enc}(\mathbf{x}_i) + \text{enc}(\mathbf{y}_i)$, forces the model to measure across both input features and target output values. As the input dimension grows, pairwise distances concentrate, and the margin between true and spurious neighbors of the input shrinks (the “curse of dimensionality”). Thus, variation in output \mathbf{y}_i , unrelated to input proximity, can dominate similarity calculations. Empirically, we observe significant degradation beyond about 10D input in our experiments discussed in Sec. 4.

Further, we can also analyze this dimensionality limitation from a bias perspective as the joint embedding breaks *localization*. The Transformer computes similarity (via dot-product attention) between queries and these mixed embeddings in which the label \mathbf{y}_i contributes equally. This conflicts with theoretical results Nagler (2023), which show that only local samples should influence posterior estimates. Consequently, incorporating joint input–output attention introduces additional bias, which becomes more pronounced in higher dimensions due to the concentration of pairwise distances. In view of these limitations, we propose a simple decoupled value attention (DVA) which keeps the localization intact.

3 DECOUPLED-VALUE ATTENTION

We propose **Decoupled-Value Attention (DVA)**, an input-localized attention mechanism for training PFNs. The proposed DVA is structurally aligned with GP inference by treating input \mathbf{x} and output \mathbf{y} separately at the attention stage. We enforce a strict separation of roles: attention affinities (queries and keys) are computed solely from the inputs, while the aggregated information (values) comes from the corresponding outputs— during both PFN training and prediction. Below, we explain DVA mathematically along with comparative assessment against Vanilla Attention (VA) Müller et al. (2022) and a kernel-based attention Wang & Others (2025).

Consider a PFN training dataset $\mathcal{D} = \{X, \mathbf{y}\}$ where $X \in \mathbb{R}^{N \times d}$ and $\mathbf{y} \in \mathbb{R}^{N \times 1}$ with N input samples of dimension d . In DVA we calculate query Q , key K and value V as

$$Q = W_q \varphi_x(X), \quad K = W_k \varphi_x(X), \quad V = W_v \varphi_y(\mathbf{y}), \quad (2)$$

with encoders φ_x, φ_y and trainable linear maps $W_q \in \mathbb{R}^{d \times d_k}, W_k \in \mathbb{R}^{d \times d_k}, W_v \in \mathbb{R}^{d \times 1}$. Then, attention is then computed as $\text{Att}(Q, K, V) = \text{softmax}(QK^T / \sqrt{d_k}) V$. Now, via equation 2, pro-

Table 1: Comparison of Attention Mechanisms for PFNs

Component	Vanilla	Kernel-based	DVA (ours)
Input Emb.	$\text{enc}(x_i) + \text{enc}(y_i)$	x_i, y_i separately	x_i, y_i separately
Query	From z_i	$\phi(x_i)$	From $\text{enc}(x_i)$
Key	From z_j	$\phi(x_j)$	From $\text{enc}(x_j)$
Value	From z_j	From $\text{enc}(y_j)$	From $\text{enc}(y_j)$
Limitation	Unstable in high-D	Requires kernel choice	Absent output cues

Vanilla attention is taken from PFN literature Müller et al. (2022); Hollmann et al. (2022)

posed DVA enforces that similarity is calculated purely in input space, while labels flow only through values. This is unlike VA used in PFNs, which mixes inputs and outputs in a joint embedding.

Training: During training we simulate inference by masking one or more labels from the dataset Müller et al. (2022). The unmasked pairs $\mathcal{D}_{\text{cx}} = \{(x_i, y_i)\}_{i=1}^{N_{\text{context}}}$ form the *context set*, while the masked inputs $X_{\text{te}} = \{x_j\}_{j=1}^M$ form the *queries*. From the context we build $K_{\text{tr}} = W_k \varphi_x(X_{\text{cx}})$, $V_{\text{tr}} = W_v \varphi_y(y_{\text{cx}})$. Here, X_{cx} and y_{cx} are matrix and vector forms of \mathcal{D}_{cx} respectively. Further, from the test (masked) inputs query Q_{te} in matrix form and labels are predicted by attending H_{te} to the context as :

$$Q_{\text{te}} = W_q \varphi_x(X_{\text{te}}); \quad H_{\text{te}} = \text{softmax}\left(\frac{Q_{\text{te}} K_{\text{tr}}^T}{\sqrt{d_k}}\right) V_{\text{tr}}. \quad (3)$$

A head $g(\cdot)$ maps H_{te} to a predictive distribution, and training minimizes the NLL (equation 1) of the true labels to learn parameters of the network as explained in Müller et al. (2022).

Inference: At test time, the mechanism is identical except that *training dataset* forms the *context set* and the “queries” are now the real unseen inputs i.e. we do not know the true output y for test inputs. Given a training dataset $\mathcal{D}_{\text{train}} \equiv \mathcal{D}_{\text{context}}$ for unseen function learning via GP, we obtain the predicted output with $Q_{\star} = W_q \varphi_x(X_{\star})$ for test input X_{\star} as

$$\hat{y}_{\text{test}} = g\left(\text{softmax}\left(Q_{\star} K_{\text{tr}}^T / \sqrt{d_k}\right) V_{\text{tr}}\right) \quad (4)$$

This ensures that the weight assigned to each context point’s value $v(y_i)$ depends only on the similarity between the query input $x_{\star} \in X_{\star}$ and the context input $x_i \in \mathcal{D}_{\text{train}}$, mirroring the GP’s use of an input-space kernel function, as discussed in the following subsection. The key differences between attention approaches are summarized in Table 1.

3.1 LOCALIZATION EFFECT OF DVA AND ALIGNMENT WITH GP INFERENCE

In DVA, the attention weights for a new test point x_{\star} are given by $\text{softmax}(\langle Q, K \rangle / \sqrt{d_k})$, where $\langle \cdot, \cdot \rangle$ is the standard dot product. Explicitly, attention weights are

$$\alpha_i(x_{\star}) = \frac{\exp\left(\langle W_q \varphi_x(x_{\star}), W_k \varphi_x(X_i) \rangle / \sqrt{d_k}\right)}{\sum_{j=1}^n \exp\left(\langle W_q \varphi_x(x_{\star}), W_k \varphi_x(X_j) \rangle / \sqrt{d_k}\right)} \quad (5)$$

From equation 5, it is clear that that affinities are determined entirely via relationship between the test input x_{\star} and context inputs X_i . Unlike joint embeddings $\phi(x, y)$ in VA, the labels y_i do not enter into the similarity measure and only appear downstream through the values as in equation 2. This separation implies that the weight placed on a output y_i depends solely on how well X_i aligns with x_{\star} in the projected input space. Thus, the softmax distribution $\alpha_i(x_{\star})$ concentrates mass on a neighborhood of x_{\star} because the projection matrices and encoders are trained to align nearby inputs with high value of inner product and push apart distant inputs. Consequently, altering labels (outputs) attached to distant inputs cannot affect the prediction asymptotically, which is exactly the localization property required in Theorem 5.4 of Nagler (2023). **This localization property implies that attention weights $\alpha_i(x_{\star})$ associated with context points x_i that are far from the query x_{\star} should contribute negligibly.** Below, we first present a theoretical result which proves that linear embedding-based DVA provides attention weights proportional to Mahalanobis RBF kernel using distance between query and context inputs. Then we also show that under linear separability assumptions, nonlinear embedding DVA also exhibit localization behavior. Thus, connecting the proposed DVA mechanism to the formal notion of localization discussed in Nagler (2023).

270 **Theorem 1 (DVA attention weight \propto Mahalanobis RBF kernel under linear embeddings)**
 271 Assume the input encoder is linear, i.e. $\varphi_x(\mathbf{x}) = W_x \mathbf{x}$ and the DVA query/key maps are
 272 $Q = W_q W_x \mathbf{x}$, $K = W_k W_x \mathbf{x}$. Let $A := (W_q W_x)^\top (W_k W_x)$. If A is symmetric positive definite,
 273 and define $\|\mathbf{z}\|_A = \mathbf{z}^\top A \mathbf{z}$, then for any query \mathbf{x}_* and context point \mathbf{x}_i the DVA attention weight
 274 equation 5 is proportional to a Mahalanobis RBF kernel

$$275 \quad \alpha_i(\mathbf{x}_*) \propto \exp\left(-\frac{1}{2\tau} \|\mathbf{x}_* - \mathbf{x}_i\|_A^2\right).$$

279 **Theorem 2 (DVA localization under nonlinear embeddings)** Consider a DVA-PFN with fixed
 280 query \mathbf{x}_* and context inputs $\mathbf{x}_i \in \mathcal{D}_{\text{context}}$ of size N_{context} . Suppose the input encoder $\varphi_x(\cdot)$
 281 is Lipschitz continuous, and that inner product of query Q_* and key K_i is locally separable around
 282 \mathbf{x}_* . Then, as $N_{\text{context}} \rightarrow \infty$, the total attention mass assigned to all far-away context inputs van-
 283 ishes with high probability, i.e.: $\sum_{i \in F_\varepsilon} \alpha_i(\mathbf{x}_*) \xrightarrow[N_{\text{context}} \rightarrow \infty]{\mathbb{P}} 0$. Where, $F_\varepsilon = \{i : \|\mathbf{x}_i - \mathbf{x}_*\| > \varepsilon\}$
 284 denotes the set of “far” indices for any fixed $\varepsilon > 0$.

286 Detailed proofs of both these theorems are provided in Appendix B. Beyond the theoretical guarantees,
 287 we also provide empirical evidence that, for DVA-based PFNs, the attention weights α_i decay
 288 exponentially as the Euclidean distance between the query and context inputs increases. In contrast,
 289 VA-based PFNs do not exhibit this behavior (see Fig. 4 and Fig. 5).

291 We now discuss how DVA aligns with GP inference. As discussed in Section 2.1, GPs model all
 292 possible function realizations as zero-mean Gaussians with covariance defined by a kernel, i.e.,
 293 $f \sim \mathcal{N}(\mathbf{0}, K(X, X'))$, where X is the input and $K(\cdot, \cdot)$ is the kernel matrix over input pairs. Note
 294 that parameterization of the possible function family only depends on the input. Further, for a given
 295 kernel hyperparameters, the mean prediction $\mu(\cdot)$ of GP is given as a weighted sum of training
 296 dataset outputs with weights solely depending upon inputs Williams & Rasmussen (2006):

$$297 \quad \mu(\mathbf{x}_*) = \sum_{i=1}^{N_{\text{train}}} \beta_i(\mathbf{x}_*) y_i, \quad \text{where } \beta(\mathbf{x}_*) = k(\mathbf{x}_*, X) [K(X, X) + \sigma^2 I]^{-1}. \quad (6)$$

301 Following equation 4, 5 and 6, the attention weights in DVA can be interpreted as normalized kernel
 302 weights that depend only on the inputs. As in kernel smoothing Tsai et al. (2019), the exponen-
 303 tial inner product in $\alpha(\cdot)$ of equation 5 acts as a positive kernel on the input space, with effective
 304 bandwidth governed by the scale of the projections and the $1/\sqrt{d_k}$ factor. Thus, similar to GP mean
 305 prediction, DVA predictions are obtained as weighted sums of training outputs where the weights are
 306 determined entirely by input similarity. Readers can refer to Tsai et al. (2019) for more discussion
 307 on the relationship between kernel and attention mechanism.

308 Here, we want to highlight that DVA’s softmax produces non-negative, normalized weights ($\sum \alpha_i =$
 309 1), whereas the GP coefficients $\beta_i(\cdot)$ have no positivity constraint. This limitation is mitigated by
 310 subsequent PFN layers (e.g., the final head $g(\cdot)$) and by encoding outputs in the value V , which
 311 together help adjust the DVA output toward the true GP posterior mean (see Appendix F for effect of
 312 final head and value encoder). This construction shows that DVA’s architecture implements a pre-
 313 dictor of the form “*input-only similarities produce weights, which combine label-dependent values*,”
 314 precisely matching the dependency structure of a GP.

315 Another attention choice for PFNs can be kernel-inspired attentions, which relate GP mean weights
 316 $\beta(\cdot)$ and PFN attention weights $\alpha(\cdot)$ more closely—while maintaining input localization by decou-
 317 pling input and output as in DVA. However, if the input affinities are forced through a fixed kernel
 318 function, the PFN will become kernel dependent. As discussed before, identifying the best per-
 319 forming kernel is non-trivial and often requires tailoring kernels to specific function classes Liu &
 320 Srikantha (2022). Therefore, it is not advisable to *hard-wire* a particular kernel in PFN design.

321 To test the effect of kernel dependence on PFN performance, we design a simple Gaussian kernel
 322 (radial basis function, RBF) similarity for attention Williams & Rasmussen (2006). We emphasize
 323 that this formulation is not equivalent to exact GP kernel regression but rather introduces RBF-style
 distance-based affinities in place of dot-product similarities Choromanski et al. (2022); Shen et al.

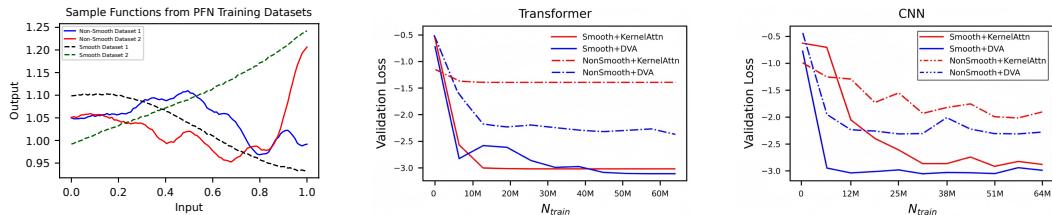


Figure 1: **Effect of Kernel in PFN Attention:** Sample functions from 1D PFN training datasets (Left). Validation loss for smooth and non-smooth functions with Kernel-based Attention and DVA with Transformer (Middle) and CNN (Right).

(2021). The kernel-based attention assigned to a query input \mathbf{x}_* is then given by

$$\alpha_i(\mathbf{x}_*) = \frac{\exp(-\gamma \|W_q \varphi_x(\mathbf{x}_*) - W_k \varphi_x(X_i)\|^2)}{\sum_{j=1}^n \exp(-\gamma \|W_q \varphi_x(\mathbf{x}_*) - W_k \varphi_x(X_j)\|^2)} \quad (7)$$

This distance-based attention in equation 7 is more aligned to the RBF kernel; however, it loses flexibility to learn input-localization via training. Thus, the model inherits kernel and γ dependence, which may not be suitable for a broader class of functions. To validate this limitation of the kernel-based attention, we test PFN performance with both DVA and this attention. We attempt to learn two classes of functions with different levels of smoothness as shown in Figure 1. The results demonstrate that while kernel-based attention can match DVA in effectively learning smooth functions aligned with the RBF kernel, it underperforms on non-smooth functions generated using the linear-periodic kernel. **Additionally, we favor DVA over Kernel attention for its superior computational efficiency. By exploiting structural sparsity and hardware-optimized dot products, DVA reduces the computational cost upto four times of dense Kernel attention.** We also observed that for RBF training priors, Kernel attention matches performance of DVA while PFN training per epoch is at least four times slower (See Appendix E) for more.

4 NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical experiments demonstrating the behavior of PFNs equipped with the proposed DVA and with CNN backbone. The results show that with DVA, PFNs a) train with lower validation loss or residual bias, b) **CNN, RNN, LSTM and Transformer** perform comparably as architecture, underscoring that attention governs training behavior more than backbone architecture and c) remain scalable for learning in complex physical systems. These findings provide empirical support for the theoretical arguments in Section 3.1. Complete experimental details, including architecture choices, hyperparameter selection, and data generation procedures, are provided in the Appendix C, while additional results are provided in Appendix D.

4.1 BIAS REDUCTION AND BACKBONE ARCHITECTURE AGNOSTIC PFNs

To assess the bias reduction capability of the proposed DVA, we perform PFN learning and testing for datasets of increasing input dimensionality (1D, 2D, 5D, and 10D). Figure 2 plots the validation loss as a function of the training set size N_{train} for CNN and Transformer backbones equipped with both VA and the proposed DVA.

Bias Reduction: Across all input dimensions, the curves with VA (dashed lines) saturate at visibly higher loss values, revealing a persistent residual bias that does not diminish even with large training data. In contrast, DVA-based PFNs (solid lines) consistently converge to lower loss plateaus, demonstrating that DVA mitigates this bias, with negligible increase in variance. The gap becomes especially pronounced in higher dimensions (5D and 10D), where VA-equipped models remain strongly biased, while DVA-equipped models continue to benefit from additional training samples. Further, In the 10D case, we observe an even more striking phenomenon: both CNN+VA and Transformer+VA curves flatten almost immediately after training begins, indicating that the models essentially stop learning. This rapid saturation at high validation loss reflects that VA-equipped PFNs become unable to adapt in higher-dimensional regimes, effectively collapsing to a biased estimator. In contrast, their DVA counterparts continue to decrease loss with additional training data, showing that DVA alleviates this high-dimensional learning obstruction. Another noteworthy trend is visible

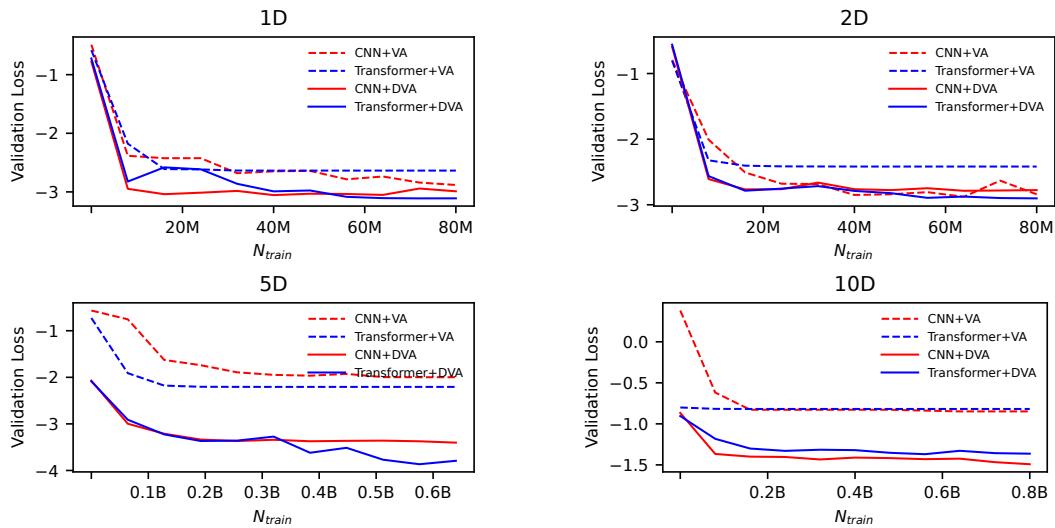


Figure 2: **Bias Reduction in PFN Training:** Validation loss (NLL) behavior with number of training points for various PFNs (Number of training points = epochs \times steps per epoch \times batch-size \times dataset size. Dataset size is 100 for 1D/2D, 400 for 5D and 500 for 10D PFN). Validation loss was calculated on 64 out-of-sample datasets and Transformer + VA is taken from Müller et al. (2022).

at the beginning of training. For low-dimensional tasks (1D and 2D), the initial validation loss is nearly identical across VA and DVA models, with improvements arising only as training progresses. However, in the higher-dimensional cases (5D and 10D), DVA-equipped PFNs already begin with a substantially lower validation loss compared to their VA counterparts, and this advantage compounds as more data are observed. This behavior suggests that DVA not only accelerates convergence but also reduces the asymptotic bias floor, thereby enabling PFNs to faithfully approximate the target physical mappings. To ensure robustness, the 10-dimensional (10D) models were trained multiple times. The corresponding results are provided in the Appendix D.

Backbone Architecture Agnostic PFNs: To analyze the effect of backbone architecture on PFN performance, we study 1D, 2D, 5D, and 10D inputs for two network architectures: Transformer Müller et al. (2022) and CNN along with RNN and LSTM backbones on 1D and 10D input spaces. Performance is measured using mean squared error (MSE) and validation loss at convergence (Final Val Loss), summarized in Table 2. GP results are also included as a baseline for MSE. Each backbone is trained with both VA and the proposed DVA. The results show that attention choice has a larger effect than backbone choice. For instance, at 5D, switching a Transformer from VA to DVA reduces MSE from 2.43×10^{-4} to 2.84×10^{-5} , closer to the GP baseline (3.42×10^{-6}). The validation loss also improves from -2.04 to -4.05 —an absolute gain of 2.01 ($\approx 98.5\%$ relative improvement)—while the CNN-Transformer spread under VA is only 0.25 ($\approx 10.9\%$). Similarly, at 10D, CNN and Transformer MSEs drop by nearly an order of magnitude under DVA, far exceeding the architecture gap under VA. These results indicate that CNN- and Transformer-based PFNs perform comparably once the attention mechanism is specified, with DVA further pushing performance toward GP quality in higher dimensions. Additionally, Figure 3 shows that LSTM and RNN backbones can be trained successfully as PFNs, and DVA consistently outperforms vanilla attention in 10D settings across all architectures, while matching the performance in 1D.

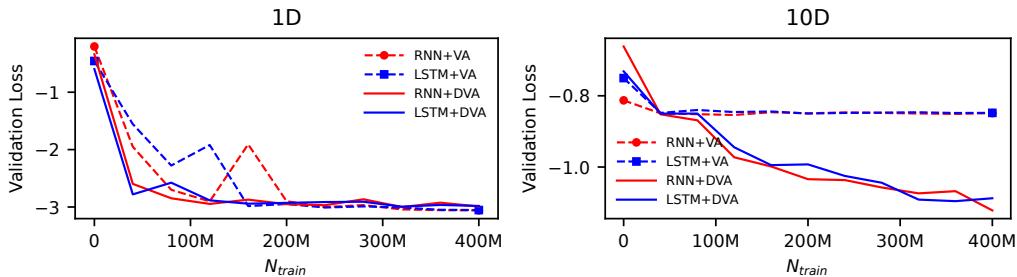


Figure 3: **Comparison of validation loss vs. training points (N_{train}) for RNN and LSTM architectures with VA and DVA attentions.**

432 Table 2: Mean squared error (MSE) and final validation loss across input dimensions.
433

434	435	MSE				Final Val Loss					
		436	VA		DVA		VA		DVA		
			CNN	Tx	CNN	Tx	CNN	Tx	CNN	Tx	
437	438	1D	1.02e-04	1.07e-04	1.28e-04	1.37e-04	1.23e-04	-2.88	-2.63	-3.05	-3.11
439	440	2D	1.29e-04	1.23e-04	1.78e-04	2.26e-04	1.97e-04	-2.91	-2.41	-2.77	-2.91
441	442	5D	3.42e-06	7.59e-05	2.43e-04	5.04e-05	2.84e-05	-2.29	-2.04	-3.56	-4.05
443	444	10D	3.47e-04	3.55e-03	3.56e-03	5.49e-04	4.98e-04	-0.81	-0.81	-1.51	-1.37

445 Table 3: In-distribution performance of DVA vs. VA across diverse GP priors ($N_{\text{context}} = 80$).
446

447 Training Prior	DVA (MSE)	VA (MSE)	Prior Details (ℓ : length-scale)
Smooth	1.90e-04	3.16e-04	Fixed lengthscale: $\ell = 0.25$
Wiggly	4.19e-03	4.26e-02	Fixed lengthscale: $\ell = 0.03$
Mixed	1.39e-02	1.71e-02	Sum of two kernels with $\ell_1 \sim U(0.1, 0.5)$; $\ell_2 \sim U(0.01, 0.04)$
All	2.99e-03	2.43e-02	Per-batch random sampling from the priors above

450 **Comparison with GP:** In line with the observations made by authors in Müller et al. (2022), our
451 experiments show that PFNs achieve performance comparable to exact GP inference. As seen in
452 Table 2, PFNs with the proposed DVA consistently move closer to GP performance than those with
453 VA—for instance, in the 10D setting, DVA reduces the MSE from 3.55e-03 (CNN-VA) to 5.49e-04,
454 compared to the GP baseline of 3.47e-04. Importantly, the performance differences between archi-
455 tectures (CNN and Transformer) are relatively minor compared to the gains achieved by changing
456 the attention mechanism, further reinforcing the hypothesis that the effect of attention on PFN per-
457 formance is far greater than architecture.

458 We also evaluated the behavior of PFN inference as a function of N_{context} , i.e., *How PFN performance*
459 *improves as the number of available samples increases at inference time?*. As shown in
460 Figure 7, PFNs (both CNN and Transformer-based) with the proposed DVA exhibit a consistent
461 decrease in error with increasing context, closely matching the performance of exact GPs in low-
462 dimensional settings. In higher dimensions, GPs maintain a slight advantage, consistent with the
463 trends observed in the training performance analysis. It is important to note that the observed per-
464 formance gap between 5D and 10D (for both PFNs and GP) arises largely because of limited samples
465 per dataset for 10D model (400 for 5D and 500 for 10D). Similar plots for 1D, 2D PFNs MSE, along
466 with MAE and maximum error for all-dimensional PFNs, are given in the Appendix D.

467 To test DVA’s robustness beyond a single function class, we trained and evaluated both DVA and
468 VA on three distinct GP priors generating Smooth, Wiggly (high-frequency), and Mixed complexity
469 functions from RBF kernel. Table 3 shows that DVA consistently outperforms VA across all priors.
470 This confirms DVA’s architecture is robust and not over-tuned to a specific prior. The higher MSEs
471 for the Wiggly and Mixed priors are expected, as their functional complexity presents an intrinsically
472 more challenging learning task for a fixed context size and number of training points.

473 **Uncertainty Quantification & Post-Hoc Localization:** In the Appendix H we preovide results
474 indicating that proposed DVA PFN can provide calibrated predictive uncertainty distributions while
475 in Appendix K we compare post-hoc localization Nagler (2023) with the proposed method. Results
476 indicate that in low-dimensions post-hoc localization reduces error and can even slightly outperform
477 DVA. However, in higher-dimensions where VA PFN doesn’t get trained, localization provides no
478 benefit. Thus, emphasizing the need of DVA’s architectural locality.

480 4.2 PHYSICS EQUATION LEARNING

481 **Rosenbrock Function:** To benchmark our method against a well-established baseline, we conduct
482 experiments on the 5-dimensional Rosenbrock function Rosenbrock (1960), a standard test problem
483 in optimization that is often interpreted as a nonlinear potential energy landscape with a curved
484 valley structure Akian et al. (2022). GPs are a natural choice for such comparisons because they
485 provide a flexible non-parametric model with uncertainty quantification, and they have been widely

486
 487 **Table 4: Voltage prediction on a 64D power-flow test bed:** Trained on 500 samples; evaluated on
 488 4,500 test samples. The time results (t) are for evaluating on all 32 node voltages, and the MSE and
 489 MAE correspond to the maximum values across the buses.

Δ Load	Exact GP			CNN + DVA			Transformer + DVA		
	MSE	MAE	t	MSE	MAE	t	MSE	MAE	t
5%	2.2e-7	0.0004	10.88	4.5e-7	0.0005	0.13	1.5e-6	0.001	0.17
10%	3.5e-7	0.0004	10.94	1.7e-6	0.001	0.13	2.8e-6	0.001	0.17
30%	3.2e-7	0.0005	11.61	1.5e-5	0.003	0.14	1.6e-5	0.003	0.17
50%	2.2e-7	0.0003	11.89	4.2e-5	0.005	0.13	4.4e-5	0.005	0.17

495
 496 benchmarked on Rosenbrock and related test functions in the GP literature Xu et al. (2025). Results
 497 indicate that 5D PFN with Transformer+DVA shows MSE 6.8e-4 and CNN+DVA achieves MSE of
 498 1.6e-3, without any retraining, see Table 9 in Appendix D for detailed results.

499 **Power Flow Learning:** In this experiment, we model the IEEE 33-bus distribution system by treat-
 500 ing the real and reactive power demands at each of the 32 load buses as uncertain inputs (same
 501 experiment design as described in Pareek & Nguyen (2021); Liu & Srikantha (2022)). This results
 502 in a 64-dimensional input space (32 active + 32 reactive loads). Now the learning task is to predict
 503 the corresponding steady-state bus voltage magnitude—effectively learning the nonlinear AC power
 504 flow mapping from loads to voltages i.e. Voltage = $f(\text{Loads})$ (See equation 9 in Appendix A.2).
 505 Table 4 benchmarks power flow surrogates under varying load perturbations from 5% to 50%. Exact
 506 GP achieves the lowest MSE and MAE values across all cases, but requires training 32 times (one
 507 for each node), which becomes *infeasible for repeated queries under changing load conditions*. In
 508 contrast, both PFNs CNN+DVA and Transformer+DVA trade a modest increase in error for dramatic
 509 efficiency gains—over 80 \times faster than GPs—while maintaining voltage prediction accuracy at the
 510 order of 10 $^{-3}$, sufficient for practical grid analysis. Further, the prediction error decreases as more
 511 training (context) samples are provided, with both CNN+DVA and Transformer+DVA converging
 512 to near-identical performance as illustrated in Figure 9 (Appendix D). These results highlight that
 513 while GPs remain the gold standard for accuracy, DVA-equipped PFNs offer a scalable alternative,
 514 enabling high-dimensional, uncertainty-aware power flow learning in real time for complex net-
 515 worked systems. Moreover, because voltages are in per-unit, MSE and MAE values around 10 $^{-3}$
 516 are practically acceptable. In real systems, measurement devices typically have least counts of 10 $^{-3}$
 517 p.u., so an error of 10 $^{-3}$ in a 1 kV system corresponds to just 1 V Molzahn et al. (2019). We also
 518 note that, consistent with the 10D case in Figure 2, PFNs equipped with vanilla attention failed to
 519 train sufficiently for this 64D problem and thus did not yield meaningful results. Training time for
 520 64D models is approximately 14 hours for both Transformer and CNN-based PFNs on NVIDIA
 521 4500ADA GPU.

5 CONCLUSIONS AND FUTURE WORK

522 In this work, we propose Decoupled-Value Attention (DVA) to train Prior-Data Fitted Networks
 523 (PFNs), particularly for GP inference for high-dimensional inputs. Through experimental studies,
 524 we show that the proposed DVA halves the residual bias in PFN learning for 5D and 10D settings,
 525 and enables PFNs constructed with either CNNs or Transformers to achieve comparable accuracy
 526 once equipped with the attention mechanism. Leveraging these advantages, DVA enables PFNs to
 527 serve as highly efficient surrogates for high-dimensional power flow learning. On the IEEE 33-
 528 bus system with 64-dimensional load variations, DVA-equipped PFNs attained voltage prediction
 529 accuracy in the order of 10 $^{-5}$ while delivering more than an 80 \times speedup over exact GP. **Our**
 530 **analysis, grounded in** Nagler (2023) **locality requirement, shows that input-only attention offers**
 531 **a principled advantage over joint** (x, y) **-attention in settings where consistent inference demands**
 532 **vanishing influence from far-away inputs. By removing label-driven cross-terms, DVA enforces**
 533 **this locality, while its strict input focus may be limiting in inherently nonlocal tasks (e.g., long-**
 534 **range time-series like weather). Thus DVA clarifies when input-local attention is beneficial and**
 535 **when joint attention may still be necessary.** Future work will focus on scaling PFNs to even larger
 536 power networks and higher-dimensional uncertainty spaces, particularly in the context of power flow
 537 uncertainty quantification and planning problems. Together, these efforts can push PFNs toward
 538 practical deployment for real-time, uncertainty-aware decision making in modern power systems.

540 REFERENCES
541

542 Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian
543 learning curve extrapolation using prior-data fitted networks. In *Advances in Neural Information
544 Processing Systems 37*. NeurIPS, 2023.

545 J-L Akian, Luc Bonnet, Houman Owhadi, and Éric Savin. Learning “best” kernels from data in
546 gaussian process regression. with application to aerodynamics. *Journal of Computational Physics*,
547 470:111595, 2022.

548

549 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
550 next-generation hyperparameter optimization framework, 2019. URL <https://arxiv.org/abs/1907.10902>.

551

552 Neil Barry et al. Risk-aware control and optimization for high-renewable power grids. *arXiv preprint
553 arXiv:2204.00950*, 2022.

554

555 Long Minh Bui, Tho Tran Huu, Duy Dinh, Tan Minh Nguyen, and Trong Nghia Hoang.
556 Revisiting kernel attention with correlated gaussian process representation. *arXiv preprint
557 arXiv:2502.20525*, 2025.

558

559 Minghua Chen, Xiang Pan, Jiawei Zhao, and Min Zhou. ML opf wiki: Machine learning for solving
560 power flow equations. https://energy.hosting.acm.org/wiki/index.php/ML_OPF_wiki#Machine_Learning_for_Solving_Power_Flow_Equations, 2025.
561 Accessed: 2025-08-24.

562

563 Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
564 Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
565 Colwell, and Adrian Weller. Rethinking attention with performers, 2022. URL <https://arxiv.org/abs/2009.14794>.

566

567 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea
568 Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
569 David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
570 formers. In *International Conference on Learning Representations (ICLR)*, 2021.

571

572 Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin. Powermodels.jl: An
573 open-source framework for exploring power flow formulations. In *2018 Power Systems Compu-
574 tation Conference (PSCC)*, pp. 1–8, June 2018. doi: 10.23919/PSCC.2018.8442948.

575

576 Constantinos Daskalakis, Petros Dellaportas, and Aristeidis Panos. How good are low-rank approx-
577 imations in gaussian process regression? In *Proceedings of the AAAI Conference on Artificial
578 Intelligence*, volume 36, pp. 6463–6470, April 2022. doi: 10.1609/aaai.v36i6.20598.

579

580 David Duvenaud. The kernel cookbook. <https://www.cs.toronto.edu/~duvenaud/cookbook/>, n.d. Accessed: 2025-09-24.

581

582 Noah Hollmann, Samuel Müller, Eyke Hüllermeier, and Asja Fischer. Learning to learn with prior-
583 data fitted networks. In *International Conference on Learning Representations (ICLR)*, 2022.

584

585 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
586 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
587 foundation model. *Nature*, 637(8045):319–326, jan 2025. doi: 10.1038/s41586-024-08328-6.

588

589 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
590 rnns: Fast autoregressive transformers with linear attention. In *Advances in Neural Information
Processing Systems (NeurIPS)*, 2020.

591

592 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
593 as algorithms: Generalization and stability in in-context learning. In *Proceedings of the 40th
International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
Research*, pp. 19565–19594. PMLR, jul 2023.

594 Jingyuan Liu and Pirathayini Srikantha. Kernel structure design for data-driven probabilistic load
 595 flow studies. *IEEE Transactions on Smart Grid*, 13(4):2679–2689, 2022. doi: 10.1109/TSG.
 596 2022.3159579.

597 Daniel K Molzahn, Ian A Hiskens, et al. A survey of relaxations and approximations of the power
 598 flow equations. *Foundations and Trends® in Electric Energy Systems*, 4(1-2):1–221, 2019.

600 Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
 601 formers can do bayesian inference. In *International Conference on Learning Representations*
 602 (*ICLR*), 2022.

603 Thomas Nagler. Statistical foundations of prior-data fitted networks. In *Proceedings of the 40th*
 604 *International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*
 605 *Research*, pp. 25660–25676. PMLR, jul 2023.

607 Parikshit Pareek and Hung D Nguyen. A framework for analytical power flow solution using gaus-
 608 sian process learning. *IEEE Trans. on Sustainable Energy*, 13(1):452–463, 2021.

609 Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng Kong.
 610 Random feature attention. In *International Conference on Learning Representations*, 2021.

612 David Rolnick, Priya L Donti, Lynn H Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran,
 613 Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, et al.
 614 Tackling climate change with machine learning. *ACM Computing Surveys (CSUR)*, 55(2):1–96,
 615 2022.

616 H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function. *The*
 617 *Computer Journal*, 3(3):175–184, 1960. doi: 10.1093/comjnl/3.3.175.

619 Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
 620 Attention with linear complexities. In *Proceedings of the IEEE/CVF winter conference on appli-*
 621 *cations of computer vision*, pp. 3531–3539, 2021.

622 Bendong Tan, Tong Su, Yu Weng, Ketian Ye, Parikshit Pareek, Petr Vorobev, Hung Nguyen, Junbo
 623 Zhao, and Deepjyoti Deka. Gaussian processes in power systems: Techniques, applications, and
 624 future works. *arXiv preprint arXiv:2505.15950*, 2025.

626 Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
 627 Salakhutdinov. Transformer dissection: a unified understanding of transformer’s attention via
 628 the lens of kernel. *arXiv preprint arXiv:1908.11775*, 2019.

629 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 630 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 631 *mation Processing Systems*, volume 30. Curran Associates, Inc., 2017.

632 Author Wang and Others. Cross-kernel attention for efficient sequence modeling. In *Proceedings of*
 633 *the AAAI Conference on Artificial Intelligence*, 2025.

635 Yuxin Wang, Botian Jiang, Yiran Guo, Quan Gan, David Wipf, Xuanjing Huang, and Xipeng Qiu.
 636 Prior-fitted networks scale to larger datasets when treated as weak learners. In *Proceedings of The*
 637 *28th International Conference on Artificial Intelligence and Statistics*, volume 258 of *Proceedings*
 638 *of Machine Learning Research*, pp. 1090–1098. PMLR, may 2025.

639 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
 640 volume 2. MIT press Cambridge, MA, 2006.

642 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, and et al. Nyströmformer: A nyström-
 643 based algorithm for approximating self-attention. In *Proceedings of the 38th International Con-*
 644 *ference on Machine Learning (ICML)*, 2021.

645 Zhitong Xu, Haitao Wang, Jeff M. Phillips, and Shandian Zhe. Standard gaussian process is all you
 646 need for high-dimensional bayesian optimization. In *The Thirteenth International Conference on*
 647 *Learning Representations*, 2025.

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 Appendix

A PHYSICS EQUATION BENCHMARKS

A.1 ROSENBROCK FUNCTION

For our baseline experiments, we use the 5D-dimensional Rosenbrock function, defined as Rosenbrock (1960)

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right], \quad \mathbf{x} \in [-1, 1]^d, \quad d = 5. \quad (8)$$

We normalize the input vectors \mathbf{x} to the unit hypercube $[0, 1]^5$ before training, and outputs are standardized using Z -score normalization. For GP testing, we employ a Gaussian process surrogate with a RBF kernel with automatic relevance determination (ARD) length-scales Williams & Rasmussen (2006).

A.2 AC POWER FLOW PROBLEM

The alternating current power flow (ACPF) problem is fundamental to power grid analysis, as it computes the steady-state voltages, currents, and power flows that satisfy Kirchhoff's laws under given nodal injections. Unlike ACOPF, which optimizes generator set-points, ACPF focuses on feasibility by solving the nonlinear power flow equations, which are given as:

$$P_i = \Re \left\{ V_i \sum_{j \in N} Y_{ij}^* V_j^* \right\}, \quad Q_i = \Im \left\{ V_i \sum_{j \in N} Y_{ij}^* V_j^* \right\}, \quad \forall i \in N, \quad (9)$$

where P_i and Q_i are the real and reactive power injections at bus i , V_i is the complex bus voltage, and Y_{ij} are the elements of the bus admittance matrix.

In our setting, we explicitly consider uncertainty at each bus in both real and reactive power injections. For an IEEE 33-bus system Pareek & Nguyen (2021); Liu & Srikantha (2022), with the first bus designated as the slack bus (zero load), this leads to a 64-dimensional uncertainty input vector capturing nodal variability across all other buses. We follow the standard ACPF model used in PowerModels Coffrin et al. (2018), and we use `compute_ac_pf` function of `PowerModels.jl` to generate dataset.

A.2.1 POWER FLOW LEARNING WITH GPs

In the power flow learning setting, the goal is to approximate the mapping from net load vectors to system states such as bus voltages (magnitude and angle). This mapping, though implicitly defined by the nonlinear power flow equations (equation 9), is treated here as a supervised regression task where the net load serves as input and the voltage response as output.

We adopt a GP model to capture this relationship:

$$y(\mathbf{x}) = f_s(\mathbf{x}) + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma_\varepsilon^2), \quad (10)$$

where $y(\mathbf{x})$ is the observed voltage at a node for load vector \mathbf{x} . With GP priors, $y(\mathbf{x}) \sim \mathcal{GP}(0, K(\mathbf{x}, \mathbf{x}) + \sigma_\varepsilon^2 I)$, and the kernel K encodes correlations between operating points. Owing to the smoothness of voltages as a function of load, the squared exponential kernel has been widely used in prior work Tan et al. (2025).

GP-based approximations have been shown to outperform analytically approximated linearized models in capturing power flow uncertainty Pareek & Nguyen (2021) and are favored over other learning methods such as DNN due to closed-form approximation nature of GP, and predictive variance availability etc. For more details on power flow modeling and GP surrogate of it, readers can refer to Tan et al. (2025).

702 B PROOF OF DVA LOCALIZATION THEOREM

704 This section provides the full proof of Theorem 1 and Theorem 2 and an additional corollary covering
 705 the linear-embedding case, where the DVA logit are shown to be a Mahalanobis RBF kernel.

706 **Proof of Theorem 1.** Assume $u(\mathbf{x}) = W_q W_x \mathbf{x}$ and $v(\mathbf{x}) = W_k W_x \mathbf{x}$, and define $A = (W_q W_x)^\top (W_k W_x)$. Consider A is symmetric and positive definite (e.g. Consider a case where
 707 $W_q = W_k$ with full rank W 's), then for any context point \mathbf{x}_i ,

$$710 \quad \ell_i = \langle Q_\star, K_i \rangle = \mathbf{x}_\star^\top A \mathbf{x}_i = \frac{1}{2} (\|\mathbf{x}_\star\|_A^2 + \|\mathbf{x}_i\|_A^2 - \|\mathbf{x}_\star - \mathbf{x}_i\|_A^2),$$

712 with $\|z\|_A^2 = z^\top A z$ being energy norm. Exponentiating and dividing by temperature τ ($\sqrt{d_k}$ in our
 713 case) gives

$$714 \quad \exp(\ell_i/\tau) = \exp\left(\frac{\|\mathbf{x}_\star\|_A^2 + \|\mathbf{x}_i\|_A^2}{2\tau}\right) \cdot \exp\left(-\frac{\|\mathbf{x}_\star - \mathbf{x}_i\|_A^2}{2\tau}\right).$$

716 Up to per-point norm factors, the attention weight from equation 5 satisfies

$$717 \quad \alpha_i(\mathbf{x}_\star) \propto \exp\left(-\frac{1}{2}\|\mathbf{x}_\star - \mathbf{x}_i\|_A^2\right).$$

719 Hence, DVA reduces to a Mahalanobis RBF kernel and is therefore automatically local: the attention
 720 weights decay exponentially with distance. \square

721 **Proof of Theorem 2.** Fix a query \mathbf{x}_\star and context inputs $\{\mathbf{x}_i\}_{i=1}^{N_{\text{context}}}$. Let, $u(x) =$
 722 $W_q \varphi_x(x)$, $v(x) = W_k \varphi_x(x)$. Consider the query-key inner product as:

$$724 \quad \ell_i = \langle u(\mathbf{x}_\star), v(\mathbf{x}_i) \rangle, \quad \alpha_i(\mathbf{x}_\star) = \frac{\exp(\ell_i)}{\sum_{j=1}^{N_{\text{context}}} \exp(\ell_j)}.$$

726 For a fixed $\varepsilon > 0$, define the sets of near and far indices

$$727 \quad N_\varepsilon = \{i : \|\mathbf{x}_i - \mathbf{x}_\star\| \leq \varepsilon\}, \quad F_\varepsilon = \{i : \|\mathbf{x}_i - \mathbf{x}_\star\| > \varepsilon\}.$$

729 By the local-separation of inner product assumption, there exist constants $\gamma \in \mathbb{R}$ and $\delta > 0$ such
 730 that $\ell_i \geq \gamma$ ($i \in N_\varepsilon$), and $\ell_j \leq \gamma - \delta$ ($j \in F_\varepsilon$). Hence, considering each exponent at bound

$$732 \quad \sum_{j \in F_\varepsilon} \exp(\ell_j) \leq |F_\varepsilon| e^{\gamma - \delta}, \quad \sum_{i \in N_\varepsilon} \exp(\ell_i) \geq |N_\varepsilon| e^\gamma.$$

734 Using these inequalities in the definition of the softmax weights yields

$$736 \quad \sum_{j \in F_\varepsilon} \alpha_j(\mathbf{x}_\star) = \frac{\exp(\ell_i)}{\sum_{i \in N_\varepsilon} \exp(\ell_i) + \sum_{j \in F_\varepsilon} \exp(\ell_j)} \leq \frac{\exp(\ell_i)}{\sum_{i \in N_\varepsilon} \exp(\ell_i)} = \frac{|F_\varepsilon| e^{\gamma - \delta}}{|N_\varepsilon| e^\gamma} = \frac{|F_\varepsilon|}{|N_\varepsilon|} e^{-\delta}.$$

739 Therefore, as context length goes to infinity $N_{\text{context}} \rightarrow \infty$, local samples $|N_\varepsilon| \rightarrow \infty$ in probability
 740 while $|F_\varepsilon|/|N_\varepsilon|$ remains bounded (F_ε is complement of N_ε). Therefore the right-hand side
 741 converges to 0 in probability, and thus

$$742 \quad \sum_{j \in F_\varepsilon} \alpha_j(\mathbf{x}_\star) \xrightarrow[N_{\text{context}} \rightarrow \infty]{\mathbb{P}} 0.$$

744 This proves that DVA attention becomes fully input-local as context size grows. \square

746 **Note[Local Separability Assumption]:** The local-separability assumption is generally mild and
 747 naturally satisfied when the encoder φ_x preserves the local geometry of the input space, i.e., when
 748 nearby inputs remain close in the embedding and distant inputs remain well separated. This typically
 749 holds for smooth, Lipschitz neural encoders such as MLPs or Fourier-feature mappings applied to
 750 regression tasks with locally regular structure. In contrast, the assumption may fail when the un-
 751 derlying task or encoder is inherently *nonlocal*—for example, when the target function is periodic,
 752 symmetric, or globally dependent, or when the encoder distorts geometry through aliasing or col-
 753 lapsed. Simple cases include encoder *collapse* (e.g., when nonlinearities saturate and map many
 754 inputs to nearly the same vector) and *extreme compression* (e.g., a narrow bottleneck that forces
 755 very different inputs to share the same low-dimensional code). In these situations, distant inputs
 756 may appear artificially similar to the query, breaking the monotonic relationship between distance
 757 and attention.

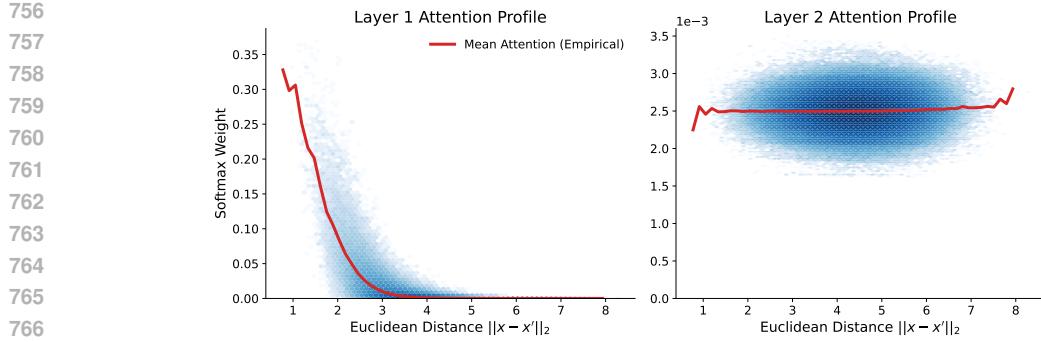


Figure 4: In the first layer, we can clearly see that as the Euclidean distance increases, the softmax weight decreases exponentially, clearly showing that the DVA mechanism enforces localization. Localization is enforced in the first layer, and since layer 2 is the last layer of the model, which outputs the exact values, the softmax values are all minimal and closer to each other, suggesting the last layer averages the result for proper PPD approximation. Essentially, Layer 1 performs the “Local Smoothing” (gathering information from neighbors). Layer 2 performs “Feature Mixing” (processing the gathered information). Since Layer 1 has already gathered the local information into the latent vector, Layer 2 no longer needs to be spatially local; it can attend globally or uniformly to refine the prediction. This provided empirical evidence of the DVA localization theorem.

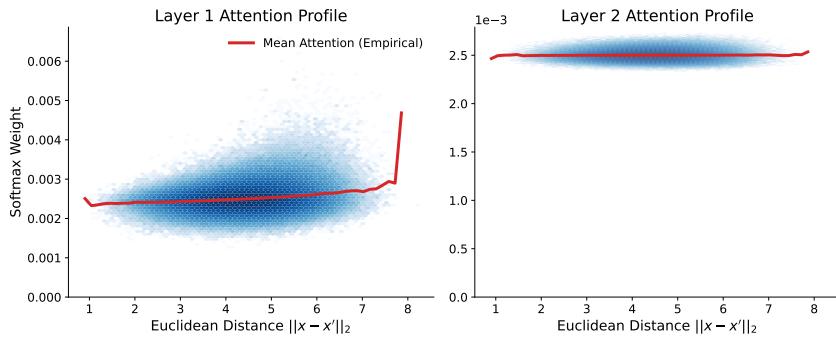


Figure 5: In contrast to the DVA, the standard VA Transformer assigns near-uniform attention weights across the entire input domain (flat trend lines). This confirms that without explicit localization through architecture changes (which we made in DVA), the model defaults to global averaging rather than local interpolation. Attention weights in both layers remain effectively uniform regardless of input distance, empirically validating Theorem 6.3 of Naglar 2023.

C IMPLEMENTATION AND ARCHITECTURAL DETAILS

Synthetic Prior Data Generation: To assess different attention mechanisms in Prior-Data Fitted Networks (PFNs), we use synthetic datasets generated from GP priors, following Müller et al. (2022). Each regression dataset consists of input–output pairs (x, y) , with inputs sampled uniformly and outputs drawn from a multivariate Gaussian with an RBF kernel having lengthscale, variance (output scale), and observation noise variance as hyperparameters. The inputs are normalized using Z-score normalization, while outputs are shifted to a range of 0.8–1.2 for all datasets.

For classification-based objectives, the continuous output space is discretized into buckets derived from quantiles of GP-sampled outputs Müller et al. (2022). Each bucket corresponds to a categorical class index, allowing regression-style PFN training to be cast into classification under a Riemannian distribution loss formulation. This strategy preserves ordering structure while making outputs compatible with categorical training setups. See Müller et al. (2022) for more information in this.

Table 5: Number of buckets for different input dimensions PDFs.

Dimensions	1D	2D	5D	10D	64D
Number of Buckets	100	100	500	500	500

810
Transformer Architecture: We used a Transformer architecture where input features and targets
811 are first projected into a shared embedding space and then processed through a series of encoder
812 blocks combining attention, feedforward layers, residual connections, and layer normalization. The
813 model’s hyperparameters, includes the model width (embedding size), number of attention heads,
814 number of encoder blocks, and hidden dimension of the feedforward layers and all parameters are
815 initialized using Xavier uniform initialization.

816
CNN-Attention Architecture: The CNN-attention model also encodes features and targets into a
817 shared embedding space using linear layers. The embeddings are then processed through a stack of
818 convolutional-attention blocks, where each block applies single dimension depthwise convolutions
819 followed by attention, combined with residual connections and layer normalization. Finally, a small
820 DNN head maps the processed embeddings to the model outputs. Key hyperparameters are model
821 width, number of layers, and kernel size.

822
Hyperparameters Selection: To ensure fair evaluation across architectures and embedding dimen-
823 sions, we employed Optuna Akiba et al. (2019) for automated hyperparameter tuning. Key pa-
824 rameters such as model width, hidden dimension size, number of attention blocks, number of heads,
825 and dropout rate were jointly optimized, with AdamW and a linear warmup followed by step-wise
826 decay. Each trial involved computing training and validation losses on PFN tasks, and Optuna’s
827 pruning strategies enabled efficient exploration of the search space. The best-performing configu-
828 rations were selected based on initial validation loss over 1000 trials, while training loss was also
829 tracked to assess stability.

830
831 Table 6: Transformer Hyperparameter search ranges used in Optuna.

832

Model Width	Hidden Dim	Attention Blocks	Heads	Dropout
32–256	128–1024	1–4	2–8	0.0–0.5

833
834 Table 7: CNN Hyperparameter search ranges used in Optuna.

835

Model Width	Layers	Kernel Size
32–256	1–6	3, 5, 7

836
837 Table 8: Number of trainable parameters across input dimensions (same for VA and DVA).

838

Model	1D	2D	5D	10D
CNN	9,060	9,092	36,116	36,276
Tx	316,645	316,673	878,198	688,854

839
840 Table 9: Comparison of MSE values for different models with increasing training points for Rosen-
841 brock Function approximation.

842

Training Points	GP	CNN+DVA	Transformer+DVA
10	1.02e-2	8.65e-3	9.12e-3
50	5.76e-3	5.41e-3	4.01e-3
100	3.92e-4	4.13e-3	2.41e-3
200	7.70e-5	3.06e-3	1.84e-3
500	1.00e-7	1.61e-3	6.83e-4

D ADDITIONAL RESULTS

843
844 Figure 6 presents the validation loss curves for five different models trained on the 10-dimensional
845 input setting, plotted against the number of training samples N_{train} . Each curve represents the mean
846 validation loss over six independent training runs, with shaded regions indicating the minimum and
847 maximum loss values across these runs, illustrating the variability and robustness of the training
848 process. As observed, the CNN + VA and Transformer + VA models show poorer training perfor-
849 mance, consistent with the results discussed in the main paper. In contrast, the CNN + DVA and
850 Transformer + DVA models exhibit significantly improved and more stable training behavior. These
851 findings highlight the robustness of our implementation.

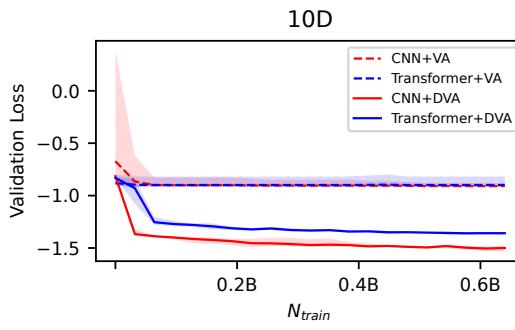


Figure 6: Robustification study for training 10D PFNs. Curves show the mean validation loss over 6 runs; shaded regions represent the minimum and maximum loss values across runs.

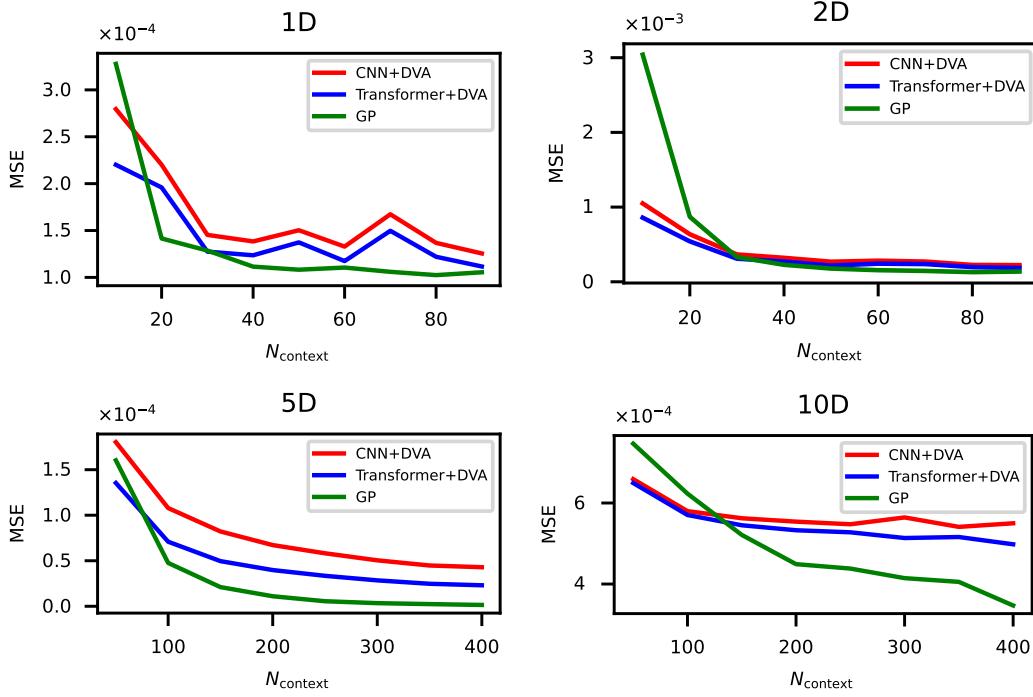


Figure 7: **Comparison with GP:** MSE for 1D, 2D, 5D and 10D PFNs as a function of context size. All models are tested using $n_{\text{test}} = 500$, for N_{context} . The results show that error consistently decreases with larger context sizes, and that CNN- and Transformer-based PFNs with DVA approach the performance of exact GP inference even in higher dimensions. Exact GP baselines were fit using `scikit-learn` with N_{context} training samples.

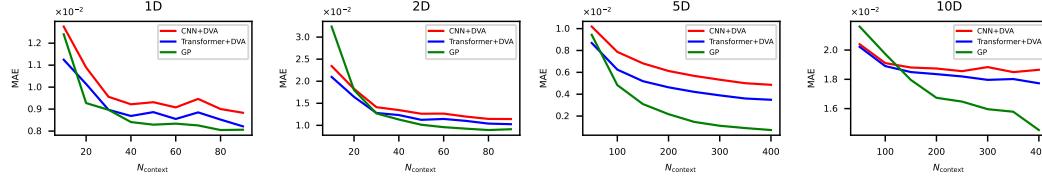


Figure 8: **MAE for PFNs across context sizes:** Mean absolute error as a function of N_{context} . Models were tested with $n_{\text{test}} = 500$ points per dataset. 1D and 2D PFNs were trained with 100, while 5D and 10D PFNs used 500 points per dataset. Error decreases with larger context sizes, and CNN- and Transformer-based PFNs with decoupled-value attention (DVA) approach the performance of exact GP, even in higher dimensions. Exact GP baselines were fit using `scikit-learn`.

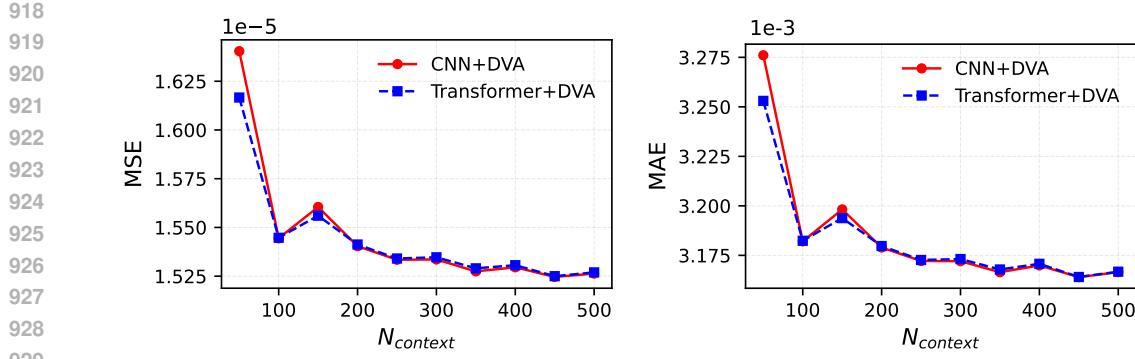


Figure 9: **Learning performance on the 64D power-flow task:** The plots show variation of MSE (left) and MAE (right) with the number of training context samples (N_{context}). Both CNN+DVA and Transformer+DVA exhibit decreasing errors with additional context and converge to near-identical accuracy. Testing is performed on 4500 out-of-sample testing data of voltages.

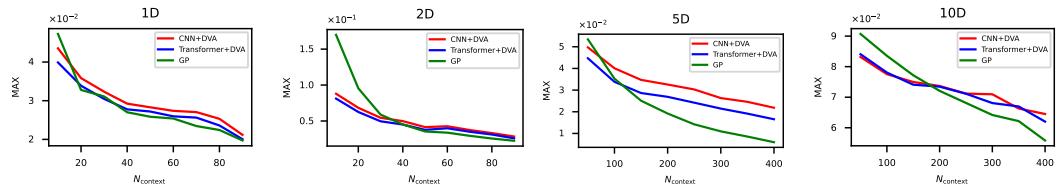


Figure 10: **Maximum error for PFNs across context sizes:** Maximum error as a function of N_{context} . Models were tested with $n_{\text{test}} = 500$ points per dataset. 1D and 2D PFNs were trained with $n = 100$, while 5D and 10D PFNs used $n = 500$ points per dataset. Error decreases with larger context sizes, and CNN- and Transformer-based PFNs with decoupled-value attention (DVA) approach the performance of exact GP, even in higher dimensions. Exact GP baselines were fit using scikit-learn.

E KERNEL-BASED ATTENTION EXPERIMENT DETAILS

For the experiments shown in Figure 1, we generated synthetic datasets using both smooth and non-smooth kernels, and trained 1D Transformer and CNN models (with the same backbone architectures as used in Table 2) for both kernel attention and DVA. The smooth datasets were sampled from an RBF kernel, which promotes locality and smoothness in the function. In contrast, the non-smooth datasets were generated using a linear-periodic kernel as discussed in Duvenaud (n.d.), which combines a linear trend with a periodic component, producing oscillatory patterns with irregular variations and reduced smoothness. Our results confirm that while Kernel-based attention and the proposed DVA reach effectively the same performance level on RBF training priors, Kernel attention requires significantly more computational time to do so. Quantitatively, both methods achieve comparable predictive error on 1D smooth functions (MSE of 1.40×10^{-4} for Kernel vs. 1.90×10^{-4} for DVA) and converge to similar validation losses on the 10D task (-1.50 for Kernel vs. -1.29 for DVA). However, the training logs highlight a drastic difference in efficiency: DVA is approximately 4× faster, completing 80,000 optimization steps in just 42 minutes, whereas the Kernel model managed only 23,000 steps in a longer duration of 48 minutes, demonstrating that DVA delivers the performance of kernel methods with vastly superior throughput.

F ABLATION STUDIES

F.1 ABLATION OF THE VALUE ENCODER ϕ_y

This experiment studies whether a learnable value encoder ϕ_y is required and whether higher-capacity encoders improve GP-style inference in DVA-PFNs. A simple linear encoder from y to the

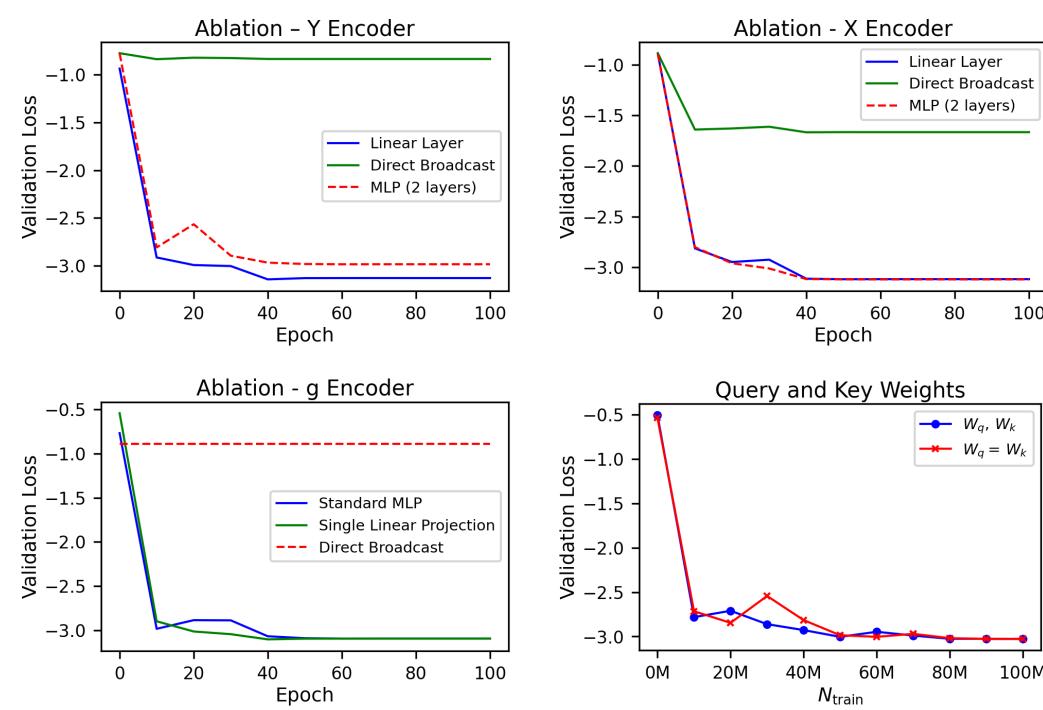


Figure 11: **Ablation results for encoders ϕ_y, ϕ_x , the prediction head g , and query/key projections W_q, W_k .** Linear encoders for both x and y perform as well as deeper MLP-based encoders, whereas direct broadcasting produces large degradation. Learnable ϕ_y and g are essential for mitigating the mismatch between GP regression weights (which may be positive or negative) and softmax attention weights (strictly positive). Finally, tying $W_q = W_k$ performs nearly identically to learning them independently, indicating that DVA-PFNs are robust to the choice of kernel-projection parameterization. Here N_{train} is measured in millions.

model dimension performs the best, matching a 2-layer MLP while substantially outperforming a direct broadcast baseline. These results highlight that a learnable value encoder is essential for mitigating the mismatch between GP regression weights (which can be positive or negative) and softmax attention weights (strictly positive). The encoder ϕ_y provides the necessary representational flexibility so that the model can emulate signed GP-like contributions through feature transformations rather than through the attention weights alone. Thus, although simple, the linear ϕ_y is necessary for effective DVA aggregation.

F.2 ABLATION OF THE INPUT ENCODER ϕ_x

We evaluate whether a learnable input encoder is essential for representing the geometry implied by the GP prior. Both the linear encoder and the 2-layer MLP encoder perform nearly identically (validation loss ≈ -3.12), indicating that moderate capacity is enough for expressing the input geometry required by DVA. Removing the encoder and broadcasting x across channels significantly degrades performance (validation loss ≈ -1.68), demonstrating that DVA needs a trainable representation but not additional encoder depth.

F.3 ABLATION OF THE PREDICTION HEAD $g(\cdot)$

We ablate the prediction head $g(\cdot)$, which converts the final hidden representation into bucketized predictive logits. Both the MLP head and the simple linear head converge near -3.1 , indicating that additional nonlinearity does not improve predictive performance. However, removing all learnable parameters and broadcasting a single hidden dimension to all output bins fails completely (validation loss ≈ -0.90). A learnable g is therefore required for the same reason as ϕ_y : GP regression weights

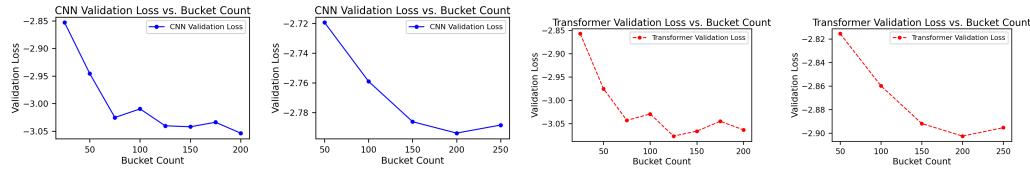
1026 can be positive or negative, while softmax attention weights cannot. The output head compensates
 1027 by reparameterizing hidden features so that the model can emulate signed GP-like effects through
 1028 linear combinations of positive-weighted attention outputs. Thus, any learnable $g(\cdot)$ is sufficient,
 1029 but some learnability is essential.

1031 F.4 ABLATION OF QUERY/KEY PROJECTIONS W_q, W_k

1033 This ablation tests whether DVA depends on having independent query and key projections. We
 1034 compare the standard configuration with separate W_q and W_k to a shared-projection variant where
 1035 $Q = K = W_{qk}(x)$. Across all training-set sizes (with N_{train} measured in millions), both variants
 1036 perform nearly identically, converging near -3.0 . These findings show that **DVA-PFN performance**
 1037 **is not sensitive to whether query and key projections are shared or independent**. The model ap-
 1038 pears to operate primarily through the relative input geometry encoded in ϕ_x , not through asymmetry
 1039 introduced by W_q and W_k . This suggests redundancy in the standard attention parameterization and
 1040 further indicates robustness of DVA to architectural choices.

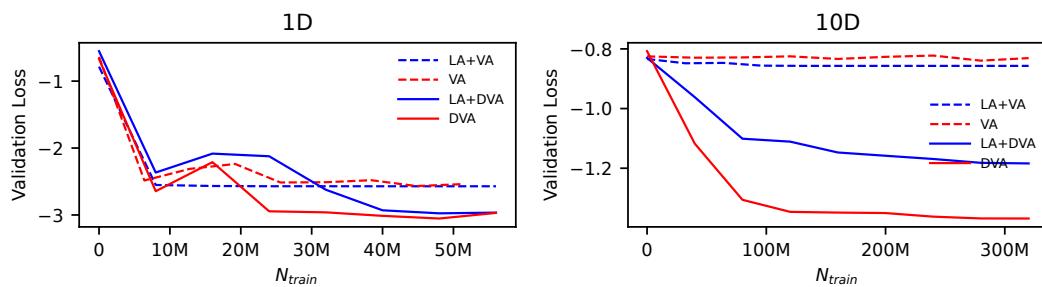
1042 F.5 BUCKET SIZE ABLATION

1044 For both CNN+DVA and Transformer+DVA, increasing the number of output bins improves vali-
 1045 dation loss in both 1D (left column) and 2D (right column) tasks. The improvement is sharp when
 1046 moving from small to moderate bin sizes, and performance stabilizes once the bin size reaches
 1047 roughly 150–200 bins. Overall, DVA-PFNs are not highly sensitive to bin size, as long as it is
 1048 sufficiently large to provide adequate resolution of the predictive distribution.



1056 Figure 12: **Effect of Bin Size on Validation Loss:** Validation loss variation with different bin sizes
 1057 for CNN+DVA (top row) and Transformer+DVA (bottom row) across 1D (first column), and 2D
 1058 (second column).

1062 G LINEAR ATTENTION



1076 Figure 13: **Comparison with performer/linear attention using Transformer PFN.** Linear attention is
 1077 used with both VA and DVA. As is visible, the decoupling is allowing for better training; the effect is
 1078 visible clearly in 10D. Softmax DVA performs best as expected, followed by Linear approximation
 1079 of DVA. VA performs worse, and is unable to train in 10D.

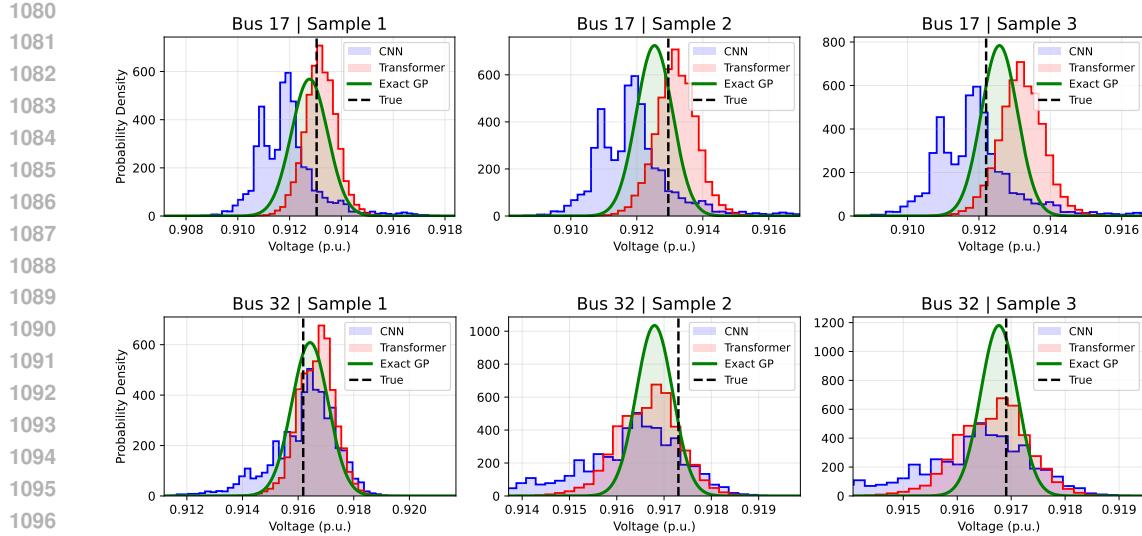


Figure 14: Comparing the PPD for three distinct samples for (Top) Bus 18. (Bottom) Bus 33

Table 10: Percentage of values within variance bounds node 32 (farthest node from Generator bus) and 4500 testing samples (500 Context/Training points)

Model	$\pm 0.1\sigma$	$\pm 1\sigma$	$\pm 2\sigma$
GP	48.36%	99.93%	100.00%
Transformer + DVA	7.73%	67.11%	96.13%
CNN + DVA	12.07%	89.00%	99.91%

H PREDICTIVE UNCERTAINTY CALIBRATION RESULTS

I CONSOLIDATED HYPERPARAMETERS

To ensure reproducibility, we provide the detailed hyperparameters used for synthetic data generation, model architectures (Transformer, CNN, RNN, LSTM), and the optimization process. All models were implemented in PyTorch.

SYNTHETIC DATA GENERATION (GP PRIOR)

For all experiments, training data was generated on-the-fly using Gaussian Process priors with Radial Basis Function (RBF) kernels. Output values y were shifted to ensure positive support for the bucketization process. Table 11 lists the kernel parameters for each dimensional setting.

MODEL ARCHITECTURE

Transformer models use standard Multi-Head Attention (or the proposed DVA modification) with Pre-LayerNorm. The architectural hyperparameters were tuned

CNN models map inputs to an embedding space and process them with 1D convolution blocks over the sequence dimension.

Recurrent models process the set as a sequence and then use an attention mechanism (VA or DVA) to aggregate context.

1134
1135

Table 11: Hyperparameters for Synthetic GP Prior Data Generation.

Input Dim	Points / Dataset (N)	Kernel Type	Length-scale (ℓ)	Kernel Var.	Noise (σ^2)	Output Shift
1D	100	RBF	0.6	0.01	1×10^{-2}	1.0
2D	100	RBF	0.6	0.01	1×10^{-2}	1.0
5D	400	RBF	0.6	0.001	1×10^{-4}	1.0
10D	500	RBF	0.6	0.01	1×10^{-4}	1.0
64D (Power)	500	RBF	215.0	1×10^{-4}	1×10^{-4}	$U[0.9, 1.1]$

1142
1143

Table 12: Transformer Architecture Hyperparameters.

Input Dim	Embed Dim	Encoder Layers	Heads	FFN Dim	Input Norm
1D	128	1	4	512	Uniform
2D	128	1	4	512	Uniform
5D	64	2	8	1024	Uniform
10D	32	2	8	1024	Uniform
64D	64	4	8	1024	Standard

1151
1152

Table 13: CNN Architecture Hyperparameters.

Input Dim	Embed Dim	Layers	Kernel Size	Input Norm
1D	32	1	5	Uniform
2D	32	1	5	Uniform
5D	32	4	5	Uniform
10D	32	4	5	Uniform
64D	32	4	5	Standard

1153
1154
1155
1156
1157
1158
1159
1160
1161

Table 14: Recurrent (RNN/LSTM) Architecture Hyperparameters.

Input Dim	Embed Dim	Recurrent Layers	Attention Heads	Dropout
1D	64	1	4	0.1
10D	64	4	8	0.1

1162
1163
1164
1165
1166

Table 15: Optimization Hyperparameters.

Setting	Epochs	Steps/Epoch	Batch Size	LR	Warmup Epochs
1D (All)	100	500	16	1×10^{-3}	25
2D (All)	100	500	16	1×10^{-3}	25
5D (All)	200	500	32	1×10^{-3}	50
10D (All)	200	500	16	1×10^{-3}	50
64D (Power)	200	500	32	1×10^{-3}	50

1174
1175

OPTIMIZATION AND TRAINING

1176
1177
1178
1179
1180

All models were trained using the AdamW optimizer and a cosine-annealing learning rate schedule with linear warmup. The loss function used was the Bar Distribution (Riemannian) Negative Log-Likelihood.

1181

J SCALING TO FURTHER DIMENSIONS

1183

1184

1185

1186

1187

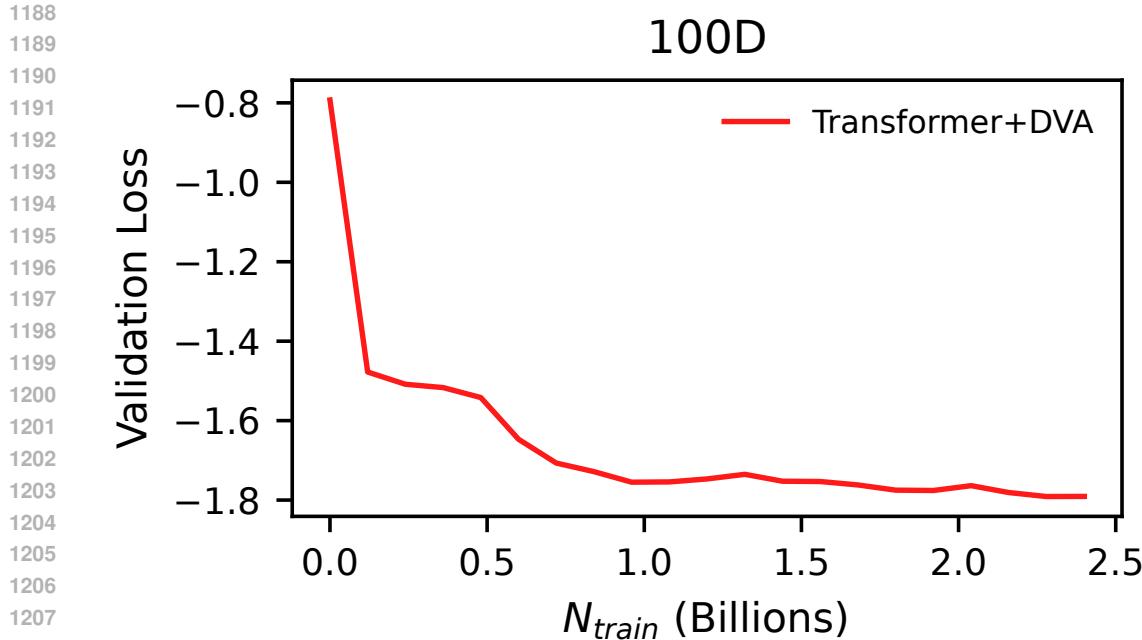


Figure 15: **Validation Loss on 100-Dimensional Data.** Performance of the Transformer model utilizing Decoupled Value Attention (DVA) trained over 200 epochs. The x -axis represents the cumulative number of training points observed (in billions). The model demonstrates stable convergence on the high-dimensional regression task. The $N_{context} = 1500$ and RBF prior was used with a fixed length scale. It took 81.5 hours on NVIDIA 4500ADA GPU having 24GB VRAM.

K EMPIRICAL COMPARISON WITH POST-HOC LOCALIZATION

To empirically validate our architectural approach against the post-hoc localization method proposed by Nagler (2023), we conducted a direct comparison. We applied two post-hoc localization strategies to a pre-trained VA PFN at inference time: (1) a **k-Nearest Neighbors (k-NN)** filter, where only the k closest context points are used, and (2) an **Exponential** distance filter, where context points are selected based on a distance threshold controlled by a decay factor γ . The results, shown in Figure 16, provide two key insights.

- In the low-dimensional (1D) setting, where the VA model is able to learn a useful representation, post-hoc localization is effective in reducing baseline error, and even slightly outperforming DVA with certain neighborhood hyperparameters. This confirms the efficacy of the localization principle in low-dimensional regimes where the base model has learned a meaningful signal.
- In the high-dimensional (10D) setting, the VA PFN completely fails to learn from the data, with its MSE remaining high and flat regardless of context size. Consequently, applying post-hoc localization to this poorly trained model provides no benefit whatsoever; filtering an uninformative context set is ineffective. In contrast, DVA’s architectural locality enables successful learning from the start, with its error decreasing consistently as more context is provided.

This experiment empirically validates our central hypothesis: post-hoc methods cannot rescue a model that has failed to learn a meaningful spatial representation during training. This underscores the necessity of an architectural solution like DVA for scaling PFNs to high-dimensional regression tasks.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

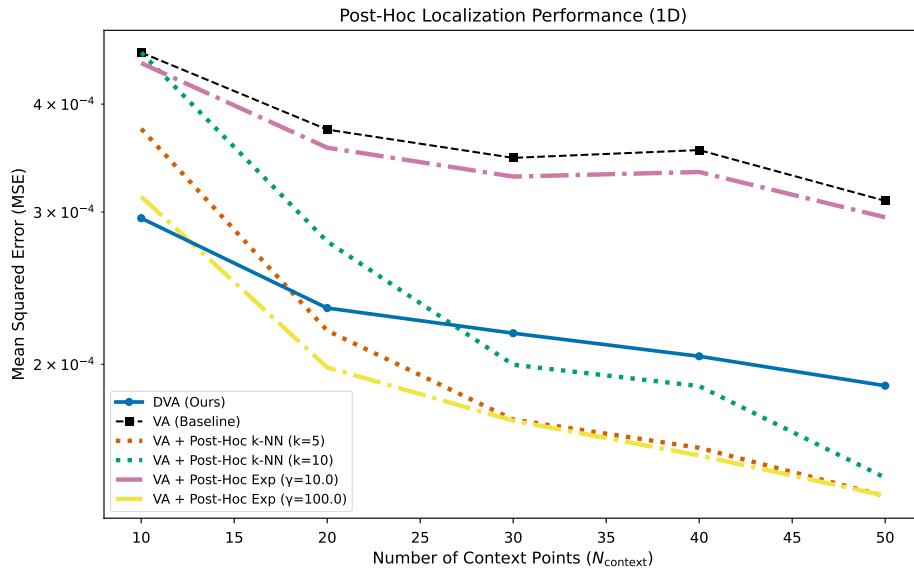
1291

1292

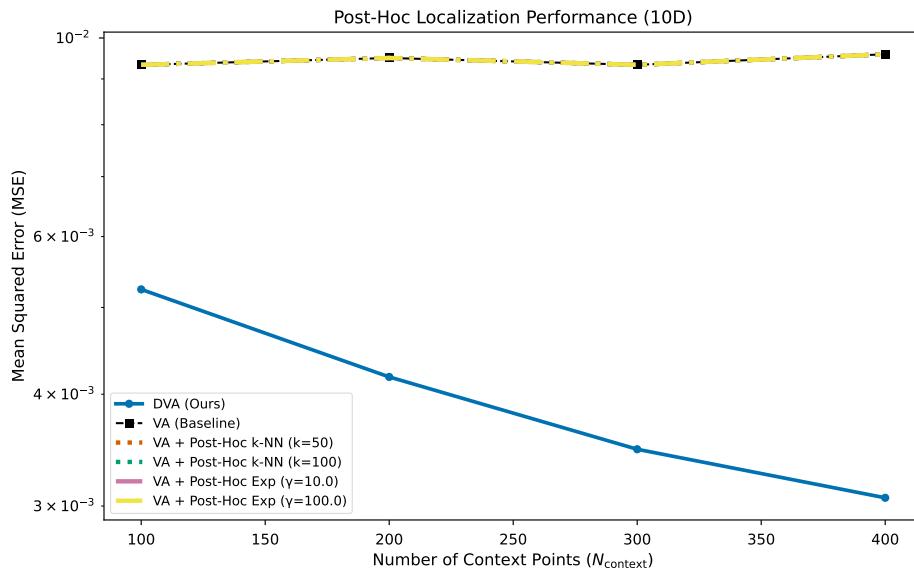
1293

1294

1295



(a) Post-Hoc Localization Performance (1D)



(b) Post-Hoc Localization Performance (10D)

Figure 16: Comparison of DVA with a baseline VA model augmented by post-hoc localization methods. In 1D, post-hoc methods are effective with correct choice of neighborhood parameters. However, in 10D, they fail to improve the poorly trained VA model, while DVA learns successfully.

K.1 SENSITIVITY ANALYSIS OF POST-HOC k-NN LOCALIZATION

While post-hoc localization can improve upon a baseline VA model in 1D, its performance is critically dependent on the choice of the hyperparameter k (the number of neighbors). To investigate this dependency, we conducted a simple sensitivity analysis in the 1D setting. We fixed the context size at $N_{\text{context}} = 30$ and evaluated the MSE of the VA + Post-Hoc k-NN model for $k \in [1, 40]$. We performed this experiment on a RBF prior with length-scale 0.6.

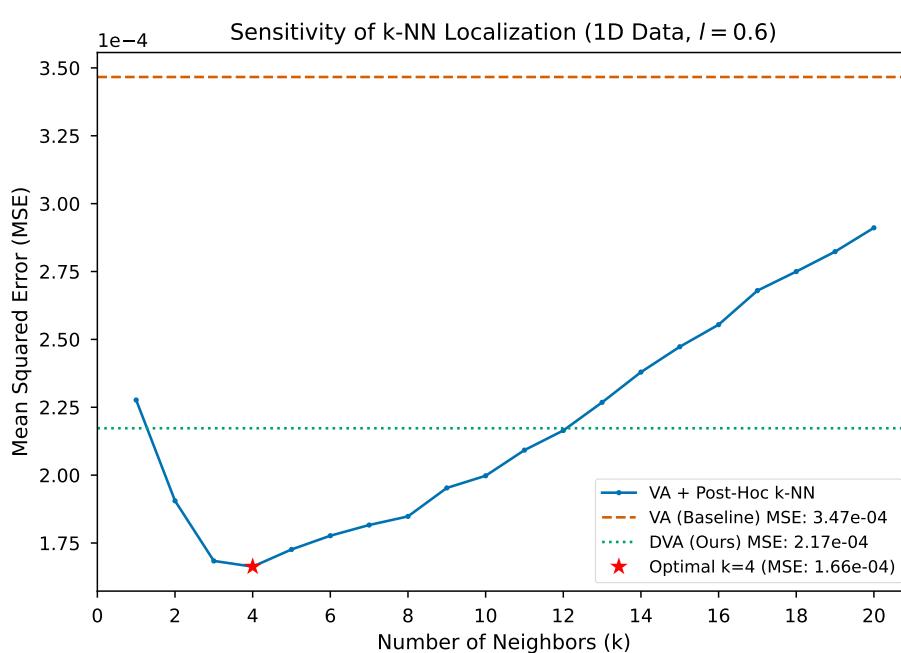


Figure 17: Sensitivity of Post-Hoc k-NN performance to the choice of k on datasets with different smoothness levels. The optimal k is data-dependent, highlighting the challenge of tuning post-hoc methods. DVA achieves robust, strong performance without requiring such tuning.

The results, shown in Figure 17, reveal a crucial challenge for post-hoc methods. The performance curve for k-NN exhibits a classic U-shape, representing a bias-variance trade-off: small k leads to high variance (overfitting to noisy neighbors), while large k leads to high bias (oversmoothing). Critically, the optimal value of k is **data-dependent**. This demonstrates that post-hoc localization is not a “set-and-forget” solution. Achieving its optimal performance would require a new, costly hyperparameter search for k for each new function class, undermining the inference-time efficiency of PFNs.