
1 
 
 

Abstract 1 

Figuring out how neural language models 2 

comprehend syntax acts as a key to reveal-3 

ing how they understand languages. We 4 

systematically analyzed methods of ex-5 

tracting syntax from models, namely prob-6 

ing, and found five limitations yet widely 7 

exist in previous probing practice. We pro-8 

posed a method that can directly extract la-9 

beled dependency trees from attention 10 

scores without training any network, while 11 

being able to calculate the mutual infor-12 

mation (MI) in a mathematical-rigorous 13 

way. Compared with previous approaches, 14 

our method has a much simpler model, 15 

while being able to probe more complex de-16 

pendency trees, providing much more fine-17 

grained information about model explana-18 

tion at the same time. We demonstrated our 19 

method’s effectiveness by systematically 20 

comparing it with a great many competitive 21 

baselines, and gained informative conclu-22 

sions, shedding light on our method’s ex-23 

planation potential. Our code is included in 24 

the “software” materials of the openreview 25 

system to keep anonymity, and we’ll make 26 

them publicly available upon publication. 27 

1 Introduction 28 

Recent advancements in Large Language Models 29 

(LLMs) have left the world with deep impressions. 30 

This process is accompanied by confusion, since 31 

LLMs are usually trained on simple next-token-32 

prediction LM tasks, while languages have com-33 

plex hierarchical structures, known as syntax, and 34 

recent brain science has proved that humans im-35 

plicitly build up syntax structures while reading 36 

(Lopopolo et al., 2020; Dotan et al., 2022; Fallon et 37 

al., 2024). Thus, figuring out whether language 38 

models have learned to implicitly comprehend syn-39 

tax is the key to revealing the essentials of their in-40 

telligence. 41 

There are already methods for extracting syntax 42 

(or other linguistics concepts) from model internal 43 

states, called probing methods. A common practice 44 

of probing is to train a supervised classifier net-45 

work on top of model states (Hewitt and Manning, 46 

2019; Pimentel et al., 2020; Müller-Eberstein et al., 47 

2022) to predict dependency syntax trees, or di-48 

rectly take some model states as evidence for syn-49 

tax (Htut et al., 2019).  50 

Despite the insights they gave, it is obvious that 51 

previous probing methods are explaining by unex-52 

plainibility: Most of them are introducing external 53 

trainable networks to extract syntax, ranging from 54 

simple linear mappings (Liu et al., 2019) to deep 55 

MLPs (Hewitt and Liang, 2019; Voita and Titov, 56 

2020; Pimentel et al., 2020a) or pseudo attention 57 

heads (Pimentel et al., 2022). This is causing a 58 

trade-off: Linear mappings are simple and explain-59 

able, but have limited expressivity. Deeper net-60 

works can fit any co-relationships, but a deep prob-61 

ing network is unexplainable itself, so it’s natural 62 

to raise the doubt on whether the extracted syntax 63 

structures really come from the probed LM, or just 64 

the strong probes have learned to unconditionally 65 

predict them. Moreover, since modern LLMs have 66 

larger hidden dimensions compared with pre-67 

trained models, the trainable networks have to be 68 

even larger to fit in the dimensionality, inevitably 69 

making them more unexplainable. 70 

If we dive deeper, we might find clues about this 71 

bitter tradeoff: previous methods are putting their 72 

attention mainly on contextualized hidden states. 73 

Since vector-based hidden states have completely 74 

different modalities compared with dependency 75 

trees, a trainable mapping network is necessary. 76 

Using hidden states is also a primary cause for the 77 

aforementioned concern of did the probe learn the 78 
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task: Contextualized embeddings embed abundant 79 

semantics, so even though the probed LM knows 80 

nothing about syntactics, it’s still possible that the 81 

deep probing model learns it. As an example, if we 82 

see two words, eat and breakfast, even without any 83 

context, there’re still good reasons for us to believe 84 

that breakfast acts as the object of the verb eat. This 85 

is exactly the case of this concern. 86 

If hidden states are not yet good enough, what’s 87 

the better choice? Maybe we should put attention 88 

on attention. Attention is the only component that 89 

involves inter-token relationships (MLP and 90 

add/norm are applied token-wise), while depend-91 

ency syntactics is exactly inter-word relationships. 92 

Moreover, attention maps are topologically con-93 

sistent with syntax trees: Attention scores are ma-94 

trices, while dependency trees can also be de-95 

scribed as adjacency matrices. Even the matrix size 96 

can be the same (ignoring sub-word tokenization, 97 

which is also overridable by simple indexing). 98 

Unfortunately, despite those nice consistencies, 99 

to our best knowledge, there’re only few works fo-100 

cusing on probing attention (Clark et al., 2019; Htut 101 

et al., 2019; Vig and Belinkov, 2019; Ravishankar 102 

et al., 2021), only being able to extract inferior or 103 

even incomplete dependency trees. There seems to 104 

be a contradiction. Why is it? Our opinion is that, 105 

due to those consistencies, researchers are over-106 

trusting attention scores, which is right another 107 

limitation. Since attention scores are softmax-nor-108 

malized, constituting a probability distribution 109 

across tokens, they tend to directly use attention 110 

scores as probabilities of a dependency relationship 111 

between two words. However, attention scores def-112 

initely do not only have this single functionality of 113 

syntax, so filtering out highly syntactical attention 114 

heads together with transformations on attention 115 

scores is necessary. 116 

Based on our analysis, we proposed our method 117 

of Information-theoretic Parameter-free Bayesian 118 

Probing (IPBP): Instead of training supervised net-119 

works, we chose to directly estimate the multivari-120 

ate probabilistic distributions between attention 121 

scores and dependency relationships. With those 122 

distributions, we’re able to estimate mutual infor-123 

mation (MI) in a mathematically rigorous way, ob-124 

taining a good metric for each head’s individual im-125 

portance for each dependency label. We further de-126 

signed a novel decoding algorithm incorporating 127 

the estimated MI and Bayesian posteriors, being 128 

able to efficiently reconstruct labeled dependency 129 

trees, while preventing us from dropping into the 130 

trap of directly using attention scores as depend-131 

ency probabilities. We systematically compared 132 

with a series of strong baselines, even with those 133 

methods requiring far more complex probe net-134 

works, and achieved state-of-the-art head im-135 

portance estimation and tree-constructing perfor-136 

mance. We further derived informative conclusions 137 

on the estimated MI and distributions. In a word, 138 

our method is addressing the two limitations in an 139 

elegant way, while offering vast possibilities for the 140 

upcoming conclusion-intensive research thanks to 141 

its fine-grained MI and probabilities functions. 142 

2 Related Work 143 

Just after the born of deep contextualize embed-144 

dings (Peters et al., 2018) and transformer-based 145 

pre-trained models (Devlin et al., 2019), research-146 

ers have started to investigate whether or not lin-147 

guistics properties are embedded in these models 148 

(Conneau et al., 2018; Liu et al., 2019; Tenny et al., 149 

2019; Hewitt and Manning, 2019). Then arguments 150 

began in this area. The frontline of these arguments 151 

is about what probing model can we use to prevent 152 

it from learning the task itself. While early practices 153 

and preliminary works suggested strictly-linear 154 

probes (Alain and Bengio, 2017; Hewitt and Man-155 

ning, 2019; Liu et al., 2019), Hewitt and Liang, 156 

2019 proposed control tasks that penalizes models 157 

being ability to learn the task itself, and had at-158 

tempts on several Deep MLPs. Furthermore, Pi-159 

mentel et al., 2020b admitted this trade-off and 160 

took probing as an accuracy-complexity two-goal 161 

optimizing problem, and most radically, Pimentel 162 

et al. 2020a, insisted that probes should be as deep 163 

and complex as possible since they used them as 164 

estimations of 𝒱 -Information (Xu et al., 2020). 165 

Apart from disputes, there are also alternative the-166 

ories proposed by the researchers, like the code-de-167 

scription-length theory by Voita and Titov, 2020 168 

and the architectural bottleneck principle by Pi-169 

mentel et al., 2022. These theories can be seen as 170 

patches under the supervised probing context since 171 

they’re also addressing the complexity vs. accuracy 172 

tradeoff. 173 

Apart from supervised probes, there’re also na-174 

ïve parameter-free probes, mainly based on extract-175 

ing dependency trees (or partial dependency arcs) 176 

from attention scores (Clark et al. 2019, Vig and 177 

Belinkov, 2019; Ravishankar et al., 2021), yielding 178 

not yet good enough probing performances. If we 179 

take a broader view, we’ll also find parameter-free 180 

explaination methods for more general-purpose 181 
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concept in deep learning research (Mu and Andreas, 182 

2020; Antverg and Belinkov, 2021). Together with 183 

some supervised works (Radford et al., 2019; 184 

Lakretz et al., 2019; Dalvi et al., 2019), these meth-185 

ods, also called neuron analysis methods, were sys-186 

tematically evaluated by a recent work (Fan et al., 187 

2024). In section 4, we’ll systematically compare 188 

our methods with the principles of these strong 189 

baselines. 190 

3 IPBP Methodology  191 

To foster understanding, we’ll first break our 192 

method into key points in the first section, and then 193 

introduce the details. 194 

3.1 Key Aspects Analysis 195 

Given a sentence 𝑋 = 𝑥!𝑥"…𝑥#and an arbitrary 196 

token pair (𝑥$ , 𝑥%), there might or might not be a 197 

dependency arc from 𝑥$  to 𝑥% . We define 𝑙[$][%] as 198 

the variable for which kind of dependency exists 199 

from 𝑥$  to 𝑥% . 𝑙[$][%] can be a specific dependency 200 

type like nsubj, or 𝜙 when there’s no dependency 201 

arc from 𝑥$ to 𝑥%. If the sentence is sent into a trans-202 

former-based LM, there will also be a series of at-203 

tention scores from 𝑥$ to 𝑥%, namely 𝑎(,*
[$][%], which 204 

stands for the attention score of the ℎ-th attention 205 

head from the 𝑏-th transformer block. If we take 206 

the dataset as a series of token pairs, and get the 207 

observation 𝑙[$][%]  and 𝑎(,*
[$][%]  with respect to each 208 

token pair, we’ll get two co-occurring dataset-wide 209 

variables, 𝐿 and 𝐴(,* which stand for the depend-210 

ency type and head (𝑏, ℎ)’s attention score with re-211 

spect to any token pair. 212 

Therefore, the goal of our probing can be di-213 

vided into two: 214 

• MI Estimation: estimating mutual infor-215 

mation (MI) between 𝐿  and every 𝐴(,* : 216 

MI(𝐿; 𝐴(,*). 217 

• Tree Reconstruction: A method of deriving 218 

a full dependency tree based on attention 219 

scores 𝐴(,* 220 

Specifically, since 𝐿 is a discrete variable while 221 

𝐴(,* is continuous, the joint distribution is a mix-222 

ture distribution, and the formula of MI is slightly 223 

different from its classical discrete or continuous 224 

ones, shown as follows: 225 

MI#𝐿; 𝐴!,#' = ∑ ∫𝑓(𝑙, 𝑎)log $(&,')
)(&)$(')

d𝑎&∈ℒ∪{.}   (1) 226 

Where ℒ stands for the set of all dependency re-227 

lationships {nsubj, dobj, …} and 𝑓(𝑙, 𝑎), 𝑃(𝑙), 228 

𝑓(𝑎) is short for the density value of joint distribu-229 

tion 𝑓6𝐿, 𝐴(,*7 at 𝐿 = 𝑙, 𝐴(,* = 𝑎 , density of mar-230 

ginal distribution 𝑓(𝐴(,*) at 𝐴(,* = 𝑎, and scalar 231 

probability 𝑃(𝐿 = 𝑙).  232 

Moreover, the second goal can be regarded as a 233 

Bayesian inference process taking 𝐴(,*  as evi-234 

dence and 𝐿 as hypothesis. The posterior distribu-235 

tions (𝑓(𝐿 = 𝑙|𝐴(,* = 𝑎)) are required for tree re-236 

construction. Therefore, the key to achieving these 237 

two goals is those probabilistic distributions.  238 

The above formulation intuitively explains our 239 

method in a nutshell, in the following sections 240 

we’ll dive deep into how we can infer these distri-241 

butions from the dataset. 242 

3.2 Getting the Distributions 243 

Now assume we have a dataset 𝒟 consisting of a 244 

series of <sentence, dependency tree> pairs. We 245 

also have a model with 𝒷 blocks and 𝒽 attention 246 

heads within each block. We first initialize a series 247 

of attention score sets 𝒜(,*;,  where 𝑏 ∈ {1…𝒷}, 248 

ℎ ∈ {1…𝒽}  and 𝐿 ∈ ℒ ∪ {𝜙} . 𝒜(,*;,  means all 249 

possible attention scores of attention head 𝑏, ℎ be-250 

tween token pairs having dependency 𝑙. 251 

Then we’ll iterate over the dataset. For a specific 252 

sentence 𝑋 ∈ 𝒟 , we feed 𝑋 = 𝑥!…𝑥#  into the 253 

model, and for any token pair ⟨𝑥$ , 𝑥%⟩  ( 𝑖, 𝑗 ∈254 

{1…𝑛}), we’ll have its dependency relationship 255 

𝑙[$][%] and a series of attention scores 𝑎(,*
[$][%] for any 256 

𝑏 ∈ {1…𝒷} and ℎ ∈ {1…𝒽}. We’ll add each at-257 

tention score 𝑎(,*
[$][%]to the corresponding attention 258 

score set 𝒜(,*;,["][$] . After iteration, all attention 259 

score sets will have all possible attention scores for 260 

any token pair ⟨𝑥$ , 𝑥%⟩ in any sentence 𝑋 ∈ 𝒟. 261 

After gaining the attention values, we’ll estimate 262 

those key probabilities. The most intuitive one 263 

might be 𝑃(𝐿 = 𝑙), since we can simply take the 264 

empirical probability on the dataset as the approxi-265 

mate value, which is 𝑃G(𝐿 = 𝑙) = -𝒜%,';)-

∑ 0𝒜%,';)*0)*∈ℒ∪{/}
, 266 

where 𝑏, ℎ  can be any value and this equation 267 

means the proportion of token pairs with depend-268 

ency 𝑙 among all possible token pairs from the da-269 

taset. The tricky ones are the continuous probabili-270 

ties. Since we already have abundant attention 271 

score samples, we’ll use Kernel Density Estimation 272 

(KDE) to estimate the continuous ones. Specifi-273 

cally, for every possible 𝒜(,*;,, we can regard it as 274 
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the observation of the attention variable 𝐴(,* under 275 

the circumstance of 𝐿 = 𝑙. The samples in 𝒜(,*;, 276 

follow the conditional density of 𝑓(𝐴(,*|𝐿 = 𝑙) . 277 

We use the Gaussian kernel and take a specific 278 

bandwidth 𝐵  (See Appendix A). Therefore, the 279 

kernel density 𝑓I(𝐴(,*|𝐿 = 𝑙) can be estimated as: 280 

1
J𝒜(,*;,J ⋅ 𝐵

L
1

M2𝜋 ⋅ 𝜎𝒜%,';)

expT−
𝑥1 −𝒜(,*;,

($)

𝐵
V

"-𝒜%,';)-

$4!

 281 

  (2) 282 

Where 𝜎𝒜%,';) is the standard deviation of 𝒜(,*;,, 283 

and 𝒜(,*;,
($)  means the 𝑖-th value of 𝒜(,*;,. 284 

Again, if we take the view of Bayesian inference, 285 

with 𝐴(,* as evidence and 𝐿 as hypothesis, then the 286 

estimated 𝑓I(𝐴(,*|𝐿)s can be seen as the likelihood 287 

densities. Applying the Bayesian theorem, we’ll 288 

get the following equation: 289 

𝑓6𝐿J𝐴(,*7 =
𝑓6𝐴(,*J𝐿7𝑃(𝐿)

𝑓6𝐴(,*7
=
𝑓6𝐴(,* , 𝐿7
𝑓(𝐴(,*)

 290 

  (3) 291 

This gives us inspirations: the likelihoods 292 

𝑓I(𝐴(,*|𝐿) act as the catalyst of the whole process 293 

of IPBP. We can multiply 𝑓I(𝐴(,*|𝐿)  with the 294 

𝑃G(𝐿)s, which are already gained by empirical prob-295 

abilities, to get the joint densities 𝑓I(𝐴(,* , 𝐿). By 296 

summing over all possible 𝐿s, we’ll get the esti-297 

mated marginal density 𝑓I(𝐴(,*) . Now that each 298 

term in the above equation is available, we can get 299 

the estimated posterior probability 𝑓I6𝐿J𝐴(,*7. By 300 

now, the probabilities required for the whole IPBP 301 

process, as mentioned in Section 3.1, are all set. 302 

3.3 Estimating MI 303 

With all these distributions, we’re able to proceed 304 

to our two main goals: MI estimation and Tree Re-305 

construction. However, maybe we should reex-306 

amine the MI formulation in Equation 1: the 307 

MI6𝐿; 𝐴(,*7  in Equation 1 measures how much 308 

common information head ⟨𝑏, ℎ⟩ has about every 309 

possible dependency relationship. However, there 310 

might not be such an all-around attention head that 311 

is responsible for every possible dependency type, 312 

but more probable that some heads are responsible 313 

for certain dependency labels. This kind of special-314 

ist head is also the assumption of preliminary at-315 

tention-analyze work like (Htut et al., 2019). Even 316 

though there do exist such versatile heads, an MI 317 

corresponding to all dependency types is still too 318 

coarse-grained, and not helpful for discovering the 319 

different functionality of every attention head. 320 

Therefore, we should tweak Equation 1 to make the 321 

MI formulation fit this specialist assumption. The 322 

new formulation is as follows: 323 

MIbinary#𝑙; 𝐴!,#' = ∫𝑓(𝑙, 𝑎)log $(&,')
)(&)$(')

d𝑎 +324 

∫𝑓(¬𝑙, 𝑎)log $(¬&,')
)(¬&)$(')

d𝑎  (4) 325 

In that equation, 𝑓(¬𝑙, 𝑎) is short for the density 326 

value of 𝑓(¬𝑙, 𝐴(,*)  at 𝐴(,* = 𝑎 , where 327 

𝑓(¬𝑙, 𝐴(,*)  stands for the joint density between 328 

any 𝐿 other than 𝑙 and 𝐴(,*. In practice, this joint 329 

density can be gained by marginalizing 𝑓I(𝐴(,* , 𝐿) 330 

over all possible 𝐿s except for 𝑙. 𝑃(¬𝑙) stands for 331 

the possibility of dependency relationships other 332 

than 𝑙, and can be estimated using 1 − 𝑃G(𝑙).  333 

3.4 Getting Highly Syntactical Heads 334 

By now, having posterior distributions 𝑓I(𝐿|𝐴(,*) 335 

and MIbinary feasible for estimating the independ-336 

ent importance of each dependency type, the road 337 

towards the goal of Tree Reconstruction is clear. 338 

The basic idea of our approach is: for every de-339 

pendency relationship 𝑙 ∈ ℒ ∪ {𝜙}, we filter out a 340 

series of attention heads highly responsible for 𝑙, 341 

constituting the head set ℋ,. We then infer the pos-342 

sibilities of dependency arcs of 𝑙 based on the pos-343 

teriors of heads from ℋ,, and use MIbinary to bal-344 

ance between posteriors conditioned on each head 345 

from ℋ,, forming the overall possibility for a de-346 

pendency arc with relation 𝑙. Finally, we use a de-347 

coding algorithm to build the dependency tree 348 

based on these overall possibilities. 349 

To filter out ℋ,, it’s natural to set a threshold on 350 

MIbinary(𝑙; 𝐴(,*). However, since for different de-351 

pendency relationships, the magnitudes of MIbinary 352 

also differs, setting a fixed threshold for all possible 353 

𝑙s will favor those relationships with larger MI val-354 

ues. Therefore, an adaptive threshold conditioning 355 

on the relation 𝑙 is necessary. Remind that mutual 356 

information is upper-bounded by the individual en-357 

tropies of each random variable, in our case, 358 

𝐻(𝟏{,}(𝐿)) and 𝐻6𝐴(,*7 (where 𝟏{,}(𝐿) is the in-359 

dicator function meaning whether or not 𝐿 equals 360 

to 𝑙). Since 𝐴(,* is continuous, and the entropy an-361 

alogs of continuous variables (variational entropies) 362 

are known as inferior analogs, possibly non-posi-363 

tive, making it unable to act as an upper bound, we 364 

choose to estimate 𝐻(𝟏{,}(𝐿)) as: 365 
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  𝐻8 9𝟏{&}(𝐿); = 𝑃=(𝐿)log𝑃=(𝐿) + 𝑃=(¬𝐿)log	𝑃=(¬𝐿)  (5) 366 

If we divide the MI with the entropy, the result-367 

ing proportions MIbinary
?,;@%,'A

BC?𝟏{)}(E)A
, ∀𝑙 will be in a uni-368 

form [0, 1] scale. An overall threshold can be set 369 

for this proportion, resulting in ℋ, for every 𝑙.  370 

3.5 Tree-Reconstruction Algorithm 371 

After getting ℋ, s, another problem occurs: As 372 

mentioned before, previous probing practices 373 

mainly aim at building unlabeled trees. Even those 374 

supervised dependency parsing methods (Dozat 375 

and Manning, 2017; Tian et al., 2022) are training 376 

separate networks for predicting arcs, and then pre-377 

dicting labels for those predicted arcs. Therefore, 378 

these methods are operating on a simple probability 379 

space with only probabilities on the existence of de-380 

pendency arcs. What’s more, in their methods, 381 

there’s only one network responsible for predicting 382 

probabilities, our method, on the other hand, has a 383 

bunch of posterior probabilities. Therefore, it’s 384 

necessary that we design a decoding algorithm that 385 

not only balances each posterior but also consti-386 

tutes a uniform probability space. 387 

We first make an assumption that the overall 388 

possibility of dependency arcs is independently 389 

conditioned on each head in ℋ,  (otherwise the 390 

problem might be too complex). An ideal resort for 391 

balancing each posterior is to treat the prediction of 392 

dependency arcs as a voting problem: for depend-393 

ency 𝑙 , each head ⟨𝑏$ , ℎ$⟩ ∈ ℋ,  can be seen as a 394 

participant with weight MIbinary _𝑙; 𝐴(",*$` . The 395 

probability of a dependency arc of 𝑙 can be seen as 396 

the probability of a series of heads with total 397 

weights larger than a proportion (like half or two-398 

thirds) voting the arc belongs to 𝑙. However, due to 399 

the non-discrete weights, the problem cannot be ef-400 

ficiently dynamically programmed, resulting in a 401 

search space of 𝒪(2|ℋ)|), which will be rather in-402 

efficient during inference. Instead, we relax this 403 

voting problem to an easy-computing while ra-404 

tional form: We take the geometric mean of the 405 

posteriors. Specifically, letGPℋ)(𝑥$ , 𝑥%; 𝑙)  be the 406 

geometrically-averaged probability of an arc of 𝑙 407 

between tokens 𝑥$ and 𝑥% conditioned on heads in 408 

ℋ,. In logarithm space, the geometric mean is: 409 

 log	GPℋ!(𝑥8 , 𝑥9; 𝑙) =
∑ MIbinary(&;>(),+))⟨(),+)⟩ ⋅$@(AB&;>(),+))

∑ MIbinary(&;>(.,+.)⟨(.,+.⟩∈ℋ!
 410 

 (6) 411 

This is approximately equivalent to the Loga-412 

rithmic Opinion Pooling technique widely adopted 413 

in Bayesian inference, thus acting as a reasonable 414 

approximation when the number of experts (in our 415 

case, heads in ℋ,) is relatively large. However, the 416 

problem of Logarithmic Pooling is that, if we sum 417 

over all probabilities of each possible dependency 418 

relationship (in our MIbinary  case, 𝑙  and ¬𝑙), it is 419 

not guaranteed to be 1, recalling the second prob-420 

lem of uniform probability space. To resolve this, 421 

we build a larger multivariate probability space of 422 

{0,1}|ℒ|I! . We take the voting process of the de-423 

pendency between 𝑥$  and 𝑥%  as |ℒ| + 1 independ-424 

ent votes, the ℓ-th voting votes for the existence of 425 

the ℓ -th dependency from |ℒ| , using the 426 

GPℋ)(𝑥$ , 𝑥%; 𝑙) in Equation 6 as the probability of 427 

existence, and 1 − GPℋ)(𝑥$ , 𝑥%; 𝑙) as the probabil-428 

ity of non-existence. The overall probability 429 

𝑃(𝑥$ , 𝑥%; 𝑙), meaning the probability of an arc of 𝑙 430 

between tokens 𝑥$ and 𝑥% conditioned on all highly 431 

responsible heads ℋ! ∪ …∪ℋ|ℒ| ∪ℋJ, is calcu-432 

lated as follows: 433 

𝑃6𝑥$ , 𝑥%; 𝑙7 =  434 

GPℋ!#𝑥8 , 𝑥9; 𝑙' ⋅ ∏ D1 − GPℋ!#𝑥8 , 𝑥9; 𝑙'G&1∈|ℒ|D{.}E{&}   (7) 435 

While the probability of not arc between 𝑥$ and 436 

𝑥%  is 1 − ∑ 𝑃6𝑥$ , 𝑥%; 𝑙7,∈|ℒ| , thus resulting in a 437 

valid probability space. By now, the two problems 438 

introduced by multi-head and multi-label are all 439 

solved. We’re just one step towards building the 440 

tree, that is, the decoding algorithm utilizing the 441 

overall probabilities. Specifically, following previ-442 

ous supervised dependency parsing works, we’re 443 

using the Eisner dynamic programming algorithm 444 

(Eisner, 1996) as the decoding algorithm. Readers 445 

might refer to Appendix A for implementation de-446 

tails of our methods, like hyperparameters and our 447 

GPU-optimized KDE and integral methods. 448 

3.6 The Novelty of IPBP 449 

Since MI estimation is a small hot topic in statistics, 450 

in case of re-inventing wheels, we’ve done research 451 

on related methods. We found two methods sharing 452 

(minor) principles with our method: The first one 453 

(Moon et al., 1995) is a method estimating MI be-454 

tween two observations within a time series using 455 

KDE. They’re doing three individual KDEs, with 456 

one multivariate one. While it’s a known issue that 457 

KDE quickly becomes inferior when variables be-458 

come more than one, known as the dimensionality 459 

curse, their method is inevitably introducing errors 460 
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(and also unapplicable to our attention-dependency 461 

mixed-joint distribution setting). We, instead, dex-462 

terously circumvented the curse and made the least 463 

number of estimations possible (limited to 1) by ex-464 

ploiting mixed-joint distribution and Bayesian the-465 

orems. 466 

Another one is also focusing on mixed joint dis-467 

tribution (Gao et al., 2017). However, they use a 468 

kNN-like algorithm to estimate point-wise mutual 469 

information (PMI) and average it over the dataset. 470 

Their method didn’t provide any valid probability 471 

distributions, thus offering no possibility of tree re-472 

construction, and also providing less chance for da-473 

taset-level or visualization-based explanations. 474 

4 Experiments 475 

4.1 Baselines 476 

In this section, we’re going to systematically com-477 

pare our method with a series of probing as well as 478 

neuron analysis baselines. Corresponding to the 479 

two sub-tasks introduced in Section 3.1, we first in-480 

troduce a series of head-selection baselines, where 481 

we replace the estimated MI with other criteria, and 482 

keep the tree-construction algorithm unchanged. 483 

We’ll also compare the tree-construction algorithm 484 

with common practices of previous attention-based 485 

methods. This is better for illustrating the individ-486 

ual contributions of each corresponding submodule. 487 

For head-selection baselines, we’ll start from 488 

several strong neuron analysis methods evaluated 489 

by a recent paper (Fan et al., 2024): 490 

Probeless (Antverg and Belinkov, 2021): This is 491 

a parameter-free method, which gets the correla-492 

tion scores by calculating mean values with respect 493 

to different concepts alongside the dataset. In our 494 

situation, we use the following instead of MIbinary: 495 

PL#𝑙; 𝐴!,#' = ∑ I𝒜̅!,#;& − 𝒜̅!,#;&1I&1∈ℒD{.}E{&}   (8) 496 

Where 𝒜̅⋅,⋅;⋅  denotes the mean value of a spe-497 

cific attention score set. Note that despite its sim-498 

plicity, this method is evaluated as the method that 499 

is most consistent with others by Fan et al., 2024, 500 

thus most robust. 501 

IoU (Mu and Andreas, 2020): This method uses 502 

Jaccard Similarity as a correlation criterion. In our 503 

implementation, we use the following form: 504 

IoU#𝑙; 𝐴!,#' =
F𝒜(,+,!∩[J,DK)F

F𝒜(,+,!FD∑ L𝒜(,+,!1∩[J,DK)L!1∈ℒ3{5}7{!}
  (9) 505 

Where 𝜏 is a threshold serving as selecting a sa-506 

lient score. Following the original authors, we set 507 

it to the top 99.5% value among values in 𝒜(,*,,. 508 

The Linear Feedforward Family: This method 509 

refers to a series of methods performing correlation 510 

ranking by training a supervised linear network 𝑊M. 511 

Specifically, the equation below gives a uniform 512 

formulation of these methods: 513 

𝑊M =514 

							argmin
N8∈O

S∑ ∑ log	𝑃M 9𝑙 = 𝑙[8][9]T𝑎Q,Q…𝒷,𝒽	
[8][9] ;V9,V:∈W×WW∈𝒟 +515 

																		+𝜆Q‖𝜃‖Q + 𝜆Z‖𝜃‖ZX                               (10) 516 

Where 𝑊M is a matrix of shape 𝒷𝒽 × (|ℒ| + 1), 517 

and 𝑎!,!…𝒷,𝒽	
[$][%]  denotes the concatenation of atten-518 

tion scores between 𝑥$  and 𝑥%  for all attention 519 

heads, and 𝑃M _𝑙[$][%]k𝑎!,!…𝒷,𝒽	
[$][%] `  stands for the 520 

probability of the ground-truth label estimated by 521 

the network. When 𝜆! = 1, 𝜆" = 0, this equation 522 

becomes Lasso (Radford et al., 2019), when 𝜆! =523 

0, 𝜆" = 1, it becomes Ridge (Lakretz et al., 2019), 524 

and 𝜆!, 𝜆" = 1 corresponds to ElasticNet (Dalvi et 525 

al., 2019). We use ElasticNet as a representative. 526 

After gaining the trained 𝑊M, we use the weight en-527 

try mapping attention score of head ⟨𝑏, ℎ⟩, to the 528 

probability of relation 𝑙  as the correlation value, 529 

LFF(𝑙; 𝑏, ℎ). 530 

𝓥-Information: Xu et al., 2020 proposed to use 531 

a trainable network as an approximation of condi-532 

tional probabilities, and use the mean logarithm 533 

probabilities as approximations of conditional en-534 

tropies based on the law of large number. This is 535 

the state-of-the-art entropy estimation algorithm, 536 

used by previous methods also taking information-537 

theoretic perspectives (Pimentel et al., 2020a, Pi-538 

mentel et al., 2022). Specifically, in our case, we 539 

use max𝐻𝒱(𝑙|𝐴⋅,⋅) − 𝐻𝒱(𝑙|𝐴(,*)  as replacement 540 

of 𝑀𝐼binary(𝑙; 𝐴(,*), and as the equation shows: 541 

𝐻𝒱#𝑙I𝐴!,#' =542 
Q

∑ |W|;<∈𝒟
∑ ∑ S𝟏{&}#𝐿[8][9]'log	MLP!,#;& 9𝑎!,#

[8][9]; +\V9,V:]∈WW∈𝒟543 

𝟏ℒD{.}E{&}#𝐿[8][9]' log Y1 −MLP!,#;& 9𝑎!,#,
[8][9];ZX    (11) 544 

Where MLP(,*;,(⋅) are deep MLPs individually 545 

trained using head ⟨𝑏, ℎ⟩ to predict label 𝑙.  546 

Under each head-selection setting, for fair com-547 

parison, we set a limit of the total number of syn-548 

tactical heads ∑ |ℋ,|,∈ℒ∪{J}  of 2000. 549 

For the tree-construction alternative, we use 550 

Raw attention score: Under this setting, we’re still 551 

using the estimated MI as head importance criteria, 552 
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while for a specific head ⟨𝑏, ℎ⟩ ∈ ℋ,, we use the 553 

attention score 𝑎(,*
[⋅][⋅]  instead of the posterior 554 

𝑓I(𝐴(,* , 𝐿)  in the reconstruction algorithm. This 555 

simple intuitive is the common underlying princi-556 

ple of previous works focusing on attention (Clark 557 

et al., 2019; Vig and Belinkov, 2019; Ravishankar 558 

et al., 2021).  We found that due to the absence of 559 

our estimated posteriors, if ∑ |ℋ,|,∈ℒ∪{J}  reaches 560 

2000, the scores of all heads will be rather noisy. 561 

Therefore, we choose to select top-k heads based 562 

on MI for each label. We did a grid search and 563 

found the top-8 settings have ideal performance. 564 

4.2 Model, Dataset and Metrics 565 

We’re using open_llama_7b1 as our probed model. 566 

open_llama_7b is a decoder-based LLM consisting 567 

of 32 layers and 32 attention heads within each 568 

layer. Compared with pre-trained language models 569 

like BERT (Devlin et al., 2019), open_llama_7b 570 

might consist of attention heads with rather varied 571 

functionalities, offering more insights under the 572 

contemporary LLM research context. 573 

Specifically, open_llama_7b is a decoder-based 574 

model having triangular-masked attention scores. 575 

In implementation, we cache the Key Values of 576 

each attention head and use them to re-calculate the 577 

unmasked attention scores. While our reconstruc-578 

tion is inevitably introducing “useless” attention 579 

scores, we think that it is still necessary for two rea-580 

sons: 1. Making compromises to the decoder struc-581 

ture will hinder our method from applying to non-582 

decoder models (Chung et al., 2024; Zeng et al., 583 

2024), thus less universal. 2. As sentences become 584 

longer, the softmax-normalized scores will be di-585 

luted. This is more serious for triangular attention 586 

since it has rows of varying lengths. While softmax 587 

is not bijective, using cached QK to reconstruct the 588 

unnormalized scores is inevitable.  589 

Following previous supervised dependency 590 

parsing works (Tian et al., 2022), we use Universal 591 

Dependencies (UD) 2.9 (Zeman et al., 2021), as da-592 

taset, with 39832 sentences in the training set and 593 

1700 sentences in the validation set. UD 2.9 is an 594 

English treebank covering texts from multiple 595 

sources like literature, news articles, spoken lan-596 

guages, etc., with diverse morphological and gram-597 

matical features. We also use labeled attachment 598 

scores (LAS), and unlabeled attachment scores 599 

(UAS) as metrics.  600 

 
1 https://github.com/openlm-re-
search/open_llama 

4.3 IPBP Structural Alternatives 601 

Apart from comparing with previous methods, 602 

we’re also curious about our model’s designs. 603 

Therefore, we propose two alternative structures: 604 

Positive MI: We noticed that the attention score 605 

samples exhibit a long-tail characteristic: most 606 

samples come from 𝒜J, since most pairs of words 607 

don’t have dependency arc in between. 𝒜J might 608 

be noisy, consisting of various non-syntactic inter-609 

token relationships, and MI estimations based on 610 

samples in 𝒜J might be affected by this long tail 611 

noisy distribution. Other score sets 𝒜!, …𝒜|ℒ| are 612 

having approximately the same magnitudes and 613 

their corresponding token pairs are guaranteed to 614 

have any dependency relationship. Therefore, we 615 

also calculated a more syntactical MI, namely 616 

MIpos, with the following formulation: 617 

 MIpos#𝐿; 𝐴!,#' = ∑ ∫𝑓pos(𝑙, 𝑎)log
$pos(&,')

)pos(&)$pos(')
d𝑎&∈ℒ    618 

(12) 619 

In that equation, 𝑃pos(⋅), 𝑓pos(⋅,⋅) actually stand 620 

for conditional possibilities when 𝑙 ≠ 𝜙, estimated 621 

by 𝑃Gpos(𝐿 = 𝑙) = 𝒜%,';)
∑ 𝒜%,';)*)*∈ℒ

 and 𝑓Ipos6𝐿, 𝐴(,*7 =622 

𝑓I6𝐴(,*J𝐿7𝑃Gpos(𝐿) . During implementation, we’ll 623 

use a balance factor 𝛼 and calculate the mixed MI 624 

MImix(⋅;⋅) = 𝛼MIbinary(⋅;⋅) + (1 − 𝛼)MIpos(⋅;⋅) 625 

Arc First: Unlike previous methods, we’re di-626 

rectly obtaining labeled dependency trees, bypass-627 

ing the process of dependency arc predicting. 628 

We’re curious about whether it’s a good choice. 629 

Under this setting, instead of estimating 630 

𝑓I(𝐴(,*|𝐿 = 𝑙) , we’ll directly estimate the unla-631 

beled likelihoods  𝑓I6𝐴(,*|𝐿 ∈ ℒ7 and 𝑓I(𝐴(,*|𝐿 =632 

𝜙), and calculate the corresponding multivariate 633 

probabilities together with corresponding MI val-634 

ues. We’ll compare UAS to check the quality of re-635 

constructed unlabeled trees.  636 

Transposed: Sometimes, we’re unsure whether 637 

the attended token acts as a dependency head, or a 638 

dependant. So we’ll let 𝑙[$][%] correspond to 𝑎(,*
[%][$], 639 

and repeat the whole IPBP process in this setting. 640 

4.4 Result and Analysis 641 

Results are shown in Table 1. We can see that our 642 

method is overperforming all competitive baselines, 643 

including the state-of-the-art conditional entropy 644 

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
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estimation method, 𝒱 -Information, which shares 645 

principles with our method while requiring a much 646 

more computational budget. In fact, our imple-647 

mented 𝒱 -Information MLP is optimized using 648 

several tricks (see Appendix B), while during its 649 

training, we still find that the trained MLPs are rel-650 

atively good at detecting arcs while having poor 651 

performances on labeling. This aligns with its low 652 

LAS in tree-construction results. An insight can be 653 

drawn that supervised methods may still fall behind 654 

statistical ones, especially when the data is long-655 

tailed or low-dimensional. Moreover, even though 656 

the head-selection settings for the raw-score 657 

method is specifically tuned, and the method is al-658 

ready selecting attention heads based on our esti-659 

mated MI, it still has a great performance gap with 660 

our posterior-based method, further justifying the 661 

necessity of our posterior-based algorithm.  662 

For structure alternatives, we notice that incor-663 

porating MIpos  will give performance benefits, 664 

shedding light on potential improvements to our 665 

methods. The transposed setting will still capture a 666 

relatively smaller portion of dependencies. Last but 667 

not least, by comparing with our arc-based baseline, 668 

we’ll find we’re actually at a triangular balance, we 669 

probed for more accurate, also labeled trees, while 670 

choosing a more straightforward method, with no 671 

need for individual arc probing. 672 

4.5 Further Analysis 673 

Like previous probing works, we’ll also do fine-674 

grained analysis of our reconstructed trees and es-675 

timated MI values. Instead of listing up MI and do-676 

ing trivial analyses, we decide to provide two intri-677 

guing and informative conclusions, giving inspira-678 

tions to upcoming works. 679 

The first conclusion is that decoder models 680 

adaptively capture look-back/ahead dependen-681 

cies: Since the masked decoder attention can only 682 

look back, there are good reasons that dependencies 683 

that also look back (pointing to front words) can be 684 

well captured. What makes it more intriguing is 685 

that dependencies looking ahead might also be cap-686 

tured in a look-back manner. We draw this conclu-687 

sion by comparing the top-10 most well-recon-688 

structed labels between original IPBP and the trans-689 

posed alternative. We find that there’re more look-690 

ahead dependencies (5 of 10) under the transposed 691 

setting compared with the original setting (3 of 10). 692 

The second conclusion is that model layers corre-693 

spond to tree layers to some extent: lower layers 694 

are for local/phrasal dependencies, while higher 695 

layers are for global/sentence-wide dependencies. 696 

The conclusion is consistent with our intuitions and 697 

worth hypothesizing, but it was never justified by 698 

previous works, which either lack good MI-like cri-699 

teria or focus on unlabeled trees. Thanks to the 700 

fine-grained MI, we can calculate the MI-weighted 701 

layer indices for each label, where smaller 702 

weighted indices indicate dependencies having 703 

more lower-layer heads responsible for it. Among 704 

these top-10 labels, we calculated the Pearson cor-705 

relation coefficient 𝜌 between the weighted layer 706 

index and average depth (maximum distance to leaf 707 

nodes) of each dependency label, getting a result of 708 

0.69 with 𝑝=0.03 for a null hypothesis of no corre-709 

lation.  710 

5 Conclusion 711 

We proposed a method that can estimate MI and 712 

reconstruct labeled dependency trees without intro-713 

ducing any trainable networks. Indeed, our method 714 

is achieving an “impossible triangle”: it has simpler 715 

architectures requiring negligible computation 716 

budgets, while producing more complicated and 717 

high-quality trees, and also transparent for expla-718 

nation, meaning that researchers can get fine-719 

grained head-level MI estimation, and a bunch of 720 

intuitive probability functions, without worrying 721 

about did my network furtively learnt the task? 722 

Through comparing with a series of competitive 723 

baselines, we ensured its effectiveness, and then 724 

made two informative conclusions based on our es-725 

timated MI and reconstructed trees. The number of 726 

conclusions is limited due to content limit, and 727 

since our method is providing an analytical back-728 

bone, we strongly appeal to future research for 729 

fine-grained analysis on those estimated MI values 730 

and distributions. 731 

Method UAS LAS 
Probeless 34.8 20.9 

IoU 38.3 26.6 
ElasticNet 41.9 31.3 

V-Information 41.3 20.9 
Raw Score 32.3 16.6 

IPBP 49.1 30.6 
IPBP (transposed) 42.6 28.0 

IPBP + MIpos 49.9 34.8 
IPBP (arc only) 36.5 N/A 

Table 1:  Results of our IPBP and different base-
lines.  
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Limitations 732 

Despite its efficiency, our method still has several 733 

shortages: The most important one is that, to pre-734 

vent the problem from being too complicated and 735 

bounded by the curse of dimensionality, our 736 

method does not consider the multivariate case, 737 

taking an assumption that all attention heads are in-738 

dependent. Moreover, as mentioned in Section 4.2, 739 

the introduction of “useless” attention scores is also 740 

noticeable, meaning that the density estimations 741 

might contain noises. Lastly, our method is only ap-742 

plicable to discrete-continuous mixtures, where all 743 

probed concepts are discrete labels, but not appli-744 

cable to multivariate continuous joint distributions. 745 

Ethical Considerations 746 

Since our method is an explanation method, read-747 

ers might exploit our method to perform syntactical 748 

attacks, like getting poorly captured dependency 749 

labels and designing specific prompts to confuse 750 

models. For models that are put into use in produc-751 

tion environments, this might cause unexpectable 752 

effects.  753 

 754 
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A Implementation Details of IPBP 994 

In this section, we’ll briefly introduce the imple-995 

mentation details, like the hyperparameters and key 996 

algorithms we use to implement IPBP. 997 

As shown by the source code, we use the 998 

PyTorch framework to implement the whole IPBP 999 

process. We’re not relying on off-the-shelf pack-1000 

ages that have KDE functionalities like SciPy and 1001 

Scikit-Learn, since their KDE implementation is 1002 

CPU-based and thus too inefficient under our ex-1003 

periment settings. 1004 

Specifically, we take samples in 𝒜(,*;,  as a 1005 

whole long tensor 𝒂(,*,, ∈ ℝ-𝒜%,';)-. We calculate 1006 

the minimum and maximum values of 𝒜(,*;,, and 1007 

build a tensor of real numbers 𝑿 = {𝑥!, 𝑥", … 𝑥#7}, 1008 

ensuring that 𝑥! < min𝒜(,*;,, 𝑥#7 > max𝒜(,*;,, 1009 

and 𝑥! < 𝑥" < ⋯ < 𝑥#7 . These discrete 𝑥 values 1010 

serve as the points to calculate densities. Next, we 1011 

calculate the mutual differences between each 1012 

point in 𝑿 and each element in 𝒂(,*,,, by repeating 1013 

𝑿Y  for 𝑛Z  times, getting a matrix [𝑿𝑻, …𝑿𝑻]�������
-𝒜%,';)-	times

		of 1014 

shape 𝑛Z × J𝒜(,*;,J , and repeating 𝒂(,*,,  for 𝑛Z 1015 

times, also getting a matrix �𝒂(,*,,Y , …	𝒂(,*,,Y �Y
�����������

#7	times	

of 1016 

shape  𝑛Z × J𝒜(,*;,J. The absolute differences of 1017 

the two matrices J[𝑿Y , …𝑿Y] − �𝒂(,*,,Y , …	𝒂(,*,,Y �J, 1018 

are the mutual differences, let’s say 1019 

𝐷6𝑿Y , 𝒂(,*,,7 ∈ ℝ#7×-𝒜%,';)- . Then we calculate 1020 

the standard deviation of 𝒜(,*;, , i.e., 𝜎𝒜%,';) , and 1021 

take a rule-of-thumb value  T !

∑ _"
89𝒜%,';)9

";<

V
`<=

 for the 1022 

bandwidth 𝐵, with all weight 𝑤$s equal to 1. We 1023 

then calculate element-wise, following the follow-1024 

ing equation: 1025 

!

ab"c⋅d𝒜%,';)
exp �− _e?𝑿

>,𝒂%,',)A
a

`
"
�          (13) 1026 

In order to get the kernel values, which are also 1027 

in shape 𝑛Z × J𝒜(,*;,J, we then calculate the row-1028 

wise mean of the kernel values to get the final ker-1029 

nel density values in shape 𝑛Z. Since all operations 1030 

of this process are element-wise matrix operations, 1031 

this is easily parallel-optimizable by PyTorch. As a 1032 

result, the computation time for extracting attention 1033 

 
2 https://creativecommons.org/li-
censes/by-nc-sa/4.0/deed.en 

score sets (𝒜⋅,⋅;⋅) and performing all kernel density 1034 

estimations is within 1 hour using a single RTX 1035 

4090 GPU. Since attention score allocating and 1036 

distribution estimations are only required to be 1037 

done once, our method is extremely time-saving 1038 

compared to most of the supervised probing meth-1039 

ods.  1040 

For inferring on estimated probabilities (like in-1041 

ferring on posteriors 𝑓I(𝑙|𝐴(,*) in Section 3.5, we 1042 

take the estimated posteriors as a set of 𝑛Z discrete 1043 

points, and an attention score in range [𝑥$ , 𝑥$I!] 1044 

will get its corresponding posterior value by inter-1045 

polating between 𝑥$  and 𝑥$I! . The interpolation-1046 

based inferring, together with other processes men-1047 

tioned in Section 3.5, like head selection and score-1048 

weighted averaging, are all parallel-optimized, re-1049 

sulting in being able to run inference within 5 1050 

minutes on all baseline settings on a 4090 GPU. 1051 

For calculating integrals, specifically, the MI 1052 

values like MIbinary , MIpos , we use the trapezoid 1053 

method to estimate the integral value: as mentioned 1054 

in the section before, the kernel densities are de-1055 

scribed by 𝑛Z points, we take the 𝑛Z points as the 1056 

integral limits and for every interval between 𝑥$ 1057 

and 𝑥$I!, we calculate the trapezoid areas and add 1058 

them up to get the integral values. 1059 

During tree reconstruction, we empirically set 1060 

the total number of heads, i.e., ∑ |ℋ,|,∈ℒ∪{J}  to a 1061 

fixed value (2000), and use binary search.  1062 

We’re using Universal Dependencies 2.9 1063 

(Zeman et al., 2021) as our dataset. That dataset is 1064 

publicly available, using CC BY-SA 4.0 license2 al-1065 

lowing free redistributions upon notifications. The 1066 

Universal Dependencies (UD) dataset is designed 1067 

to provide a standardized framework of grammati-1068 

cal identifications for NLP researchers, so we’re 1069 

following its intended usage.  1070 

B Implementation Details of Baselines 1071 

For the 𝒱-Information MLPs, we found that train-1072 

ing on all datasets will result in a network always 1073 

predicting 𝜙 for all possible attention scores, due to 1074 

the long-tail essential discussed in Section 4.3. This 1075 

will result in many infinite 𝒱-Information values, 1076 

since there will be many estimated probabilities 1077 

(for label in ℒ other than 𝜙) rather close to zero. 1078 

Therefore, we apply a sample balancing technique, 1079 

truncating 𝒜⋅,⋅;J to make their numbers of samples 1080 

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
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the same as the total number of samples in other 1081 

score sets 𝒜⋅,⋅;!, 𝒜⋅,⋅;", …	𝒜⋅,⋅;|ℒ|. What’s more, we 1082 

also did a search on several network sizes, and 1083 

found that if MLP(⋅)  is 𝑊"(act(𝑊!(⋅))) , where 1084 

𝑊!  in shape 1 × 2  and a 𝑊"  in shape 2 × 4 1085 

achieves better fitting. This aligns with (Pimentel 1086 

et al., 2020a) to some extent. We also use PyTorch 1087 

to implement the baselines. Specifically, for Elas-1088 

ticNet that requires additional training, we use 1089 

AdamW optimizer, 1𝑒 − 5 for both 𝜆! and 𝜆", and 1090 

use a constant learning rate of 1𝑒 − 3, training for 1091 

12 epochs. For the 𝒱-Information MLP, since we 1092 

need 𝒷𝒽 × (|ℒ| + 1) individual networks for pre-1093 

dicting the alternatives of binary MI, we initialize 1094 

𝒷𝒽 × (|ℒ| + 1) sets of matrices, each constituting 1095 

the weights of a specific network 1096 

𝑊!,𝑊", …𝑊n_layers , with 𝑊!  having a dimension 1097 

of 1 and 𝑊n_layers having a dimension of |ℒ| + 1. 1098 

During training and inferencing, we concatenate all 1099 

attention scores 𝑎(,*
[$][%]  for any 𝑏 ∈ {1…𝒷}  and 1100 

ℎ ∈ {1…𝒽} into a tensor of shape 𝒷𝒽, and use 1101 

torch.bmm to map each element of that tensor to 1102 

𝒷𝒽 × (|ℒ| + 1)  probabilities (standing for the 1103 

probabilities of each label conditioned on each at-1104 

tention head’s attention score, estimated by the var-1105 

iational family). Using torch.bmm will avoid 1106 

training 𝒷𝒽 × (|ℒ| + 1)  networks separately, 1107 

which is a disaster on computation loads, and can 1108 

exploit GPU’s parallel processing abilities. We use 1109 

leaky_relu between hidden layers and use sigmoid 1110 

to form the final probabilities. We use 1𝑒 − 2 as 1111 

learning rate with exponential decay (0.8 at each 1112 

epoch), together with an additional warmup epoch 1113 

at the beginning. The hyperparameters differ for 𝒱-1114 

Information since otherwise the variational family 1115 

network will be more poorly trained. We also 1116 

trained for 12 epochs.  1117 

 1118 


