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Abstract

Knowledge graph completion (KGC) is a task001
of inferring missing triples based on existing002
Knowledge Graphs (KGs). Both structural and003
semantic information are vital for successful004
KGC. However, existing methods only use ei-005
ther the structural knowledge from the KG006
embeddings or the semantic information from007
pre-trained language models (PLMs), leading008
to suboptimal model performance. Moreover,009
since PLMs are not trained on KGs, directly010
using PLMs to encode triples is inappropriate.011
To overcome these limitations, we propose a012
novel model called Bridge, which jointly en-013
codes structural and semantic information of014
KGs. Specifically, we strategically encode enti-015
ties and relations separately by PLMs to better016
utilize the semantic knowledge of PLMs and017
enable structured representation learning via a018
structural learning principle. Furthermore, to019
bridge the gap between KGs and PLMs, we em-020
ploy a self-supervised representation learning021
method called BYOL to fine-tune PLMs with022
two different views of a triple. Experiments023
demonstrate that Bridge outperforms the SOTA024
models on three benchmark datasets.025

1 Introduction026

Knowledge graphs (KGs) are graph-structured027

databases composed of triples (facts), where each028

triple (h, r, t) represents a relation r between a029

head entity h and a tail entity t. KGs such as Wiki-030

data (Vrandečić and Krötzsch, 2014) and WordNet031

(Fellbaum, 2010) have a significant impact on vari-032

ous downstream applications such as named entity033

recognition (Zhou et al., 2022), relation extraction034

(Ren et al., 2017), and question answering (Behzad035

et al., 2023). Nevertheless, the effectiveness of036

KGs has long been hindered by the challenge of037

the incompleteness problem.038

To address this issue, researchers have proposed039

a task known as Knowledge Graph Completion040

(KGC), which aims to predict missing relations041

and provides a valuable supplement to enhance 042

KGs quality. Most existing KGC methods fall into 043

two main categories: structure-based methods and 044

pre-trained language model (PLMs)-based meth- 045

ods. Structure-based methods represent entities 046

and relations as low-dimensional continuous em- 047

beddings, which effectively preserve their intrin- 048

sic structure (Bordes et al., 2013; Dettmers et al., 049

2018; Kim et al., 2022; Ge et al., 2023). While 050

effective in KGs structure representation learning, 051

these methods overlook the semantic knowledge 052

associated with entities and relations. Recently, 053

PLMs-based models have been proposed to lever- 054

age the semantic understanding captured by PLMs, 055

adapting KGC tasks to suit the representation for- 056

mats of PLMs (Yao et al., 2020; Kim et al., 2020; 057

Wang et al., 2021a, 2022; Qiao et al., 2023). 058

While these models offer promising potential to 059

enhance KGC performance, there is still space to 060

improve: (1) Existing structure-based methods do 061

not explore knowledge provided by PLMs. (2) Ex- 062

isting PLMs-based methods aim to convert KGC 063

tasks to fit language model format and learn the 064

relation representation from a semantic perspective 065

using PLMs, overlooking the context of the relation 066

in KGs. Consequently, they lack the learning of 067

structural knowledge. For example, given a triple 068

(trade name, member of domain usage, methar- 069

bital)1, the semantic of the relation member of do- 070

main usage is ambiguous since “it is not a standard 071

used term in the English2”; hence, PLMs may not 072

be able to provide an accurate representation from 073

the semantic perspective. Thus, it becomes impera- 074

tive to enable the model to leverage the principle 075

of structural learning to grasp structural knowledge 076

and compensate for the limitations of semantic un- 077

derstanding. (3) Existing PLMs-based methods 078

1This is a triple from WordNet, and metharbital is an anti-
convulsant drug used in the treatment of epilepsy.

2interpretation from ChatGPT when asking “what does
member of domain usage mean?”
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utilize PLMs directly and overlook the disparity079

between PLMs and triples arising from the lack of080

triple training during PLMs pre-training.081

To address the limitations of existing methods,082

we propose an all-in-one framework named Bridge.083

To overcome the challenge of lacking structural084

knowledge in PLMs, we propose a structured triple085

knowledge learning phase. Specifically, we follow086

the principle that if (h, r, t) holds, then the em-087

bedding of the tail entity t should be close to the088

embedding of the head entity h plus the embedding089

of relation r, to conduct structured learning. This090

principle has been widely applied in traditional091

structured representation learning for KGs (Bordes092

et al., 2013; Balazevic et al., 2019), but there is093

no previous study that investigates this principle094

using PLMs-based representation. We strategically095

extract the embedding of h, r and t separately from096

PLMs, and this approach allows us to reconstruct097

KGs structure in the semantic embedding via the098

structured learning principle.099

However, due to the different principles between100

traditional structured representation learning and101

PLMs, there is a gap between them since PLMs102

are not trained on KGs. To bridge the gap between103

PLMs and KGs, we fine-tune PLMs to integrate104

structured knowledge from KGs into PLMs.105

Considering the existence of one-to-many, many-106

to-one, and many-to-many relations in KGs (e.g.107

(h1, r, t1), (h1, r, t2), (h2, r, t1), · · · , (hn, r, tn)108

can be correct simultaneously), we opt to consider109

positive samples only to avoid false negatives.110

Therefore, we employ BYOL (Grill et al., 2020)111

because BYOL does not need negative samples.112

By taking this step, we unify the space of structural113

and semantic knowledge, making the integration114

of KGs and PLMs more reasonable.115

In summary, our main contributions are:116

1. We utilize structured representation learning117

based on a PLMs-based model to extract em-118

beddings of entities and relations separately,119

which enables us to measure their spatial rela-120

tions and learn structured knowledge.121

2. We propose to utilize BYOL for fine-tuning122

PLMs to bridge the gap between structural123

knowledge and PLMs.124

3. Experiment results on three benchmark125

datasets show that Bridge consistently and126

significantly outperforms other baseline meth-127

ods.128

2 Related Work 129

2.1 Structure-based KGC 130

Structure-based KGC aims to embed entities and 131

relations into a low-dimensional continuous vec- 132

tor space while preserving their intrinsic structure 133

through the design of different scoring functions. 134

Various knowledge representation learning meth- 135

ods can be divided into the following categories: (1) 136

Translation-based models, which assess the plausi- 137

bility of a fact by calculating the Euclidean distance 138

between entities and relations (Bordes et al., 2013; 139

Ji et al., 2015; Sun et al., 2018; Ge et al., 2023); 140

(2) Semantic matching-based models, which deter- 141

mine the plausibility of a fact by calculating the 142

semantic similarity between entities and relations 143

(Nickel et al., 2011; Yang et al., 2015; Balazevic 144

et al., 2019; Liang et al., 2023); and (3) Neural 145

network-based models, which employ deep neural 146

networks to fuse the graph network structure and 147

content information of entities and relations (Guan 148

et al., 2018; Shang et al., 2019; Vashishth et al., 149

2019; Kim et al., 2022). All these structure-based 150

models are limited to using graph structural infor- 151

mation from KGs, and they do not leverage the rich 152

contextual semantic information of PLMs to enrich 153

the representation of entities and relations. 154

2.2 PLMs-based KGC 155

PLMs-based KGC refers to a method for predicting 156

missing relations in KGs using the implicit knowl- 157

edge of PLMs. KG-BERT (Yao et al., 2020) is 158

the first work to utilize PLMs for KGC. It treats 159

triples in KGs as textual sequences and leverages 160

BERT (Kenton and Toutanova, 2019) to model 161

these triples. MTL-KGC (Kim et al., 2020) utilizes 162

a multi-task learning strategy to learn more rela- 163

tional properties. This strategy addresses the chal- 164

lenge faced by KG-BERT, where distinguishing 165

lexically similar entities is difficult. To improve in- 166

ference efficiency of KG-BERT, StAR (Wang et al., 167

2021a) partitions each triple into two asymmetric 168

parts and subsequently constructs a bi-encoder to 169

minimize the inference cost. SimKGC (Wang et al., 170

2022) follows the bi-encoder design of StAR and 171

propose to utilize contrastive learning to improve 172

the discriminative capability of the learned repre- 173

sentation. Adopting the architecture of SimKGC, 174

GHN (Qiao et al., 2023) develops an innovative 175

self-information-enhanced contrastive learning ap- 176

proach to generate high-quality negative samples. 177

However, all these methods simply involve fine- 178
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tuning BERT directly, disregarding both the ab-179

sence of structured knowledge in BERT and the180

gap between BERT and KGs.181

Among all the baseline models, SimKGC is the182

one most related to our work with two key differ-183

ences. Firstly, the scoring functions in the construc-184

tive loss differ. We apply the structure-based learn-185

ing principle to the scoring function, integrating186

structural knowledge from KGs into PLMs. In con-187

trast, SimKGC continues to adhere to the training188

objective of PLMs and solely considers semantic189

similarity. Several studies have highlighted that190

modifying the scoring function is a non-trivial task191

and can significantly impact KGC tasks (Ji et al.,192

2021; Li and Yang, 2022; Ge et al., 2023). Ad-193

ditionally, a naive change in the scoring function194

overlooks the disparity between KGs and PLMs.195

Hence, we introduce the BYOL fine-tuning strategy196

to bridge the gap between KGs and PLMs.197

3 Preliminary198

3.1 Problem Definition199

Knowledge Graph Completion The knowledge200

graph completion (KGC) task is to either predict201

the tail/head entity t given the head/tail entity h202

and the relation r: (h, r, ?) and (?, r, t), or predict203

relation r between two entities: (h, ?, t). In this204

work, we focus on head and tail entity prediction.205

3.2 Bootstrap Your Own Latent (BYOL)206

Bootstrap Your Own Latent (BYOL) is an approach207

to self-supervised image representation learning208

without using negative samples. It employs two209

networks, referred to as online and target network,210

working collaboratively to learn from one another.211

The online network is defined by a set of weights θ,212

while the target network shares the same architec-213

ture as the online network but utilizes a different214

set of weights ξ.215

Given the image x, BYOL generates two aug-216

mented views (v, v′) from the image x using dif-217

ferent augmentations. These two views (v, v′) are218

separately processed by the online and the target219

encoders. The online network produces a represen-220

tation yθ = fθ(v) and a projection zθ = gθ(yθ),221

while the target network outputs a representation222

y′
ξ = fξ(v

′) and a projection z′ξ = gξ(y
′
ξ). Next,223

only the online network applies a prediction qθ(zθ),224

creating an asymmetric between the online and the225

target encoders. Finally, the loss function is defined226

as the mean squared error between the normalized227

predictions and target projections : 228

Lθ,ξ ≜ ∥q̄θ(zθ)−z̄′ξ∥22 = 2−2·
⟨qθ(zθ), z′ξ⟩

∥qθ(zθ)∥2 · ∥z′ξ∥2
,

(1) 229

where q̄θ(zθ) and z̄′ξ are the l2-normalized term of 230

qθ(zθ) and z′ξ. 231

To symmetrize the loss Lθ,ξ, BYOL swaps the 232

two augmented views of each network, feeding v′ 233

to the online network and v to the target network 234

to compute L̃θ,ξ . During each training step, BYOL 235

performs a stochastic optimization step to mini- 236

mize LBY OL
θ,ξ = Lθ,ξ + L̃θ,ξ with respect to θ only. 237

ξ are updated after each training step using an ex- 238

ponential moving average of the online parameters 239

θ as follows: 240

ξ ← τξ + (1− τ)θ, (2) 241

where τ is a target decay rate. 242

Directly predicting within the representation 243

space can result in representations collapsing. For 244

instance, when a representation remains constant 245

across different views, it becomes entirely self- 246

predictive. Therefore, the efficacy of the non- 247

negative strategy in BYOL can be attributed to two 248

key factors: (1) introducing a prediction network 249

to the online network, establishing an asymmetry 250

between the online and target networks, and (2) the 251

parameters of the target network are updated by a 252

slowly moving average of the online parameters, 253

enabling smoother changes in the target represen- 254

tation. Both these factors work together to prevent 255

collapsed solutions. 256

4 Methodology 257

In this section, we present Bridge structure in detail. 258

We first introduce a structure-aware PLMs encoder, 259

which aims to learn structure knowledge by PLMs. 260

Then we introduce two essential modules in Bridge. 261

The first module utilizes a fine-tuning process with 262

BYOL to seamlessly integrate structural knowledge 263

from KGs into PLMs, thereby bridging the gap 264

between the two. The second module aims to learn 265

structure-enhanced triple knowledge with PLMs. 266

As shown in Fig.1, Bridge integrates these two 267

modules by sequentially training two objectives. 268

Here, we take the tail entity prediction task 269

(h, r, ?) as an example to illustrate the procedure, 270

and the procedure for the head entity prediction 271

task (?, r, t) will be discussed in Section 4.4. 272
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Figure 1: The framework of Bridge

4.1 Structure-Aware PLMs Encoder273

Existing structure-based methods do not explore274

leveraging PLMs, while existing PLMs-based KGC275

models solely rely on the semantic knowledge of276

PLMs. Both approaches can lead to suboptimal per-277

formance, especially when dealing with ambiguous278

relations. As we discussed in Section 1, the rela-279

tion member of domain usage in the triple (trade280

name, member of domain usage, metharbital) is281

challenging to interpret semantically. Hence, it is282

essential to combine structure knowledge with se-283

mantic knowledge to achieve a structure-enhanced284

relation representation.285

To facilitate structure representation learning,286

we use two BERT encoders to separately en-287

code h, r and t. Given a triple (h, r, t), the288

first encoder takes the textual description of the289

head entity h and relation r as input, where the290

textual description of the head entity h is de-291

noted as a sequence of tokens (eh1 , e
h
2 , · · · , ehn),292

and relation r is denoted as a sequence of to-293

kens (r1, r2, · · · , rn), the input sequence format is:294

[CLS] eh1 eh2 · · · ehn [SEP ] r1 r2 · · · rn [SEP ].295

The second encoder takes the textual description of296

the tail entity t as input, where the textual descrip-297

tion of the tail entity t is denoted as a sequence298

of tokens (et1, e
t
2, · · · , etn), the input sequence for-299

mat is: [CLS] et1 et2 · · · etn [SEP ]. The design300

of these two encoders are illustrated in Fig.2. The301

embedding of h, r, t are computed by taking the302

mean pooling of the corresponding BERT output:303

h = MeanPooling(eh1 , e
h
2 , · · · , ehn),

r = MeanPooling(r1, r2, · · · , rn),
t = MeanPooling(et1, e

t
2, · · · , etn).

(3)304

To reconstruct KGs structure in the semantic em-305

bedding, we follow the widely applied principle in306

the KGC task that if (h, r, t) holds, then the em-307

bedding of the tail entity t should be close to the308

embedding of the head entity h plus the embed-309

ding of relation r. The structure scoring function310

Figure 2: Structure-Aware PLMs Encoder

ϕ(h, r, t) of this principle is designed as follows: 311

ϕ(h, r, t) = cos(h+ r, t) =
(h+ r) · t
∥h+ r∥∥t∥

. (4) 312

4.2 Fine-tuning PLMs with BYOL 313

Previous PLM-based KGC approaches leverage 314

PLMs directly and disregard the gap between struc- 315

ture knowledge and PLMs because PLMs are not 316

trained on triples. Additionally, Bridge utilization 317

of the traditional structure KG representation learn- 318

ing principle differs from that of PLMs. There- 319

fore, strategic fine-tuning PLMs becomes neces- 320

sary. Considering the existence of one-to-many, 321

many-to-one, and many-to-many relations in KGs 322

we exclusively consider positive samples and hence 323

adopt BYOL (Grill et al., 2020) as it does not re- 324

quire negative samples. However, unlike the orig- 325

inal BYOL model that employs two encoders to 326

learn the representations, we leverage BYOL to ini- 327

tialize the parameters of encoders. This approach 328

bridges the gap between structure and semantic 329

knowledge, making it more feasible to integrate 330

KGs and PLMs effectively. 331

As discussed in Section 3.2, BYOL generates 332

two augmented views of the same instance, with 333

one view serving as the input for the online net- 334

work, and the other view as the input for the target 335

network. 336

Here, the online encoder takes the textual de- 337

scriptions of the head entity h and relation r 338

as input, and produces an online representation 339

hb + rb. The target encoder takes the textual de- 340

scriptions of the tail entity t as input, and produces 341

a target representation tb. The design of the en- 342

coder is elaborated in Section 4.1. 343

The online projection network gθ takes the on- 344

line representation hb + rb as input and outputs 345
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an online projection representation zθ:346

zθ = gθ(hb + rb) = W2[σ(W1[hb + rb])],
(5)347

where W1 and W2 are trainable parameters, gθ is348

a Multilayer Perceptron (MLP) network with one349

hidden layer, and σ(·) is a PReLU function.350

The target projection network gξ takes the tar-351

get representation tb as input and outputs a target352

projection representation z′ξ:353

z′ξ = gξ(tb) = W4[σ(W3tb)], (6)354

where W3 and W4 are trainable parameters, gξ is355

a MLP network with one hidden layer, and σ(·) is356

a PReLU function.357

The prediction network qθ takes the online pro-358

jection representation zθ as input and outputs a359

representation qθ(zθ) which is a prediction of the360

target projection representation z′ξ, the goal is to361

let the online network predict the target network’s362

representation of another augmented view of the363

same triple:364

qθ(zθ) ≈ z′ξ, (7)365

where qθ is a MLP network with one hidden layer.366

Once fine-tuning is completed, we discard the367

projection networks gθ, gξ and the predictor net-368

work qθ(zθ). Only the online encoder and the tar-369

get encoder are used in the subsequent module for370

structure triple knowledge learning.371

4.3 Structured Triple Knowledge Learning372

To reconstruct KGs structures in the semantic em-373

bedding, after fine-tuning PLMs with BYOL, we374

employ the fine-tuned online encoder and the target375

encoder to facilitate structure learning. The online376

BERT encoder takes the textual description of the377

head entity h and the relation r as input. The tar-378

get BERT encoder takes the textual description of379

the tail entity t as input. Subsequently, the struc-380

ture scoring function ϕ(h, r, t) (refer to Eq.(4)) is381

utilized to further train these two encoders to incor-382

porate structure knowledge into PLMs.383

This training module is indispensable because384

simply fine-tuning BERT using BYOL is insuffi-385

cient for acquiring the adequate structure knowl-386

edge observed in training triples. We illustrate the387

rationality behind the training framework of each388

module in Section 5.4.389

4.4 Head Entity Prediction390

For the head entity prediction task (?, r, t), we391

follow the principle that if (h, r, t) holds, then392

the embedding of the head entity h should be 393

close to the embedding of the tail entity t minus 394

the embedding of relation r, to conduct structure 395

knowledge learning. Bridge separately encodes 396

(r, t) and h using two BERT encoders. Given 397

a triple (h, r, t), the first encoder takes the re- 398

lation r and the textual description of tail en- 399

tity t as input, and the input sequence format is: 400

[CLS] r1 r2 · · · rn [SEP ] et1 et2 · · · etn [SEP ]. 401

The second encoder takes the textual description of 402

the head entity h as input, and the input sequence 403

format is: [CLS] eh1 eh2 · · · ehn [SEP ]. 404

Corresponding to the Section 4.2, the online pro- 405

jection network gθ takes the online representation 406

tb − rb as input and outputs an online projection 407

representation zθ: 408

zθ = gθ(tb − rb) = W6[σ(W5[tb − rb])], (8) 409

where W5 and W6 are trainable parameters. 410

The target projection network gξ takes the target 411

representation hb as input and outputs a target 412

projection representation z′ξ: 413

z′ξ = gξ(hb) = W8[σ(W7hb)], (9) 414

where W7 and W8 are trainable parameters. 415

Corresponding to the Section 4.3, the structure 416

scoring function ϕ(h, r, t) is designed as follows: 417

ϕ(h, r, t) = cos(t− r,h) =
(t− r) · h
∥t− r∥∥h∥

. (10) 418

4.5 Objective and Training Process 419

During the Fine-tuning PLMs with BYOL phase, 420

the loss Lθ,ξ is calculated by Eq.(1). The online pa- 421

rameters θ are updated by a stochastic optimization 422

step to make the predictions qθ(zθ) closer to z′ξ for 423

each triple, while the target parameters ϕ are up- 424

dated by Eq.(2). To symmetrize this loss, we also 425

swap the input of the online and target encoder. 426

During Structured Triple Knowledge Learning 427

phase, we use contrastive loss with additive margin 428

(Wang et al., 2022) to simultaneously optimize the 429

structure and PLMs objectives: 430

L = −log e(ϕ(h,r,t)−γ)/τ

e(ϕ(h,r,t)−γ)/τ +
∑|N |

i=1 e
(ϕ(h,r,t′i)−γ)/τ

,

(11) 431

where τ denotes the temperature parameter, t′i de- 432

notes the ith negative tail, ϕ(h, r, t) is the score 433

function as in Eq.(4) or Eq.(10), and the additive 434

margin γ > 0 encourages the model to increase the 435

score of the correct triple (h, r, t). 436
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The loss L is computed across all positive triples437

in the minibatch, and entities within the same batch438

can serve as negatives. This extensively utilized439

in-batch negative strategy (Chen et al., 2020; Wang440

et al., 2022) enables the efficient reuse of entity441

embeddings for bi-encoder models.442

5 Experimental Study443

5.1 Datasets and Evaluation Metrics444

We conduct experiments on three benchmark445

datasets: WN18RR (Dettmers et al., 2018), FB15k-446

237 (Toutanova et al., 2015), and Wikidata5M447

(Wang et al., 2021b). To assess the performance448

of Bridge and all baseline models, we employ two449

evaluation metrics: Hits@K and mean reciprocal450

rank. More details can be found in Appendix A.1.451

5.2 Baseline452

Structure-based methods aim to learn entity and453

relation embeddings by modeling relational struc-454

ture in KGs. We consider the following widely used455

methods as baselines: TransE (Bordes et al., 2013),456

DistMult (Yang et al., 2015), RotatE (Sun et al.,457

2018), TuckER (Balazevic et al., 2019), CompGCN458

(Vashishth et al., 2019), BKENE (Kim et al., 2022),459

CompoundE (Ge et al., 2023) and SymCL3(Liang460

et al., 2023). All these methods solely rely on struc-461

tural knowledge. Following the principle that the462

relation is a translation from the head entity to the463

tail entity, they design different scoring functions464

to measure the plausibility of a triple without lever-465

aging the semantic knowledge of PLMs.466

PLMs-based methods aim to enrich the knowl-467

edge representation by leveraging the semantic468

knowledge of PLMs. We consider the following469

PLMs-based models as baselines: KG-BERT (Yao470

et al., 2020), MTL-KGC (Kim et al., 2020), StAR471

(Wang et al., 2021a), SimKGC (Wang et al., 2022),472

SimKGC-SymCL4 (Liang et al., 2023), and GHN473

(Qiao et al., 2023). All of these methods directly474

utilize semantic knowledge from PLMs, while ig-475

noring the structural knowledge of KGs and disre-476

garding the disparity between PLMs and KGs due477

to the fact that PLMs are not trained on KGs.478

3SymCL is a plug-and-play contrastive learning approach
based on relation-symmetrical structure. It can be adapt to
various knowledge graph embedding methods. We report the
best result achieved by SymCL on structure-based methods in
Table 1.

4We reported the results of applying SymCL to SimKGC
in Table 1.

The information source of Structure-based mod- 479

els and PLMs-based methods differs. The former 480

relies exclusively on structural knowledge derived 481

from KGs, while the latter incorporates knowledge 482

obtained during the pre-training process. 483

5.3 Overall Evaluation Results and Analysis 484

The performances of all models on three datasets 485

are reported in Table 1. The experimental details 486

can be found in the appendix A.2. 487

In general, with the exception of SimKGC, 488

SimKGC-SymCL and GHN, all the other previous 489

PLMs-based methods fall behind most structure- 490

based methods. Meanwhile, despite the contrastive 491

learning strategy in SimKGC, SimKGC-SymCL 492

and GHN greatly improved performance on the 493

WN18RR and Wikidata5M-Trans, they still lags 494

behind structure-based methods on the FB15k-237. 495

As claimed in Wang et al. (2022), the unsatisfactory 496

performance on the FB15k-237 is due to the seman- 497

tic ambiguity of many relations. These phenomena 498

highlight the importance of leveraging relation con- 499

text in KGs and semantic knowledge from PLMs 500

to learn a comprehensive relation representation. 501

Bridge achieves superior performance compared 502

to most of the other models. Compared with the 503

runner-up results, the improvements obtained by 504

Bridge in terms of MRR, Hits@3, and Hits@10 505

are 2.4%, 2.2%, 4.6% on WN18RR. Addition- 506

ally, Hits@1 remains competitive with GHN. On 507

the Wikidata5M-Trans dataset, Bridge exhibits 508

substantial improvements, achieving increases of 509

24.7% in MRR, 26.8% in Hits@1, 25.8% in 510

Hits@3, and 22.7% in Hits@10, respectively. On 511

FB15k-237, Bridge achieves the best results in 512

Hits@1 and Hits@10 while exhibiting compara- 513

ble performance in Hits@3 and MRR when com- 514

pared to the best results in BKENE. Considering 515

that FB15k-237 is much denser (average degree is 516

∼ 37 per entity) (Wang et al., 2022), BKENE likely 517

holds an advantage in utilizing abundant neighbor- 518

ing information for learning entity embeddings. 519

Bridge outperforms state-of-the-art methods by 520

a significant margin on Wikidata5M-Trans com- 521

pared to the other two datasets. One possible rea- 522

son is that Wikidata5M-Trans is larger than the 523

other two datasets, and the abundant training data 524

allows the fine-tuning PLMs with BYOL phase to 525

play a more significant role, resulting in a better 526

starting point for encoders. Further discussion is 527

available in Section 5.4. 528
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WN18RR FB15k-237 Wikidata5M-Trans
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based Methods
TransE† 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2
DistMult† 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6 - - - -
RotatE† 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3 29.0 23.4 32.2 39.0
TuckER† 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4 - - - -
CompGCN∗ 47.9 44.3 49.4 54.6 35.5 26.4 39.0 53.5 - - - -
BKENE∗ 48.4 44.5 51.2 58.4 38.1 29.8 42.9 57.0 - - - -
CompoundE∗ 49.1 45.0 50.8 57.6 35.7 26.4 39.3 54.5 - - - -
SymCL∗ 49.1 44.8 50.4 57.6 37.1 27.6 41.1 56.6 - - - -

PLMs-based Methods
KG-BERT∗ - - - 52.4 - - - 42.0 - - - -
MTL-KGC∗ 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8 - - - -
StAR∗ 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2 - - - -
SimKGC∗ 67.1 58.5 73.1 81.7 33.3 24.6 36.2 51.0 35.3 30.1 37.4 44.8
SimKGC-SymCL∗ 65.7 54.6 70.9 79.1 32.4 23.5 35.4 50.4 - - - -
GHN∗ 67.8 59.6 71.9 82.1 33.9 25.1 36.4 51.8 36.4 31.7 38.0 45.3
Bridge 69.4 59.4 74.7 85.9 38.0 31.6 41.2 57.4 45.4 40.2 47.8 55.6

Table 1: Main results on WN18RR, FB15k-237 and Wikidata5M-Trans. Bold numbers represent the best results
and underline numbers denote the runner-up results, † cites the results from Wang et al. 2022, ∗ cites the results
from original papers. - indicates that the original papers do not present results related to the corresponding dataset.

WN18RR FB15k-237 Wikidata5M-Trans
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
w/o structural 58.2 45.2 64.4 79.3 31.0 24.2 31.9 44.7 30.1 27.7 30.0 38.1
w/o BYOL 70.1 59.0 72.2 80.8 38.3 30.5 40.8 56.4 40.6 33.8 40.2 50.6
SimKGC 67.1 58.5 73.1 81.7 33.3 24.6 36.2 51.0 35.3 30.1 37.4 44.8
Bridge 69.4 59.4 74.7 85.9 38.0 31.6 41.2 57.4 45.4 40.2 47.8 55.6

Table 2: Ablation study on WN18RR, FB15k-237 and Wikidata5M-Trans.

5.4 Ablation Study529

To explore the effectiveness of each module, we530

conduct two variants of Bridge: (1) removing the531

structural Triple Knowledge Learning module (re-532

ferred to as “w/o structural”). For inference, we533

use the fine-tuned online BERT and target BERT534

to encode (h, r)/(r, t) and t/h, respectively, and535

rank the plausibility of each triple based on their536

cosine similarity (refer to Eq.(4) or Eq.(10)); (2)537

remove the Fine-tuning PLMs with BYOL module538

(referred to as “w/o BYOL”). The difference be-539

tween “w/o BYOL” and SimKGC is that the former540

uses a structure-based scoring function, while the541

latter uses a semantic-based scoring function. The542

results are summarized in Table 2.543

Effectiveness of Structured Triple Knowledge544

Learning: Comparing with Bridge, the results of545

“w/o structured” reveal that removing the Struc-546

tured Triple Knowledge Learning module results in547

notable decreases in all metrics. This indicates that548

contrastive loss effectively distinguishes similar yet549

distinct instances. This result is consistent with the550

empirical studies conducted in SimKGC.551

Effectiveness of Fine-tuning PLMs with552

BYOL: Comparing with Bridge, the results of553

“w/o BYOL” reveal that removing the fine-tuning554

BERT with BYOL module results in notable de- 555

creases across all metrics in Wikidata5M-Trans, 556

and a minor decline in Hits@1, Hits@3, and 557

Hits@10 on both WN18RR and FB15k-237. This 558

phenomenon illustrates the necessity for fine- 559

tuning PLMs. While PLMs typically utilize vast, 560

unlabeled corpora during training to construct a 561

comprehensive language model that embodies tex- 562

tual content, achieving competitive performance in 563

particular tasks often requires an additional fine- 564

tuning step. Meanwhile, the results also validate 565

our previous speculation that abundant data is cru- 566

cial for fine-tuning the model since Wikidata5M- 567

Trans is larger than the other two datasets. There- 568

fore, removing fine-tuning BERT with BYOL mod- 569

ule has a more significant negative impact on 570

Wikidata5M-Trans. 571

Compared with SimKGC, “w/o BYOL” outper- 572

forms on FB15k-237 and Wikidata5M-Trans. On 573

WN18RR, “w/o BYOL” outperforms SimKGC 574

in Hits@1 and MRR while being comparable in 575

Hits@3 and Hits@10. This illustrates that our 576

structural scoring function can effectively recon- 577

struct KGs structures in the semantic embedding. 578

Therefore the learned representation not only in- 579

cludes semantic knowledge from PLMs but also 580
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SimKGC Bridge
Triple Rank Top 3 Rank Top 3
(rio pasion, mouth of the watercourse, Usumacinta river) 119 Golfo de Paria, El Golfo de Guayaquil, Yuma River 2 Tabasco River, Usumacinta river, tzala river
(lewis gerhardt goldsmith, instance of, Human) 11 plant death, dispute, internet hoax 1 Human, Lists of people who disappeared, Strange deaths
(cross country championships - short race, sport, Athletics) 4 Cross-country running, long distance race, Road run 1 Athletics, Tower running, Athletics at the Commonwealth

Table 3: Case study on the tail entity prediction (h, r, ?) task using the test set of Wikidata5M-Trans. The Bold font
represents the true tail entity. Top 3 shows the first three tail entities predicted by SimKGC and Bridge, respectively.

Triple Rank Top 3
(position, hypernym, location) 3 region, space, location
(take a breather, derivationally related form, breathing time) 1 breathing time, rest, restfulness
(Africa, has part, republic of cameroon) 14 Eritrea, sahara, tanganyika

Table 4: Error Analysis on the tail entity prediction (h, r, ?) task on the test set of WN18RR. The Bold font
represents the true tail entity. Top 3 shows the first three tail entities predicted by Bridge.

incorporates the context of KGs.581

Furthermore, the overall computational cost of582

Bridge is comparable with SimKGC. More details583

can be found in Appendix A.3.584

5.5 Case Study585

We perform a case study to delve deeper into586

Bridge and the KGC task.587

As shown in Table 3, for the first example, the588

top three tail entities predicted by Bridge are three589

rivers in Mexico and are geographically close to590

the true tail entity Usumacinta river. However,591

the top three tail entities SimKGC predicted are592

rivers in South America. In the second example,593

the relation instance of has ambiguous semantic594

interpretations. SimKGC cannot accurately capture595

the semantics of this relation for this triple from596

the PLMs, resulting in incorrect predictions for the597

top three tail entities. Bridge can understand this598

relation from the structural perspective, allowing599

for better predictions. These two toy examples600

show that when the semantics of the relations are601

ambiguous, integrating structural knowledge can602

help to learn a better relation representation.603

In the third example, even though Bridge accu-604

rately predicts the true tail entity Athletics, the pre-605

diction Cross-country running made by SimKGC606

can be regarded as correct. Cross-country running607

and Athletics are not mutually exclusive concepts.608

However, the evaluation metrics consider it an in-609

correct answer since the triple (cross country cham-610

pionships - men’s short race, sport, Cross-country611

running) is not present in KGs. Based on this ob-612

servation, we conducted an error analysis on the613

WN18RR dataset to further investigate the results.614

5.6 Error Analysis615

Based on the above observation, we conduct an616

error analysis on WN18RR to further explore this617

phenomenon of multiple potential true tail entities. 618

As shown in Table 4, in the first example, Bridge 619

ranks the true tail entity location as the third. How- 620

ever, the first two tail entities predicted by Bridge 621

are correct based on human observation. In the sec- 622

ond example, rest can also be a valid tail due to the 623

fact that rest and breathing time are lexically simi- 624

lar concepts. In the third example, Bridge ranks the 625

true tail entity republic of cameroon as 14th, at- 626

tributed to the nature of the relation has part, which 627

is a many-to-many relation. The first three tail en- 628

tities predicted by Bridge are correct because they 629

are all located in Africa. 630

Drawing from these observations, some pre- 631

dicted triples might be correct based on human 632

evaluation. However, these triples might not be 633

present in KGs. This false negative issue results in 634

diminished performance. 635

To understand the impact of false negatives on 636

the evaluation metrics, we conduct statistical analy- 637

sis on the FB15k-237 dataset. More details can be 638

found in Appendix A.4. 639

6 Conclusion 640

In this paper, we introduce Bridge, which inte- 641

grates PLMs with structure-based models. Since no 642

previous study investigates structural principle us- 643

ing PLMs-based representation, we jointly encode 644

structural and semantic information of KGs to en- 645

hance knowledge representation. Further, existing 646

work overlook the gap between KGs and PLMs due 647

to the absence of KGs training in PLMs. To address 648

this issue, we utilize BYOL to fine-tune PLMs. 649

Experimental results demonstrate Bridge outper- 650

forms most baselines. Especially on Wikidata5M- 651

Trans, the improvements in terms of MRR, Hits@1, 652

Hits@3, and Hits@10 are 24.7%, 26.8%, 25.8%, 653

22.7%, respectively. 654
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7 Limitation655

Given the competitive performance of BKENE on656

FB15k-237, we plan to leverage graph neural net-657

works for combining PLMs with neighboring infor-658

mation from KGs to fully utilize PLMs and graph659

neighboring knowledge.660

Additionally, we intend to design more efficient661

evaluation metrics based on different relation prop-662

erties.663

8 Ethics Statement664

We comply with the ACL Code of Ethics.665
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Dataset #Ent #Rel #Train #Valid #Test
WN18RR 40, 943 11 86, 835 3, 034 3, 134

FB15k-237 14, 541 237 272, 115 17, 535 20, 466
Wikidata5M-Trans 4, 594, 485 822 20, 614, 279 5, 133 5, 163

Table 5: Statistics of the Datasets. Columns 2-6 rep-
resent the number of entities, relations, triples in the
training set, triples in the validation set, triples in test
set, respectively.

A Appendix832

A.1 Datasets and Evaluation Metrics833

WN18RR is a subset of WordNet (Fellbaum, 1998),834

and FB15k-237 is a subset of Freebase (Bollacker835

et al., 2008). For textual descriptions of entities, we836

use the data from KG-BERT (Yao et al., 2020) for837

WN18RR and FB15k-237 datasets, and the data838

from SimKGC (Wang et al., 2022) for Wikidata5M-839

Trans dataset. The statistics are shown in Table 5.840

Hits@K indicates the proportion of correct enti-841

ties ranked in the top k positions, while MRR rep-842

resents the mean reciprocal rank of correct entities.843

MRR and Hit@k are reported under the filtered set-844

ting (Bordes et al., 2013), where the filtered setting845

excludes the scores of all known true triples from846

the training, validation, and test sets. The com-847

putation of all metrics takes averaging over two848

directions: head entity prediction and tail entity849

prediction.850

A.2 Bridge Setups851

We use the pre-trained bert-base-uncased (English)852

model as the initialized encoder. In the fine-tuning853

PLMs with BYOL module, we conduct training854

on the WN18RR, FB15k-237, and Wikidata5M855

datasets for 2, 2, and 1 epoch(s), respectively. The856

seed is 0, and the initial learning rate used for these857

datasets are 4 ∗ 10−4, 3 ∗ 10−5, 4 ∗ 10−5. Subse-858

quently, in the structural triple knowledge learn-859

ing module, we perform training for 7, 10, and 1860

epoch(s) on the same datasets, respectively. The861

corresponding initial learning rates are 1∗10−4, 1∗862

10−5, 3 ∗ 10−5. The batch size, additive margin γ863

of contrastive loss, and the temperature τ are con-864

sistent across all datasets, set as 1024, 0.02, and865

0.05, respectively. We impose a maximum limit866

of 50 tokens for entity descriptions and employ867

AdamW optimizer (Kingma and Ba, 2015) with868

linear learning rate decay. Grid search is utilized to869

tune the optimal hyperparameters on the validation870

set. We employ Pytorch5 to implement Bridge and871

5https://pytorch.org/

Model # Total Training Epoch # Total Training Time
SimKGC 8 3331s

Bridge 9 3550s

Table 6: Comparisons of model efficiency of Bridge and
SimKGC on WN18RR.

conduct it on a server with one A100 GPU. 872

A.3 Efficiency of Bridge 873

As GHN does not provide source code, we run 874

SimKGC 6 on WN18RR and conduct an efficiency 875

comparison with Bridge. We employ the same 876

convergence criteria, halting the training process 877

when the improvement in MRR is less than 0.05. 878

Table 6 illustrates the model efficiency of Bridge 879

and SimKGC on WN18RR using a single A100 880

GPU with a batch size of 1024. In Bridge, the 881

Fine-tuning PLMs with BYOL step converges in 882

2 epochs, and the Structured Triple Knowledge 883

Learning step achieves convergence in 7 epochs (9 884

epochs in total). The total training time is 3550 sec- 885

onds. SimKGC converges in 8 epochs, and the total 886

training time is 3331 seconds. Consequently, the 887

overall computational cost of Bridge is comparable 888

with SimKGC. 889

A.4 Human Evaluation 890

The human evaluation results are shown in Table 7. 891

We randomly sample 100 wrong predictions 892

based on Hits@1 for head entity prediction and 893

tail entity prediction tasks, respectively. For the tail 894

entity prediction task, 30% predictions are false 895

negative, and for the head entity prediction task, 896

26% predictions are false negative. The majority of 897

these false negatives are attributed to one-to-many, 898

many-to-one, and many-to-many relations prop- 899

erties, whereas the Hits@1 metric assumes that 900

all relations are one-to-one. This analysis demon- 901

strates the underestimation of model performance 902

by existing metrics and highlights the need for em- 903

ploying different metrics to address relations of 904

varying properties. On the other hand, the propor- 905

tion of “unknown" is also relatively high in both 906

tasks, indicating the presence of noisy data within 907

the KGs. This also presents a potential avenue for 908

future research on enhancing KGC performance in 909

noisy KGs. 910

6https://github.com/intfloat/SimKGC
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task correct wrong unknown
(h, r, ?) 30% 48% 22%
(?, r, t) 26% 50% 24%

Table 7: Results of human evaluation on the FB15k-237
test set. The category labeled as “unknown” indicates
annotators are unable to determine the correctness of
the prediction.
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