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Abstract

Knowledge graph completion (KGC) is a task
of inferring missing triples based on existing
Knowledge Graphs (KGs). Both structural and
semantic information are vital for successful
KGC. However, existing methods only use ei-
ther the structural knowledge from the KG
embeddings or the semantic information from
pre-trained language models (PLMs), leading
to suboptimal model performance. Moreover,
since PLMs are not trained on KGs, directly
using PLMs to encode triples is inappropriate.
To overcome these limitations, we propose a
novel model called Bridge, which jointly en-
codes structural and semantic information of
KGs. Specifically, we strategically encode enti-
ties and relations separately by PLMs to better
utilize the semantic knowledge of PLMs and
enable structured representation learning via a
structural learning principle. Furthermore, to
bridge the gap between KGs and PLMs, we em-
ploy a self-supervised representation learning
method called BYOL to fine-tune PLMs with
two different views of a triple. Experiments
demonstrate that Bridge outperforms the SOTA
models on three benchmark datasets.

1 Introduction

Knowledge graphs (KGs) are graph-structured
databases composed of triples (facts), where each
triple (h,r,t) represents a relation r between a
head entity h and a tail entity £. KGs such as Wiki-
data (Vrandeci¢ and Krotzsch, 2014) and WordNet
(Fellbaum, 2010) have a significant impact on vari-
ous downstream applications such as named entity
recognition (Zhou et al., 2022), relation extraction
(Ren et al., 2017), and question answering (Behzad
et al., 2023). Nevertheless, the effectiveness of
KGs has long been hindered by the challenge of
the incompleteness problem.

To address this issue, researchers have proposed
a task known as Knowledge Graph Completion
(KGC), which aims to predict missing relations

and provides a valuable supplement to enhance
KGs quality. Most existing KGC methods fall into
two main categories: structure-based methods and
pre-trained language model (PLMs)-based meth-
ods. Structure-based methods represent entities
and relations as low-dimensional continuous em-
beddings, which effectively preserve their intrin-
sic structure (Bordes et al., 2013; Dettmers et al.,
2018; Kim et al., 2022; Ge et al., 2023). While
effective in KGs structure representation learning,
these methods overlook the semantic knowledge
associated with entities and relations. Recently,
PLMs-based models have been proposed to lever-
age the semantic understanding captured by PLMs,
adapting KGC tasks to suit the representation for-
mats of PLMs (Yao et al., 2020; Kim et al., 2020;
Wang et al., 2021a, 2022; Qiao et al., 2023).
While these models offer promising potential to
enhance KGC performance, there is still space to
improve: (1) Existing structure-based methods do
not explore knowledge provided by PLMs. (2) Ex-
isting PLMs-based methods aim to convert KGC
tasks to fit language model format and learn the
relation representation from a semantic perspective
using PLMs, overlooking the context of the relation
in KGs. Consequently, they lack the learning of
structural knowledge. For example, given a triple
(trade name, member of domain usage, methar-
bital)', the semantic of the relation member of do-
main usage is ambiguous since “it is not a standard
used term in the English?>”; hence, PLMs may not
be able to provide an accurate representation from
the semantic perspective. Thus, it becomes impera-
tive to enable the model to leverage the principle
of structural learning to grasp structural knowledge
and compensate for the limitations of semantic un-
derstanding. (3) Existing PLMs-based methods

'This is a triple from WordNet, and metharbital is an anti-
convulsant drug used in the treatment of epilepsy.

%interpretation from ChatGPT when asking “what does
member of domain usage mean?”



utilize PLMs directly and overlook the disparity
between PLMs and triples arising from the lack of
triple training during PLMs pre-training.

To address the limitations of existing methods,
we propose an all-in-one framework named Bridge.
To overcome the challenge of lacking structural
knowledge in PLMs, we propose a structured triple
knowledge learning phase. Specifically, we follow
the principle that if (h,r,t) holds, then the em-
bedding of the tail entity ¢ should be close to the
embedding of the head entity h plus the embedding
of relation 7, to conduct structured learning. This
principle has been widely applied in traditional
structured representation learning for KGs (Bordes
et al., 2013; Balazevic et al., 2019), but there is
no previous study that investigates this principle
using PLMs-based representation. We strategically
extract the embedding of h, r and ¢ separately from
PLMs, and this approach allows us to reconstruct
KGs structure in the semantic embedding via the
structured learning principle.

However, due to the different principles between
traditional structured representation learning and
PLMs, there is a gap between them since PLMs
are not trained on KGs. To bridge the gap between
PLMs and KGs, we fine-tune PLMs to integrate
structured knowledge from KGs into PLMs.
Considering the existence of one-to-many, many-
to-one, and many-to-many relations in KGs (e.g.
(hl, r, tl), (hl, T, tz), (hQ, r, tl), ey (hn, r, tn)
can be correct simultaneously), we opt to consider
positive samples only to avoid false negatives.
Therefore, we employ BYOL (Grill et al., 2020)
because BYOL does not need negative samples.
By taking this step, we unify the space of structural
and semantic knowledge, making the integration
of KGs and PLMs more reasonable.

In summary, our main contributions are:

1. We utilize structured representation learning
based on a PLMs-based model to extract em-
beddings of entities and relations separately,
which enables us to measure their spatial rela-
tions and learn structured knowledge.

2. We propose to utilize BYOL for fine-tuning
PLMs to bridge the gap between structural
knowledge and PLMs.

3. Experiment results on three benchmark
datasets show that Bridge consistently and
significantly outperforms other baseline meth-
ods.

2 Related Work
2.1 Structure-based KGC

Structure-based KGC aims to embed entities and
relations into a low-dimensional continuous vec-
tor space while preserving their intrinsic structure
through the design of different scoring functions.
Various knowledge representation learning meth-
ods can be divided into the following categories: (1)
Translation-based models, which assess the plausi-
bility of a fact by calculating the Euclidean distance
between entities and relations (Bordes et al., 2013;
Ji et al., 2015; Sun et al., 2018; Ge et al., 2023);
(2) Semantic matching-based models, which deter-
mine the plausibility of a fact by calculating the
semantic similarity between entities and relations
(Nickel et al., 2011; Yang et al., 2015; Balazevic
et al., 2019; Liang et al., 2023); and (3) Neural
network-based models, which employ deep neural
networks to fuse the graph network structure and
content information of entities and relations (Guan
et al., 2018; Shang et al., 2019; Vashishth et al.,
2019; Kim et al., 2022). All these structure-based
models are limited to using graph structural infor-
mation from KGs, and they do not leverage the rich
contextual semantic information of PLMs to enrich
the representation of entities and relations.

2.2 PLMs-based KGC

PLMs-based KGC refers to a method for predicting
missing relations in KGs using the implicit knowl-
edge of PLMs. KG-BERT (Yao et al., 2020) is
the first work to utilize PLMs for KGC. It treats
triples in KGs as textual sequences and leverages
BERT (Kenton and Toutanova, 2019) to model
these triples. MTL-KGC (Kim et al., 2020) utilizes
a multi-task learning strategy to learn more rela-
tional properties. This strategy addresses the chal-
lenge faced by KG-BERT, where distinguishing
lexically similar entities is difficult. To improve in-
ference efficiency of KG-BERT, StAR (Wang et al.,
2021a) partitions each triple into two asymmetric
parts and subsequently constructs a bi-encoder to
minimize the inference cost. SimKGC (Wang et al.,
2022) follows the bi-encoder design of StAR and
propose to utilize contrastive learning to improve
the discriminative capability of the learned repre-
sentation. Adopting the architecture of SimKGC,
GHN (Qiao et al., 2023) develops an innovative
self-information-enhanced contrastive learning ap-
proach to generate high-quality negative samples.
However, all these methods simply involve fine-



tuning BERT directly, disregarding both the ab-
sence of structured knowledge in BERT and the
gap between BERT and KGs.

Among all the baseline models, SimKGC is the
one most related to our work with two key differ-
ences. Firstly, the scoring functions in the construc-
tive loss differ. We apply the structure-based learn-
ing principle to the scoring function, integrating
structural knowledge from KGs into PLMs. In con-
trast, SimKGC continues to adhere to the training
objective of PLMs and solely considers semantic
similarity. Several studies have highlighted that
modifying the scoring function is a non-trivial task
and can significantly impact KGC tasks (Ji et al.,
2021; Li and Yang, 2022; Ge et al., 2023). Ad-
ditionally, a naive change in the scoring function
overlooks the disparity between KGs and PLMs.
Hence, we introduce the BYOL fine-tuning strategy
to bridge the gap between KGs and PLMs.

3 Preliminary

3.1 Problem Definition

Knowledge Graph Completion The knowledge
graph completion (KGC) task is to either predict
the tail/head entity ¢ given the head/tail entity h
and the relation r: (h,r,7) and (7, r,t), or predict
relation 7 between two entities: (h,?,t¢). In this
work, we focus on head and tail entity prediction.

3.2 Bootstrap Your Own Latent (BYOL)

Bootstrap Your Own Latent (BYOL) is an approach
to self-supervised image representation learning
without using negative samples. It employs two
networks, referred to as online and target network,
working collaboratively to learn from one another.
The online network is defined by a set of weights 6,
while the target network shares the same architec-
ture as the online network but utilizes a different
set of weights &.

Given the image x, BYOL generates two aug-
mented views (v,v’) from the image x using dif-
ferent augmentations. These two views (v, v’) are
separately processed by the online and the target
encoders. The online network produces a represen-
tation yg = fp(v) and a projection zg = gg(ys),
while the target network outputs a representation
y¢ = fe(v') and a projection z; = g¢(yg). Next,
only the online network applies a prediction gy (zg),
creating an asymmetric between the online and the
target encoders. Finally, the loss function is defined
as the mean squared error between the normalized

predictions and target projections :
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where ¢y(zg) and Z’£ are the {2-normalized term of
q6(z¢) and z.

To symmetrize the loss Lg ¢, BYOL swaps the
two augmented views of each network, feeding v’
to the online network and v to the rarget network
to compute Lg ¢. During each training step, BYOL
performs a stochastic optimization step to mini-
mize LFY OF = Ly ¢ + Ly ¢ with respect to 6 only.
¢ are updated after each training step using an ex-
ponential moving average of the online parameters
0 as follows:

Log = ||do(20)~ 23 = 2-2

{16+ (1—1)6, 2

where 7 is a target decay rate.

Directly predicting within the representation
space can result in representations collapsing. For
instance, when a representation remains constant
across different views, it becomes entirely self-
predictive. Therefore, the efficacy of the non-
negative strategy in BYOL can be attributed to two
key factors: (1) introducing a prediction network
to the online network, establishing an asymmetry
between the online and target networks, and (2) the
parameters of the farget network are updated by a
slowly moving average of the online parameters,
enabling smoother changes in the farget represen-
tation. Both these factors work together to prevent
collapsed solutions.

4 Methodology

In this section, we present Bridge structure in detail.
We first introduce a structure-aware PLMs encoder,
which aims to learn structure knowledge by PLMs.
Then we introduce two essential modules in Bridge.
The first module utilizes a fine-tuning process with
BYOL to seamlessly integrate structural knowledge
from KGs into PLMs, thereby bridging the gap
between the two. The second module aims to learn
structure-enhanced triple knowledge with PLMs.
As shown in Fig.1, Bridge integrates these two
modules by sequentially training two objectives.

Here, we take the tail entity prediction task
(h,r,7) as an example to illustrate the procedure,
and the procedure for the head entity prediction
task (7,7, ¢) will be discussed in Section 4.4.
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Figure 1: The framework of Bridge

4.1 Structure-Aware PLMs Encoder

Existing structure-based methods do not explore
leveraging PLMs, while existing PLMs-based KGC
models solely rely on the semantic knowledge of
PLMs. Both approaches can lead to suboptimal per-
formance, especially when dealing with ambiguous
relations. As we discussed in Section 1, the rela-
tion member of domain usage in the triple (trade
name, member of domain usage, metharbital) is
challenging to interpret semantically. Hence, it is
essential to combine structure knowledge with se-
mantic knowledge to achieve a structure-enhanced
relation representation.

To facilitate structure representation learning,
we use two BERT encoders to separately en-
code h,r and t. Given a triple (h,r,t), the
first encoder takes the textual description of the
head entity A and relation r as input, where the
textual description of the head entity h is de-
noted as a sequence of tokens (ef,eh, .- el),
and relation r is denoted as a sequence of to-
kens (1,72, -+ , ), the input sequence format is:
[CLS] el el - et [SEP] vy vy -+ 1, [SEP].
The second encoder takes the textual description of
the tail entity ¢ as input, where the textual descrip-
tion of the tail entity ¢ is denoted as a sequence
of tokens (e}, e, -+ - el), the input sequence for-
mat is: [CLS] €} e} --- el [SEP]. The design
of these two encoders are illustrated in Fig.2. The
embedding of h,r,t are computed by taking the

mean pooling of the corresponding BERT output:

h = MeanPooling(e®, e}, .- eb),
r = MeanPooling(ry,ra, -+ ,rn), (3)
t = MeanPooling(e$, e, - ,eb).

To reconstruct KGs structure in the semantic em-
bedding, we follow the widely applied principle in
the KGC task that if (h,r,t) holds, then the em-
bedding of the tail entity ¢ should be close to the
embedding of the head entity i plus the embed-
ding of relation 7. The structure scoring function

h + r
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Figure 2: Structure-Aware PLMs Encoder

¢(h,r,t) of this principle is designed as follows:

h+r)-t
d(h,m,t) = cos(h +r,t) = H(1f1+:|)|||t|| ”

4.2 Fine-tuning PLMs with BYOL

Previous PLM-based KGC approaches leverage
PLMs directly and disregard the gap between struc-
ture knowledge and PLMs because PLMs are not
trained on triples. Additionally, Bridge utilization
of the traditional structure KG representation learn-
ing principle differs from that of PLMs. There-
fore, strategic fine-tuning PLMs becomes neces-
sary. Considering the existence of one-to-many,
many-to-one, and many-to-many relations in KGs
we exclusively consider positive samples and hence
adopt BYOL (Grill et al., 2020) as it does not re-
quire negative samples. However, unlike the orig-
inal BYOL model that employs two encoders to
learn the representations, we leverage BYOL to ini-
tialize the parameters of encoders. This approach
bridges the gap between structure and semantic
knowledge, making it more feasible to integrate
KGs and PLMs effectively.

As discussed in Section 3.2, BYOL generates
two augmented views of the same instance, with
one view serving as the input for the online net-
work, and the other view as the input for the rarget
network.

Here, the online encoder takes the textual de-
scriptions of the head entity h and relation r
as input, and produces an online representation
hy, + rp. The target encoder takes the textual de-
scriptions of the tail entity ¢ as input, and produces
a target representation ty,. The design of the en-
coder is elaborated in Section 4.1.

The online projection network gy takes the on-
line representation hy, + rp, as input and outputs



an online projection representation zg:

zg = go(hp + 1) = Wa[o(W1lhp + 1rp)])],
&)

where W7 and Wy, are trainable parameters, gg is
a Multilayer Perceptron (MLP) network with one
hidden layer, and o(-) is a PReLU function.

The target projection network g takes the rar-
get representation ty, as input and outputs a rarget
projection representation z’gz

z = ge(ty) = Walo(Wstp)],  (6)

where W3 and Wy are trainable parameters, g is
a MLP network with one hidden layer, and o () is
a PReLU function.

The prediction network gy takes the online pro-
jection representation zg as input and outputs a
representation gy (zg) which is a prediction of the
target projection representation zé, the goal is to
let the online network predict the target network’s
representation of another augmented view of the
same triple:

ao(z0) ~ 2, )
where gg is a MLP network with one hidden layer.

Once fine-tuning is completed, we discard the
projection networks gg, g¢ and the predictor net-
work gp(zg). Only the online encoder and the tar-
get encoder are used in the subsequent module for
structure triple knowledge learning.

4.3 Structured Triple Knowledge Learning

To reconstruct KGs structures in the semantic em-
bedding, after fine-tuning PLMs with BYOL, we
employ the fine-tuned online encoder and the target
encoder to facilitate structure learning. The online
BERT encoder takes the textual description of the
head entity A and the relation r as input. The rar-
get BERT encoder takes the textual description of
the tail entity ¢ as input. Subsequently, the struc-
ture scoring function ¢(h, r, t) (refer to Eq.(4)) is
utilized to further train these two encoders to incor-
porate structure knowledge into PLMs.

This training module is indispensable because
simply fine-tuning BERT using BYOL is insuffi-
cient for acquiring the adequate structure knowl-
edge observed in training triples. We illustrate the
rationality behind the training framework of each
module in Section 5.4.

4.4 Head Entity Prediction

For the head entity prediction task (7,7,t), we
follow the principle that if (h,r,t) holds, then

the embedding of the head entity A should be
close to the embedding of the tail entity ¢ minus
the embedding of relation r, to conduct structure
knowledge learning. Bridge separately encodes
(r,t) and h using two BERT encoders. Given
a triple (h,r,t), the first encoder takes the re-
lation r and the textual description of tail en-
tity ¢ as input, and the input sequence format is:
[CLS] ry 79 -+ 7 [SEP] €} € -+ €l [SEP].
The second encoder takes the textual description of
the head entity A as input, and the input sequence
format is: [CLS] el el --- el [SEP].

Corresponding to the Section 4.2, the online pro-
jection network gy takes the online representation
tp — rp as input and outputs an online projection
representation zg:

zg = go(tp — rp) = We[o (Wit — rp])], (8)

where W and Wy are trainable parameters.

The target projection network g takes the farget
representation hy, as input and outputs a target
projection representation z’g:

z; = ge(hp) = Wg[o(Wrhy)], (9

where W and Wy are trainable parameters.
Corresponding to the Section 4.3, the structure
scoring function ¢(h, r,t) is designed as follows:

¢(h,r,t) = cos(t —r,h) = (t—r)-h

=— 2 (10
TR

4.5 Objective and Training Process

During the Fine-tuning PLMs with BYOL phase,
the loss Ly ¢ is calculated by Eq.(1). The online pa-
rameters 6 are updated by a stochastic optimization
step to make the predictions gq(zg) closer to z; for
each triple, while the target parameters ¢ are up-
dated by Eq.(2). To symmetrize this loss, we also
swap the input of the online and target encoder.

During Structured Triple Knowledge Learning
phase, we use contrastive loss with additive margin
(Wang et al., 2022) to simultaneously optimize the
structure and PLMs objectives:

6(¢(h77‘7t) _’7)/7—

e@hri)=n)/7 4 SV (othrt) =)/’

(11)
where 7 denotes the temperature parameter, ¢, de-
notes the iy, negative tail, ¢(h,r,t) is the score
function as in Eq.(4) or Eq.(10), and the additive
margin v > 0 encourages the model to increase the
score of the correct triple (h,r,t).

L = —log



The loss £ is computed across all positive triples
in the minibatch, and entities within the same batch
can serve as negatives. This extensively utilized
in-batch negative strategy (Chen et al., 2020; Wang
et al., 2022) enables the efficient reuse of entity
embeddings for bi-encoder models.

5 Experimental Study

5.1 Datasets and Evaluation Metrics

We conduct experiments on three benchmark
datasets: WN18RR (Dettmers et al., 2018), FB15k-
237 (Toutanova et al., 2015), and WikidataSM
(Wang et al., 2021b). To assess the performance
of Bridge and all baseline models, we employ two
evaluation metrics: Hits@K and mean reciprocal
rank. More details can be found in Appendix A.1.

5.2 Baseline

Structure-based methods aim to learn entity and
relation embeddings by modeling relational struc-
ture in KGs. We consider the following widely used
methods as baselines: TransE (Bordes et al., 2013),
DistMult (Yang et al., 2015), RotatE (Sun et al.,
2018), TuckER (Balazevic et al., 2019), CompGCN
(Vashishth et al., 2019), BKENE (Kim et al., 2022),
CompoundE (Ge et al., 2023) and SymCL?(Liang
etal., 2023). All these methods solely rely on struc-
tural knowledge. Following the principle that the
relation is a translation from the head entity to the
tail entity, they design different scoring functions
to measure the plausibility of a triple without lever-
aging the semantic knowledge of PLMs.

PLMs-based methods aim to enrich the knowl-
edge representation by leveraging the semantic
knowledge of PLMs. We consider the following
PLMs-based models as baselines: KG-BERT (Yao
et al., 2020), MTL-KGC (Kim et al., 2020), StAR
(Wang et al., 2021a), SimKGC (Wang et al., 2022),
SimKGC-SymCL* (Liang et al., 2023), and GHN
(Qiao et al., 2023). All of these methods directly
utilize semantic knowledge from PLMs, while ig-
noring the structural knowledge of KGs and disre-
garding the disparity between PLMs and KGs due
to the fact that PLMs are not trained on KGs.

3SymCL is a plug-and-play contrastive learning approach
based on relation-symmetrical structure. It can be adapt to
various knowledge graph embedding methods. We report the
best result achieved by SymCL on structure-based methods in
Table 1.

*We reported the results of applying SymCL to SimKGC
in Table 1.

The information source of Structure-based mod-
els and PLMs-based methods differs. The former
relies exclusively on structural knowledge derived
from KGs, while the latter incorporates knowledge
obtained during the pre-training process.

5.3 Opverall Evaluation Results and Analysis

The performances of all models on three datasets
are reported in Table 1. The experimental details
can be found in the appendix A.2.

In general, with the exception of SimKGC,
SimKGC-SymCL and GHN, all the other previous
PLMs-based methods fall behind most structure-
based methods. Meanwhile, despite the contrastive
learning strategy in SimKGC, SimKGC-SymCL
and GHN greatly improved performance on the
WN18RR and WikidataS5M-Trans, they still lags
behind structure-based methods on the FB15k-237.
As claimed in Wang et al. (2022), the unsatisfactory
performance on the FB15k-237 is due to the seman-
tic ambiguity of many relations. These phenomena
highlight the importance of leveraging relation con-
text in KGs and semantic knowledge from PLMs
to learn a comprehensive relation representation.

Bridge achieves superior performance compared
to most of the other models. Compared with the
runner-up results, the improvements obtained by
Bridge in terms of MRR, Hits@3, and Hits@10
are 2.4%, 2.2%, 4.6% on WNI18RR. Addition-
ally, Hits@1 remains competitive with GHN. On
the WikidataSM-Trans dataset, Bridge exhibits
substantial improvements, achieving increases of
24.7% in MRR, 26.8% in Hits@1, 25.8% in
Hits@3, and 22.7% in Hits @ 10, respectively. On
FB15k-237, Bridge achieves the best results in
Hits@1 and Hits@ 10 while exhibiting compara-
ble performance in Hits@3 and MRR when com-
pared to the best results in BKENE. Considering
that FB15k-237 is much denser (average degree is
~ 37 per entity) (Wang et al., 2022), BKENE likely
holds an advantage in utilizing abundant neighbor-
ing information for learning entity embeddings.

Bridge outperforms state-of-the-art methods by
a significant margin on WikidataSM-Trans com-
pared to the other two datasets. One possible rea-
son is that WikidataSM-Trans is larger than the
other two datasets, and the abundant training data
allows the fine-tuning PLMs with BYOL phase to
play a more significant role, resulting in a better
starting point for encoders. Further discussion is
available in Section 5.4.



WNI8RR FB15k-237 WikidataSM-Trans
Model MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 | MRR Hits@l Hits@3 Hits@10
Structure-based Methods
TransEf 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2
DistMultf 44 42 47.0 50.4 28.1 19.9 30.1 44.6 - - - -
RotatEf 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3 29.0 234 322 39.0
TuckERT 47.0 44.3 48.2 52.6 35.8 26.6 394 54.4 - - - -
CompGCN* 479 443 494 54.6 35.5 26.4 39.0 53.5 - - - -
BKENE* 48.4 44.5 51.2 58.4 38.1 29.8 429 57.0 - - - -
CompoundE* 49.1 45.0 50.8 57.6 35.7 26.4 39.3 54.5 - - - -
SymCL* 49.1 44.8 50.4 57.6 37.1 27.6 41.1 56.6 - - - -
PLMs-based Methods

KG-BERT* - - - 52.4 - - - 42.0 - - - -
MTL-KGC* 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8 - - - -
StAR* 40.1 24.3 49.1 70.9 29.6 20.5 322 48.2 - - - -
SimKGC* 67.1 58.5 73.1 81.7 333 24.6 36.2 51.0 353 30.1 37.4 44.8
SimKGC-SymCL* || 65.7 54.6 70.9 79.1 324 23.5 354 50.4 - - - -
GHN* 67.8 59.6 71.9 82.1 339 25.1 36.4 51.8 364 31.7 38.0 453
Bridge 69.4 594 74.7 85.9 38.0 31.6 41.2 574 454 40.2 47.8 55.6

Table 1: Main results on WN18RR, FB15k-237 and WikidataSM-Trans. Bold numbers represent the best results
and underline numbers denote the runner-up results, 1 cites the results from Wang et al. 2022, * cites the results
from original papers. - indicates that the original papers do not present results related to the corresponding dataset.

WN18RR FB15k-237 WikidataSM-Trans
Model MRR Hits@l Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10
w/o structural | 58.2 45.2 64.4 79.3 31.0 24.2 31.9 44.7 30.1 27.7 30.0 38.1
w/o BYOL 70.1 59.0 72.2 80.8 383 30.5 40.8 56.4 40.6 33.8 40.2 50.6
SimKGC 67.1 58.5 73.1 81.7 333 24.6 36.2 51.0 353 30.1 37.4 44.8
Bridge 69.4 59.4 74.7 85.9 38.0 31.6 41.2 574 45.4 40.2 47.8 55.6

Table 2: Ablation study on WN18RR, FB15k-237 and WikidataSM-Trans.

5.4 Ablation Study

To explore the effectiveness of each module, we
conduct two variants of Bridge: (1) removing the
structural Triple Knowledge Learning module (re-
ferred to as “w/o structural”). For inference, we
use the fine-tuned online BERT and target BERT
to encode (h,r)/(r,t) and t/h, respectively, and
rank the plausibility of each triple based on their
cosine similarity (refer to Eq.(4) or Eq.(10)); (2)
remove the Fine-tuning PLMs with BYOL module
(referred to as “w/o BYOL”). The difference be-
tween “w/o BYOL” and SimKGC is that the former
uses a structure-based scoring function, while the
latter uses a semantic-based scoring function. The
results are summarized in Table 2.

Effectiveness of Structured Triple Knowledge
Learning: Comparing with Bridge, the results of
“w/o structured” reveal that removing the Struc-
tured Triple Knowledge Learning module results in
notable decreases in all metrics. This indicates that
contrastive loss effectively distinguishes similar yet
distinct instances. This result is consistent with the
empirical studies conducted in SimKGC.

Effectiveness of Fine-tuning PLMs with
BYOL: Comparing with Bridge, the results of
“w/o BYOL” reveal that removing the fine-tuning

BERT with BYOL module results in notable de-
creases across all metrics in WikidataSM-Trans,
and a minor decline in Hits@1, Hits@3, and
Hits@10 on both WN18RR and FB15k-237. This
phenomenon illustrates the necessity for fine-
tuning PLMs. While PLMs typically utilize vast,
unlabeled corpora during training to construct a
comprehensive language model that embodies tex-
tual content, achieving competitive performance in
particular tasks often requires an additional fine-
tuning step. Meanwhile, the results also validate
our previous speculation that abundant data is cru-
cial for fine-tuning the model since WikidataSM-
Trans is larger than the other two datasets. There-
fore, removing fine-tuning BERT with BYOL mod-
ule has a more significant negative impact on
WikidataSM-Trans.

Compared with SImKGC, “w/o BYOL” outper-
forms on FB15k-237 and WikidataSM-Trans. On
WNI18RR, “w/o BYOL” outperforms SimKGC
in Hits@1 and MRR while being comparable in
Hits@3 and Hits@10. This illustrates that our
structural scoring function can effectively recon-
struct KGs structures in the semantic embedding.
Therefore the learned representation not only in-
cludes semantic knowledge from PLMs but also



SimKGC Bridge
Triple Rank Top 3 Rank Top 3
(rio pasion, mouth of the watercourse, Usumacinta river) 119 Golfo de Paria, El Golfo de Guayaquil, Yuma River 2 Tabasco River, Usumacinta river, tzala river
(lewis gerhardt goldsmith, instance of, Human) 11 plant death, dispute, internet hoax 1 Human, Lists of people who disappeared, Strange deaths
(cross country championships - short race, sport, Athletics) 4 Cross-country running, long distance race, Road run 1 Athletics, Tower running, Athletics at the Commonwealth

Table 3: Case study on the tail entity prediction (h, r, ?) task using the test set of WikidataSM-Trans. The Bold font
represents the true tail entity. Top 3 shows the first three tail entities predicted by SimKGC and Bridge, respectively.

Triple Rank Top 3

(position, hypernym, location) 3 region, space, location
(take a breather; derivationally related form, breathing time) 1 breathing time, rest, restfulness
(Africa, has part, republic of cameroon) 14 Eritrea, sahara, tanganyika

Table 4: Error Analysis on the tail entity prediction (h,r,?) task on the test set of WN18RR. The Bold font
represents the true tail entity. Top 3 shows the first three tail entities predicted by Bridge.

incorporates the context of KGs.

Furthermore, the overall computational cost of
Bridge is comparable with SImKGC. More details
can be found in Appendix A.3.

5.5 Case Study

We perform a case study to delve deeper into
Bridge and the KGC task.

As shown in Table 3, for the first example, the
top three tail entities predicted by Bridge are three
rivers in Mexico and are geographically close to
the true tail entity Usumacinta river. However,
the top three tail entities SimKGC predicted are
rivers in South America. In the second example,
the relation instance of has ambiguous semantic
interpretations. SimKGC cannot accurately capture
the semantics of this relation for this triple from
the PLMs, resulting in incorrect predictions for the
top three tail entities. Bridge can understand this
relation from the structural perspective, allowing
for better predictions. These two toy examples
show that when the semantics of the relations are
ambiguous, integrating structural knowledge can
help to learn a better relation representation.

In the third example, even though Bridge accu-
rately predicts the true tail entity Athletics, the pre-
diction Cross-country running made by SimKGC
can be regarded as correct. Cross-country running
and Athletics are not mutually exclusive concepts.
However, the evaluation metrics consider it an in-
correct answer since the triple (cross country cham-
pionships - men’s short race, sport, Cross-country
running) is not present in KGs. Based on this ob-
servation, we conducted an error analysis on the
WNI18RR dataset to further investigate the results.

5.6 Error Analysis

Based on the above observation, we conduct an
error analysis on WN18RR to further explore this

phenomenon of multiple potential true tail entities.

As shown in Table 4, in the first example, Bridge
ranks the true tail entity location as the third. How-
ever, the first two tail entities predicted by Bridge
are correct based on human observation. In the sec-
ond example, rest can also be a valid tail due to the
fact that rest and breathing time are lexically simi-
lar concepts. In the third example, Bridge ranks the
true tail entity republic of cameroon as 14th, at-
tributed to the nature of the relation has part, which
is a many-to-many relation. The first three tail en-
tities predicted by Bridge are correct because they
are all located in Africa.

Drawing from these observations, some pre-
dicted triples might be correct based on human
evaluation. However, these triples might not be
present in KGs. This false negative issue results in
diminished performance.

To understand the impact of false negatives on
the evaluation metrics, we conduct statistical analy-
sis on the FB15k-237 dataset. More details can be
found in Appendix A.4.

6 Conclusion

In this paper, we introduce Bridge, which inte-
grates PLMs with structure-based models. Since no
previous study investigates structural principle us-
ing PLMs-based representation, we jointly encode
structural and semantic information of KGs to en-
hance knowledge representation. Further, existing
work overlook the gap between KGs and PLMs due
to the absence of KGs training in PLMs. To address
this issue, we utilize BYOL to fine-tune PLMs.
Experimental results demonstrate Bridge outper-
forms most baselines. Especially on WikidataSM-
Trans, the improvements in terms of MRR, Hits@1,
Hits@3, and Hits@10 are 24.7%, 26.8%, 25.8%,
22.7%, respectively.



7 Limitation

Given the competitive performance of BKENE on
FB15k-237, we plan to leverage graph neural net-
works for combining PLMs with neighboring infor-
mation from KGs to fully utilize PLMs and graph
neighboring knowledge.

Additionally, we intend to design more efficient
evaluation metrics based on different relation prop-
erties.

8 Ethics Statement
We comply with the ACL Code of Ethics.
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Dataset #Ent #Rel #Train #Valid #Test
WNISRR 40,943 11 86,835 3,034 | 3,134
FB15k-237 14,541 237 272,115 17,535 | 20,466
‘WikidataSM-Trans | 4,594,485 | 822 | 20,614,279 | 5,133 | 5,163

Table 5: Statistics of the Datasets. Columns 2-6 rep-
resent the number of entities, relations, triples in the
training set, triples in the validation set, triples in test
set, respectively.

A Appendix

A.1 Datasets and Evaluation Metrics

WNI18RR is a subset of WordNet (Fellbaum, 1998),
and FB15k-237 is a subset of Freebase (Bollacker
et al., 2008). For textual descriptions of entities, we
use the data from KG-BERT (Yao et al., 2020) for
WNI18RR and FB15k-237 datasets, and the data
from SimKGC (Wang et al., 2022) for WikidataSM-
Trans dataset. The statistics are shown in Table 5.

Hits@K indicates the proportion of correct enti-
ties ranked in the top k positions, while MRR rep-
resents the mean reciprocal rank of correct entities.
MRR and Hit@k are reported under the filtered set-
ting (Bordes et al., 2013), where the filtered setting
excludes the scores of all known true triples from
the training, validation, and test sets. The com-
putation of all metrics takes averaging over two
directions: head entity prediction and tail entity
prediction.

A.2 Bridge Setups

We use the pre-trained bert-base-uncased (English)
model as the initialized encoder. In the fine-tuning
PLMs with BYOL module, we conduct training
on the WN18RR, FB15k-237, and WikidataSM
datasets for 2, 2, and 1 epoch(s), respectively. The
seed is 0, and the initial learning rate used for these
datasets are 4 x 107%,3 % 107°,4 * 10~°. Subse-
quently, in the structural triple knowledge learn-
ing module, we perform training for 7, 10, and 1
epoch(s) on the same datasets, respectively. The
corresponding initial learning rates are 1104, 1%
107°,3 % 1075, The batch size, additive margin
of contrastive loss, and the temperature 7 are con-
sistent across all datasets, set as 1024, 0.02, and
0.05, respectively. We impose a maximum limit
of 50 tokens for entity descriptions and employ
AdamW optimizer (Kingma and Ba, 2015) with
linear learning rate decay. Grid search is utilized to
tune the optimal hyperparameters on the validation
set. We employ Pytorch® to implement Bridge and

>https://pytorch.org/
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Model | # Total Training Epoch | # Total Training Time
SimKGC 8 3331s
Bridge 9 3550s

Table 6: Comparisons of model efficiency of Bridge and
SimKGC on WN18RR.

conduct it on a server with one A100 GPU.

A.3 Efficiency of Bridge

As GHN does not provide source code, we run
SimKGC ¢ on WN18RR and conduct an efficiency
comparison with Bridge. We employ the same
convergence criteria, halting the training process
when the improvement in MRR is less than 0.05.
Table 6 illustrates the model efficiency of Bridge
and SimKGC on WNI18RR using a single A100
GPU with a batch size of 1024. In Bridge, the
Fine-tuning PLMs with BYOL step converges in
2 epochs, and the Structured Triple Knowledge
Learning step achieves convergence in 7 epochs (9
epochs in total). The total training time is 3550 sec-
onds. SimKGC converges in 8 epochs, and the total
training time is 3331 seconds. Consequently, the
overall computational cost of Bridge is comparable
with SimKGC.

A.4 Human Evaluation

The human evaluation results are shown in Table 7.

We randomly sample 100 wrong predictions
based on Hits@1 for head entity prediction and
tail entity prediction tasks, respectively. For the tail
entity prediction task, 30% predictions are false
negative, and for the head entity prediction task,
26% predictions are false negative. The majority of
these false negatives are attributed to one-to-many,
many-to-one, and many-to-many relations prop-
erties, whereas the Hits@1 metric assumes that
all relations are one-to-one. This analysis demon-
strates the underestimation of model performance
by existing metrics and highlights the need for em-
ploying different metrics to address relations of
varying properties. On the other hand, the propor-
tion of “unknown" is also relatively high in both
tasks, indicating the presence of noisy data within
the KGs. This also presents a potential avenue for
future research on enhancing KGC performance in
noisy KGs.

®https://github.com/intfloat/SimKGC



task correct | wrong | unknown
(hyr,7) | 30% 48% 22%
(7,7 t) | 26% 50% 24%

Table 7: Results of human evaluation on the FB15k-237
test set. The category labeled as “unknown” indicates
annotators are unable to determine the correctness of

the prediction.
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