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Abstract

Reinforcement Learning (RL) environments can produce training data with spuri-
ous correlations between features due to the amount of training data or its limited
feature coverage. This can lead to RL agents encoding these misleading correla-
tions in their latent representation, preventing the agent from generalising if the
correlation changes within the environment or when deployed in the real world.
Disentangled representations can improve robustness, but existing disentanglement
techniques that minimise mutual information between features require independent
features, thus they cannot disentangle correlated features. We propose an auxiliary
task for RL algorithms that learns a disentangled representation of high-dimensional
observations with correlated features by minimising the conditional mutual infor-
mation between features in the representation. We demonstrate experimentally,
using continuous control tasks, that our approach improves generalisation under
correlation shifts, as well as improving the training performance of RL algorithms
in the presence of correlated features.

1 Introduction

Real-world environments are diverse and unpredictable; we often cannot control correlations between
environment features or even know they exist. As such, real-world Reinforcement Learning (RL)
training environments can contain spurious correlations between features that are unknown or
unintended by the data collector, e.g. an object correlated with colour. Furthermore, an RL agent
influences the data collection through its actions, which may shift the data distribution to contain
feature correlations as the agent learns, e.g. the agent position is correlated with a goal position as it
learns an optimal policy. For RL agents to be resilient in the real world, it is beneficial to learn robust
representations of high-dimensional observations (e.g. images). However, an agent trained with
correlated data may learn a representation that encodes the spurious correlation and, therefore, cannot
generalise when the correlation no longer holds (Träuble et al., 2021). For example, an autonomous
driving agent trained in an environment where aggressive drivers often have green cars can encode
this correlation that does not hold in real world.

Methods for disentanglement aim to separate the ground truth factors of variation that generated a high-
dimensional observation, such as an image, into meaningful subspaces in the learned representation
(Bengio et al., 2013). Both Higgins et al. (2017b) and Dunion et al. (2023) show that disentanglement
improves generalisation to visual changes in RL environments that were not seen during training. A
disentangled representation can be robust to environment changes because a change in one image
factor causes only a subset of features in the representation to change, while the remaining features can
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still be relied upon for better generalisation. The basic principle of most disentanglement techniques is
to enforce independence between groups of features in the latent representation. Therefore, common
approaches to disentanglement, such as VAEs, require independence between factors of variation,
i.e. uncorrelated factors. RL agents trained to learn independent features in the representation will
fail to separate correlated factors because they cannot be separated into distinct independent features,
and thus suffer from a failure to generalise under correlation shifts. For example, consider a scenario
where the colour of an object is correlated with its size during training, and size impacts the optimal
policy. Colour contains information predictive of size and vice versa. Hence, size and colour cannot
be separated into distinct independent features in the representation, so will be encoded into the same
feature. When the agent is presented with a colour that is rarely or never previously seen with the
object size, the feature representing both colour and size will change, preventing the agent from
performing optimally even if it has already learned an optimal policy for the object size.

In this work, we relax the assumption of independence between factors of variation to conditional
independence, to learn a disentangled representation with correlated features. We propose Conditional
Mutual Information for Disentanglement (CMID) as an auxiliary task that can be applied to online RL
algorithms to learn a disentangled representation by minimising the conditional mutual information
between dimensions in the latent representation. We use the causal graph of a Markov Decision
Process (MDP) to determine a general conditioning set that can render the features in a representation
conditionally independent given the conditioning set. The resulting disentangled representation
avoids the reliance on spurious correlations, separating correlated factors of variation in a high-
dimensional observation into distinct features in the representation, allowing for better generalisation
under correlation shifts. To the best of our knowledge, this is the first approach to learn disentangled
representations specifically for RL based on conditional independence.

We evaluate our approach on continuous control tasks with image observations from the DeepMind
Control Suite where we add correlations between object colour and properties impacting dynamics
(e.g. joint positions). Our results show that CMID improves the training performance as well as the
generalisation performance of the base RL algorithm, SVEA (Hansen et al., 2021), under correlation
shifts, with a 77% increase in zero-shot generalisation returns on average across all tasks in our
experiments. We also demonstrate improved generalisation performance compared to state-of-the art
baselines: DrQ (Yarats et al., 2021), CURL (Laskin et al., 2020b) and TED (Dunion et al., 2023).

2 Related work

2.1 Disentangled representations

VAE approaches. Disentanglement has been studied widely in the unsupervised learning literature.
Many approaches are based on the Variational Autoencoder (VAE) (Kingma and Welling, 2014). The
β-VAE (Higgins et al., 2017a; Burgess et al., 2017) aims to improve disentanglement by scaling up
the independence constraint in the VAE loss; the Factor-VAE (Kim and Mnih, 2018) encourages
disentanglement through a factorial distribution of features. More recent approaches add supervision
during training to bypass the impossibility of learning disentangled representations from independent
and identically distributed (i.i.d.) data (Locatello et al., 2019). Shu et al. (2020) use labels of image
groupings, and Locatello et al. (2020) use pairs of images. However, VAE-based approaches assume
independence between factors of variation and therefore cannot disentangle correlated factors.

ICA approaches. Disentanglement is also the focus of Independent Component Analysis (ICA)
(Hälvä et al., 2021; Hyvärinen et al., 2023), where it is referred to as ‘blind source separation’.
Hyvärinen and Morioka (2016) and Hyvärinen and Morioka (2017) both learn disentangled represen-
tations from time-series data under different assumptions. However, similarly to VAE approaches, the
independence assumption is central to ICA and does not hold when there are correlations in the data.

Disentanglement with correlated features. Both ICA and VAE approaches to disentanglement
assume independence between factors of variation (or ‘sources’ in ICA terminology). Träuble et al.
(2021) conduct an analysis of VAE-based disentanglement techniques on correlated data and show that
the correlations are being encoded in the representations. They propose weak supervision in training
to learn disentangled representations on correlated data and an adaptation technique to ‘correct’ the
latent entanglement using labeled data. Recently, Funke et al. (2022) propose a Conditional Mutual
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Information (CMI) approach to learn disentangled representations to improve generalisation under
correlation shifts in a supervised learning setting. We use a similar adversarial approach to CMI as
Funke et al. (2022), but leverage the structure of an MDP to determine an appropriate conditioning
set that does not require labelled data or any prior knowledge of the ground truth factors of variation.

2.2 Representation learning in RL

Visual invariances. Image augmentations are commonly used to improve robustness of representa-
tions in RL (Laskin et al., 2020a; Yarats et al., 2021; Hansen and Wang, 2021; Hansen et al., 2021).
Several approaches have also been proposed to learn representations that are invariant to distractors in
the image such as background colour (Zhang et al., 2020, 2021; Li et al., 2021). These methods do
not account for correlations between features and do not prevent the encoding of spurious correlations.
Mutual information has recently been used for invariant representation learning outside of RL by
Cerrato et al. (2023) to ensure model decisions are independent of specific input features.

Mutual information. Mutual information (MI) based approaches are commonly used in RL for
representation learning. Laskin et al. (2020b) maximise similarity between different augmentations
of the same observation; Mazoure et al. (2020) maximise similarity between successive observations;
and Agarwal et al. (2021) use policy similarity metrics. However, these approaches all maximise MI
in some way, whereas disentanglement aims to minimise MI between features in the representation.

Disentangled representations. To learn a disentangled representation for RL, Higgins et al. (2017b)
train a β-VAE offline using i.i.d. data from a pre-trained agent. Dunion et al. (2023) propose an
auxiliary task to learn disentangled representations online using the non-i.i.d. temporal structure of
RL training data. Both of these approaches to disentanglement in RL assume independent factors of
variation, so they are unable to disentangle correlated factors.

2.3 Conditional mutual information estimators

Our approach is the first to use CMI for disentangled representations in RL. However, many ap-
proaches have been proposed to estimate CMI outside of RL. Initial approaches were extensions of
MI estimators, such as Runge (2018). Recent approaches make use of advances in neural networks.
Mukherjee et al. (2020) propose CCMI, using the difference between two MI terms for CMI esti-
mation: I(X;Y | Z) = I(X;Y,Z)− I(X;Z). They propose an estimator for the KL-divergence
by training a classifier to distinguish the observed joint distribution from the product distribution.
Mondal et al. (2020) estimates CMI by re-formulating it as a minmax optimisation problem and using
a training procedure similar to generative adversarial networks. Molavipour et al. (2021) extend the
classifier approach of CCMI, applying it directly to the estimation of CMI, rather than the difference
of two MI terms. They use k nearest neighbours (kNN) to sample from the product of marginals
distribution, and train the classifier to distinguish between the original distribution and the product of
marginals. We also use kNN permutations to sample from the product of marginals distribution.

3 Preliminaries

Reinforcement learning. We assume the agent is acting in a Markov Decision Process (MDP),
which is defined by the tuple M = (S,A, P,R, γ), where S is the state space, A is the action space,
P (st+1|st, at) is the probability of next state st+1 given action at ∈ A is taken in state st ∈ S at time
t, R(st, at) is the reward function, and γ ∈ [0, 1) is the discount factor. The goal is to learn a policy π
that maximises the discounted return, maxπ EP,π[

∑∞
t=0[γ

tR(st, at)]]. In RL from pixels, the agent
receives an observation of image pixels ot ∈ O ⊂ Ri×j at time t, a high-dimensional representation
of st. The agent learns a latent representation zt = fθ(ot) of size N ≪ dim(O), where fθ : O → Z
is an encoder parameterised by θ. The policy π is a function of the latent representation, such that
at ∼ π(zt). We denote the n-th component of the vector z as zn, and all components of z except zn
as z−n. We use zt′:t′′ to refer to representations for all consecutive timesteps from t′ to t′′ inclusive:
zt′ , zt′+1, ..., zt′′−1, zt′′ .

Conditional mutual information. The Conditional Mutual Information (CMI) of continuous
random variables X and Y given a third variable Z measures the amount of information Y contains
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Figure 1: The conditioning set for an MDP is highlighted in grey. Representation features z1t and z2t are
conditionally independent when conditioned on z10:t−1 and a0:t−1, where znt denotes the nth dimension of zt.

about X given Z is already known (Cover and Thomas, 2006), defined as:

I(X;Y | Z) :=

∫∫∫
p(x, y, z) log

p(x, y, z)

p(x, z)p(y|z)
dxdydz (1)

where lower-case letters denote instances of a random variables (e.g. x is an instance of X). By
definition, CMI is given by the KL-divergence:

I(X;Y | Z) = DKL[p(x, y, z) || p(x, z)p(y|z)]. (2)

If the CMI between X and Y given Z is 0, then X and Y are conditionally independent given Z:

I(X;Y | Z) = 0 ⇐⇒ X ⊥⊥ Y | Z . (3)

4 Conditional mutual information for disentanglement in RL

We propose Conditional Mutual Information for Disentanglement (CMID) as an auxiliary task that
can be applied to existing RL algorithms to learn a disentangled representation with correlated data.
The goal is to learn a representation with features that are conditionally independent to improve
representation robustness in the presence of unintended correlations during training. We discuss the
conditioning set for an MDP in Section 4.1 and describe the CMID auxiliary task in Section 4.2.

4.1 MDP conditioning set

The causal graph for three timesteps of an MDP is shown in Figure 1. For readability, the graph
shows only two state features s1 and s2, and two representation features z1 and z2, however the graph
and subsequent discussion can be extended to an arbitrary number of features. The graph shows the
desired causal relationships for learned representation, such that each feature in the representation is
caused by a single state feature.

The goal is to learn a representation zt where features z1t and z2t are conditionally independent by
blocking all backdoor paths between z1t and z2t in the causal graph (Pearl, 2009). One option is to
condition on the true underlying state feature s1t , which is the approach taken by Funke et al. (2022),
but we do not usually know the true state features. Given the temporal structure of an MDP, another
suitable conditioning set is the history of z1t , denoted z10:t−1, and the history of actions a0:t−1, giving:

z1t ⊥⊥ z2t | z10:t−1,a0:t−1 . (4)

In other words, z2t does not contain any additional information about z1t given z10:t−1 and a0:t−1 are
known. Similarly, the history of z2t would also make a suitable conditioning set, since the backdoor
path can be blocked by a0:t−1 and either z10:t−1 or z20:t−1. Conditioning on the history of actions
a0:t−1 alone is not sufficient because the action is a collider in the causal graph, so the conditioning set
must also contain a parent of this collider to avoid opening up new backdoor paths (Pearl, 2009). This
conditioning set means that we do not need to know the true state features st to learn conditionally
independent representation features z1t and z2t .

To guarantee conditional independence, the conditioning set must include the full history z10:t−1 and
a0:t−1 from the beginning of the episode to the previous timestep t− 1. However, conditioning on
the full history makes a very large conditioning set, of size t · (N + dim(a)) when using one-hot
encoding of features, which can be difficult to learn. In practice, we condition on only the most recent
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Figure 2: CMID architecture: The discriminator learns to discriminate between samples from p(zt | znt−1,at−1)
and p(znt | znt−1,at−1)p(z

−n
t | znt−1,at−1). The encoder is trained adversarially to make the two distributions

similar to minimise CMI. The double slash ‘//’ on the encoder outputs indicates where gradient flow is stopped.

timestep z1t−1 and at−1 to adjust for the most recent correlations while keeping the auxiliary task
reasonable to achieve during training. We show experimentally in Section 6 that conditioning on only
the most recent timestep achieves good generalisation performance while converging to an optimal
policy faster in training than larger conditioning sets that use more timesteps from the episode history.

4.2 Conditional Mutual Information for Disentanglement

CMID is an auxiliary task to learn disentangled representations. The architecture for CMID is shown
in Figure 2, and the pseudocode is provided in Algorithm 1. CMID uses the same image inputs as the
base RL algorithm. Where the base algorithm uses image augmentations (Hansen et al., 2021; Yarats
et al., 2021; Laskin et al., 2020a), these are also used for CMID. However, CMID does not use frame
stacking because it would introduce causal relationships between features in the frame stack. For
example, object velocity and positions are often extracted from the frame stack, but velocity is also a
direct cause of position. CMID processes each frame individually, and representations can be stacked
if required to allow velocity information to be extracted by the RL networks for policy learning.

To learn a conditionally independent representation, CMID minimises the CMI between features in
the representation. For each feature znt in the representation zt, it follows from Equation 2 and the
conditioning set cnt = (znt−1,at−1) discussed in Section 4.1 that:

I(znt ; z
−n
t | cnt ) = DKL

[
p(zt, c

n
t ) || p(znt , cnt )p(z−n

t | cnt )
]
. (5)

As such, we minimise the KL-divergence between the joint probability distribution p(zt, c
n
t ) and

the product of marginals p(znt , c
n
t )p(z

−n
t | cnt ). The agent has access to samples from the joint

distribution p(zt, cnt ) collected during training, e.g. from the replay buffer. To sample from the product
of marginals, we use the isolated k nearest neighbours (kNN) permutation approach (Molavipour
et al., 2021). For each sample {zt, cnt } ∼ p(zt, c

n
t ), we find the kNN of cnt by Euclidean distance,

then permute the sample with the kNN to get a sample {znt , z−n
t′ , cnt } where t′ ̸= t and cnt′ is a kNN

of cnt . We will use zperm,n
t to denote the permutations {znt , z−n

t′ }. The permuted sample {zperm,n
t , cnt }

is from the distribution p(znt , c
n
t )p(z

−n
t | cnt ). The permutation process is also depicted in Figure 2.

To minimise the KL-divergence in Equation 5, we train a discriminator Dϕ adversarially to distinguish
between samples {zt, cnt } ∼ p(zt, c

n
t ) and {zperm,n

t , cnt } ∼ p(znt , c
n
t )p(z

−n
t | cnt ). The adversarial

training encourages the encoder fθ to ensure the two distributions are as similar as possible by
minimising the cross entropy. This objective is equivalent to minimising the KL-divergence since
for any two distributions p and q, DKL(p || q) = H(p, q)−H(p) where H(p, q) is the cross entropy
and H(p) is the entropy of p which does not depend on the learned parameters. The discriminator
Dϕ is trained to discriminate between true and permuted samples for each feature znt using a binary

5



Algorithm 1 CMID update step

Input: batch of transitions B = {..., (ot−1,at−1,ot), ...} ∼ D
Input: parameters for the encoder θ and the discriminator ϕ
Calculate RL loss LRL and update RL networks (including encoder) following base RL algorithm
Initialise LD ← 0 and LA ← 0
Forward pass though encoder zt = fθ(ot) and momentum encoder zt−1 = fθ′(ot−1)
for n ∈ (1, ..., N) do

Create conditioning set cnt = (znt−1,at−1)

Find k nearest neighbours of cnt in the batch, measured by the Euclidean distance:
√∑

i((c
n
t )

i − (cnt′)
i)2

Create permuted samples zperm,n
t by shuffling k nearest neighbours, keeping znt fixed

Calculate discriminator loss LD ← LD + log σ(Dϕ(zt, c
n
t )) + log(1− σ(Dϕ(z

perm,n
t , cnt )))

end for
Update discriminator parameters to minimise LD
for n ∈ (1, ..., N) do

Create conditioning set cnt = (znt−1,at−1)
Calculate adversarial loss LA ← LA + log(1− σ(Dϕ(zt, c

n
t )))

end for
Update encoder parameters to minimise LA
Output: Losses LD, LA, LRL and updated parameters ϕ, θ

cross entropy loss:

LD =
1

N

N∑
i=0

(
log σ(Dϕ(zt, c

n
t )) + log(1− σ(Dϕ(z

perm,n
t , cnt )))

)
(6)

where σ is the sigmoid function. The encoder fθ is updated using only true samples zt to learn a
representation such that the discriminator cannot determine whether the sample is true or permuted:

LA =
α

N

N∑
i=0

log(1− σ(Dϕ(zt, c
n
t ))) . (7)

The loss coefficient α is a hyperparameter to be tuned to the task to determine the scale of the
adversarial loss compared to the RL loss that also updates the encoder fθ. For training stability, we
use a momentum encoder (He et al., 2020; Laskin et al., 2020b) fθ′ : O → Z for the conditioning set
representation zt−1 = fθ′(ot−1), where θ′ = τθ′ + (1− τ)θ.

5 Experimental results

Blue Green

Cartpole A
(narrow cart,

long pole)

Cartpole B
(wide cart,
short pole)

train 
test 

train 
test 

train 
test 

train 
test 

Figure 3: Illustration of correlations with test-
ing on reversed correlation in the cartpole en-
vironment, ρ indicates the probability of an
object/colour combination.

Our experiments evaluate generalisation performance un-
der correlation shifts. We evaluate zero-shot generalisa-
tion as well as adaptation with continued learning on test
correlations (which differ from the training correlations).
We test our approach on continuous control tasks from
the DeepMind Control Suite (DMC) (Tunyasuvunakool
et al., 2020) where we have created strong correlations
between task-relevant features and irrelevant colours. We
use a training environment with correlated variables and
evaluate generalisation on a test environment under cor-
relation shift. Our results show that the CMID auxiliary
task consistently improves the generalisation of the base
RL algorithm in all tasks, as well as outperforming other
baselines.

5.1 Experimental setup

Adding strong correlations to DMC. To demonstrate
generalisation under correlation shifts, we add correla-
tions between object colour and dynamics. We use two
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Figure 4: Generalisation to reversed correlation at the vertical dotted line. Returns are the average of 10
evaluation episodes, averaged over 5 seeds; the shaded region is the standard error.
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Figure 5: Generalisation to uncorrelated features at the vertical dotted line. Returns are the average of 10
evaluation episodes, averaged over 5 seeds; the shaded region is the standard error.

variations of the object controlled by the agent (A and B), each of which has a slightly different
morphology (e.g. lengths, joint positions), which affects both the object appearance and the dynamics.
This means each variation of the control object requires a different optimal policy. A description of
variations for each task along with images are provided in Appendix D. At the start of an episode,
object A or B is chosen at random with equal probability. Object A appears blue with probability
0.95 and green with probability 0.05, conversely object B is green with probability 0.95 and blue
otherwise. After training, the correlation is changed (at the vertical dotted line in the graphs) and
the agent continues training to assess adaptation. We test two different correlation shifts: reversed
correlation, and no correlation. An example of the correlated setup with cartpole is shown in Figure 3.

Base RL algorithm. We use SVEA (Hansen et al., 2021) as the base RL algorithm which we
augment with the CMID auxiliary task, called SVEA-CMID in the results. SVEA is used because it
is a state-of-the-art RL algorithm that already uses image augmentations to improve robustness to an
extent. An overview of SVEA is provided in Appendix A and implementation details in Appendix B.

Baselines. We compare with SVEA, as the base RL algorithm for CMID, to demonstrate the extent
to which the CMID auxiliary task improves performance. We also compare with DrQ (Yarats et al.,
2021) as an alternative image augmentation baseline. We compare with CURL (Laskin et al., 2020b)
as a state-of-the-art auxiliary task based on maximising mutual information. As a disentanglement
baseline that assumes independent features, we use TED (Dunion et al., 2023) to demonstrate that
disentanglement techniques requiring fully independent features fail with strong correlations.

5.2 Generalisation results

Our results in Figure 4 show the generalisation to reversed correlation and Figure 5 shows generalisa-
tion to uncorrelated features at the vertical dotted line. In both cases, the results show that CMID
improves the generalisation performance of SVEA in all tasks, as well as outperforming the other
baselines. CMID achieves good zero-shot generalisation performance on the vertical dotted line,
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Figure 8: Different values of the
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while all baselines have some failure to generalise (except where they cannot learn a reasonable policy
in the hopper task). Tables showing the numerical values of the zero-shot generalisation performance
are also provided in Appendix C.1. Some baselines are able to to adapt with continued learning on the
test environment to eventually achieve optimal performance in line with CMID, but others are unable
to recover an optimal policy after overfitting to the training correlations. CMID also improves the
training performance of SVEA in all tasks, achieving higher training returns even before the switch to
the test environment. Many baselines also suffer from this inability to achieve optimal performance
in training because the strong correlation makes it harder to learn as an optimal agent needs to learn a
different policy for each control object without relying on the colour to distinguish between control
objects. Appendix C.2 shows the evaluation performance on each scenario for cartpole swingup to
further demonstrate why the failure to learn an optimal policy and generalise occurs.

6 Discussion and analysis

In this section, we conduct more detailed analysis of CMID on the reverse correlation testing scenario
for the cartpole swingup task from DMC. We also provide some further analysis on correlation
strength and greyscale images in Appendix C.3 and C.4 respectively.

Mutual information. To validate that it is necessary to minimise the conditional MI in our approach,
we compare with an (unconditional) MI variant with no conditioning set. The results in Figure 6 show
that SVEA-CMID outperforms SVEA-MI in training performance and generalisation. To validate
our conditioning set, we also compare to the CMI approach of Funke et al. (2022) modified to an RL
setting. This approach, which we call SVEA-CMI-labels, assumes access to the ground truth state
features. The representation is split into subspaces corresponding to each of the state features, and a
classifier is trained for each subspace to predict the state feature. The true state features can then be
used as the conditioning set. Figure 6 also shows that SVEA-CMID outperforms SVEA-CMI-labels
because of the added complexity of using the true state features and training the classifiers.

History length. We discussed in Section 4.1 that achieving full conditional independence requires
conditioning on the history of representations z0:t−1 and actions a0:t−1. However, in practice
(Section 5) we found that conditioning only on the most recent representation zt−1 and action at−1

breaks the strongest correlation to achieve zero-shot generalisation. Figure 7 compares CMID with
variations that condition on the previous two (CMID-history2) and three (CMID-history3) timesteps.
The results show that it is harder to learn with the larger conditioning sets, which fail to achieve
optimal performance as quickly, while CMID with one previous timestep works well in practice.

CMID loss coefficient. The CMID loss coefficient α in Equation 7 is a hyperparameter to be
tuned to the task. We found α = 0.5 performs well in the cartpole task. The results in Figure 8
show that decreasing α decreases generalisation performance because the agent is not prioritising
disentanglement, as well as reducing training performance because it is harder to learn the rare cases
with this lower priority on disentanglement. Increasing α makes it harder to learn the optimal policy,
decreasing the training performance.
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(a) Raw image (b) SVEA (c) SVEA-CMID

Figure 9: Saliency maps: (a) raw image used to calculate attributions, (b) SVEA and (c) SVEA-CMID saliency
maps showing two representation features. Brighter pixels correspond to higher attributions. SVEA-CMID has
designated features focusing on the pole length which it has disentangled from other features.

Visualising the learned representation. We conducted analysis of the learned representation to
visualise the disentanglement. We use integrated gradients (Sundararajan et al., 2017) to attribute the
encoder output value of each feature in the representation to the input image pixels. We overlay the
attributions on the original image to create saliency maps showing the parts of the image that each
representation feature focuses on. We show illustrative saliency maps in Figure 9. Implementation
details and saliency maps for all representation features are provided in Appendix E. The saliency
maps show that SVEA encodes many image features in one representation feature, while SVEA-
CMID has designated features in the representation to focus on individual features in the image, such
as pole length, which is necessary to distinguish between cartpole A and B.

SVEA SVEA-CMID

Worst colour 165.8± 13.8 379.1± 70.1

Best colour 588.7± 87.2 834.1± 105.8

Average 220.2± 27.4 692.2± 166.3

Table 1: Zero-shot generalisation to unseen colours
on the cartpole task. Mean returns on 10 evaluation
episodes over 5 seeds.

Robustness analysis. We analyse the robustness
of the trained RL agents to unseen colours on the
cartpole swingup task. Using the model at the end
of training (before changing the correlation), we
test the model on the same control objects but with
unseen colours. We test on 216 different colours,
using equally spaced RGB values. The results in Ta-
ble 1 show that CMID achieves improved zero-shot
generalisation performance on the unseen colours,
in terms of the worst performing colour, the best
performing colour and the average.

7 Limitations and future work

Instead of the common practice of frame stacking, we stack representations when using CMID
to avoid introducing causal relationship between variables in the stack of frames as discussed in
Section 4.2. Future work could consider how to adapt CMID to allow for these more complex causal
relationships. The kNN permutations approach to minimise CMI also adds computational complexity
to update the encoder for each kNN, so future work could consider more efficient ways to sample
from the product of marginals distribution.

We evaluated our approach on tasks with correlation between object properties (that impact dynamics)
and colour. This scenario already shows that state-of-the-art baselines suffer from a significant
deterioration in performance under correlation shifts as well as being unable to learn an optimal
policy in training for some tasks. As such, the colour correlations are sufficient to demonstrate the
effectiveness of our approach in improving generalisation. However, future work could evaluate our
approach on correlations with more complex distractors, such as background videos and camera angles.
In particular, we use a conditioning set containing only the most recent timestep in our experiments,
but more complex environments can have strong correlations over multiple timesteps (e.g. background
videos) which may require more history in the conditioning set (Albrecht and Ramamoorthy, 2016).
Future work could consider using more representations and actions from history in the conditioning
set efficiently to apply CMID to more complex environments and correlations.
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8 Conclusion

In this paper, we explored the problem of training with strong correlations and generalisation
under correlation shifts in RL. Existing techniques for learning disentangled representations in
RL are insufficient for real-world problems because they assume the ground truth features are
independent, which is unlikely to hold in practice. We proposed Conditional Mutual Information
for Disentanglement (CMID) to learn disentangled representations with correlated image features
that requires only conditional independence between features. CMID is an auxiliary task that can
be used with existing RL algorithms. We showed experimentally that CMID improves the training
and generalisation performance of SVEA as the base RL algorithm as well as DrQ, CURL and TED
baselines. CMID allows the RL agent to generalise under correlation shifts and continue learning
without performance reduction as a step towards training on real-world correlated data.
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A Extended background

We use SVEA (Hansen et al., 2021) as the base RL algorithm for the CMID auxiliary task, which is
an extension of the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018).

SAC is an off-policy RL algorithm for continuous control. SAC learns a stochastic policy π that
maximises the expected sum of rewards and the entropy of the policy. The critic Q is learned by
minimising the loss:

LQ = E(ot,at,ot+1,rt)∼D

[(
Q(ot,at)− rt − γV̄ (ot+1))

)2]
(8)

where ot is the image observation and at is the action at time t as defined in Section 3. SAC uses
the minimum of two Q networks, Q1 and Q2, for the training updates to reduce overestimation of Q
values. The actor π is trained by minimising the loss:

Lπ = Eot∼D

[
Eat∼π

[
αSAC log(π(at | ot))− min

i=1,2
Q̄i(ot,at)

]]
(9)

where Q̄ is exponential moving average of the Q network parameters.

SVEA aims to stabilise SAC training using a combination of both augmented and unaugmented
images for Q learning with an modified loss:

LSVEA
Q = αSVEALQ(ot, at, ot+1) + βSVEALQ(o

aug
t , at, ot+1) (10)

However, the actor π is optimised on unaugmented images only, using the SAC policy loss in
Equation 9.

B Implementation details

In this section, we provide the implementation details for CMID. Our codebase is built on top of
the publicly released DrQ PyTorch implementation by Yarats et al. (2021) as well as the official
implementation of SVEA by Hansen et al. (2021). A public and open-source implementation of
CMID is available at github.com/uoe-agents/CMID.

Encoder. The encoder consists of 4 convolutional layers, each with a 3 × 3 kernel size and 32
channels. The first layer has a stride of 2, all other layers have a stride of 1. There is a ReLU
activation between each of the convolutional layers. The convolutional layers are followed by a linear
layer, normalisation, then a tanh activation. The encoder weights are shared between the actor π and
critic Q.

Actor and critic. Both the actor π and critic Q networks are MLPs consisting of two layers and a
hidden dimension of 1024. There is a ReLU activation after each layer except the last layer.

CMID discriminator. The CMID discriminator is implemented as an MLP consisting of two layers
and a hidden dimension of 1024. There is a ReLU activation after each layer except the last layer.
The same conditional discriminator is used for all features in the representation so the inputs are
one-hot encoded. This means the input size is: 56 (representation or permuted representation) + 56
(one-hot encoding of previous representation) + action size.

Hyperparameters. We tuned learning rate and CMID hyperparameters by grid search; other
hyperparameters follow the original SVEA implementation. Table 2 shows the hyperparameters for
all tasks.

Hardware. For each experiment run we use a single NVIDIA Volta V100 GPU with 32GB memory
and a single CPU.
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Hyperparameter Value
Replay buffer capacity 100000

Initial steps before training begins 1000
Stacked frames (stacked representations for CMID) 3

Action repeat 2 for finger_spin, 8 for cartpole_swingup, 4 otherwise
Batch size 128

Discount factor 0.99
Optimizer Adam

Learning rate (actor, critic and encoder) 1e-3
SAC learning rate for αSAC 1e-4

Discriminator learning rate (CMID only) 1e-2
SVEA coefficients αSVEA = 0.5, βSVEA = 0.5

Target soft-update rate τ critic 0.01, actor 0.05
Actor update frequency 2
Actor log stddev bounds [−10, 2]

Latent representation dimension 56
Image size (84, 84, 3)
Image pad 4

Initial temperature 0.1
CMID loss coef α 0.5 for cartpole_swingup, 0.1 otherwise

k nearest neighbours 5

Table 2: Hyperparameter values for both SVEA and SVEA-CMID.

cartpole_swingup walker_walk finger_spin hopper_stand

SVEA-CMID 746.0± 77.8 793.5± 36.0 939.5± 19.1 826.0± 15.6

SVEA 233.1± 25.3 460.8± 50.7 633.8± 122.6 686.3± 170.8

SVEA-TED 577.0± 152.0 542.7± 115.1 755.4± 75.8 623.5± 166.7

CURL 262.4± 34.8 285.7± 54.3 386.3± 141.5 305.6± 160.4

DrQ 201.2± 20.7 417.3± 32.1 843.3± 49.1 531.8± 182.6

Table 3: Zero-shot generalisation performance to reversed correlation. Returns are the average of 10 evaluation
episodes over 5 seeds, showing ± standard error.

C Additional results

C.1 Zero-shot generalisation

The zero-shot generalisation performance under correlation shift can be seen at the vertical dotted
line in the graphs of Figure 4 and Figure 5. For completeness and to avoid loss of information caused
by smoothing in the graphs, the numerical values of the zero-shot generalisation performance are
provided in Table 3 and Table 4.

C.2 Evaluation on each scenario

The results in Section 5 show the average returns over 10 evaluation episode for each seed, where a
given scenario is selected based on the train/test probabilities depicted in Figure 3. To further assess
performance, Figure 10 shows the average evaluation returns on 10 episodes for each object/colour
combination on the cartpole swingup task with generalisation to reversed correlation. These results
show that the correlation makes it difficult for SVEA to learn an optimal policy for any scenario, but
with lower returns on the unlikely training scenarios in particular (cartpole A in green and cartpole B
in blue). This explains the failure to generalise in Figure 4 when the correlation reverses, making the
scenarios that were rare in training become frequent in testing at the vertical dotted line.
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cartpole_swingup walker_walk finger_spin hopper_stand

SVEA-CMID 878.8± 12.4 815.3± 29.9 953.2± 16.4 816.1± 37.2

SVEA 371.5± 21.0 652.4± 34.3 680.1± 98.4 526.8± 182.2

SVEA-TED 667.4± 120.6 560.7± 68.6 820.7± 59.6 643.3± 171.0

CURL 523.8± 83.6 606.3± 50.8 561.7± 119.9 342.9± 151.1

DrQ 521.6± 55.3 652.5± 26.4 872.0± 30.3 531.6± 149.5

Table 4: Zero-shot generalisation performance to uncorrelated variables. Returns are the average of 10 evaluation
episodes over 5 seeds, showing ± standard error.
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0 1 2 3 4
Training timesteps 1e6

0

200

400

600

800

1000

M
ea

n 
ev

al
 r

et
ur

ns

SVEACMID
SVEA

(d) Cartpole B in green

Figure 10: Evaluation of performance on each of the cartpole swingup scenarios for generalisation to reversed
correlation, averaged over 10 evaluation episodes for 5 seeds.
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(c) correlation = 0.9
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(d) correlation = 0.99

Figure 11: Generalisation to reversed correlation at the vertical dotted line with varying correlation strengths on
the cartpole swingup task.

C.3 Correlation strength.

The generalisation results in Section 5 show training with a 0.95 correlation (0.95 probability of being
on the leading diagonal in Figure 3, and only 0.05 probability of being in the anti-diagonal scenarios).
We conducted further analysis of different correlation strengths, denoting the sum of probabilities
on the leading diagonal as the correlation strength. The results for generalisation to the reversed
correlation are shown in Figure 11. While the generalisation performance of SVEA decreases as the
correlation gets stronger, SVEA-CMID consistently generalises well up to a very strong correlation
of 0.99 at which point the performance deteriorates but still significantly improves the performance
of SVEA in this setting.

C.4 Greyscale images.

Our experiments use colour correlations to demonstrate the failure to generalise under correlation
shifts. So we also demonstrate that the results still hold in greyscale images in Figure 12.
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Figure 12: Generalisation to reversed correlation at the vertical dotted line on the cartpole swingup task with all
image observations converted to greyscale.

D Environment variations

In Table 5, we provide a description of the differences between the two object variations (A and B) in
each task, along with images of example observations for each object and colour combination. The
exact specification of the world model for each task is available in our code.

Environment Variation Blue Green

cartpole_swingup

A - original
cartpole

B - wider cart,
shorter pole

walker_walk

A - original
walker

B - longer thigh,
shorter calf

finger_spin

A - original
finger

B - shorter
proximal, longer

distal
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hopper_stand

A - original
hopper

B - shorter thigh,
longer calf

Table 5: Environment images

E Saliency maps

The full set of saliency maps, as described in Section 6, for each representation feature is provided in
Figure 13 for a trained SVEA encoder and a trained SVEA-CMID encoder. The features are sorted in
order of most active to least active based on the sum of attributions for each feature.

To create the saliency maps, we use the Captum open-source interpretability library for PyTorch
(Kokhlikyan et al., 2020) to calculate the integrated gradients (Sundararajan et al., 2017) pixel
attributions for each feature in the representation output of the encoder. We use an all black image as
the baseline image for integrated gradients which is compared to the input image in Figure 9a. The
absolute value of the attributions are overlayed onto the input image to create the saliency maps.
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(a) SVEA

(b) SVEA-CMID

Figure 13: Saliency maps for each representation feature of a trained (a) SVEA and (b) SVEA-CMID encoder
on the cartpole swingup task, sorted in order of highest total attributions to lowest.
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