
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING PARAMETER SHARING FOR LLM FINE-
TUNING WITH MULTIPLE LORAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are often adapted using parameter-efficient techniques
such as Low-Rank Adaptation (LoRA), formulated as y = W0x + BAx, where
W0 is the pre-trained parameters and x is the input to the adapted layer. While
multi-adapter extensions often employ multiple LoRAs, prior studies suggest that
the inner A matrices are highly similar during training and thus suitable for shar-
ing. We revisit this phenomenon and find that this similarity is largely attributable
to the identical initialization rather than shared knowledge, with B playing a more
critical role in knowledge encoding and transfer. Motivated by these insights, we
propose ALoRA, an asymmetric multi-LoRA design with multiple A matrices
and a single shared B in multi-task fine-tuning, and Fed-ALoRA, which shares B
across clients in federated fine-tuning under both homogeneous and heterogeneous
settings, through a novel matrix decomposition strategy to accommodate hetero-
geneous ranks across clients. Experiments on commonsense reasoning, math rea-
soning, multi-task NLP dataset, and federated NLP dataset demonstrate that our
methods achieve more balanced performance across tasks with comparable or su-
perior average accuracy relative to existing multi-LoRA approaches.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance across diverse domains
(Achiam et al., 2023; Comanici et al., 2025; Dubey et al., 2024), but the growing scale makes con-
ventional full fine-tuning increasingly expensive. Parameter-efficient fine-tuning (PEFT) addresses
this challenge by freezing the pre-trained model and updating only a small subset of parameters,
improving efficiency while maintaining performance (Han et al., 2024). Among PEFT methods,
Low-Rank Adaptation (LoRA) (Hu et al., 2022) is particularly popular: it decomposes weight up-
dates into trainable low-rank matrices A and B, which can be merged into the pre-trained model
without extra inference latency.

Recent studies have shown that a single LoRA has limited capacity when handling diverse data
distributions (Yang et al., 2024; Cai et al., 2025). A natural extension is to use multiple LoRAs,
where each module can specialize in different data modes such as tasks, domains, and distributed
clients (Li et al., 2024; Sun et al., 2025; Wu et al., 2024b; Liao et al., 2025). In multi-task fine-
tuning, adapters are required to handle task heterogeneity (Liang et al., 2025), and in federated
fine-tuning, they should account for client heterogeneity and personalization (Bian et al., 2025).
However, naively employing multiple LoRAs also increases computation and communication costs,
which makes this approach less efficient.

To address this problem, recent methods explore parameter sharing across LoRA modules to im-
prove parameter efficiency. HydraLoRA (Tian et al., 2024) observes that A matrices trained on
different tasks exhibit very high similarity, and proposes a single shared A with multiple Bs for
multi-task fine-tuning. FedSA-LoRA (Guo et al., 2025) reports similar findings in federated fine-
tuning and transmits only A matrices for server aggregation with reduced communication costs.
These studies attribute the high similarity in A matrices to the shared knowledge.

In this paper, we revisit this similarity phenomenon and find that the similarity of A stems mainly
from identical initialization rather than shared knowledge. Our analysis of learning dynamics reveals
that A functions largely as a feature projector, while B encodes the domain knowledge. A further
exploration shows that sharing B yields more effective knowledge transfer than sharing A in both

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multi-task and federated fine-tuning. These insights motivate an interesting but underexplored ques-
tion: might sharing the module B, rather than A, be more effective for parameter and knowledge
sharing? In this paper, we provide a positive answer, with our main contributions as follows.

• We propose ALoRA, a new asymmetric multi-LoRA architecture for multi-task fine-
tuning. It employs multiple A matrices and a single shared B matrix, where the A matrices
are dynamically routed by the inputs. This design enables each A to explore distinct feature
subspaces while encouraging knowledge transfer through the shared B.

• We propose Fed-ALoRA, which communicates only B matrices rather than full LoRA pa-
rameters for aggregation on server. It supports both homogeneous and heterogeneous set-
tings with the same and different ranks across clients, whereas existing parameter-sharing
federated fine-tuning methods focus only on the homogeneous case. In the homogeneous
setting, Fed-ALoRA updates all A matrices locally, and transmits and aggregates only B
matrices on server side. In the heterogeneous setting, direct aggregation of B is infeasible
due to their distinct sizes, so we decompose B into (B1, B2) with appropriate sizes and
introduce an auxiliary matrix for further dimension adjustment. Compared to full LoRA
aggregation, Fed-ALoRA reduces communicated parameters by up to 50% and 75% in the
homogeneous and heterogeneous settings, respectively, while maintaining performance.

• We conduct extensive experiments on intra-domain multi-task benchmarks such as com-
monsense reasoning and math reasoning, cross-domain multi-task NLP dataset, and fed-
erated NLP dataset to evaluate the effectiveness of our approaches. Across all datasets,
our methods consistently deliver more balanced performance with comparable or supe-
rior accuracy compared to existing methods. In particular, ALoRA surpasses the sharing-
A approach HydraLoRA, improving average ROUGE-1 by +0.68 with a ∆m% (which
quantifies performance balance via mean drop from single-objective baselines) gain of -
1.94. Similarly, Fed-ALoRA outperforms the sharing-A approach FedSA-LoRA, achiev-
ing gains of +1.26 (homogeneous) and +1.96 (heterogeneous) with ∆m% gains of -2.08
and -2.65, respectively. Compared with approaches that aggregate full LoRA parame-
ters, our method attains comparable performance, smaller ∆m%, and substantially reduced
communication cost by transmitting much fewer parameters.

2 BACKGROUND

2.1 LOW-RANK ADAPTATION

Pre-trained language models exhibit low intrinsic dimensionality when adapt to downstream tasks
(Aghajanyan et al., 2021). LoRA leverages this property by approximating weight updates through
low-rank decomposition. Particularly, for a pre-trained weight matrix W0 ∈ Rdout×din , the weight
updates is defined as ∆W = BA, where A ∈ Rr×din , B ∈ Rdout×r, and the rank r ≪ min(din, dout).
During training, only A and B matrices are trainable. Hence, given the input x ∈ Rdin , the forward
pass is expressed as: y = y0 + ∆y = W0x + BAx. In practice, A is typically initialized using
Kaiming Uniform (He et al., 2015), and B is initialized as zero to ensure ∆W = 0.

2.2 FINE-TUNING WITH MULTIPLE LORAS

Multiple LoRA-based methods extend vanilla LoRA with additional modules to improve adaptabil-
ity across heterogeneous domains (Zi et al., 2023; Dettmers et al., 2023). In multi-task fine-tuning,
they often use MoE designs where LoRAs act as dynamically routed experts (Luo et al., 2024;
Huang et al., 2024), while in federated fine-tuning, they aim to balance personalization with shared
knowledge aggregation (Raje et al., 2025; Zhang et al., 2025b). A common idea among these multi-
LoRA approaches is to share the same matrix A, based on the observation that A matrices from
LoRAs trained on different tasks or clients are often highly similar. For example, HydraLoRA (Tian
et al., 2024) employs a single A matrix and multiple B matrices to express the weight updates:
∆W =

∑n
i=1 wiBiA, where n is the number of B matrices, wi is the gating score for each Bi.

The federated multi-LoRA approach FedSA-LoRA (Guo et al., 2025) shares only the A matrices
for server aggregation, after which the server broadcasts the aggregated A to all clients. The model
update of client i is given by:

∆W t
i = Bt

i Ā
t, Āt = Agg(At−1

1 , · · · , At−1
n),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where n is the number of clients, and t is the current communication round, and Agg(·) denotes an
aggregation algorithm such as simple averaging.

3 REVISITING PARAMETER SHARING IN MULTI-LORA FINE-TUNING

As noted earlier, a common strategy for parameter sharing is to reuse the same matrix A across
multiple LoRA modules, with the goal of reducing the total number of parameters and enabling
knowledge transfer. In this section, we systematically re-examine this approach through a series of
controlled experiments. Full implementation details are provided in Appendix A.

3.1 SIMILARITY IN A STEMS FROM SAME INITIALIZATION, NOT SHARED KNOWLEDGE

A primary motivation for sharing A across LoRA modules is the observation that the matrices Ai

of different LoRAs often appear similar during training. However, upon closer examination, we
find that this similarity largely arises from their common initialization rather than from the shared
knowledge. We fine-tune the LLaMA2-7B model (Touvron et al., 2023)1 separately on classification
and summarization tasks from the Dolly-15K dataset (Conover et al., 2023), using either identical or
different random seeds for A initialization (leading to different initializations for the matrices Ai),
and compare the resulting LoRA modules using principal angle-based similarity (Zhu & Knyazev,
2013), where a value of 1 indicates complete similarity and 0 indicates dissimilarity. The results are
shown in Figure 1, and details of the similarity metric are discussed in Appendix A.1.

Observation. Figure 1(Left) shows that with the same initialization, Ai matrices are highly similar.
In contrast, Figure 1(Middle, Right) shows that with different initializations, Ai matrices from either
the same or different tasks exhibit little similarity, while Bi matrices display relatively higher sim-
ilarity. These results suggest that the A is highly sensitive to random seeds rather than necessarily
capturing shared knowledge, whereas B is less affected.

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

Different Tasks, Same Initialization

LoRA-A
LoRA-B

0 5 10 15 20 25 30
Layer

0.0

0.1

0.2

0.3

0.4
Same Task, Different Initializations

LoRA-A
LoRA-B

0 5 10 15 20 25 30
Layer

0.00

0.05

0.10

0.15

Different Tasks, Different Initializations

LoRA-A
LoRA-B

Figure 1: Layer-wise similarity analysis between different LoRA modules. Left: two different tasks
with the same random seed. Middle: the same task with different random seeds. Right: two dif-
ferent tasks with different random seeds. Ai matrices are similar only under the same initialization,
whereas Bi exhibits relatively stable similarity across different tasks and seeds.

3.2 DISSECTING DISTINCT DYNAMICS OF A AND B DURING TRAINING

The above analysis motivates us to further investigate the learning dynamics of A and B during
training by comparing their states before and after fine-tuning on the summarization task2. Specifi-
cally, we examine the LoRA modules ∆W (see Section 2.2), A and B. Our experiments evaluate (i)
the similarity of modules A and B (using the similarity metric in Section 3.1) and (ii) the magnitude
and directional variations of ∆W , A and B. To formalize this3, any weight matrix W ∈ Rdout×din

can be decomposed into a magnitude and a direction component: W = ∥W∥c W
∥W∥c

= mV, where
∥ · ∥c denotes the column-wise norm. Here, m ∈ R1×din is the magnitude vector, with mj denoting
the norm of the j-th column of W , and V ∈ Rdout×din is the direction matrix with unit-norm columns.
Given two matrices W1 and W2, their magnitude and direction discrepancies are defined as

∆M = 1
din

din∑
j=1

|m1,j −m2,j |, ∆D = 1
din

din∑
j=1

(
1− cos(V1,j , V2,j)

)
.

1https://huggingface.co/meta-llama/Llama-2-7b
2We use the checkpoints from the second and final steps, since B is initialized to zero at the beginning.
3We follow the same setup as in Liu et al. (2024).

3

https://huggingface.co/meta-llama/Llama-2-7b

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Layer-wise Similarity

LoRA-A
LoRA-B

0 10 20 30
Layer

0.00

0.05

0.10

0.15

0.20

Va
ria

tio
n

LoRA Magnitude Change

LoRA-A
LoRA-B
LoRA

0 10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

Va
ria

tio
n

LoRA Direction Change

LoRA-A
LoRA-B
LoRA

Figure 2: Comparison of LoRA modules before and after the fine-tuning. Left: similarity; Middle:
magnitude change; Right: direction change. The module A remains largely unchanged from ini-
tialization, whereas the module B exhibits pronounced variation in both magnitude and direction.
Overall, LoRA shows limited magnitude change, with nearly all directional change captured by B.

Observation. Figure 2(Left) shows that A remains highly similar throughout training, undergoing
only minimal changes, whereas B exhibits much larger differences, indicating substantial adaptation
after fine-tuning. Figures 2(Middle, Right) further reveal that the variations in A are primarily in
magnitude with little directional change, while B accounts for most of the direction change. These
results suggest that A functions more as a fixed feature projector, whereas B aggregates and adapts
these features to encode domain knowledge. This highlights the more dominant role of B over A in
knowledge learning, raising an intriguing question: might sharing the module B, rather than A, be
more effective for parameter and knowledge sharing?

3.3 COMPARISON BETWEEN SHARING A AND SHARING B

In this section, we address the question from Section 3.2 by comparing the performance of sharing
modules A and B under both multi-task and federated fine-tuning.

0 100 200
Step

0.00

0.05

0.10

0.15

0.20

M
ag

ni
tu

de

Sharing-A
Sharing-B

0 5 10 15 20 25 30
Layer

0

50

100

150

200

Co
un

t

Sharing-A
Sharing-B

Figure 3: Comparing sharing A versus B in multi-
task fine-tuning. Left: gradient magnitudes of A
and B. Right: number of gradient conflicts per
layer. Sharing A causes smaller gradient magni-
tudes and more frequent conflicts than sharing B.

Gradient conflicts may lead to lazy learning
for A in multi-task fine-tuning. Given an in-
put x ∈ Rdin and the gradient of the output y,
g ∈ Rdout , the gradient of A in the sharing-A
structure is ∇A =

∑n
i=1 wi(B

⊤
i g)x⊤, where

each term corresponds to a Bi expert. We
record the magnitudes of ∇A and compute the
cosine similarity between gradient components,
where negative similarity indicates a conflict
that may hinder learning. The same procedure
is applied to the sharing-B structure. We then
compare the two structures on the common-
sense reasoning dataset (Hu et al., 2023), track-
ing both the gradient magnitudes of shared parameters and the number of conflicts throughout train-
ing. The results are shown in Figure 3.

Observation. Figure 3(Left) shows that the gradient magnitude of A in the sharing-A structure is
near zero, while the gradient of B in the sharing-B structure is much larger. Figure 3(Right) shows
that sharing A also produces more gradient conflicts. Thus, in the sharing-A structure, A learns very
slowly possibly due to the more frequent conflicting updates. We refer to this phenomenon as “lazy
learning”. Previous analysis in Section 3.2 indicates that A functions as a feature projector. Hence,
“lazy learning” may restrict the ability to explore diverse feature subspaces.

Knowledge transfer in federated fine-tuning. Each client fine-tunes its own LoRA and transmits
the shared parameters to the server, which aggregates and returns them (full details can be found
in Section 4.2). This setup allows us to assess whether the shared parameters improve knowledge
transfer by evaluating each client’s performance across all tasks. We compare the two structures
across 8 clients, each assigned an NLP task from the FLAN dataset (Wei et al., 2022), and use
ROUGE-1 score (Lin, 2004) to measure performance, where a value of 0 means no overlap between
model prediction and ground truth, and 100 indicates perfect word-level overlap.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Comparing sharing A versus B in federated fine-tuning. Sharing B consistently outper-
forms sharing A in both the homogeneous and heterogeneous settings.

Setting Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Avg.

Homogeneous Sharing A 50.02 49.78 59.92 42.66 54.05 25.21 23.32 49.43 44.30
Sharing B 67.43 67.83 69.85 69.26 69.50 60.94 54.86 70.90 66.32

Heterogeneous Sharing A 43.01 41.58 50.09 38.34 53.53 24.82 24.28 50.41 40.76
Sharing B 48.38 54.80 58.30 46.98 62.15 35.09 31.80 64.89 50.30

Observation. As shown in Table 1, in the homogeneous setting, sharing B outperforms sharing A by
an average of 49.71%, with improvements ranging from 16.57% to 141.73%. In the heterogeneous
setting, sharing B achieves an average improvement of 23.41%, with gains ranging from 12.49%
to 41.38%. These results clearly indicate that sharing B better facilitates cross-client knowledge
transfer than sharing A.

4 PROPOSED METHODS

Motivated by the findings in Section 3, we replace A with B as the shared parameter and propose
two new multi-LoRA fine-tuning methods: ALoRA (Asymmetric LoRA) for multi-task training,
and Fed-ALoRA for both homogeneous and heterogeneous federated settings.

4.1 ALORA FOR MULTI-TASK FINE-TUNING

Pre-trained
Weights

Router

🔥❄️

Figure 4: ALoRA adopts multiple A and a single B to explore diverse feature subspaces.

Multi-task fine-tuning typically adapts a pretrained LLM using data from multiple tasks. The goal
is to improve generalization by learning from diverse inputs. The proposed ALoRA is illustrated in
Figure 4. Given an input x ∈ Rdin , the forward pass is given by

y = y0 +∆y = W0x+B

n∑
i=1

wiAix,

where W0 ∈ Rdout×din is the pre-trained weight matrix, Ai ∈ Rr×din are the expert matrices, B ∈
Rdout×r is the shared aggregator, and the rank r ≪ min(din, dout). Each Ai projects the input into a
distinct feature subspace, and B fuses the learned features to produce the output. The expert weights
w = (w1, . . . , wn) are obtained from an input-aware router, implemented as a linear gating function
with parameters Wg ∈ Rn×din : w = softmax(Wgx).

During the inference, the router computes input-dependent weights, and the weighted average of the
adapters is dynamically merged into the pre-trained weights.

4.2 FED-ALORA FOR FEDERATED FINE-TUNING

Federated fine-tuning can be divided into two settings: (i) homogeneous, where all clients adopt the
same configuration, and (ii) heterogeneous, where clients have varying capacities, introducing both
computational and communication heterogeneity.

Homogeneous setting. In this case, all n clients fine-tune their LoRA modules with the same rank.
Each update takes the form ∆Wi = BiAi, where Ai ∈ Rr×din and Bi ∈ Rdout×r.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Pre-trained
Weights

Client Server

🔥❄️

Pre-trained
Weights

Client Server

🔥❄️

...

Agg

...

Agg

Homogeneous Heterogeneous

Figure 5: Fed-ALoRA shares only B matrices for server aggregation. Left: Homogeneous setting
(same rank), where the shared B is directly transmitted. Right: Heterogeneous setting (different
ranks), where the shared B is decomposed into two matrices for heterogeneity. Compared to the
standard full LoRA aggregation, the communication cost per client is reduced to O(doutr) in the
homogeneous setting and O(doutri) in the heterogeneous setting if dm is chosen appropriately.

Figure 5(Left) illustrates the procedure of Fed-ALoRA for homogeneous setting, with the detailed
steps for each communication round t shown below (t ≥ 1):

Step 1: Initialization. If t = 1, each client initializes Ai randomly and sets Bi to zero. For t > 1,
Ai and Bi are initialized with At−1

i and Bt−1
0 , respectively.

Step 2: Local training. Each client performs LoRA fine-tuning on its local data, obtaining (At
i, B

t
i)

by optimizing L(W0 +BiAi) with respect to (Ai, Bi), where L(·) is the loss function. The
client then uploads only Bt

i to the server for aggregation.
Step 3: Aggregation. The server aggregates the uploaded matrices using the operator Agg(·) from

McMahan et al. (2017), and obtains Bt
0 ← Agg(Bt

1, · · · , Bt
n).

Step 4: Broadcast. The server then sends the global matrix Bt
0 back to all clients.

Remark. In the full-LoRA aggregation, each client communicates (din+dout)r parameters per round.
In contrast, Fed-ALoRA requires transmitting only Bi, reducing the communication cost to doutr.

Heterogeneous setting. In this case, clients may have different capacity constraints, resulting in
parameterizations with diverse ranks ri, given by ∆Wi = BiAi, where Ai ∈ Rri×din and Bi ∈
Rdout×ri for i = 1, . . . , n. Because the ranks differ across clients, direct averaging of the Bi matrices
is infeasible, and the aggregation strategy used in the homogeneous setting cannot be applied.

To address this issue, we propose a novel decomposition strategy of the form:

∆Wi = Bi2Bi1MiAi,

where Ai ∈ Rri×din , Mi ∈ Rdm×ri , Bi1 ∈ Rri×dm and Bi2 ∈ Rdout×ri . The high-level idea is to
decompose the matrix Bi of the same dimension into two components, (Bi1, Bi2), each of rank ri.
We further introduce Mi as an intermediate matrix to control the dimension dm. In addition, every
client maintains an accumulator Bi0 ∈ Rdout×dm which stores the global updates it has received so
far. The full procedure of round t is illustrated in Figure 5(Right) and detailed below:

Step 1: Initialization. If t = 1, each client initializes (Ai,Mi, Bi1) randomly, and sets (Bi0, Bi2)
to zero. For t > 1, (Ai,Mi) is initialized with (At−1

i ,M t−1
i), Bi0 is initialzed with Bt−1

0 ,
Bi1 is re-initialized randomly, and Bi2 is resets to zero.

Step 2: Local training. Each client performs LoRA fine-tuning on its local data, and obtains pa-
rameters (At

i,M
t
i , B

t
i1, B

t
i2) by optimizing L(W0 + (Bi0 +Bi2Bi1)MiAi) with respect to

(Ai,Mi, Bi1, Bi2). The client then uploads (Bt
i1, B

t
i2) to the server.

Step 3: Aggregation. The server reconstructs Bt
i = Bt

i2B
t
i1 for each client and then performs the

aggregation Bt
0 ← Agg(Bt

1, · · · , Bt
n).

Step 4: Broadcast. The server then sends the global matrix Bt
0 back to all clients.

Remark. The previous parameter-sharing approach, FedSA-LoRA (Guo et al., 2025), does not sup-
port the heterogeneous setting. Fed-ALoRA addresses this limitation by introducing the decompo-
sition (Bi1, Bi2), enabling efficient aggregation across clients with different capacities.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Results on intra-domain multi-task commonsense reasoning benchmark. ∆m% measures
performance balance across tasks. ↓ denotes that lower values are better. All methods use the same
number of adapter parameters. We independently run each experiment 3 times and report the mean
and standard error.

Method ARC-C ARC-E BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. ∆m%(↓)
Single 77.76 ± 0.97 90.81 ± 0.23 73.39 ± 1.05 95.40 ± 0.08 86.60 ± 0.72 89.25 ± 0.47 80.69 ± 0.48 85.35 ± 0.64 84.90 ± 0.21

LoRA 76.66 ± 1.02 88.72 ± 0.83 72.73 ± 1.24 94.50 ± 0.41 84.10 ± 0.14 87.59 ± 0.15 79.42 ± 0.15 85.40 ± 1.00 83.64 ± 0.27 1.48
LoHa 77.13 ± 0.13 88.91 ± 0.09 72.89 ± 0.19 94.05 ± 0.23 85.40 ± 0.56 87.84 ± 0.34 78.92 ± 0.44 84.73 ± 0.17 83.73 ± 0.11 1.36
AdaLoRA 77.72 ± 0.72 89.72 ± 0.96 73.32 ± 0.19 93.98 ± 0.73 85.20 ± 1.13 87.90 ± 0.35 79.45 ± 0.18 83.78 ± 0.28 83.88 ± 0.32 1.17
MoSLoRA 76.87 ± 0.12 89.22 ± 0.15 73.50 ± 0.86 95.02 ± 0.13 85.27 ± 2.58 87.99 ± 0.59 80.89 ± 0.12 85.13 ± 0.55 84.23 ± 0.39 0.76

HydraLoRA 78.58 ± 0.12 89.94 ± 0.18 75.02 ± 0.18 95.21 ± 0.11 84.90 ± 1.55 88.03 ± 0.15 79.99 ± 0.72 84.92 ± 0.34 84.57 ± 0.17 0.32
ALoRA (ours) 79.40 ± 0.41 89.69 ± 0.71 74.38 ± 0.10 94.85 ± 0.23 86.10 ± 0.14 88.24 ± 0.49 80.17 ± 0.32 85.68 ± 0.27 84.81 ± 0.03 0.04

Remark. In the vanilla full-LoRA aggregation, each clients uploads (din + dout)ri parameters
to the server. The server then extends all heterogeneous updates to the maximum rank rmax =
max{r1, · · · , rn} by padding with zeros, and broadcasts (din + dout)rmax parameters back to every
client. In Fed-ALoRA, if dm is chosen comparable to rmax with dm ≪ min(din, dout), then client i
maintains (din + dout + 2dm)ri ≈ (din + dout)ri trainable parameters. The communication cost is
reduced to O(doutri) from client to server, and O(doutrmax) from server to clients.

5 EXPERIMENTS

5.1 MULTI-TASK FINE-TUNING

We fine-tune the LLaMA3-8B model (Dubey et al., 2024)4 on the intra-domain multi-task bench-
mark commonsense reasoning (Hu et al., 2023), which contains 8 question answering (QA) datasets,
each focusing on a different aspect of commonsense. We also fine-tune the LLaMA2-7B model
(Touvron et al., 2023)5 on the cross-domain multi-task NLP dataset (Long et al., 2024), which mixes
8 different tasks such as QA, classification, and text generalization. These tasks are sampled from
the FLAN dataset (Wei et al., 2022). For each task, we first fine-tune LoRA on its own dataset and
use the performance as the single-task baseline. We then compare the proposed ALoRA with sev-
eral representative methods: the vanilla LoRA (Hu et al., 2022), LoHa (Yeh et al., 2023), AdaLoRA
(Zhang et al., 2023), MoSLoRA (Wu et al., 2024a), and HydraLoRA (Tian et al., 2024). We also
examine the math reasoning benchmark (Hu et al., 2023). Full details and further discussion are pro-
vided in Appendix B. We also provide additional comparisons between HydraLoRA and ALoRA on
more models in Appendix B.

To evaluate performance, we use the following metrics: (1) average accuracy for commonsense
reasoning and average ROUGE-1 score for multi-task NLP dataset; and (2) ∆m% (Maninis
et al., 2019), the average per-task performance change against the single-task baseline. ∆m% =
1
K

∑K
k=1(−1)δk(Mk −M0)/M0 × 100, where Mk is the performance of k-th task under the com-

pared method, M0 is the baseline performance. δk = 1 if higher values indicate better performance,
otherwise δk = 0. This metric evaluates how well performance is balanced across multiple tasks.

The results are presented in Tables 2 and 3. ALoRA achieves slightly better average accuracy
than existing LoRA variants with the most balanced results in both benchmarks. In commonsense
reasoning, the hardest task is ARC-C, and ALoRA is the only method that exceeds the single-task
baseline. In multi-task NLP dataset, the most challenging task is summarization (Sum), where
ALoRA effectively mitigates negative influence from other tasks and achieves the best performance
on this task. These results suggest that ALoRA encourages knowledge transfer.

5.2 FEDERATED FINE-TUNING

We fine-tune the LLaMA2-7B model and evaluate on the federated dataset constructed by Long
et al. (2024), which includes 8 NLP tasks sampled from FLAN dataset (Wei et al., 2022), with each
client assigned to one task. For each client, we first fine-tune LoRA on its own training dataset, and
use the performance as the single-client baseline. We use ROUGE-1 as the evaluation metric.

In the homogeneous setting, we compare our Fed-ALoRA with: FedIT (Zhang et al., 2024), FedDPA
(Long et al., 2024), and FedSA-LoRA (Guo et al., 2025). In the heterogeneous setting, we compare

4https://huggingface.co/meta-llama/Meta-Llama-3-8B
5https://huggingface.co/meta-llama/Llama-2-7b

7

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Llama-2-7b

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results on cross-domain multi-task NLP datasets. ∆m% measures performance balance
across tasks. All methods use the same number of adapter parameters.

Method CSR Ent ODQA Para RC Sent Sum TFmt Avg. ∆m%(↓)
Single 45.15 65.00 75.19 55.00 78.00 71.75 28.17 88.6 63.36

LoRA 53.19 63.00 84.31 51.00 50.50 69.50 32.53 89.36 61.67 0.31
LoHa 49.94 60.94 79.78 67.70 69.57 73.50 33.33 90.85 65.70 -5.76
AdaLoRA 51.94 56.94 78.57 65.22 66.61 59.50 31.95 84.93 61.96 -0.41
MoSLoRA 50.70 60.50 81.11 71.50 70.00 75.00 32.64 87.95 66.18 -6.58

HydraLoRA 44.51 67.50 75.83 74.50 76.50 71.50 32.14 89.10 66.45 -6.39
ALoRA (ours) 48.21 62.50 80.35 78.50 68.50 75.00 33.79 90.20 67.13 -8.33

Table 4: Results for the homogeneous federated setting. Params.(M) denotes the average number
of parameters (in millions) transmitted per client in each round. ALoRA achieves the most balanced
performance while reducing communication cost by 50% compared to full LoRA aggregation FedIT.

Method Coref Ent LAcc Para QCls S2T TFmt WSD Avg. ∆m%(↓) Params.(M)

Single 73.00 84.00 79.00 78.00 94.00 72.21 96.64 60.50 79.67

FedIT 86.24 86.50 78.00 81.00 94.50 72.06 96.51 65.00 82.47 -3.92 8.39
FedDPA 88.51 85.50 73.50 77.50 95.50 73.76 96.40 65.00 81.96 -3.30 16.78

FedSA-LoRA 81.77 86.00 78.00 75.00 93.50 73.34 96.55 65.00 81.15 -2.21 4.19
Fed-ALoRA (ours) 85.74 87.00 73.50 79.00 94.00 73.10 96.24 71.50 82.51 -4.29 4.19

Fed-ALoRA with: ZeroPadding, FLoRA (Wang et al., 2024), and FedSA-LoRA (Guo et al., 2025),
which does not natively support heterogeneity but is adapted here using the decomposition proposed
in our method. We also report the average number of parameters communicated per client in each
round, including both uploads to the server and downloads from the server. In the homogeneous
setting, all clients use rank 8. In the heterogeneous setting, the ranks are {64, 64, 32, 32, 16, 16, 8, 8},
with dm set to 16. Full details are provided in the Appendix B.

The results are presented in Table 4 and Table 5. Fed-ALoRA achieves the most balanced perfor-
mance while reducing communication cost by 50% compared to full-LoRA aggregation in homo-
geneous setting, and reducing by 75% in heterogeneous setting. Notably, the client with the word
sense disambiguation (WSD) task performs poorly. However, Fed-ALoRA outperforms both the
single-client baseline and full-LoRA aggregation in homogeneous setting and ranks second in het-
erogeneous setting. These results show that Fed-ALoRA effectively promotes knowledge sharing
across clients.

Table 5: Results for the heterogeneous setting. ALoRA achieves the most balanced performance
while reducing communication cost by 75% compared to full LoRA aggregation ZeroPadding. The
original FedSA-LoRA does not support heterogeneity; ∗ denotes implementation with our decom-
position strategy.

Method Coref Ent LAcc Para QCls S2T TFmt WSD Avg. ∆m%(↓) Params.(M)

Single 81.62 88.00 81.00 79.50 94.50 72.07 96.64 60.50 81.73

ZeroPadding 86.95 87.00 77.50 79.50 94.00 72.87 96.46 64.00 82.29 -0.91 49.28
FLoRA 82.03 87.50 75.50 74.00 95.50 70.99 96.07 62.00 80.45 1.54 141.56

FedSA-LoRA∗ 80.26 83.50 76.50 76.00 93.00 73.49 96.61 54.00 79.17 3.39 12.12
Fed-ALoRA (ours) 88.27 89.50 79.50 77.00 94.00 72.35 96.37 63.00 82.50 -1.07 12.12

5.3 IN-DEPTH ANALYSIS

Multi-task fine-tuning. We analyze the gate activations of HydraLoRA and ALoRA during infer-
ence on the commonsense reasoning benchmark. Figure 6 presents the t-SNE visualization of the
gate activations in the last layer. The results show that ALoRA activations form clearer clusters
than HydraLoRA. Some tasks share similar gate activations, suggesting that they prefer the same A
experts. This indicates that ALoRA is more effective at capturing diverse feature subspaces across
tasks. In contrast, HydraLoRA relies on a single A matrix, which limits its ability to explore diverse
feature subspaces and leads to more scattered activations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

30 20 10 0 10 20 30

10

0

10

20
ARC-C
ARC-E
BoolQ
HellaS.
OBQA
PIQA
SIQA
WinoG.

20 10 0 10 2020

10

0

10

20

30

ARC-C
ARC-E
BoolQ
HellaS.
OBQA
PIQA
SIQA
WinoG.

Figure 6: Gate activations of HydraLoRA and
ALoRA. ALoRA yields more distinct clusters.

Table 6: Results of different intermediate ranks
in the heterogeneous setting.

Fed-ALoRA Avg. ∆m%(↓)
dm = 8 81.92 -0.41
dm = 16 82.50 -1.07
dm = 32 82.25 -0.80
dm = 64 82.37 -1.01

Federated fine-tuning. To further evaluate knowledge sharing, we compare the performance of
each client on all tasks between Fed-ALoRA and FedSA-LoRA. This allows us to assess which
parameters should be shared to improve cross-client transfer. As shown in Table 1, Fed-ALoRA
achieves better results. In addition, we study the effect of different choices of the intermediate rank
dm in the heterogeneous setting. The results in Table 6 show that with a proper choice of dm, we
can reduce the communication cost while maintaining the performance balance.

6 RELATED WORK

Low-rank adaptation. Vanilla LoRA (Hu et al., 2022) reparameterizes weight updates using low-
rank matrices, enabling efficient fine-tuning without extra inference latency. Extensions develop
along three directions. For rank allocation, AdaLoRA (Zhang et al., 2023) prunes less important
singular values, and DyLoRA (Valipour et al., 2023) trains LoRA blocks with different ranks for
flexible inference. For memory efficiency, QLoRA (Dettmers et al., 2023) applies 4-bit quantiza-
tion, and SparseLoRA (Khaki et al., 2025) updates only a sparse subset of parameters using SVD.
For structural variation, LoHa and LoKr (Yeh et al., 2023) adopt Hadamard and Kronecker decom-
positions, and DoRA (Liu et al., 2024) separates magnitude and direction. This paper provides a
deep investigation into the training dynamics of modules A and B, demonstrating the more domi-
nant role of B in knowledge learning and transfer.

Multi-task fine-tuning. Fine-tuning on multiple tasks improves generalization and transfer. A
popular idea is to integrate LoRA with MoE, where experts specialize in different tasks. Among
them, LoRAMoE (Dou et al., 2024), MoELoRA (Luo et al., 2024) and MoRE (Zhang et al., 2025a)
align experts with task information to balance performance. SMoRA (Zhao et al., 2025) treats each
rank as an expert, and ThanoRA (Liang et al., 2025) builds task-aware LoRA modules. DynMoLE
(Li et al., 2025) uses entropy-based routing, and HydraLoRA (Tian et al., 2024) improves parameter
efficiency by sharing A matrices. In contrast to HydraLoRA, our proposed ALoRA shares matrices
B, which promotes diverse feature projections and facilitates more effective knowledge transfer.

Federated fine-tuning. The models are adapted across clients while preserving data privacy. Ex-
isting methods fall into homogeneous and heterogeneous settings. In the homogeneous case, FedIT
(Zhang et al., 2024) aggregates full LoRA parameters, while FedSA-LoRA (Guo et al., 2025) re-
duces communication by sharing only A. In the heterogeneous case, HetLoRA (Cho et al., 2024)
supports varying ranks via self-pruning with sparse aggregation, Ravan (Raje et al., 2025) introduces
multi-head LoRA updates, and FedALT (Bian et al., 2025) employs MoE-based adapters; FLoRA
(Wang et al., 2024) provides a unified stacking framework. Unlike FedSA-LoRA, which is restricted
to homogeneous ranks, our Fed-ALoRA shares B, reducing communication costs while supporting
heterogeneous ranks through a decomposition strategy.

7 CONCLUSION

Our study shows that the similarity of LoRAs’ A matrices arises mainly from initialization rather
than shared knowledge, with B serving as the key component for knowledge transfer. Building
on this insight, we propose ALoRA and Fed-ALoRA, which share B for multi-task and feder-
ated fine-tuning. Experiments across diverse benchmarks demonstrate that these methods achieve
more balanced performance while maintaining or improving accuracy over existing multi-LoRA ap-
proaches. Future work will further examine the distinct learning dynamics of A and B and develop
new fine-tuning strategies inspired by these insights.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021.

Jieming Bian, Lei Wang, Letian Zhang, and Jie Xu. Fedalt: Federated fine-tuning through adaptive
local training with rest-of-world lora. arXiv preprint arXiv:2503.11880, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7432–7439, 2020.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts in large language models. IEEE Transactions on Knowledge and Data Engi-
neering, 2025.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for fed-
erated fine-tuning of on-device foundation models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 12903–12913, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable-instruction-tuned-llm.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36:10088–10115, 2023.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
large language models via moe-style plugin. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1932–1945, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

10

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selec-
tive aggregation for low-rank adaptation in federated learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5254–5276, 2023.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Ef-
ficient cross-task generalization via dynamic lora composition. In First Conference on Language
Modeling, 2024.

Samir Khaki, Xiuyu Li, Junxian Guo, Ligeng Zhu, Konstantinos N Plataniotis, Amir Yazdanbakhsh,
Kurt Keutzer, Song Han, and Zhijian Liu. Sparselora: Accelerating llm fine-tuning with contex-
tual sparsity. In Forty-second International Conference on Machine Learning, 2025.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 1152–1157, 2016.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan
Zhang, Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-
tuning with lora-based mixture of experts. arXiv preprint arXiv:2404.15159, 2024.

Dengchun Li, Naizheng Wang, Zihao Zhang, Haoyang Yin, Lei Duan, Meng Xiao, and Mingjie
Tang. Dynmole: Boosting mixture of lora experts fine-tuning with a hybrid routing mechanism.
arXiv preprint arXiv:2504.00661, 2025.

Jian Liang, Wenke Huang, Xianda Guo, Guancheng Wan, Bo Du, and Mang Ye. Thanora: Task
heterogeneity-aware multi-task low-rank adaptation. arXiv preprint arXiv:2505.18640, 2025.

Mengqi Liao, Wei Chen, Junfeng Shen, Shengnan Guo, and Huaiyu Wan. Hmora: Making llms more
effective with hierarchical mixture of lora experts. In The Thirteenth International Conference on
Learning Representations, 2025.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, 2004.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167,
2017.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Guodong Long, Tao Shen, Jing Jiang, Michael Blumenstein, et al. Dual-personalizing adapter for
federated foundation models. Advances in Neural Information Processing Systems, 37:39409–
39433, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large lan-
guage models. arXiv preprint arXiv:2402.12851, 2024.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multi-
ple tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 1851–1860, 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven
Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al. Crosslingual
generalization through multitask finetuning. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 15991–16111, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
2021.

Arian Raje, Baris Askin, Divyansh Jhunjhunwala, and Gauri Joshi. Ravan: Multi-head low-rank
adaptation for federated fine-tuning. arXiv preprint arXiv:2506.05568, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Mengyang Sun, Yihao Wang, Tao Feng, Dan Zhang, Yifan Zhu, and Jie Tang. A stronger mixture
of low-rank experts for fine-tuning foundation models. In Forty-second International Conference
on Machine Learning, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. Advances in Neural Information Processing Systems,
37:9565–9584, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li.
Flora: Federated fine-tuning large language models with heterogeneous low-rank adaptations.
Advances in Neural Information Processing Systems, 37:22513–22533, 2024.

12

https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adapta-
tion. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 7880–7899, 2024a.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. In The Twelfth International
Conference on Learning Representations, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma,
Qianru Zhang, Min Zhou, Irwin King, et al. Low-rank adaptation for foundation models: A
comprehensive review. arXiv preprint arXiv:2501.00365, 2024.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In The
Twelfth International Conference on Learning Representations, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Dacao Zhang, Kun Zhang, Shimao Chu, Le Wu, Xin Li, and Si Wei. More: A mixture of low-rank
experts for adaptive multi-task learning. arXiv preprint arXiv:2505.22694, 2025a.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and
Yiran Chen. Towards building the federatedgpt: Federated instruction tuning. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6915–6919. IEEE, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023.

Zikai Zhang, Ping Liu, Jiahao Xu, and Rui Hu. Fed-hello: Efficient federated foundation model
fine-tuning with heterogeneous lora allocation. arXiv preprint arXiv:2506.12213, 2025b.

Ziyu Zhao, Yixiao Zhou, Zhi Zhang, Didi Zhu, Tao Shen, Zexi Li, Jinluan Yang, Xuwu Wang, Jing
Su, Kun Kuang, et al. Each rank could be an expert: Single-ranked mixture of experts lora for
multi-task learning. arXiv preprint arXiv:2501.15103, 2025.

Peizhen Zhu and Andrew V Knyazev. Angles between subspaces and their tangents. Journal of
Numerical Mathematics, 21(4):325–340, 2013.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIALS

A ADDITIONAL DETAILS FOR SECTION 3

A.1 SIMILARITY METRIC IN LORA MODULES

LoRA represents the weight updates as ∆W = BA with A ∈ Rr×din , B ∈ Rdout×r. For any
invertible R ∈ Rr×r, we have

∆W = BA = (BR)(R−1A).

This shows that A and B are not individually unique. They can be arbitrarily rotated within the rank-
r subspace without changing ∆W . As a result, directly computing the cosine similarity between A
or B matrices can give misleading results.

Different seeds or initializations may lead to very different A and B, but the subspaces they span
are rotation-invariant. If the subspaces align, the modules are functionally aligned. Therefore, we
use the subspace similarity proposed by Zhu & Knyazev (2013). Specifically, given two matrices
M1,M2 ∈ Rd×r, we compute SVD of each and obtain the orthonormal bases of their column
spaces, U1, U2 ∈ Rr×r. The similarity is then defined as

Sim(M1,M2) =
1

r
∥U⊤

1 U2∥2F ∈ [0, 1],

where a higher value indicates a stronger alignment.

A.2 ANALYSIS IN FEDERATED FINE-TUNING

Section 3.1-3.2 analyze the learning behavior of A and B matrices during fine-tuning on different
tasks. We also perform the same analysis in the federated fine-tuning with two clients. Following
Zhang et al. (2024), we randomly sample data from the Dolly-15K dataset (Conover et al., 2023)
and split them into two clients, each containing 1493 instruction data samples from different tasks.
The data distribution is shown in Figure 7.

Sum.50.0%

Clf.

10.0%

CloQA
40.1%

GenQA50.0%

IE

24.8%

OpnQA

25.3%

Figure 7: Data distribution of clients. Left: Client 1 contains Closed QA, Summarization, and
Classification tasks. Right: Client 2 contains Open QA, General QA, and Information Extraction
tasks.
We fine-tune the LLaMA2-7B model on the two clients and analyze how the similarity of LoRA
modules is affected by random seeds for initialization. Using the similarity metric described in
Appendix A.1, we compute the layer-wise similarity of LoRA modules across the two clients. The
results, shown in Figure 8, indicate that, contrary to the assumption in FedSA-LoRA (Guo et al.,
2025), the similarity of A matrices across clients comes mainly from identical initialization rather
than shared knowledge.

Furthermore, we analyze the learning dynamics of A and B in the federated fine-tuning setting. On
client 2, we compute the similarity of A before and after fine-tuning, and do the same for B. We
also calculate the magnitude and direction variation for this client. The results, shown in Figure 9,
are consistent with our earlier fine-tuning experiments on different tasks. They confirm that B plays
a more critical role than A in encoding knowledge across clients.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

Different Clients, Same Initialization

LoRA-A
LoRA-B

0 10 20 30
Layer

0.0

0.1

0.2

0.3

Same Client, Different Initializations

LoRA-A
LoRA-B

0 10 20 30
Layer

0.00

0.05

0.10

0.15

Different Clients, Different Initializations

LoRA-A
LoRA-B

Figure 8: Layer-wise similarity analysis of LoRA modules across clients in federated fine-tuning.
Left: two different clients with the same random seed. Middle: the same client with different random
seeds. Right: two different clients with different random seeds. Ai matrices are similar only under
the same initialization, whereas Bi exhibits relatively stable similarity across different clients and
seeds.

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Layer-wise Similarity

LoRA-A
LoRA-B

0 10 20 30
Layer

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Va
ria

tio
n

LoRA Magnitude Change

LoRA-A
LoRA-B
LoRA

0 10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

Va
ria

tio
n

LoRA Direction Change

LoRA-A
LoRA-B
LoRA

Figure 9: Comparison of LoRA modules on each client before and after federated fine-tuning. Left:
similarity; Middle: magnitude change; Right: direction change. LoRA shows limited magnitude
change, with nearly all directional change captured by B.

To further explore whether the above observation depends on the model or dataset, we analyze the
learning dynamics of LoRA the Qwen2-7B (Yang et al., 2025)6 model using the bigscience/xP3
dataset (Muennighoff et al., 2023), which contains data from 46 languages and 16 NLP tasks. We
sample 3,000 English examples and fine-tune the model using the same configuration. The results
are shown in Figure 10. We observe the same pattern: the B matrix plays a more dominant role than
A matrix during training.

0 10 20
Layer

0.0

0.1

0.2

0.3

Va
ria

tio
n

LoRA Magnitude Change

LoRA-A
LoRA-B
LoRA

0 5 10 15 20 25
Layer

0.0

0.2

0.4

0.6

0.8

Va
ria

tio
n

LoRA Direction Change

LoRA-A
LoRA-B
LoRA

Figure 10: Comparison of LoRA modules using Qwen2-7B before and after federated fine-tuning.
Left: magnitude change; Right: direction change.

A.3 PRACTICAL IMPLEMENTATION

For the results in Section 3.1–3.2, we fine-tune the LLaMA2-7B model on data sampled from the
Dolly-15K dataset for 3 epochs. The training uses a learning rate of 3e-4, batch size 32, and gra-
dient accumulation step 2. We follow the alpaca short template (Taori et al., 2023) to construct the
instruction data. LoRA is applied to the qproj modules with rank r = 8.

6https://huggingface.co/Qwen/Qwen2-7B

15

https://huggingface.co/Qwen/Qwen2-7B

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For the analysis of lazy learning in multi-task fine-tuning (Section 3.3), we fine-tune the LLaMA3-
8B model on the commonsense reasoning 15K dataset (Hu et al., 2023) for 3 epochs, using a learning
rate of 3e-4, batch size 4, and gradient accumulation step 4. LoRA is applied to the qproj modules
with rank r = 8. The sharing-A structure uses 3 A matrices, and the sharing-B structure uses 3 B
matrices.

For the analysis of knowledge transfer in federated fine-tuning (Section 3.3), we fine-tune the
LLaMA2-7B model on the federated NLP dataset (Long et al., 2024) for 10 communication rounds,
with 10 local epochs per client. The learning rate is 5e-4, the batch size is 32, and the gradient
accumulation step is 2. In the homogeneous setting, all clients use rank 8. In the heterogeneous
setting, the ranks are set to {64, 64, 32, 32, 16, 16, 8, 8}. The methods are applied to qproj and vproj
modules. All experiments are conducted on RTX A6000 GPU.

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 BENCHMARKS

The intra-domain multi-task commonsense reasoning 170K benchmark contains questions from the
following datasets: (1) ARC-Challenge and ARC-Easy (Clark et al., 2018), which consist of grade-
school–level multiple-choice science questions; (2) BoolQ (Clark et al., 2019), a yes/no question-
answering dataset requiring non-factoid reasoning and entailment; (3) HellaSwag (Zellers et al.,
2019), a dataset of commonsense natural language inference (NLI) questions that require identi-
fying the most appropriate continuation of a narrative input; (4) OpenBookQA (Mihaylov et al.,
2018), which contains questions requiring multi-step reasoning by combining provided scientific
facts with external background knowledge; (5) PIQA (Bisk et al., 2020), a dataset of everyday com-
monsense reasoning questions about the physical world; (6) SIQA (Sap et al., 2019), which focuses
on social and emotional commonsense reasoning in everyday human interactions; (7) WinoGrande
(Sakaguchi et al., 2021), a collection of fill-in-the-blank sentences designed to test pronoun resolu-
tion using commonsense.

The cross-domain multi-task NLP dataset contains 8 NLP tasks sampled from the FLAN dataset
(Wei et al., 2022). The tasks are: (1) Commonsense, a reasoning task that requires everyday knowl-
edge to make judgments; (2) Entailment, an NLI task that determines the relationship between a
premise and a hypothesis; (3) Open-domain QA, a question answering task that retrieves or gen-
erates answers from open sources; (4) Paraphrase, a classification task that recognizes whether a
sentence pair is semantically equivalent; (5) Reading comprehension, a question answering task
requires understanding the text content and answering the related questions; (6) Sentiment classifi-
cation, a classification task that determines the whether the sentiment polarity is neutral, positive, or
negative; (7) Summarization, an NLG task that produces a compact digest of a long passage while
keeping the critical information; (8) Text formatting, an NLG task that corrects the punctuation in
unformatted text. Each task has 300 examples for training and 200 examples for testing.

The federated NLP dataset also contains 8 NLP tasks sampled from the FLAN dataset (Wei et al.,
2022). The tasks are: (1) Coreference, a discourse understanding task that requires determining
which entity a pronoun refers to; (2) Entailment, an NLI task that determines the relationship be-
tween a premise and a hypothesis; (3) Linguistic Acceptability, a classification task that detects
whether a sentence is grammatical; (4) Paraphrase, a classification task that recognizes whether a
sentence pair is semantically equivalent; (5) Question classification, a task for question understand-
ing in question answering systems; (6) Structure-to-Text, a natural language generation (NLG) task
that converts structured triples into natural language; (7) Text formatting, an NLG task that corrects
the punctuation in unformatted text; (8) Word sense disambiguation, a classification task that deter-
mines whether the same word has the same meaning in two different sentences. Each task has 300
examples for training and 200 examples for testing, and we assign one task to each client.

For the intra-domain multi-task fine-tuning, we also consider the math reasoning 10K benchmark
(Hu et al., 2023), which includes 4 datasets: (1) AQuA (Ling et al., 2017), which contains multiple-
choice algebra word problems, each accompanied by a natural language rationale explaining the
step-by-step reasoning; (2) GSM8K (Cobbe et al., 2021), a high-quality collection of linguisti-
cally diverse grade-school–level math word problems designed to evaluate multi-step reasoning; (3)
MAWPS (Koncel-Kedziorski et al., 2016), a compilation of math word problems intended to support

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

robust and scalable research on arithmetic reasoning, including AddSub (basic addition/subtraction),
SingleOp (single-operator arithmetic), MultiArith (multi-step arithmetic), SingleEq (single-equation
algebra); (4) SVAMP (Patel et al., 2021), which consists of simple one-unknown grade-school–level
arithmetic word problems, designed to test robustness in arithmetic reasoning.

The original split of the math reasoning 10K benchmark is not suitable for multi-task fine-tuning,
since it does not include the full training data of the subsidiary tasks. In addition, Hu et al. (2023)
report data leakage issues in this benchmark. To address these concerns, we downloaded the original
data of each single task, and checked every training example in the benchmark to determine whether
it belongs to the training set of any individual task. This process allowed us to construct a training
dataset for each task, making it possible to fine-tune on single tasks and obtain single-task baselines.
For multi-task fine-tuning, we fine-tune directly on the benchmark and evaluate on each task. Since
the single-task training splits are created by us, we report the corresponding results in the Appendix.

B.2 BASELINES

For multi-task fine-tuning, we compare our ALoRA with the following methods: (1) the vanilla
LoRA (Hu et al., 2022); (2) LoHa (Yeh et al., 2023), which employs Hadamard decompositions
to the updates; (3) AdaLoRA (Zhang et al., 2023), which adaptively prunes rank using SVD; (4)
MoSLoRA (Wu et al., 2024a), which introduces an additional matrix to fuse update subspaces; (5)
HydraLoRA (Tian et al., 2024), which adopts a sharing-A multi-LoRA framework.

For homogeneous federated fine-tuning, we compare our Fed-ALoRA with the following methods:
(1) FedIT (Zhang et al., 2024), where each client transmits the full LoRA parameters; (2) FedDPA
(Long et al., 2024), which employs both a global adapter and a local adapter for each client; (3)
FedSA-LoRA (Guo et al., 2025), which shares only the A matrices. For the heterogeneous federated
fine-tuning, we compare Fed-ALoRA with: (1) ZeroPadding, which pads all heterogeneous ranks to
the maximum rank across clients, enabling FedIT to support heterogeneity; (2) FLoRA (Wang et al.,
2024), a stacking-based noise-free aggregation method; (3) FedSA-LoRA (Guo et al., 2025), which
does not natively support heterogeneity but is adapted here using the decomposition proposed in our
method.

B.3 PRACTICAL IMPLEMENTATION

For intra-domain multi-task fine-tuning on commonsense reasoning and math reasoning, we fine-
tune the LLaMA3-8B model for 3 epochs on the training data with a learning rate of 3e-4. The
AdamW optimizer is used with β1 = 0.9 and β2 = 0.999. The batch size is 4, and the gradient
accumulation step is 4. For HydraLoRA, we follow the original setup with one single A matrix and
3 B matrices with rank 8. For our ALoRA, we use 3 A matrices and a single B matrix with rank 8.
To ensure a fair comparison, the other baselines are configured with a comparable parameter size:
LoRA, LoHa, and MoSLoRA use rank 16, while others use rank 8. All methods are applied to the
qproj and oproj modules.

For cross-domain multi-task fine-tuning, we fine-tune the LLaMA2-7B model for 50 epochs on
the training data with a learning rate of 3e-4. The AdamW optimizer is used with β1 = 0.9 and
β2 = 0.999. The batch size is 4, and the gradient accumulation step is 4. For HydraLoRA, we
follow the original setup with one single A matrix and 3 B matrices with rank 8. For our ALoRA,
we use 3 A matrices and a single B matrix with rank 8. To ensure a fair comparison, the other
baselines are configured with a comparable parameter size: LoRA, LoHa, and MoSLoRA use rank
16, while others use rank 8. All methods are applied to the qproj and vproj modules.

For federated fine-tuning, we fine-tune the LLaMA2-7B model for 10 communication rounds with
10 local epochs per client, using a learning rate of 5e-4. The AdamW optimizer is used with
β1 = 0.9 and β2 = 0.999. The batch size is 32, and the gradient accumulation step is 2. In
the homogeneous setting, all clients use rank 8. In the heterogeneous setting, the ranks are set
to {64, 64, 32, 32, 16, 16, 8, 8}, and dm is chosen to 16. All methods are applied to qproj and vproj
modules. All experiments are conducted on RTX A6000 GPU.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Results on math reasoning. ∆m% measures performance balance across tasks. ALoRA
achieves the most balanced results.

Method AQuA GSM8K SVAMP MAWPS SingleEq Avg. ∆m%(↓)
Single 28.34 63.68 71.10 86.13 90.75 68.00

LoRA 30.31 66.26 75.10 90.34 94.88 71.38 -5.21
LoHa 27.56 63.84 76.70 90.76 94.88 70.75 -3.06
AdaLoRA 25.20 59.44 72.60 86.55 91.93 67.14 2.77
MoSLoRA 28.74 67.40 77.10 89.08 94.06 71.28 -4.54

HydraLoRA 27.17 68.76 75.60 90.34 93.31 71.04 -3.58
ALoRA 29.53 67.17 77.40 89.50 94.49 71.62 -5.31

Table 8: Results of different intermediate ranks in the heterogeneous setting.

Fed-ALoRA Coref Ent LAcc Para QCls S2T TFmt WSD Avg. ∆m%(↓)
dm = 8 90.75 84.50 79.50 73.50 95.00 73.05 96.09 63.00 81.92 -0.41
dm = 16 88.27 89.50 79.50 77.00 94.00 72.35 96.37 63.00 82.50 -1.07
dm = 32 88.63 86.50 78.00 79.00 94.00 72.27 96.60 63.00 82.25 -0.80
dm = 64 85.70 89.00 81.00 75.50 94.00 72.31 96.40 65.00 82.37 -1.01

B.4 ADDITIONAL EXPERIMENT RESULTS

The results on the math reasoning benchmark are presented in Table 7. LoRA, MoSLoRA, and our
ALoRA outperform the single-task baseline on all tasks, but ALoRA achieves the most balanced
performance, showing that it enables more effective knowledge transfer than the baselines. We also
provide the full results of the study of different intermediate ranks in Section 5.3, which are shown
in Table 8.

To further compare the effectiveness of sharing A and sharing B, we provide an additional study
of HydraLoRA and our ALoRA using Qwen2-7B (Yang et al., 2025)7 and LLaMA2-13B (Touvron
et al., 2023)8. We fine-tune the models using the same configuration as before, and report the mean
and standard error over 3 independent runs for Qwen-7B. The results on LLaMA2-13B are less
stable, likely because the configuration is suboptimal for the larger model, so we report only the best
result from 3 runs. The comparisons shown in Table 9 validate that ALoRA consistently outperforms
HydraLoRA.

Table 9: Comparison between HydraLoRA and ALoRA on intra-domain multi-task commonsense
reasoning benchmark.

Method ARC-C ARC-E BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg.

HydraLoRA (Qwen-7B) 84.60 ± 0.30 93.20 ± 0.03 73.37 ± 1.42 94.42 ± 0.36 88.30 ± 0.42 89.58 ± 0.72 80.97 ± 0.06 84.33 ± 0.95 86.09 ± 0.42
ALoRA (Qwen-7B) 85.28 ± 0.42 93.69 ± 0.30 73.41 ± 0.15 94.76 ± 0.36 90.10 ± 0.42 89.07 ± 0.07 80.94 ± 0.47 84.50 ± 0.50 86.47 ± 0.07

HydraLoRA (LLaMA2-13B) 59.90 66.46 72.42 56.46 66.80 83.95 74.26 83.50 70.47
ALoRA (LLaMA2-13B) 74.40 86.03 74.43 67.62 82.80 79.87 80.71 76.96 77.86

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, large language models (LLMs) were used only to assist with language
polishing and stylistic refinement. All technical content, formulations, experimental designs, and
conceptual contributions were developed by the authors. Importantly, LLMs were not used for
ideation and methodology development.

7https://huggingface.co/Qwen/Qwen2-7B
8https://huggingface.co/meta-llama/Llama-2-13b-hf

18

https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/meta-llama/Llama-2-13b-hf

	Introduction
	Background
	Low-Rank Adaptation
	Fine-Tuning with Multiple LoRAs

	Revisiting Parameter Sharing in Multi-LoRA Fine-tuning
	Similarity in A Stems from Same Initialization, Not Shared Knowledge
	Dissecting Distinct Dynamics of A and B During Training
	Comparison Between Sharing A and Sharing B

	Proposed Methods
	ALoRA for Multi-Task Fine-Tuning
	Fed-ALoRA for Federated Fine-Tuning

	Experiments
	Multi-Task Fine-Tuning
	Federated Fine-Tuning
	In-Depth Analysis

	Related Work
	Conclusion
	Appendix
	Additional Details for Section 3
	Similarity Metric in LoRA Modules
	Analysis in Federated Fine-Tuning
	Practical Implementation

	Additional Experimental Details and Results
	Benchmarks
	Baselines
	Practical Implementation
	Additional Experiment Results

	The Use of Large Language Models (LLMs)

