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Abstract001

Predicting outcomes in multi-turn dialogues002
is challenging due to the implicit nature of003
decision-making and the evolving dynamics004
between participants. In this work, we explore005
whether LLM-generated rationales can enhance006
the accuracy and generalizability of outcome007
prediction in task-oriented dialogues. We eval-008
uate zero-shot in-context learning models on009
the Craigslist Bargain dataset, testing their abil-010
ity to predict final sale prices at different di-011
alogue checkpoints in absence and presence012
of rationales. Preliminary results with metrics013
such as RMSE and Pearson correlation suggest014
that rationale-augmented models better capture015
negotiation strategies and concession patterns,016
improving early-stage prediction accuracy.017

1 Introduction018

The task of conversational forecasting involves019

predicting the outcome of an unfolding dialogue020

(Sokolova et al., 2008; Zhang et al., 2018). We021

present a snippet of an ongoing negotiation sce-022

nario between a buyer and a seller in Figure 1023

where the objective is to predict the final sales price024

at the end of the conversation, given the target025

prices that each party is trying to optimize. Be-026

yond measuring success in task-oriented dialogues027

like (Chawla et al., 2021; Dutt et al., 2021; Reitter028

and Moore, 2007), conversational forecasting has029

also been adopted for content moderation in social030

media (Zhang et al., 2018; Chang and Danescu-031

Niculescu-Mizil, 2019; Kementchedjhieva and Sø-032

gaard, 2021), predicting emotions (Wang et al.,033

2020; Matero and Schwartz, 2020) and even health034

codes (Cao et al., 2019) in dialogues.035

Conversational forecasting is an inherently com-036

plex task due to the implicit and evolving nature of037

decision-making. For example, negotiation conver-038

sations involve an interplay of strategy, persuasion,039

and concession-making, often without any explicit040

cues until a conclusion is reached. Models that041

utilize only these dialogue sequences can miss the 042

underlying intentions behind the participants’ ut- 043

terances that drive these interactions (Yamaguchi 044

et al., 2021; Chan et al., 2024; Dutt et al., 2024). 045

In this work, we investigate whether machine- 046

generated “free-text” rationales, that capture the 047

intentions behind each utterance, can serve as ef- 048

fective augmentations for conversational forecast- 049

ing. Our hypothesis is that by making the implicit 050

reasoning explicit, models can better capture the 051

nuanced dynamics of conversations, particularly at 052

early stages when only partial dialogue context is 053

available (Hua et al., 2024). 054

2 Methodology 055

Dataset: For our preliminary experiments, we use 056

the Craigslist Bargain dataset of He et al. (2018). 057

The dataset comprises simulated multi-turn dia- 058

logues between a buyer and a seller as they nego- 059

tiate the price of an item while trying to optimize 060

their assigned target price. Our objective is to pre- 061

dict the final sales price for each negotiation at 062

different stages of its completion, i.e. 25%, 32.5%, 063

50%, 62.5%, 75%, and 100% of the conversation. 064

Rationales: We leverage the rationale-generation 065

framework of (Dutt et al., 2024) to obtain the 066

speaker’s intentions corresponding to each utter- 067

ance in the negotiation dialogue. For example, in 068

Figure 1 we showcase the intentions of the buyer 069

and seller on the right. These intentions were gener- 070

ated on an utterance-by-utterance basis using GPT- 071

4o as the backbone LLM. We investigate whether 072

these rationales can aid forecasting when provided 073

as additional inputs. 074

Prompting Experiments: We conduct zero-shot 075

prompting experiments using two popular LLMs, 076

i.e. GPT-3.5-turbo and GPT-4o to predict the fi- 077

nal sales price of a given negotiation conversation. 078

We explore two different prompting styles, i.e. (i) 079

Simple Prompt that directly requests the final sales 080
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Hello there.. i was looking for some more info
on the truck you have for sale please

Sure I can give you any info you like. For 
starts it was well taken care of and we have 
never really had any major problems with it. 

It also recently had new tires put on.
 What else would you like to know?

Buyer Seller

Dialogue Snippet

65004940

$5500

Final Sales Price Predicted Sales Price

Requesting information
about the truck for sale

Generated Rationales

Offering to provide information
and giving initial details 

about the truck

$6000 $5500

Figure 1: We present a snippet of a negotiation conversation between a buyer and a seller as they each try to match
their targeted price. We observe that the sales price predicted by an LLM matches the final sales price when we
augment the dialogue snippet with generated rationales.

Figure 2: Pearson Correlation between the predicted success score and the true success score for different prompting
styles in presence and absence of rationales.

price and (ii) Chain-of-Thought (CoT) Prompt that081

instructs the model to take into consideration ad-082

ditional information such as the persuasion tech-083

niques employed, power dynamics, and concession084

pace before predicting the final price.085

In short the Chain-of-Thought (CoT) prompt is086

designed to summarize the global dialogue informa-087

tion, whereas the rationales are designed to capture088

the local information, i.e. at an utterance. The089

specific prompts used in our experiments without090

intentions are shown in Figures 4 and 5 in the Ap-091

pendix. When including intentions in our experi-092

ments, the prompts are slightly modified with the093

dialogue formatted as [(u1, r1), (u2, r2)....(un, rn)]094

where, u1, u2... are the utterances and r1, r2... are095

the corresponding intention rationales.096

Evaluation: For evaluation, we use the normalized097

success score below, which positions the predicted098

sale price relative to the buyer’s and seller’s tar-099

get prices, providing a consistent metric across100

dialogues. (Dutt et al., 2021). We measure the cor-101

relation coefficient between the predicted success102

score where pSP is the predicted sales price and103

the true success score where pSP is the actual sales104

price for the conversation. We also measure the105

RMSE between the predicted and true sales price. 106

succ =
pSP − pBU

pSE − pBU
(1) 107

3 Results and Future Work 108

Our results in Figures 3 and Figures 2 highlights 109

that both GPT-3.5 Turbo and GPT-4o models 110

achieve lower RMSE scores and higher correla- 111

tion scores when augmented with rationales. This 112

difference is particularly marked in the early stages 113

of the conversation (<50% of dialogue as context), 114

indicating enhanced prediction accuracy even with 115

limited context. We also observe pronounced im- 116

provedments from adding rationales even in the 117

CoT based prompting style for the GPT-3.5-turbo 118

model, but less for GPT-4o, thereby highlighting 119

the efficacy of these prompts for less powerful mod- 120

els. Also unsurprisingly we see a strong monotonic 121

increase in correlation and decrease in RMSE with 122

more conversational turns. Our future work aims 123

to explore the role of these rationales for instruc- 124

tion tuned models like FLAN-T5, other LLMs like 125

LLama, and other forecasting tasks like conversa- 126

tional derailment (Zhang et al., 2018). 127
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Figure 3: RMSE scores

Simple Prompt

Analyze this negotiation, given in the format <buyer target, seller target, [negotiation]> and predict
the projected sale price. Provide only the final answer in the format ‘FINAL_PRICE: [number]’
INPUT: <{buyer_target}, {seller_target}, [{dialogue}]>

Figure 4: Simple prompt without rationales

Chain of Thought (CoT) Prompting

Analyze this negotiation and predict the final agreed price. Think through each step, then provide
your final answer.
Context:
- Buyer’s Target: ${buyer_target}
- Seller’s Target: ${seller_target}
Dialogue:
{dialogue}
Consider:
1. Opening positions and target prices
2. Pace of concessions from both parties
3. Negotiation tactics and persuasion techniques used
4. Power dynamics and urgency signals
5. Number of turns and negotiation progression
Analyze the above factors, then print the output, the predicted final price, in this format, with no
additional information:
FINAL_PRICE: [your prediction]

Figure 5: CoT prompt without rationales
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