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Abstract

Deep learning has revolutionised artificial intelligence (AI) by enabling automatic
feature extraction and function approximation from raw data. However, it faces
challenges such as a lack of out-of-distribution generalisation, catastrophic forget-
ting and poor interpretability. In contrast, biological neural networks, such as those
in the human brain, do not suffer from these issues, inspiring AI researchers to
explore neuromimetic deep learning, which aims to replicate brain mechanisms
within AI models. A foundational theory for this approach is the Free Energy
Principle (FEP), which despite its potential, is often considered too complex to
understand and implement in AI as it requires an interdisciplinary understanding
across a variety of fields. This paper seeks to demystify the FEP and provide a
comprehensive framework for designing neuromimetic models with human-like
perception capabilities. We present a roadmap for implementing these models and
a Pytorch code repository for applying FEP in a predictive coding network.

1 Introduction

The human brain, despite being confined within the darkness of the skull, possesses a remarkable
ability to interpret the world around it, understand and analyse the world out there, plan for unseen
futures, and make decisions that can alter the course of events. This extraordinary capability of the
brain is conjectured to come from its function as a predictive machine, constantly inferring the hidden
causes behind sensory inputs to maintain a coherent understanding of its environment. This view,
which dates back to Helmholtz’s idea of “perception as unconscious inference” [1], and later evolved
as the “Bayesian brain” hypothesis [2], suggests that the brain operates as a sophisticated statistical
organ. It updates its beliefs about the external world based on incoming sensory data while optimising
this process through a Generative Model (GM). This GM enables the brain to infer both the dynamic
states of the external environment that generate its sensory inputs, as well as the mechanisms by
which these inputs are produced. Essentially, the brain continually refines its probabilistic beliefs
about the hidden states of the world [3], guided by the principles of Bayesian inference [4].

*Equal contribution.
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More technically, given a sensory observation y, the goal of perception is to infer the most likely
hidden state of the world x, that caused this observation. This is achieved through the Bayes’ theorem.
One of the most promising frameworks for developing brain-inspired computation is through the Free
Energy Principle (FEP) [5], an information-theoretic principle which posits that the brain operates to
minimise a quantity known as the Variational Free Energy (VFE). VFE provides an upper bound on
the negative logarithm of the Bayesian model evidence, defined as − ln(p(y|M)), where M is the
GM. Under certain assumptions, VFE can be defined as the difference between the sensory data that
the brain predicts and what it actually receives. The principle suggests that the brain seeks to reduce
this discrepancy to sustain a state of equilibrium, allowing the “self” to survive and persist over time
in an unpredictable environment.

Despite the foundational insights offered by FEP, applying it to neuromimetic AI is challenging be-
cause it requires an interdisciplinary understanding across fields such as dynamical system modelling
(through State Space Models (SSMs)), stochastic processes, probability theory, variational calculus,
and neuroscience. Thus, due to the required polymathism for pursuing this line of inquiry, only a
few AI researchers work with FEP. Further limiting the wide-spread use in the AI community, the
initial implementation of FEP was in Matlab*, which is less commonly used in the AI community
compared to Python or Pytorch. To address these barriers, this paper contributes the following:

1. A roadmap for accurately and efficiently designing neuromimetic AI using FEP.
2. A light and CPU-based Pytorch code repository, implementing FEP in a predictive coding

(PC) network †.

The rest of the paper is as follows: Section 2, introduces VFE and model inversion; Section 3,
provides details on various problem formulations and their implications in designing FEP-based
neuromimetic AI; Section 4, introduces PC and provides its mathematical formulation; Section 5
details the experiment and results. Finally, Section 6 concludes the paper.

2 Inference, learning, and uncertainty estimation

For a neuromimetic AI model to function effectively in a dynamic and ever-changing world, it must
continuously adapt to new sensory inputs. It requires a Generative Model (GM) that encapsulates its
understanding of the hidden Generative Process (GP) underlying the sensory data. The GP is not
directly accessible to the model, much like how the true external world behind the skull is hidden
from our brain. Thus, determining the hidden states of the world becomes an inference problem,
where the model seeks to reverse-engineer the GP from observed sensory inputs. This involves model
inversion, which allows us to infer the most likely hidden states that could have generated the given
sensory data. Interestingly, in the AI and machine learning community, the primary focus has often
been on parameter estimation rather than hidden state estimation.

Let zt denote the set of all quantities to be inferred at time t; e.g. hidden states and/or the GM
parameters. By Bayes’ theorem, the posterior distribution of zt given the observed data yt, is
expressed as: p(zt|yt) = p(yt|zt)p(zt)/p(yt). The calculation of the Bayesian model evidence
term, p(yt), often involves a complex, high-dimensional integral that is generally intractable. To
circumvent this difficulty, approximate Variational Inference (VI) is considered, which equates to a
simpler optimisation problem. The aim is to find a surrogate distribution q(zt) that approximates the
true posterior p(zt|yt) by minimising the Variational Free Energy (VFE) [5]:

F (q; yt) = DKL[q(z
t)||p(zt)]︸ ︷︷ ︸

Complexity

−Eq(zt)[ln p(y
t|zt)]︸ ︷︷ ︸

Accuracy

= −Eq(zt)

[
ln

p(yt, zt)

q(zt)

]
, (1)

where DKL is the Kullback-Leibler divergence. Minimising VFE serves two purposes: it approximates
the model evidence, and it provides a robust criterion for selecting among different GM models.
Crucially, since VFE is a functional of q (i.e. it takes in a function and returns a scalar), calculus
of variation is used for the minimisation [e.g. Chapter 10 of 6]. The VFE balances two opposing
quantities: accuracy, which ensures that the model’s predictions closely match the observed data,
and complexity, which penalises overly complex models that might overfit. Specifically, complexity

*https://www.fil.ion.ucl.ac.uk/spm/
†https://github.com/MLDawn/PC-network-NeurIPs-2024
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measures the extent to which the prior belief of the model about the state of the world, p(zt), will
shift towards the approximate posterior belief, q(zt) after having observed, yt. By minimising VFE,
the model achieves an optimal trade-off between fitting the data and maintaining simplicity, adhering
to the principle of Occam’s razor.

The inference process through VFE minimisation endows neuromimetic AI with three crucial
capabilities: (i) Parameter Estimation: learning the parameters of the generative model that
best explain the data; (ii) Precision Estimation: estimating the precision (inverse uncertainty)—
discussed in Section 4—over hidden states and observations, and; (iii) State Estimation: inferring
the hidden states that caused the observed data. All three capabilities are essential for constructing
truly neuromimetic AI systems that can adapt and generalise across different contexts, much like
biological neural networks. For illustration purposes, however, we focus on the scenario (iii); that
is zt = xt, keeping the remaining aspects of the generative model fixed (i.e. fixed parameters and
state/observation precision terms).

3 Various problem formulations and their implications

When designing GMs, and the method for their inversion, various problem spaces need to be
considered. This section explores the different formulations and their implications for developing
neuromimetic AI based on the FEP. In what follows, we discuss discrete-time, discrete-space Markov
chains, and continuous-time, continuous-space random processes; other formulations are outside the
scope of this paper.

Discrete State Space Models: In discrete state space models, the hidden state, xt, can take Kx

possible values, whilst the observed datum, yt, can take Ky values; t = 0, 1, . . .. As the hidden
states and observations are categorical variables, the likelihood also follows a categorical distribution,
parameterised by the Kx ×Ky matrix A: yt|xt = j ∼ Cat(A(j)), where A(j) is the jth row of A
and the matrix entries are Ajk = P(yt = k|xt = j); j = 1, ...,Kx, k = 1, ...,Ky. Similarly, the
transition probability for the latent states is parameterised by the Kx ×Kx matrix B: xt+1|xt =
j ∼ Cat(B(j)), with entries Bjk = P(xt+1 = k|xt = j). The initial prior probabilities of these
states are encoded in a Kx-dimensional vector D expressed as a categorical distribution, that is,
x0 ∼ Cat(D). The full prior over a sequence of hidden states up to some time τ , denoted as x0:τ is
p(x1:τ ) = p(x1)

∏τ−1
t=1 p(xt+1|xt). This formulation forms the basis of the Hidden Markov Model

(HMM), commonly used for inference tasks [e.g. 7], but it may also be used for learning which is
outside the scope of this paper; see Fig. 1 in Appendix. A for a visual representation. While this
formulation assumes a finite state space, it can be extended to infinite state spaces with appropriate
assumptions about the generative process [e.g. 8].

Continuous State Space Models: In continuous state space models, both hidden states and ob-
servations take continuous real values. The temporal evolution of the hidden states xt, and their
relationship to observations yt, are defined through a system of stochastic differential equations
parameterised by θ. To reduce notational burden, θ represents the collection of separate parameters
for each part of the model; the parameters are sometimes referred to as causes. The equations are

ẋt = f(xt, θ) + ωt
x and yt = g(xt, θ) + ωt

y, (2)

evolutionwhere ẋt is the first-order time derivative of the hidden state xt, representing the rate
of change (i.e. velocity) of the hidden state. Here, ωt

x and ωt
y represent the random fluctuations

corresponding to the states and observations, respectively; the two random processes are assumed
to be independent (e.g. [9]). In the most basic case, these could be Wiener processes [e.g. 10], with
independent Gaussian increments, but other smoother processes such as the Matérn process could
be used here [e.g. 11]. The first equation describes the evolution of hidden states over time through
a deterministic function f(xt, θ) and stochastic fluctuations ωt

x, where the evolution of the hidden
states can be modelled as differential equations, e.g. the change from some t0 > 0 to some other
t1 > t0 comprises infinitesimally small increments in time. The second equation expresses how
the observations are believed to be generated from the hidden state through a deterministic function
g(xt, θ) and stochastic fluctuations ωt

y. Interestingly, if we assume the fluctuations to be zero-mean
Gaussian processes, these two equations form a GM that underwrites the Kalman-Bucy filter [e.g.
12] in the engineering literature. Crucially, even though we may be observing this continuous state
space model at discrete times, the underlying dynamics of the system are continuous in time (e.g. the
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evolution of the hidden states, VFE minimisation, etc.). Here, the hidden states and their velocities are
collapsed into one latent variable x̃t = {ẋt, xt}—of interest is the approximate posterior q(x̃t). The
standard VFE can be derived and minimised, during the time intervals between observations. More
specifically, after observing yt, we can minimise the integration of point estimates of VFE along a
continuous time interval until the next observation yt+∆, ∆ > 0. This quantity is called Free Action
and is defined as A[q(x̃)] =

∫ t+∆

t
F (q(x̃s); ys) ds, and it is an upper bound on the accumulated

surprise, −
∫ t+∆

t
ln(P (ys)) ds, over the same time period. In practice, one does not observe the data

on the continuum and as such yt is used to approximate {ys, s ∈ [t, t +∆)} in the integrand. By
minimising A in-between observations, the generative model is constantly minimising VFE along
a path of length ∆, and thus continuously striving to improve the approximate estimation of the
posterior over the hidden states (and potentially parameters, which is outside the scope of this paper).
Interestingly, it is possible and indeed biologically plausible to relax the assumption of independent
increments of ωt

x and ωt
y , which can endow the GM with a more agile tracking ability of the external

world (See. Appendix. B)

4 Predictive coding

To maintain stability (i.e. homeostasis), and ensure survival, biological systems like the brain must
continuously minimise fluctuations or entropy in their internal and external states. This process is
akin to minimising the brain’s “surprise” about its sensory states, which, from a statistical perspective,
translates to maximising the Bayesian model evidence for its sensory input—a process known as
Bayesian filtering. Predictive coding [13, 14] is a prominent and neurobiologically plausible approach
to Bayesian filtering, which frames the brain’s function as a constant interplay between prediction
and error correction. Under the predictive coding framework, the brain is seen as a hierarchical
generative model that optimises its internal model of the world by minimising prediction errors.
These errors are the differences between the brain’s predictions (top-down signals) and the actual
sensory inputs (bottom-up signals). The brain accomplishes this through a two-fold process: first,
by generating top-down predictions about sensory inputs, and second, by calculating the prediction
errors (bottom-up signals) that serve to update these predictions. The VFE provides a mathematical
approximation for the Bayesian model evidence, which, under certain conditions, is equivalent to
precision-weighted prediction errors. This is achieved using the Laplace approximation, a method that
approximates complex model distributions with simpler Gaussian distributions. Inferring under the
variational paradigm, one arrives at Variational Laplace (VL) [15], allowing for efficient computation
and optimisation of VFE in a biologically plausible manner. In this framework, perception is
conceptualised as the minimisation of prediction errors through the continual updating of expectations
that propagate down the cortical hierarchy. Predictions flow downward from deeper cortical layers
to more superficial ones, while the resulting prediction errors travel upward, refining the brain’s
expectations and improving future predictions. In essence, the brain functions as a self-correcting
system, constantly seeking to reduce the discrepancies between its expectations and sensory reality,
thereby optimising its internal model of the world. Mathematically, predictive coding can be modelled
as a hierarchical state space model, where each of the L layers of the hierarchy represents a level of
abstraction:

ẋt
1 = f1

(
xt
1, θ

t
1

)
+ ωt

x,1

yt = g1
(
xt
1, θ

t
1

)
+ ωt

θ,1

, and ẋt
l = fl

(
xt
l , θ

t
l

)
+ ωt

x,l

θtl−1 = gl
(
xt
l , θ

t
l

)
+ ωt

θ,l

, l = 2, ..., L; (3)

where ωt
x,l and ωt

θ,l, are the random fluctuations in layer l, which if, we assume to be zero-
mean Gaussian processes, lead to approximately Gaussian conditional distributions: ẋt

l |xt
l , θ

t
l ∼

N(fl(x
t
l , θ

t
l ),Π

−1
xt
l
) and θtl−1|xt

l , θ
t
l ∼ N(gl(x

t
l , θ

t
l ),Π

−1
θt
l
), where precision terms Πxt

l
and Πθt

l
are

based on the assumed variance structure of the random fluctuations. Indeed, layer l infers the most
likely distribution of the hidden state, x̃t

l−1 = {ẋt
l−1, x

t
l−1}, in layer l−1 by minimising VFE (in a

purely local and Hebbian sense between layers layer l−1 and layer l). The same VFE minimisation
approach takes place between each pair of consecutive layers in a local fashion. At the bottom of the
hierarchy, the first layer resembles the sensory epithelia, tasked with inferring the hidden states of the
external world based on noisy sensory signals. As each layer minimises its VFE independently, the
entire generative model is effectively inverted, achieving hierarchical inference of the hidden states
that cause sensory observations—this is essentially the process of perception. The communication
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GM State flow f(x, θ) Free Action MSE Loss
M1 pullback 576.98 0.53
M2 trigonometric 423.21 0.52

Table 1: State inference experiment results for a Lotka-Volterra GP, using 2 flavours of GMs, M1 and
M2, with pullback attractor and trigonometric state flow dynamics, respectively.

between layers relies on the parameters θ, which enable consecutive layers to predict the states in
adjacent layers. This hierarchical message-passing scheme reflects the brain’s ability to integrate and
process information across different levels of abstraction. Simplifying to a single-layer PC network,
the model is mathematically equivalent to a basic state space model as described in Section 3. For a
detailed explanation of neuronal message passing within a one-layer PC network, see Appendix. C.

5 Experiments with a one-layer PC model & results

We present experimental results demonstrating how a simple one-layer PC network can infer the
hidden states of the external world from noisy sensory inputs; implementation details are in the
provided CPU-based Pytorch code repository. All experiments are performed on a personal laptop—
with Intel(R) Core-i9 CPU and 16GB (RAM). The pseudo-code is provided in the Appendix. D.

The GP: We consider a GP (i.e. the “true” external world) which is modelled using Lotka-Volterra
process [16], describing dynamics of a biological system in which two species interact, typically
predator and prey: dxt[0]/dt = αxt[0]−βxt[0]xt[1] and dxt[1]/dt = −γxt[1]+δxt[0]xt[1], where
xt[0] and xt[1] are the populations of the prey and predator at time t, respectively; α defines the
natural growth rate of the prey when no predators are present and β is the rate at which predators
kill the prey. The coefficients were set to (α, β, γ, δ) = (0.7, 0.5, 0.3, 0.2). Euler’s method was used
to numerically solve this system of ODEs over a total time of T = 100, with the initial conditions
(x0[0], x0[1]) = (1.0, 0.5) and a time-discretisation of ε = 0.1. The solution paths xt[0] and xt[1]
are each of length 1000 (= T/ε) and are presented in the left panel of Fig. 2 in Appendix. E.
The observations, yt[0] and yt[1]—in the right panel of Fig. 2 in Appendix. E—are generated by
adding a coloured (i.e. correlated) noise to the solutions, xt[0] and xt[1], of the generative process,
independently; the noise is a Wiener process convolved with a smoothing kernel (details in the code).

The GM: The generative model follows the form presented in Eq. (2), with two different kinds
of flows, f , considered. For the first model M1, the flow is a linear pullback attractor: f1(x) =
−A(x − φ), with A = [ 0.5 0

0 0.5 ] and φ = (1, 1)⊤. For the second model M2, the flow follows
non-linear trigonometric dynamics: f2(x) = (sinx[0], sinx[1])⊤. We choose the observation model
for both M1 and M2 to be the identity mapping, g1(x) = g2(x) = x. Assuming the random
fluctuations, ωt

x and ωt
y from Eq. (2), to be zero-mean Gaussian processes, the GM likelihood is

constructed from the conditional probability density functions of model variables: p(ẋt|xt, θt) =
pN (ẋt; f(xt, θt),Π−1

xt ) and p(yt|xt, θt) = pN (yt; g(xt, θt),Π−1
yt ); where pN ( · ;µ,Σ) is the density

function of a (Gaussian) N(µ,Σ) variable. To aid in the inference of the latent velocity ẋ, it is typical
to use a regularising prior ∇f(x)ẋ ∼ N(0,Πx) which draws ẋ towards zero to prevent potential
over-fitting [e.g. 17, 18]. The likelihood is then obtained from the approximate distribution of the
error terms: εx(x̃t) = (ẋt − f(xt),∇f(x)ẋ)⊤ and εy(x̃

t) = yt−g(xt), where x̃t = (xt, ẋt)⊤. The
goal of the inference is to identify the posterior distribution over x̃t. Here, the precision terms are
fixed Πxt = Πyt = [ 1 0

0 1 ]; however, these can be estimated by minimising the VFE [e.g. 17]. For a
detailed treatment of the functional form of VFE and its use in the inference for our experiments, see
Appendix. F.

The results of hidden state inference using two GM versions of a simple one-layer PC network, M1

and M2, with different state flow dynamics, f1 and f2 are summarised in Table.1. We can see that
the non-linear nature of f2 has resulted in a much lower free action in M2, rendering it superior to
M1. For the sake of completeness, we have also presented the Mean Squared Error (MSE), which is

measured by MSE(x̃, ̂̃x) = ∑N
n=1(x̃n−̂̃xn)

2

1000 , where x̃ and ̂̃x are the true state of the world and their
posterior estimates, respectively, and N = 1000 denotes the length of the trajectory in x̃. Caution
must be taken in that it is the free action that matters and other measures such as MSE—that solely
focus on accuracy and ignore model complexity—should not be consulted on their own, due to the
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risk of over-fitting, as discussed in Section 2. For a visualisation of the inferred states by M1 and M2

generative models, the evolution of free action during inference under each model, and how Bayesian
model selection can be used to pick the best model, see Appendix. G. Finally, the actual generative
power of M1 and M2 models are illustrated in Appendix. H.

6 Conclusion

Neuromimetic AI aims to endow traditional AI models, such as deep learning, with brain-like neuronal
message-passing and human-like reasoning. The FEP is one of the most promising directions for
accomplishing this. Unfortunately, due to its mathematically challenging and multi-disciplinary
nature, pursuing the FEP route to neuromimeticism, understanding it and of course implementing
it, remain a challenging task for researchers. This paper provides a detailed account of the design
principles of neuromimetic AI models using FEP, which is applied in PC networks. Last but not least,
we provide a Pytorch code repository for an exact implementation of a PC network based on FEP,
which mimics human perception.
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A HMM for inference/learning

The HMM in Fig. 1, represents the evolution of a sequence of hidden states, xt, over time; t here is
on a discrete domain, e.g. t = 0, 1, 2, .... At each time step, t, a hidden state emits an observation, yt,
and the state at any one time depends only on the state at the previous time where this dependency is
encoded in the matrix B. The initial prior probability regarding the hidden state is encoded in the
vector D (not to be confused with the derivative operator in Appendix. D), and finally, the matrix A
encodes the likelihood distribution of generating outcomes under each state. Here, it is assumed that
the parameters of the generative model are learned and we are only interested in inferring the hidden
states.

Figure 1: A Hidden Markov Model (HMM) for inference [3].

B A note on the generalised coordinates of motion

Importantly, random fluctuations in the data-generating mechanism in the GP, ω, are generally
assumed to have uncorrelated increments over time (i.e. Wiener assumption), however, in most
complex systems (e.g. biological systems)—where the random fluctuations themselves are generated
by some underlying dynamical system—these fluctuations possess a certain degree of smoothness.
Indeed, by relaxing the Wiener assumption and imposing smoothness on the model functions f and g,
we have the opportunity to not only consider the rate of change of the hidden state and the observation
but also their corresponding higher-order temporal derivatives (i.e. acceleration, jerk, etc.); see, for
example, [9]. The resultant pair of {xt, ẋt, ẍt, ...} and {yt, ẏt, ÿt, ...} are called the generalised
coordinates of motion [19], which provide an opportunity for further capturing the dynamics that
govern the evolution of the hidden states and observations. An estimated trajectory over time can be
calculated using a Taylor series expansion around the present time, which results in a function that
can extrapolate to the near future as well as the recent past. This can be of particular interest when
applying the inference scheme to prediction tasks—the information contained in the generalised
coordinates allows for more accurate propagation of the dynamics into the future. In the examples
covered in this paper, we only consider velocity when simulating the generative model forward in
time, but the inclusion of, for example, acceleration could further improve the results.

C The neuronal message passing in a one-layer PC network

In this appendix, we describe how a one-layer predictive coding (PC) network updates its beliefs
about the state of the world and its dynamics through neuronal message passing. The model uses a
combination of top-down predictions and bottom-up error signals to refine its internal beliefs about
the hidden states of the world and their temporal dynamics.

1. Top-down prediction: The expectations of the model about the current state of the world and its
dynamics are represented by µx (the state estimate) and µ̇x (estimated rate of change of the state),
respectively. Based on these expectations, the model generates two types of predictions:

• The prediction for the observation, yt, at time t which is represented as g(µx, θ).
• The prediction for the state’s rate of change, µ̇x, which is represented as f(µx, θ).

These top-down predictions are based on the model’s current beliefs and its parameters, θ.
2. Bottom-up error propagation: Next, the model compares its predictions with the actual observa-
tions. This leads to the generation of two types of prediction errors:
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• The error in predicting the observation, denoted as εy(µx) = yt − g(µx, θ) and,
• The error in predicting the state’s rate of change, denoted as:

εx(µx) = (µ̇x − f(µx, θ),−∇f(µx, θ)µ̇x)
⊤.

These errors signal how well the model’s predictions align with the actual input, providing feedback
for updating the model’s beliefs.
3. Gradient-based belief update (GM inversion): The model updates its beliefs by adjusting
its estimations of the hidden state, µx, and the dynamics of the hidden state, µ̇x, through the
process of minimising the VFE, F (q; yt) where q is an approximating distribution parameterised by
µ̃x = (µx, µ̇x)

⊤.
(i) Updating belief over the state: If we ignore the dynamics (i.e., rate of change), the belief update
for µx is based on the gradient of the VFE w.r.t µx, and the update rule follows a standard gradient
descent approach:

µi+1
x ← µi

x − η∇µx
F (q; yt)|µx

where η is the learning rate, and i indicates the current iteration.
However, if we incorporate the model’s expectations about the world’s dynamics µ̇x, and we should,
the previous belief update rule becomes:

µi+1
x ← µi

x + η(µ̇x − ∇µx
F (q; yt)

∣∣
µx
),

where the term ηµ̇x serves as a momentum term in updating µx. This momentum reflects the model’s
belief about how fast the state is changing, leading to a smoother update. By rearranging this update
rule, we get:

µi+1
x − µi

x

η
= µ̇x −∇µxF (q; yt)|µx .

In the continuous-time limit (i.e., as η → 0), this becomes a continuous curve, parameterised by
s > 0, which satisfies the following ordinary differential equation (ODE):

d

ds
µ(s)
x = µ̇(s)

x −∇µxF (q; yt)|
µ
(s)
x
,

where the hidden state µx evolves according to both the prediction errors and the expected dynamics
of the world. Given an initial condition µ

(0)
x (i.e., the initial expectation of the GM about the hidden

state of the world prior to any observation), and by integrating the ODE over time—for example
using Euler’s or Runge-Kutta (RK) methods—the GM updates its belief and model inversion is
accomplished:

∫
d
dsµ

(s)
x ds.

(ii) Updating the state velocity: Similarly, the model also updates its belief about the velocity, µ̇x, of
the hidden state. However, because our simple one-layer PC network does not estimate higher-order
temporal derivatives (e.g., belief over the acceleration of the hidden state), the update for velocity is
simplified to a standard gradient descent step:

µ̇i+1
x ← µ̇i

x − η
(
∇µ̇x

F (q; yt)
∣∣
µ̇x

)
.

This leads to the following differential equation for the velocity update:
d

ds
µ̇(s)
x = −∇µ̇x

F (q; yt)|
µ̇
(s)
x
.

In this case, the velocity is updated based purely on the prediction error without incorporating any
higher-order dynamics like acceleration. Similarly, given an initial condition µ̇

(0)
x (i.e., the initial

expectation of the GM about the velocity of the world prior to any observation), and by integrating
this ODE over time, the GM updates its belief:

∫
d
ds µ̇

(s)
x ds.

In summary, the one-layer PC network updates its beliefs about both the state µx, and the velocity
µ̇x, of the world through a combination of top-down predictions and bottom-up error signals. This
is achieved by applying gradient descent to minimise VFE, with dynamics being incorporated as a
momentum term. However, this simple model does not estimate higher-order temporal derivatives
like acceleration.
Last but not least, please note that for practical purposes a Laplace-based approximation of variational
free energy F̂ (q; yt), is usually used to compute it for model inversion (See Appendix. F).
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D State inference pseudo-code

Algorithm. 1 shows the pseudo-code for the hidden state estimation problem defined in Section 5
where the GM is a one-layer PC network and the GP is a Lotka-Volterra process. This means that the
dimensionality of hidden states x, and sensations y, is equal to 2. The pseudo-code is self-explanatory,
however, in line 9, we have a mysterious block matrix D that will require further explanation.

Let kx be the number of coordinates in x̃ = (x, ẋ), which is 2 (i.e., the GM estimations for position
and velocity of the external world), and let dx be the dimensionality of x, which in the case of a
Lotka-Volterra process is 2. Then, we can use D ∈ Rkxdx×kxdx , which is a block-matrix derivative
operator with identity matrices on its first leading-diagonal, to write the belief update rule on µx

and µ̇x in just one line, as shown in line 9 of the pseudo-code; specifically, here, D = [ 0 1
0 0 ]⊗ Idx ,

where ⊗ denotes the Kronecker product and Idx is a dx × dx identity matrix. Using D is a smart way
to shift the elements in µ̃x up by dx = 2. This shift is crucial since, when updating its belief about
the position of the world µx, the GM will automatically use velocity µ̇x as momentum in the belief
update process. Similarly, when updating its belief about the velocity of the world, µ̇x, the GM will
automatically use acceleration, µ̈x, as the momentum term, and so on. We will show this in action in
both Eq. (4) and Eq. (5), by expanding line 9 of the pseudo-code.

Since we know that µ̃x = (µx, µ̇x)
⊤ and since dx = 2, then we know µx = (µx[0], µx[1])

⊤ and
µ̇x = (µ̇x[0], µ̇x[1])

⊤ as column vectors. Then µ̃x = (µx[0], µx[1], µ̇x[0], µ̇x[1])
⊤. So, line 9 can be

expanded into (dropping the t superscript to simplify the notation):

d

dt

µx[0]
µx[1]
µ̇x[0]
µ̇x[1]

 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

=D

µx[0]
µx[1]
µ̇x[0]
µ̇x[1]

−

∇µx[0]F̂ (q; yi)|µx[0]

∇µx[1]F̂ (q; yi)|µx[1]

∇µ̇x[0]F̂ (q; yi)|µ̇x[0]

∇µ̇x[1]F̂ (q; yi)|µ̇x[1]

 . (4)

We can see how the µ̃x column vector is shifted up by dx = 2, after the derivative operator D, has
been applied to it. Thus, the ODE (i.e. the update rule) simplifies to:

d

dt

µx[0]
µx[1]
µ̇x[0]
µ̇x[1]

 =


µ̇x[0]−∇µx[0]F̂ (q; yi)|µx[0]

µ̇x[1]−∇µx[1]F̂ (q; yi)|µx[1]

0−∇µ̇x[0]F̂ (q; yi)|µ̇x[0]

0−∇µ̇x[1]F̂ (q; yi)|µ̇x[1]

 . (5)

Please note that in our one-layer PC network, when updating µ̇x, the GM has no expectations
regarding acceleration µ̈x and that is why D is designed such that the two 0’s appear after the shift.
In other words, the GM has no mechanism to estimate the acceleration of the external world, that
is, d

dt µ̇x = µ̈x = (µ̈x[0], µ̈x[1])
⊤ = (0, 0)⊤. Last but not least, in line 10 of the pseudo-code, we

have used the explicit Runge-Kutta method of order 5(4) (i.e., RK45), implemented in Scipy‡ for
integrating

∫
d
ds µ̃

(s)
x ds and updating µ̃x.

E The Lotka-Volterra GP and observations

Fig. 2 shows the solution to the Lotka-Volterra GP serving as the hidden state x, to be estimated (left)
and the generated observations y, by adding coloured noise to x (right).

F Variational free energy and variational Laplace

The true posterior filtering distribution p(x̃t|yt) is approximated by a surrogate distribution q which
minimises the variational free energy (1); recall that x̃t = (x, ẋ)⊤. To alleviate notational burden, we
omit the t superscript in what follows unless directly relevant. The inference scheme first requires us to
put a constraint on the family of distributions q can belong to. To adhere to the predictive coding ethos,

‡https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.html
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Algorithm 1 Pseudocode for perception modelling as hidden state inference

Require: Observations Y = {y0, y1, . . . , yn−1}
Ensure: Inferred µ̃x after each observation yi

1: Initialise randomly µ̃x = (µx, µ̇x)
⊤ ∼ N(0, I)

2: Initialise precision terms: Πy = I2×2, Πx = I2×2, Π̃x = [ 1 0
0 1 ]⊗Πx

3: Define state/likelihood flow terms f(x, θ) , g(x, θ)
4: for yi in Y do
5: εy(µ̃x) = (yi − g(µx, θ))
6: εx(µ̃x) = (µ̇x − f(µx, θ),−∇f(µx, θ)µ̇x)

⊤

7: F̂ (q; yi) =
1
2

[
εy(µ̃x)

⊤Πyεy(µ̃x) + εx(µ̃x)
⊤Π̃xεx(µ̃x)

]
8: ∇µ̃x F̂ (q; yi) = (∇µx F̂ (q; yi),∇µ̇x F̂ (q; yi))

⊤

9: d
dt µ̃

(t)
x = Dµ̃

(t)
x − ∇µ̃x

F̂ (q; yi)
∣∣∣
µ̃
(t)
x

10: µ̃x ←
∫

d
ds µ̃

(s)
x ds

11: end for
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Figure 2: Solution x, to the ODEs in the Lotka-Volterra GP (left) and the generated noisy observations
y (right).

the approximating distribution is set to be of the Gaussian family; specifically q(x̃) = pN (x̃; µ̃x,Σ),
where µ̃x = argmaxµ̃x ln p(µ̃x, y) is the expected posterior mode. To further capitalise on this
approximation we employ the Laplace approximation on the generative model’s posterior density [e.g.
20]. The Laplace approximation posits the log-density is approximately quadratic in x̃ about the mode,
ln p(x̃, y) ≈ ln p(µ̃x, y)− 1

2 (x̃− µ̃x)
⊤
Ux̃x̃ (x̃− µ̃x)+const., where Ux̃x̃ = −∂2x̃

∂x̃2 ln p(x̃, y)|x̃=µ̃x

is the negative curvature. This can be directly applied to simplify the VFE functional to

F (q; yt) = Eq[− ln p(x̃,y) + ln q(x̃; µ̃x,Σ)]

≈ Eq

[
− ln p(µ̃x, y) +

1

2
(x̃− µ̃x)

⊤
Ux̃x̃ (x̃− µ̃x) + ln q(x̃; µ̃x,Σ)

]
= − ln p(µ̃x, y) +

1

2
Eq

[
(x̃− µ̃x)

⊤
Ux̃x̃ (x̃− µ̃x)

]
+ Eq [ln q(x̃; µ̃x,Σ)] .

The first expectation term can be computed by applying matrix identities

Eq

[
(x̃− µ̃x)

⊤
Ux̃x̃ (x̃− µ̃x)

]
= Tr

(
Eq

[
(x̃− µ̃x)

⊤
Ux̃x̃ (x̃− µ̃x)

])
= Tr

(
Eq

[
(x̃− µ̃x) (x̃− µ̃x)

⊤
]
Ux̃x̃

)
= Tr

(
Σ−1Ux̃x̃

)
.

The second expectation term is the differential entropy of a Gaussian random vector and is equal to
1
2 (dx ln 2πe− ln |Σ|) which, crucially, is free of µ̃x. The variational free energy can be approximated
(up to a constant) by

F (q; yt) ≈ F̂ (q; yt) = − ln p(µ̃x, y) +
1

2
Tr

(
Σ−1Ux̃x̃

)
− 1

2
ln |Σ|.
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Conditionally on µ̃x, the LHS expression is minimised when ∇ΣF̂ (q; yt) = 1
2 (Ux̃x̃ − Σ−1) = 0,

which gives the approximate posterior covariance of Σ = U−1
x̃x̃ .

Thus the VFE can be approximated (up to a constant) by

F̂ (q; yt) =
1

2

[
εy(µ̃x)

⊤Πyεy(µ̃x) + εx(µ̃x)
⊤Π̃xεx(µ̃x)

]
, (6)

where Π̃x = [ 1 0
0 1 ]⊗Πx and ⊗ is the Kronecker product. This expanded precision form arises from

the regularisation prior distribution∇f(x)⊤ẋ ∼ N(0,Πx); this is based on the assumed smoothness
of the hidden process, and if higher-order derivatives of xt (e.g. acceleration) were used, a different
expanded precision would be required [see e.g. 10].

The approximated VFE (6) is a functional of q with a value fully expressed through the mode µ̃x. An
approximate solution to the inference problem is found by minimising (6) via gradient-based updates
on µ̃x; for details on how this is done see Appendix. C. The general gradients are given in Appendix.
I but could also be calculated using auto-differentiation.

G Experiment further analysis

The inferred hidden states and the evolution of free action throughout the inference period is presented
in the top and bottom panel of Fig. 3, for M1 and M2, respectively.

For M1, we have the inferred hidden states, x̂[0] and x̂[1] at top panel (left) along with the evolution
of free action during the entire inference period at the bottom panel (left) with a final free action value
of 576.98—with MSE error of 0.53. It is very interesting to see that the linear constraint on f1(x)
for M1 forces the free action to have regular steep jumps as if the pullback attractor fails—due to its
simple linear form—to capture certain non-linear dynamics of the hidden state at regular intervals
given the noisy observations y[0] and y[1].

For M2, we have the inferred hidden states, x̂[0] and x̂[1] at the top panel (right) along with the
evolution of free action during the entire inference period at the bottom panel (right) with a final free
action value of 423.21—with MSE error of 0.52. It is clear that the trigonometric f2(x) of model
M2, always grows linearly, since it does have the capacity to capture the non-linear dynamics of the
hidden states of a Lotka-Volterra generative process much better than the pullback attractor in model
M1. We can also see that for M2, the inferred x̂[0] and x̂[1] are much closer to the true x[0] and x[1],
compared to M1.

Bayesian model comparison/selection: We can use Bayesian model comparison/selection to decide
which model is best. Bayes Factor (BF) may be calculated as the ratio of the model evidences—in our
case the free action is the proxy for the otherwise intractable model evidence—for the two models:
BF1,2 = P (Y|M1)

P (Y|M2)
≈ FA(Y|M1)

FA(Y|M2)
= 576.98

423.21 = 1.36, where FA denotes the free action discussed in
Section 3. Since BF > 1.0, we choose M2.

Additionally, we can see that the MSE error of M1 and M2 are almost identical, that is, their fitting
power (i.e., inference accuracy) is almost the same. Crucially, it should be noted that even if the
MSE error of M2 was larger than that of M1, we should still pick M2 as the better model. This
is because choosing a model merely based on its fitting power (i.e. highest accuracy/lowest MSE)
with no regards for model complexity, puts the GM at the risk of overfitting the data and failing to
generalise, which is a common problem in the world of machine learning and AI.

H The generative power of a one-layer PC network

The one-layer PC network is a generative model and as such, it has the ability to generate data using
the g(µx) term, that maps the expected state of the world µx to its expected observation ŷ, at any
given time t. Note that the true sensations y have 2 dimensions y[0] and y[1] and as such the GM will
generate predictions for both dimensions, denoted as ŷ[0] and ŷ[1]. The top panel of Fig. 4, shows
the generative power of model M1, where the predicted sensations ŷ[0] and ŷ[1] are plotted against
the actual received sensations y[0] and y[1]. The bottom panel shows the same but for model M2.
We can see that M2 makes more accurate predictions, especially when it comes to matching the high
magnitudes of the true sensations.
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Figure 3: Estimated hidden state and free action for M1 in top panel (left) and bottom panel (left),
respectively, and estimated hidden state and free action for M2 in top panel (right) and bottom panel
(right), respectively.
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Figure 4: Predicted sensations and actual sensations for model M1 (top panel) and model M2 (bottom
panel).

I Calculating the gradients of the approximate VFE for a given generative
model

The VFE for the generative models considered in the main paper can be approximated by F̂ (q; yt) =
1
2

[
εy(µ̃x)

⊤Πyεy(µ̃x) + εx(µ̃x)
⊤Π̃xεx(µ̃x)

]
, where εx(µ̃x) = (µ̇x − f(µx),−∇f(µx)µ̇x)

⊤ and
εy(µ̃x) = y − g(µx); the Jacobian term ∇f(µx) arising from the regularising prior is treated as
constant for inference purposes [e.g. 18]. Differentiating the functional w.r.t. components of µ̃x, we

13



get

∇µx
F̂ (q; yt) = [∇µx

εy(µ̃x)]
⊤Πyεy(µ̃x) + [∇µx

εx(µ̃x)]
⊤Π̃xεx(µ̃x)

= −[∇g(µx)]
⊤Πy[y − g(µx)]− [∇f(µx)]

⊤Πx[µ̇x − f(µx)],

and

∇µ̇x
F̂ (q; yt) = [∇µ̇x

εy(µ̃x)]
⊤Πyεy(µ̃x) + [∇µ̇x

εx(µ̃x)]
⊤Π̃xεx(µ̃x)

= Πx[µ̇x − f(µx)] + [−∇f(µx)]
⊤Πx[−∇f(µx)µ̇x].

The Jacobian terms ∇f(µx) and ∇g(µx) are obtained by differentiating the vector-valued func-
tions w.r.t. x and evaluating at the estimates µx; that is, ∇f(µx) = ∇f(x)|x=µx

and ∇g(µx) =

∇g(x)|x=µx
.

The above gradients can then be used in an optimisation scheme for minimising the variational free
energy; for example, through a gradient descent algorithm with momentum, as outlined in Appendix.
C.
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