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Abstract

We present a novel approach for black-box VI that bypasses the difficulties of stochastic
gradient ascent, including the task of selecting step-sizes. Our approach involves using a
sequence of sample average approximation (SAA) problems. SAA approximates the so-
lution of stochastic optimization problems by transforming them into deterministic ones.
We use quasi-Newton methods and line search to solve each deterministic optimization
problem and present a heuristic policy to automate hyperparameter selection. Our exper-
iments show that our method simplifies the VI problem and achieves faster performance
than existing methods.

1. Introduction

Variational inference (VI) is a powerful technique in machine learning that allows us to
approximate the posterior distribution of a latent variable given some observed data. This
is done by formulating the problem as an optimization problem, where the objective is to
find a distribution from a family of distributions that is as close as possible to the true
distribution. To achieve this, VI maximizes the evidence lower bound (ELBO), which is a
lower bound on the log-likelihood of the observed data (Wainwright et al., 2008; Jaakkola
and Jordan, 1997; Beal, 2003).
One popular approach to solving VI problems is black-box VI, which uses stochastic gradient
descent (SGD) to optimize the ELBO (Wingate and Weber, 2013; Ranganath et al., 2014).
In this method, an unbiased estimator of the gradient of the ELBO is used for stochastic
optimization. However, selecting an appropriate step-size for SGD can be challenging and
have a significant impact on the outcome. Recent work by Agrawal et al. (2020) recommends
performing a comprehensive search over step-sizes to avoid the suboptimality of using a
previously-selected step-size. In practice, users often turn to adaptive methods like Adam
(Kingma and Ba, 2015) or AdaGrad (Duchi et al., 2011) to adjust the step-size on-the-fly,
but these methods also require tuning of hyperparameters, which can be time-consuming
and error-prone.
We propose a robust alternative stochastic-optimization approach using sample average
approximation (SAA), focusing on statistical models without data-subsampling. Our con-
tributions include: (i) using SAA to solve VI problems, employing nonlinear optimization
tools (Healy and Schruben, 1991; Robinson, 1996; Shapiro and Wardi, 1996; Kleywegt et al.,
2002; Kim et al., 2015); (ii) applying quasi-Newton methods with line-search for efficient
optimization; (iii) addressing Monte Carlo error with a sequence of SAAs with increasing
sample sizes (Chen and Schmeiser, 2001); (iv) presenting the SAA for VI algorithm with
default scheduling and stopping criteria, competitive in accuracy and computational cost,
simplifying the VI process.
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2. Background

We are interested in approximating the posterior distribution of a latent variable given some
observed data, i.e., p(Z |x), where Z is the latent variable and x is the observed data. To
achieve this, we will approximate the posterior with a distribution from an indexed family
of approximations Q = {qθ | θ ∈ Rd}, where θ is a vector of parameters that parameterize
the approximation qθ(Z), and d is the dimension of θ.
VI proposes to approximate the posterior distribution by finding a member from Q that
is closest in Kullback-Leibler divergence to the true distribution. This is achieved by
maximizing the evidence lower bound (ELBO), which is a function of the parameters:
L : θ 7→ Eqθ [ln p(Z, x)− ln qθ(Z)]. The optimization problem can be formulated as:

max
θ∈Θ
L(θ) = max

θ∈Θ
E[ln p(Z, x)− ln qθ(Z)], Z ∼ qθ. (1)

Under smoothness assumptions, black-box VI presents this problem as a smooth stochastic
optimization problem (SOP) and suggests solving it using methods based on stochastic
gradient descent (SGD). Specifically, it uses stochastic gradient ascent to maximize the
ELBO by updating the parameters as follows:
At every iteration, samples z1, . . . , zn from qθt are drawn and the sample mean of the func-
tion gθt(Z) is being computed, where gθt(Z) is a Rd-valued random vector whose expectation
equals the gradient. Then, this estimate is used to update the parameters according to:

θt+1 = θt + γt
1

n

n∑
i=1

gθt(zi) for t ∈ N, and γt ∈ R+. (2)

The function gθt can be obtained using various methods, including the score function esti-
mator (Wingate and Weber, 2013; Ranganath et al., 2014) or, if the distribution is repa-
rameterizable, the ‘reparameterization trick’ (Kingma and Welling, 2013; Fu, 2006; Kingma
et al., 2019; Rezende et al., 2014), among others. A random variable Z comes from a repa-
rameterizable distribution qθ if there exist a C1 function gθ and a density qbase such that
Z = gθ(ε) for ε ∼ qbase. We refer to these ε values as noise. In such case, the stochastic
optimization problem becomes

max
θ∈Θ
L(θ) = max

θ∈Θ
E[ln p(gθ(ε), x)− ln qθ(gθ(ε))], ε ∼ qbase. (3)

The explanation above simplifies complexities in choosing hyperparameters, particularly
step size γt. Users can choose a schedule meeting Robbins-Monro conditions (Robbins and
Monro, 1951), but specific sequences affect convergence speed differently, and line-search
methods are impractical due to random loss-function estimation. Moreover, the choice of
the number of samples n per iteration can impact optimization, as larger n provides a more
accurate gradient estimate but may increase computational cost.

3. Methods

3.1. Sample Average Approximation

The problem of ELBO maximization in the reparameterization setting of Eq. (3) is formu-
lated as an SOP where the stochasticity comes from a fixed probability distribution, i.e.,
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a probability distribution which does not depend on θ. Furthermore, the function inside
the expectation is a smooth function of the parameters θ. Solutions to these problems can
be approximated using the sample average approximation (SAA): a sample average over a
fixed sample replaces the expectation, effectively transforming the SOP into a deterministic
optimization problem.
We propose to use SAA for black-box VI. To use SAA, we take n i.i.d. samples ε = ε1, . . . , εn
from the distribution qbase and define the deterministic training objective function L̂ε : θ 7→
1
n

∑n
i=1[ln p(zθ(εi), x)− ln qθ(zθ(εi))], which is a function of θ alone.

Then, the optimization problem in Eq. (3) can be transformed into a deterministic opti-
mization problem

max
θ∈Θ

L̂ε(θ) = max
θ∈Θ

1

n

n∑
i=1

[ln p(zθ(εi), x)− ln qθ(zθ(εi))] = max
θ∈Θ

1

n

n∑
i=1

vθ(εi), (4)

where we introduced the log-weights vθ(εi) = ln p(zθ(εi), x) − ln qθ(zθ(εi)), also known as
log-importance ratios. As the optimization is performed with the fixed set ε, we refer to it
as the training noise.
We want to recover the optimal parameters θ∗ε of L̂ε. In an unconstrained smooth opti-
mization setting, we need to specify how to compute a search direction and a step size. For
the search direction, we will use L-BFGS (Broyden, 1970; Fletcher, 2013; Goldfarb, 1970;
Shanno, 1970; Nocedal, 1980). For a detailed description of the L-BFGS algorithm, refer
to Nocedal and Wright (1999).
In contrast to the SGD setting, deterministic optimization allows us to specify the step size
using line search and ask for it to satisfy the strong Wolfe conditions (Nocedal and Wright,
1999). This allows us to use a step size that is guaranteed to increase the objective function.
We will use L-BFGS with line search to compute an approximation to the optimal value
of Eq. (4), and denote the process that does so by Opt(θ, n, ε, τ). Here, τ is the maximum
number of iterations for which L-BFGS will run, and θ is an initial value of the parameters.
Besides the arguments of L̂ε(θ), we also need to specify the value of τ .

Detection and mitigation of overfitting. It is important to understand that the train-
ing objective L̂ε(θ) and the ELBO L(θ), may differ for a fixed θ. The ELBO is an expectation
over the distribution qθ, while the training objective is computed based on an average over
a fixed sample ε. In contrast, the optimal ELBO refers to the value of the ELBO achieved
by the maximizer θ∗ of Eq. (1), i.e., L(θ∗).
During optimization with a fixed sample of training noise εn = ε1, . . . , εn, one might wonder
how much the learned parameters θ∗εn and the distribution qθ∗εn depend on these noise
samples. In particular, how this dependency translates into a gap between the ELBO L(θ∗εn)
and the optimal ELBO L(θ∗). Fortunately, there are two results by Mak et al. (1999) that
are relevant to our discussion. Note that until the noise variables ε1, . . . , εn are realized,
the quantities θ∗εn and L̂εn(θ∗εn) are random. Let ε̂n+1 = ε̂1, . . . , ε̂n+1, be a sample of size
n+ 1 taken i.i.d. from qbase. Assuming that the optimization process converges to a global
optimum, it holds in expectation that: (i) the ELBO and training objective sandwich the
optimal ELBO, i.e., EL(θ∗εn) ≤ L(θ∗) ≤ E L̂εn(θ∗εn); and (ii) the training objective converges

monotonically to the optimal ELBO from above, i.e., E L̂ε̂n+1
(θ∗ε̂n+1

) ≤ E L̂εn(θ∗εn). These
results mean that we can use statistical techniques to quantify the discrepancy between
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Figure 1: Distribution of log-weights for a fresh sample of noise and the training noise, as
a function of the number n of samples used for training on the mushrooms dataset. (Left)
Violin plot showing the distribution of log-weights. (Right) Line plot depicting the mean
(v̄ ± σ) of the log-weights. The means of the log-weights correspond to an estimation of
the ELBO and the training objective. The overfitting to the training noise is reduced by
training using a larger sample size.

the ELBO and the training objective by comparing the distribution of the log-weights
for a fresh sample of noise (testing noise) and the training noise. Figure 1 displays the
distribution of log-weights for a growing sample size. As the number of samples increases,
the training objective value decreases and approaches that of the ELBO estimation, which
in turn increases, indicating progress toward ELBO maximization. We mitigate overfitting
by solving a sequence of SAA approximations for an increasing sequence of sample sizes,
which creates a sequence of solutions. This approach is based on epi-convergence, implying
that under certain conditions, the sequence of solutions will converge to a solution of the
original problem with probability one. However, it is unknown how well these theoretical
results can be applied to our setting, and this remains an area for future research.

3.2. Algorithm

In this section, we present an algorithm that uses SAA to approximate the solution to
the optimization problem of maximizing the ELBO. Our objective is to find a good ap-
proximation to the solution with a reasonable computational cost and avoid the overfitting
phenomenon described earlier. To this end, we build our stopping criteria based on overfit-
ting. In Algorithm 1 in Appendix A we describe the algorithm, consisting of two procedures:
the optimizer Opt and the convergence checker. We previously described the optimizer, in
which we used a quasi-Newton method. The convergence checker determines whether we
need to continue the optimization process, and we will describe it below.
The algorithm starts with an initial guess θ0, an initial sample size n0, and an initial
maximum number of iterations for the optimizer τ0. Default values for these parameters
can be found in Table 2, also located in Appendix A. At each iteration t of the algorithm,
we double the sample size to reduce the overfitting. First, we draw the training noise
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εnt = ε1, . . . , εnt from the base distribution qbase. Then, we use the optimizer to find the
parameters θ∗t that maximize the deterministic objective computed with the fixed training
noise εnt . If we find that the optimizer has reached the maximum number of iterations
τt, we double the maximum number of iterations for the optimizer; otherwise, we keep
the same maximum number of iterations. We repeat this process until the convergence
checker determines that we have reached a good approximation to the overall solution of
the stochastic optimization problem.

Stopping Algorithm 2, in the appendix, defines the stopping criteria for our optimization
process, which involves computing log-weights. Specifically, given the training noise εnt
and the parameters θt, we compute the log-weights vθt(ε1), . . . , vθt(εnt), which we denote
as vθt(εnt). We also compute a new set of log-weights using a fresh sample of testing noise
with size 10k, denoted by vθt(ε̂10k).
To decide when to stop optimizing, we use a two-sided t-test to compare the distribution of
log-weights computed using the training noise vθt(εnt) with the distribution of log-weights
computed using a the testing noise vθt(ε̂10k). The null hypothesis is that the means of the
two distributions are the same. This test was inspired by the test used in Mak et al. (1999).
Our optimization process terminates when the hypothesis cannot be rejected with a signif-
icance level of 1%. We also introduce two additional stopping conditions: the maximum
number of iterations max t and the threshold δ for the difference between the training ob-
jective L̂ε(θt) and the ELBO L(θt). In our experiments, we set max t to ensure that the
maximum sample size was nmax = 218, and δ to 0.01.

4. Related work

In the literature, several methods incorporate second-order information into stochastic op-
timization. Byrd et al. (2016) introduced batched-L-BFGS, which was later applied by Liu
and Owen (2021) to the variational inference problem, with optional quasi-Monte Carlo
(QMC) sampling. The methods involve a two-step algorithm and use a fixed-size noise
sample for estimating the ELBO gradient. Our method differs from Liu and Owen (2021)’s
approach by optimizing with a fixed set of noise and integrating the sample size considera-
tion into the algorithm.
An alternative approach by Zhang et al. (2022) employs L-BFGS to identify modes or poles
of the posterior distribution and uses the generated data to estimate the posterior covariance
around the mode. This method resembles the Laplace approximation more closely.
Welandawe et al. (2022), inspired by Agrawal et al. (2020), employ SGD with a heuristic
step-size schedule for ELBO optimization and use tools for stationarity detection. They
observed that parameter averaging in the stationary regime enhances approximation quality.
In the machine learning literature, sample average approximation has been less common.
Early works like Ng and Jordan (2000)’s PEGASUS applied the technique in the context
of partially observable Markov decision processes, while Sheldon et al. (2010) used it in a
network design setting. More recently, Balandat et al. (2020) adopted the technique for
optimizing the acquisition function in Bayesian optimization.
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5. Experiments

We now present the most relevant findings from our experiments, which are detailed in
Appendix B. To evaluate the effectiveness of our method, we compared it with the Adam
optimizer and the batched quasi-Newton method proposed by Liu and Owen (2021). We
tested 12 models from the Stan repository (Stan Development Team, 2021; Carpenter
et al., 2017) and Bayesian logistic regression with 5 UCI datasets (Dua and Graff, 2017).

ELBO Diff.

Adam− SAA for VI

Time ratio

Adam/SAA for VI

Stan models

congress 0.03 51.12

election88 -239.57 1.01

election88Exp — 2.30

electric -74.20 5.73

electric-one -0.00 60.18

hepatitis -68.31 1.11

irt -51.59 0.52

mesquite 0.04 127.40

radon -6.97 6.59

sonar -0.28 3.90

wells 0.03 114.24

Table 1: Comparison of ELBO differences and
time ratio between Adam and SAA for VI on Stan
models using full-rank covariance. ELBO Diff. rep-
resents the difference between the median ELBO
achieved by Adam and SAA for VI, with nega-
tive values indicating that SAA for VI achieved a
higher ELBO. Time ratio values greater than 1 in-
dicate that Adam is slower than SAA for VI. See
Tables 3 and 4 in Appendix B for more details.

Our results show that for simpler mod-
els, all methods performed similarly
when a Gaussian distribution with di-
agonal covariance was used as an ap-
proximating distribution. However, for
more complex models, our method out-
performed the other methods when
a Gaussian distribution with full co-
variance was used. Interestingly, our
method usually found a better op-
timizer than Adam (with the best
of three swept step sizes), sometimes
achieving an ELBO that was 200 nats
higher and at a faster speed.
Comparing our method with batched
quasi-Newton on the Stan models, as
shown in Table 5, revealed the diffi-
culties of not incorporating a method
to determine the right sample size and
the benefits of using a fixed set of noise
samples for optimization. With most of
the models, batched quasi-Newton was
unable to find a good optimizer, even
when using 128 samples.

6. Conclusion

In this paper, we introduced the SAA
for VI algorithm, which provides an effective and accurate solution to variational infer-
ence problems, significantly reducing the reliance on manual hyperparameter tuning. This
promising method enhances both efficiency and precision in addressing these challenges.
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Appendix A. Algorithm Pseudocode

Algorithm 1: SAA for VI

Input: θ0, n0, τ0

Output: θ∗

t← 0

while t = 0 or not converged(θt, εnt , t)?

do

t← t+ 1, nt ← 2nt−1

εnt ← ε1, . . . , εnt , where εi ∼ qbase

θt ← Opt(θt−1, nt, εnt , τt)

if optimizer reached max iters τt

τt+1 ← 2τt

else

τt+1 ← τt

return θ∗ ← θt

Input Default value

θ0 random from N (0, 1)

n0 32

τ0 300

Table 2: Default values for the input param-
eters of the algorithm.

Algorithm 2: converged?

Input: θt, εnt , t

Data: max t, δ

Output: converged, a boolean

ε̂10k ← ε̂1, . . . , ε̂10k, where ε̂i ∼ qbase

obj← mean(vθt(εnt))

elbo← mean(vθt(ε̂10k))

/* Perform t-test: */

test← t test(vθt(εnt), vθt(ε̂10k))

if (test.pvalue < 0.01)

converged← |elbo− obj| < δ

else

converged← True

return converged;

Appendix B. Experiments

In this section, we present the detailed experimental evidence for our proposed method. We
adopt the experimental setup of Burroni et al. (2023) and consider two types of models: 12
models from the Stan examples repository (Stan Development Team, 2021; Carpenter et al.,
2017) and Bayesian logistic regression with 5 UCI datasets (Dua and Graff, 2017). For each
model p(Z, x), where Z is a d-dimensional random vector, the approximating distribution
qθ can either be a diagonal Gaussian or a d-dimensional multivariate Gaussian distribution.
The former is a product of d independent Gaussians, where the parameters µi and σ2

i > 0
are specific to each Zi. The latter has parameters µi and LLT, where L ∈ Rd×d is a
lower-triangular matrix with diagonal elements that are positive, enforced by applying the
softplus transformation. We use the constraints framework from PyTorch (Paszke et al.,
2019) to transform the model p into one with unconstrained real-valued latent variables, as
done by Kucukelbir et al. (2017).
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We run two sets of experiments. First, we conduct performance comparisons where we assess
our proposed method against two other methods: Adam with a fixed step-size, which is
commonly used for black-box VI optimization, and batched quasi-Newton, a newer method
that introduces second-order information in the optimization process. Second, we conduct
an ablation study to explore how our decisions affect the algorithm’s performance. We
present the results of these experiments in the following subsections.

B.1. Performance comparison

B.1.1. Adam

In order to solve the black-box VI problem, it is standard practice to use Adam (Kingma
and Ba, 2015) as the default optimizer. This is evident from examples in Pyro1 and the
TensorFlow-Probability VI tutorial.2 Despite the fact that the influence of the step-size
in the optimization process is less relevant with Adam than with SGD, it is still a factor
to consider. In our study, we compared Adam to our proposed method, SAA for VI. For
Adam, we optimized each model and approximating distribution combination with three
different step-sizes: 0.1, 0.01, and 0.001, and 20 repetitions of each combination. At each
iteration with Adam, we estimated the gradient of the ELBO by taking 16 samples from qθ.
For each model and approximating distribution, we selected the step-size that provided the
highest median ELBO across the 20 repetitions. Please see Appendix C for more details on
the Adam experiments. For SAA for VI, we used the algorithm described in Section 3.2,
using the default parameter values of Table 2.
We conducted two comparisons for our study. First, we compared the median ELBO,
obtained across 20 repetitions, at the end of the optimization process using Adam and
SAA for VI. Initially, we ran the Adam experiments for 40, 000 iterations, but we found
that for some models, there was a persistent large gap between the maximum median
ELBO achieved with Adam and that of SAA for VI. We increased the maximum number of
iterations to reduce the gap for models such as election88, electric, irt, madelon, and
radon. (See Table 9 in the appendix). Table 3 presents the comparisons of median ELBOs.
Although the Adam optimizer achieves a slightly higher median ELBO for some models—
due to the stopping criterion of SAA for VI—, SAA for VI achieves a noticeably higher
median ELBO for complex models. We also observed that Adam diverged for models such
as election88Exp. Additionally, Adam diverged for the hepatitis model when optimized
for more than 40, 000 iterations, which partially explained the large gap between the median
ELBOs of Adam and SAA for VI.
Second, we compared the time taken to achieve a given ELBO. For each combination of
model and approximating distribution, we computed the minimum between the median
ELBO achieved by Adam and the median ELBO achieved by SAA for VI. This allows us to
determine a value of the ELBO that was achieved for at least 50% of the runs, regardless of
the optimization. We then computed, for each run, the least time required for the ELBO
to equal the previously computed value. Table 4 presents the time (in seconds) required
to achieve the ELBO when using Adam and our proposed method and the ratio between
them. For example, running optimization for the wells model takes almost a minute when

1. See, for instance, the examples in Pyro-SVI.
2. Adam is also used in the TensorFlow-Probability VI Tutorial.
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SAA for VI

Diagonal Covariance Full Rank Covariance

Adam SAA for VI Diff. Adam SAA for VI Diff.

(i) (ii) (i)− (ii) (iv) (v) (iv)− (v)

Bayes log. regr.

a1a -654.80 -655.62 0.82 -637.22 -636.40 -0.82

australian -268.36 -269.40 1.04 -256.82 -256.73 -0.09

ionosphere -138.30 -139.28 0.98 -124.44 -124.35 -0.09

madelon -2,466.27 -2,466.18 -0.09 -2,600.39 -2,399.65 -200.73

mushrooms -210.01 -211.31 1.29 -180.60 -179.88 -0.72

Stan models

congress 421.91 421.78 0.13 423.58 423.55 0.03

election88 -1,419.04 -1,419.75 0.71 -1,636.65 -1,397.08 -239.57

election88Exp -1,376.05 -1,381.72 5.68 — -1,391.98 —

electric -788.84 -788.88 0.04 -861.11 -786.91 -74.20

electric-one-pred -818.33 -818.37 0.04 -818.00 -818.00 -0.00

hepatitis -560.43 -560.44 0.01 -625.68 -557.37 -68.31

hiv-chr -608.41 -608.80 0.39 — -582.77 —

irt -15,888.03 -15,887.92 -0.10 -15,936.25 -15,884.66 -51.59

mesquite -30.08 -30.18 0.10 -29.78 -29.82 0.04

radon -1,210.64 -1,210.69 0.04 -1,216.43 -1,209.46 -6.97

sonar -149.59 -152.18 2.59 -110.32 -110.04 -0.28

wells -2,042.37 -2,042.43 0.06 -2,041.90 -2,041.93 0.03

Table 3: Comparison of Adam and SAA for VI: Median of the highest ELBO achieved
across multiple optimization runs with different seeds for each model and approximating
distribution. Adam was optimized using step-sizes of 0.1, 0.01, and 0.001, and the configu-
ration with the highest median ELBO is reported. We additionally included the difference
between the median ELBO achieved by Adam and SAA for VI: negative values indicate
that SAA for VI achieved a higher ELBO than Adam. For further details, see Section B.1.
The full results are provided in Tables 7 and 8 in Appendix C.

using Adam, compared to less than 200 milliseconds when using SAA for VI, i.e., the time
required to achieve the same ELBO is approximately 300 times slower when using Adam.
It is worth noting that SAA for VI was at a disadvantage in the comparison, because the
actual compute time required by Adam was three time larger than the reported one due to
the selection of the step-size.

B.1.2. Batched quasi-Newton

As noted earlier in Section 4, our method exhibits certain differences compared to the
batched quasi-Newton technique developed by Liu and Owen (2021), which also integrates
second-order information into VI. In this section, we aim to empirically highlight the signifi-
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Diagonal Covariance Full Rank Covariance

Adam SAA for VI Ratio Adam SAA for VI Ratio

(i) (ii) (i)/(ii) (iv) (v) (iv)/(v)

Bayes log. regr.

a1a 29.01 1.23 23.64 79.37 64.00 1.24

australian 13.22 0.15 88.70 51.96 14.40 3.61

ionosphere 9.10 0.15 61.08 28.45 9.98 2.85

madelon 111.49 17.67 6.31 1,532.24 486.04 3.15

mushrooms 125.88 5.15 24.43 219.44 293.83 0.75

Stan models

congress 26.39 0.12 222.89 37.96 0.74 51.12

election88 278.21 13.91 20.00 473.31 467.31 1.01

election88Exp 265.38 9.69 27.40 264.24 114.79 2.30

electric 52.41 4.34 12.08 177.32 30.92 5.73

electric-one-pred 34.01 0.54 63.17 48.12 0.80 60.18

hepatitis 173.97 12.26 14.19 203.42 183.29 1.11

hiv-chr 46.55 2.79 16.67 136.51 34.55 3.95

irt 572.47 310.32 1.84 1,650.03 3,184.38 0.52

mesquite 16.34 0.09 183.35 30.91 0.24 127.40

radon 89.78 13.97 6.43 185.43 28.16 6.59

sonar 7.55 0.23 32.96 47.74 12.23 3.90

wells 56.17 0.17 323.48 68.20 0.60 114.24

Table 4: Comparison of running time, in seconds, for Adam and SAA in VI across different
datasets and distribution approximations, and Adam to SAA time ratio. Values of ratio
greater than 1 indicate that Adam is slower than SAA for VI. See Section B.1 for more
information.

13



SAA for VI

cance of these differences, specifically the use of a sequence of sample average approximations
with an increasing number of samples.
To carry out this comparison, we implemented the batched quasi-Newton method in Py-
Torch without employing quasi-Monte Carlo sampling and compared it to our method. We
ran the experiments for 40,000 iterations, with 20 independent runs for each. Initially, we
used a sample size of 16 and increased it by a factor of 2 for models where the method
encountered difficulties, up to a maximum of 128 samples. We consistently used B = 20 as
recommended in the original paper.
When employing a simpler approximating distribution, such as a Gaussian distribution with
a diagonal covariance matrix, the batched quasi-Newton method demonstrates performance
on par with SAA for VI (refer to Table 10 in the appendix). However, the method encounters
difficulties when using a more complex Gaussian distribution with a full-rank covariance
matrix as the approximating distribution.
Table 5 displays the median final ELBO across runs for various models. The batched quasi-
Newton method reaches optimal performance for most Bayesian logistic regression models
but faces difficulties with models from the Stan example library. Even when increasing
the sample size to 128, a significantly larger sample size than commonly employed with
SGD, the method still falls short of reaching the optimal value. Additionally, we show in
the appendix that the wall-clock time taken by the batched quasi-Newton method is often
similar to or slower than the time taken by SAA for VI.

B.2. Ablation study

Impact of warm start. The optimization process requires a decision on whether to use
warm start or draw fresh parameters for each iteration. Suppose that the inner optimization
process Opt has already converged to parameters θ∗t . Despite the convergence, it may still
be necessary to run the inner optimization process more times, as described in Section 3.2,
to reduce overfitting. The question then arises whether it is computationally advantageous
to use θ∗t as the initial parameters or to draw a new set of parameters from a suitable
distribution.
Pasupathy (2010) provides an intuition of why using a warm start is helpful: in principle,
the optimization process for larger sample sizes begin from a place that probably is close to
a solution. However, we wanted to empirically verify this intuition. To determine the most
efficient approach, we conducted an experiment to compare the performance of warm start
and drawing fresh parameters across different models and approximating distributions. For
each combination of models and distribution, we ran the sequence of SAA problems until
convergence, using either warm start or by sampling new parameters at the beginning of each
inner optimization. Specifically, for the sequence of sample sizes (nt)t∈N described above, we
ran the inner optimization process Opt until it converged. At each iteration t, we initialized
the process either with the previously computed optimal parameters θ∗t−1 (warm start) or
by drawing a new random set of parameters (fresh start). We continue this process until
the algorithm converges. We again used 20 repetitions for each configuration and report the
median results. Our results, presented in Table 6, show that although the difference in nats
between the median run is small, using warm start results in a significant reduction in the
total time taken to converge. For example, on the election88 dataset, using fresh samples
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Full Rank Covariance

Batched Quasi-Newton—Sample Size
SAA for VI

16 32 64 128

Bayes log. regr.

a1a -636.49 -636.40

australian -256.80 -256.73

ionosphere -124.44 -124.35

madelon 7 -2,418.90 -2,412.41 -2,407.51 -2,406.02 -2,399.65

mushrooms -179.96 -179.88

Stan models

congress 423.59 423.55

election88 7 −6.06× 1011 −7.74× 1011 −8.64× 1011 −5.42× 1011 -1,397.08

election88Exp 7 −6.60× 1018 −1.91× 1018 −2.90× 1016 −8.34× 1015 -1,391.98

electric 7 −2.14× 1010 −8.02× 109 −2.81× 109 −1.67× 109 -786.91

electric-one-pred -1,021.43 -901.83 -818.00 -818.00

hepatitis 7 −2.33× 1010 −1.20× 1010 −1.51× 1010 −9.30× 109 -557.37

hiv-chr 7 −2.49× 1015 −5.32× 1015 −1.39× 1015 −1.85× 1014 -582.77

irt 7 −1.08× 105 -17,758.76 -16,619.78 -16,121.43 -15,884.66

mesquite -29.78 -29.82

radon 7 −4.09× 106 −3.13× 105 -53,638.39 −1.71× 105 -1,209.46

sonar -110.10 -110.04

wells -2,041.90 -2,041.93

Table 5: ELBO achieved by the batched quasi-Newton method for VI with a full-rank
Gaussian, as proposed by Liu and Owen (2021). The results for SAA for VI are included as
a benchmark (refer to column (v) of Table 3). It is observed that the batched quasi-Newton
method frequently converges to suboptimal solutions, indicated by 7, especially in models
from the Stan examples repository. In certain cases, such as the election88 dataset, the
SAA for VI method demonstrates a significant performance advantage over the batched
quasi-Newton method. The initial sample size for the batched quasi-Newton method was
set to 16 and increased when necessary to enhance the method’s ELBO.
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Fresh start to Warm start Fresh start to Warm start

ELBO difference (nats) time ratio

Diagonal Full Rank Diagonal Full Rank

Bayes log. regr.

a1a 0.11 0.00 1.45 2.10

australian -0.13 0.00 1.09 1.92

ionosphere -0.14 -0.00 1.13 2.21

madelon -0.03 -0.01 2.44 8.23

mushrooms 0.04 -0.00 1.73 4.42

Stan models

congress 0.00 0.04 1.10 8.22

election88 -1.90 0.82 6.60 53.81

election88Exp -3.11 7.15 6.07 17.77

electric -0.01 -0.00 3.74 7.66

electric-one-pred 0.00 -0.03 1.46 0.36

hepatitis 0.00 0.01 3.27 3.25

hiv-chr 0.08 -0.09 4.45 1.54

irt 0.00 — 8.28 —

mesquite -0.00 -0.01 1.10 1.50

radon 0.00 0.01 3.30 5.60

sonar 0.29 -0.00 1.40 1.18

wells 0.00 -0.00 1.05 1.13

Table 6: Median ELBO variation in nats resulting from switching between two approaches:
fresh start, where parameters are refreshed at each iteration to warm start, where previously
learned parameters are used as the starting point. (Negative values indicate that the warm
start approach is better.) We also provide the ratio of median time taken by the fresh
start approach compared to the warm start approach. (Values larger than 1 indicate that
the warm start approach is faster.) Our results indicate that warm start approaches can
significantly reduce the optimization time required.

takes 53× more time than using a warm start due to the inner optimization process Opt
taking more iterations to find a good solution at each step.

Appendix C. Detailed comparison with Adam

We now provide additional details about the experimental setup presented in Section B.1.
We used the Adam optimizer with the default parameters from the torch.optim package in
PyTorch (Paszke et al., 2019), except for the step-size, which we varied across 0.1, 0.01, and
0.001. To approximate the distributions, we used a Gaussian with a Diagonal covariance
matrix and a more expressive Gaussian with a Full-Rank covariance matrix. Tables 7 and 8
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present the experiment results disaggregated by step-size. In all cases we ran 20 repetitions
of the experiments, and we estimated the objective function using 16 samples from the
variational approximation qθt . Every 100 iterations we estimate the ELBO using 10, 000
fresh samples from qθt . Initially, we ran the experiments for 40, 000 iterations, but we found
that the Full-Rank approximation produced unsatisfactory results for some models. We,
therefore, increased the number of iterations for those models, but observed only slight
changes in the maximum achieved ELBO, as shown in Table 9 and Table 8. It is also worth
noting that the hepatitis model diverged when we ran it for more than 40, 000 iterations
using the Full-Rank approximation.

Adam—Step Size
SAA for VI

0.1 0.01 0.001

Bayes log. regr.

a1a -656.28 -655.00 -654.80 -655.62

australian -268.81 -268.42 -268.36 -269.40

ionosphere -138.88 -138.38 -138.30 -139.28

madelon -2,495.47 -2,470.17 -2,466.27 -2,466.18

mushrooms -210.98 -210.21 -210.01 -211.31

Stan models

congress 421.86 421.90 421.91 421.78

election88 -1,436.03 -1,420.13 -1,419.04 -1,419.75

election88Exp -1,376.40 -1,376.05 -1,381.56 -1,381.72

electric -790.67 -789.06 -788.84 -788.88

electric-one-pred -818.34 -818.33 -1,062.59 -818.37

hepatitis -564.10 -560.84 -560.43 -560.44

hiv-chr -611.65 -608.81 -608.41 -608.80

irt -15,895.91 -15,889.38 -15,888.03 -15,887.92

mesquite -30.09 -30.08 -30.08 -30.18

radon -1,211.59 -1,210.79 -1,210.64 -1,210.69

sonar -151.07 -149.81 -149.59 -152.18

wells -2,042.38 -2,042.37 -2,042.37 -2,042.43

Table 7: Maximum ELBO Achieved by Adam and SAA for VI with Gaussian Distribution
and Diagonal Covariance Matrix as Approximating Distribution: Median Across Seeds.
The table shows the median of the maximum ELBO achieved by Adam and SAA for each
model when using a Gaussian Distribution with Diagonal covariance matrix as approximat-
ing distribution. For each step-size used with Adam, we ran the algorithm 20 times and
reported the median of the maximum ELBO achieved.
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Adam—Step Sizes
SAA for VI

0.1 0.01 0.001

Bayes log. regr.

a1a -1,366.86 -646.02 -637.22 -636.40

australian -269.17 -257.54 -256.82 -256.73

ionosphere -147.75 -125.17 -124.44 -124.35

madelon -66,611.92 -7,596.15 -2,600.39 -2,399.65

mushrooms -243.46 -182.63 -180.60 -179.88

Stan models

congress 423.32 423.53 423.58 423.55

election88 — -1,636.65 — -1,397.08

election88Exp — — — -1,391.98

electric — -861.11 — -786.91

electric-one-pred -818.01 -818.00 -1,085.83 -818.00

hepatitis — -625.68 — -557.37

hiv-chr — — — -582.77

irt -127,607.15 -18,846.63 -15,936.25 -15,884.66

mesquite -29.80 -29.79 -29.78 -29.82

radon — -1,216.43 -106,178.55 -1,209.46

sonar -383.33 -114.35 -110.32 -110.04

wells -2,041.91 -2,041.90 -2,041.90 -2,041.93

Table 8: Maximum ELBO Achieved by Adam and SAA for VI with Gaussian Distribution
and Full-Rank Covariance Matrix as Approximating Distribution: Median Across Seeds.
The table shows the median of the maximum ELBO achieved by Adam and SAA for each
model when using a Gaussian Distribution with Full-Rank covariance matrix as approxi-
mating distribution. For each step-size used with Adam, we ran the algorithm 20 times and
reported the median of the maximum ELBO achieved.
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Adam

Diagonal Covariance Full Rank Covariance

Bayes log. regr.

a1a 40,000 40,000

australian 40,000 40,000

ionosphere 40,000 40,000

madelon 40,000 400,000

mushrooms 40,000 40,000

Stan models

congress 40,000 40,000

election88 40,000 400,000

election88Exp 40,000 40,000

electric 40,000 400,000

electric-one-pred 40,000 40,000

hepatitis 40,000 40,000

hiv-chr 40,000 40,000

irt 40,000 200,000

sonar 40,000 40,000

mesquite 40,000 40,000

radon 40,000 400,000

wells 40,000 40,000

Table 9: Maximum number of iterations for Adam optimization using Gaussian distribution
with Diagonal or Full-Rank Covariance Matrix. Some models (election88, electric,
irt, madelon, and radon) were run for up to 10 times more iterations to achieve a compa-
rable ELBO to SAA for VI.
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Appendix D. Detailed comparison with Batched-BFGS

In this section, we provide further details about the experiments conducted using the
Batched-BFGS method of Liu and Owen (2021). Table 10 compares the performance of
Batched-BFGS with our method when the approximating distribution is a Gaussian distri-
bution with a diagonal covariance matrix. This table complements Table 5. As mentioned
earlier, the results in this setting are quite similar to ours.
Additionally, we report the wall-clock time for each experiment in Table 11. We executed
each experiment for 40,000 iterations and performed 20 independent runs for each one.
Our method incorporates a stopping criterion based on convergence. To ensure a fair
comparison with Batched-BFGS, we need to detect when the algorithm converges. The
closest approximation to this is calculating the total time taken until the algorithm reaches
within 1 nat of the maximum ELBO achieved in that run. These results are presented in
Table 11.
Similar to the experiments with Adam, this calculation does not account for the time spent
on sample sizes that were not useful.
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Diagonal Gaussian

Batched Quasi-Newton 16 SAA for VI

Bayes log. regr.

a1a -654.95 -655.62

australian -268.48 -269.40

ionosphere -138.48 -139.28

madelon -2,466.61 -2,466.18

mushrooms -210.31 -211.31

Stan models

congress 421.91 421.78

election88 -1,425.87 -1,419.75

election88Exp -1,382.65 -1,381.72

electric -788.88 -788.88

electric-one-pred -851.43 -818.37

hepatitis -560.58 -560.44

hiv-chr -608.58 -608.80

irt -15,888.14 -15,887.92

mesquite -30.08 -30.18

radon -1,210.73 -1,210.69

sonar -150.18 -152.18

wells -2,042.38 -2,042.43

Table 10: Comparison of the ELBOs obtained by Batched-BFGS and SAA for VI when
using a diagonal Gaussian distribution as the approximating distribution. The Batched-
BFGS method of Liu and Owen (2021) is executed using a sample size of 16. Median results
are reported from 20 independent runs for each model. The corresponding results for SAA
for VI can also be found in column (ii) of Table 3.
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Batched Quasi-Newton

Diagonal–Sample Size Full Rank–Sample Size

16 16 32 64 128

Bayes log. regr.

a1a 2.25 61.08 38.36 25.75 30.79

australian 0.83 4.13 3.17 3.26 3.68

ionosphere 0.71 3.10 2.05 2.21 1.97

madelon 7 9.35 3519.20 6823.51 4420.06 1665.36

mushrooms 7.16 98.28 98.99 64.74 141.95

Stan models

congress 1.56 5.24 5.17 4.96 6.13

election88 7 1405.99 6.09 3.46 4.50 10.41

election88Exp 7 576.61 2.52 3.29 4.79 7.05

electric 7 9.64 1.11 2.60 4.20 1.84

electric-one-pred 7 1.25 0.72 2.19 3.18 3.31

hepatitis 7 12.99 4.11 4.95 5.25 6.79

hiv-chr 14.93 1.31 1.45 1.80 2.11

irt 7 231.20 5250.35 22133.59 21165.13 30352.88

mesquite 0.48 0.55 0.65 0.64 0.71

radon 7 5.53 1.43 3.11 23.61 515.68

sonar 0.76 9.45 4.96 4.10 3.76

wells 0.97 1.05 1.99 3.35 7.15

Table 11: Median wall-clock time in seconds for the Batched Quasi-Newton optimization
process to reach within 1 nat of the maximum ELBO. The 7 denotes non-convergence for
models using Batched-BFGS with a Full Rank Covariance Matrix approximation. The
results show comparable performance to SAA for VI [refer to Table 4, columns (ii) and (v)].
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