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ABSTRACT

Representing images or videos as object-level feature vectors, rather than pixel-
level feature maps, facilitates advanced visual tasks. Object-Centric Learning
(OCL) primarily achieves this by reconstructing the input under the guidance
of Variational Autoencoder (VAE) intermediate representation to drive so-called
slots to aggregate as much object information as possible. However, existing VAE
guidance does not explicitly address that objects can vary in pixel sizes while
models typically excel at specific pattern scales. We propose Multi-Scale Fusion
(MSF) to enhance VAE guidance for OCL training. To ensure objects of all sizes
fall within VAE’s comfort zone, we adopt the image pyramid, which produces in-
termediate representations at multiple scales; To foster scale-invariance/variance
in object super-pixels, we devise inter/intra-scale fusion, which augments low-
quality object super-pixels of one scale with corresponding high-quality super-
pixels from another scale. On standard OCL benchmarks, our technique improves
mainstream methods, including state-of-the-art diffusion-based ones. The source
code is available on https://github.com/Genera1Z/MultiScaleFusion.

1 INTRODUCTION

According to vision cognition research, humans perceive a visual scene as objects and relations
among them for higher-level cognition such as understanding, reasoning, prediction, planning and
decision-making (Bar, 2004; Cavanagh, 2011; Palmeri & Gauthier, 2004). In computer vision,
Object-Centric Learning (OCL) is a promising way to achieving similar effects – Images or video
frames are represented as sparse object-level feature vectors, known as slots, rather than dense
(super-)pixel-level feature maps under weak or self-supervision (Greff et al., 2019; Burgess et al.,
2019). Meanwhile, segmentation masks of objects and the background are generated as byproducts,
intuitively reflecting the corresponding object representation quality of these slots.

Object-level representation learning is highly influenced by textures. Early OCL methods, such as
the mixture-based (Locatello et al., 2020; Kipf et al., 2022; Elsayed et al., 2022), which directly
reconstruct the input pixels as supervision, often struggle with objects that have complex textures.
To address this issue, mainstream OCL methods, such as transformer-based (Singh et al., 2022a;c),
foundation-based (Seitzer et al., 2023; Zadaianchuk et al., 2024) and diffusion-based (Jiang et al.,
2023; Wu et al., 2023b), leverage well-learnt intermediate representation for guided reconstruction,
so as to drive slots to aggregate as much object-level information as possible.

Objects appear at different scales in images or videos due to imaging distances and actual sizes.
Encoders/decoders usually perform well on certain pattern scales, necessitating ”divide-and-rule”
(Zou et al., 2023; Minaee et al., 2021). Mainstream OCL, however, overlooks such an issue.

Suppose three objects of different sizes in the input image or video frame. As shown in Fig. 1 up-
per left, current single-scale VAE encoding/decoding are likely only good at some specific scale of
patterns, and only represent object 1 in high quality or confidence, leaving the other two being rep-
resented in low quality. Thus such single-scale VAE representation could not provide good guidance
to OCL training on objects 2 and 3. But, as shown in Fig. 1 lower left and right, if resize the input
into three scales, we ensure all the objects fall within the comfort-zone of the VAE encoder/decoder.
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Figure 1: Multi-scale fusion is necessary in VAE guidance to OCL training. Upper right: simplified
architecture of OCL with VAE guidance. Upper left: single-scale VAE encoding/decoding only
represent patterns of some certain scale in high quality/confidence. Lower left and right: by resizing
the input, patterns of different scales all fall within the VAE encoder/decoder’s comfort-zone; low-
quality super-pixels in one scale can be augmented by the high-quality in other scales.

Moreover, as shown in Fig. 1 lower left center, for scale 1, the low-quality super-pixels of object 2
and 3 can be augmented by their corresponding representations in scale 2 and 3, respectively.

We propose Multi-Scale Fusion (MSF) upon VAE representation, to guide OCL of both the
transformer-based classics and diffusion-based state-of-the-arts. (i) We utilize technique image pyra-
mid by resizing the input into different scales, to ensure objects of various sizes all fall within VAE
encoder/decoder’s comfort zones. (ii) We devise inter-/intra-scale quantized fusion by quantizing
VAE representation of different scales with shared/specified codebooks, to foster scale-invariance/-
variance in object representation. (iii) Our technique augments VAE discrete representation with
better object separability and, in turn, provides better guidance for OCL training.

2 RELATED WORK

VAE & OCL. Pretrained VAE (Im Im et al., 2017; Van Den Oord et al., 2017), like dVAE or VQ-VAE,
can provide representations that highlight object separability in the input by suppressing texture
redundancies for OCL. With such guidance, transformer-based OCL methods (Singh et al., 2022a;c),
like SLATE and STEVE, decode slots, which are extracted by SlotAttention (Locatello et al., 2020)
from input images or video frames, into the input via a transformer decoder. Similarly, diffusion-
based methods (Jiang et al., 2023; Wu et al., 2023b), like SlotDiffusion, decode slots via a diffusion
model. Slots are driven to aggregate as much object information for good object representation.
We improve these two lines of work. Foundation-based methods (Seitzer et al., 2023; Zadaianchuk
et al., 2024), like DINOSAUR, are also included for complete comparison.

Channel Grouping. Widely adopted in CNNs (Zhang et al., 2018) and ViTs (Gu et al., 2022),
grouping features along the channel dimension helps learn expressive representations. Grouping
can be performed on features (Krizhevsky et al., 2012; Huang et al., 2018; Chen et al., 2019), or
on weights (Zhao et al., 2021; 2022). SysBinder (Singh et al., 2022b) explores this in OCL by
grouping slots queries to aggregate different object information, for emerging attributes under extra
supervision. The most recent GDR (Zhao et al., 2024) groups the VAE codebook from features into
combinatorial attributes, achieving better generalization and convergence in object representing. Our
work also groups it but for scale-invariance and -variance.

Multi-Scale. Objects exist at different scales due actual sizes and imaging distances. CNN (Zhang
et al., 2018) and ViT (Gu et al., 2022) typically have their comfort zones as the scale distribution
of objects in training data is always nonuniform. In computer vision, like detection (Zou et al.,
2023) and segmentation (Minaee et al., 2021), the multi-scale issue is significant, leading to the
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wide adoption of “divide-and-rule”. The image pyramid (Adelson et al., 1984) produces multi-scale
representations by resizing; Feature pyramid network (Lin et al., 2017) and variants mix features
of different layers by channel-concat and element-wise-sum. We are the first to realize multi-scale
fusion on VAE, augmenting every scale with the high-quality representation in other scales.

3 PROPOSED METHOD

We propose Multi-Scale Fusion (MSF), to explicitly address the multi-scale issue in VAE interme-
diate representation, and thereby to guide Object-Centric Learning (OCL) better. Our technique is
applicable to both transformer-based OCL (Singh et al., 2022a;c) classics and diffusion-based OCL
(Wu et al., 2023b) state-of-the-arts, which are our basis methods. Note that two types of methods
use dVAE (Im Im et al., 2017) and VQ-VAE (Van Den Oord et al., 2017) respectively, but we unify
them with VQ-VAE like that in GDR (Zhao et al., 2024).

3.1 BACKGROUND: OCL WITH VAE GUIDANCE

Assume there is an input image or video frame T ∈ Rh0×w0×c0 , where typically h0 = w0 = 128
and c0 = 3.

Initially, the primary encoder encodes the input into a feature map. ϕe : T → F , where F ∈
Rh×w×c, and ϕe is a CNN (He et al., 2016) or ViT (Caron et al., 2021) module. Typically, h = w =
32 and c = 256.

Then, the Slot Attention (SA) (Locatello et al., 2020) is used to aggregate the dense feature map
F into sparse object-level feature vectors, i.e., slots S ∈ Rs×c, along with the byproduct, i.e.,
segmentation masks M ∈ Rs×h×w, under query vectors S0. ϕsa : (S0,F ) → (S,M), which
is basically an iterative Query-Key-Value attention (Bahdanau et al., 2015) mechanism with S0 as
the query and F as the key and value. Typically, s is a predefined number, usually the maximum
number of objects plus the background in an image or video sample of a dataset.

Meanwhile, pretrained VAE (Im Im et al., 2017; Van Den Oord et al., 2017) converts T into contin-
uous intermediate representation. ϕv

e : T → Z, where Z ∈ Rh×w×c and typically h = w = 32
and c = 256. This continuous representation is quantized into discrete representation by matching
continuous representation with codebook and selecting matched codes to form discrete representa-
tion. fq = fm ◦ fs : (Z,C) → (P , I,X), where codebook C ∈ Rm×c, matching probabilities
P ∈ Rh×w×m, matched indexes I ∈ Rh×w and discrete representation X ∈ Rh×w×c. The match-
ing fm and selection fs are implemented as below, respectively

P = softmaxm(−||Z −C||2), I = argmaxm(P ) (1)

X = selectm(C, I) (2)

where each super-pixel P (i,j,:) ∈ Rm means the matching probabilities of the m template features
in C. So the index of the maximum element in P (i,j,:), i.e., I(i,j) is the index of the most matched
code, which can quantize Z(i,j,:) into X(i,j,:) := C(I(i,j),:).

Lastly, with S as the condition, the primary decoder reconstructs the input guided by VAE discrete
intermediate representation conditioned on S, which drives every slot to aggregate as much object
information as possible. ϕd : (X,S) → X ′, where X ′ ∈ Rh×w×c. For transformer-based OCL,
a transformer decoder (Vaswani et al., 2017) with internal masking performs the reconstruction as
classification. For diffusion-based OCL, a diffusion model, typically a conditional UNet (Rombach
et al., 2022), carries out the reconstruction as regression of the noise added to X .

For VAE pretraining, there is also VAE decoding from discrete representation to the input ϕv
d :

X → T ′, where T ′ ∈ Rh0×w0×c0 . And the supervision signal comes from Mean-Squared Error
(MSE) between T and T ′. For OCL training, the pretrained VAE module is frozen, and no VAE
decoding occurs. Remaining parts are trained under the supervision signal of either Cross Entropy
(CE) between X and X ′, or Mean-Squared Error (MSE) between the ground-truth noise added to
X and the reconstructed noise.
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Figure 2: Qualitative results of OCL unsupervised segmentation. The last row is our MSF.

3.2 NAIVE MULTI-SCALE TRAINING

There can be objects of different sizes in images or videos, while models usually have best-at pat-
terns scales due to non-uniform data distributions. This makes image pyramid (Adelson et al., 1984)
an effective technique, where the input is resized into different sizes and processed in parallel. Such
multi-scale representations make the pattern scale distribution more uniform for training, and en-
sures different sized objects to fall within models’ comfort zone for testing.

Input image or video frame T1 := T is down-sampled with typical bi-linear interpolation into
Tn ∈ R

h0
2n−1 × w0

2n−1 ×c0 , where n = 1...N means different spatial scales and we use N = 3.

Multi-scale VAE encoding is ϕv
e : Tn → Zn, where Zn ∈ R

h

2n−1 × w

2n−1 ×c and typically h = w =
32 and c = 256.

Multi-scale VAE quantization is fq = fm ◦ fs : (Zn,C) → (Pn, In,Xn), where Pn ∈
R

h

2n−1 × w

2n−1 ×m, In ∈ R
h

2n−1 × w

2n−1 and Xn ∈ R
h

2n−1 × w

2n−1 ×c. Here codebook C is shared over
all N scales so as to facilitate scale-invariant pattern learning that differentiates among different ob-
ject types. But this strong inductive bias can lose scale-variant information that differentiates among
different object instances of the same type; Besides, no information exchange among the scales is a
kind of information waste – The object pattern that is well represented in one scale should augment
its poorly represented patterns in the other scales. We address this in the next subsection.

Multi-scale VAE decoding is ϕv
d : Xn → T ′

n, where T ′
n ∈ R

h0
2n−1 × w0

2n−1 ×c.

During VAE pretraining, there are N sets of reconstruction and quantization losses. During OCL
training, only scale n = 1 is used as guidance, thus the supervision is no different from the former
subsection. Although multi-scale guidance can be used, it is always harmful in practice.

By following such recipe, hopefully at least one of the N scales of representation provides high-
quality representation to some sized objects.

Note: The original VQ-VAE has only n = 1 scale, which is a special case of our method.

3.3 INTER/INTRA-SCALE QUANTIZED FUSION

Based on the above multi-scale quantization, we further devise our novel fusion among the scales.
Inter-scale fusion utilizes scale-invariance to augment poorly represented features in some scales
with the well-represented features in other scales; Intra-scale fusion supplements with scale-variant
details in the corresponding scale. Scale-invariant patterns differentiate among different object
types, while scale-variance distinguishes among different object instances of the same type.

Firstly, we project VAE continuous representation of a certain scale Zn into two copies, Zsi
n for

scale-invariance and Zsv
n for scale-variance, respectively. These two will finally be combined back,

thus we employ the invertible project-up-project-down design proposed in Zhao et al. (2024) to
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maintain the inductive biases added in between.

Zsi
n ,Z

sv
n = chunkc,2(Zn · pinv(W )) (3)

where pinv(W ) is pseudo-inverse of the project-down matrix in Eq. 5 for project-up here;
chunkc,2(·) splits the tensor into two along the channel dimension.

Secondly, for the scale-variant continuous representation, we conduct quantization by a codebook
specific to the current scale. fq = fm ◦ fs : (Zsv

n ,Csv
n ) → (P sv

n , Isv
n ,Xsv

n ). These non-sharing
codebooks enforces scale-variant representation learning.

Meanwhile, for the scale-invariant continuous representation, we conduct inter-scale fusion over
scale-invariant quantization of all scales. frf : {(Zsi

n ,C
si)} → {(Ṗ si

n , İsi
n , Ẋ

si
n )}, where n = 1...N .

The shared codebook enforces scale-invariant representation learning.

Now that all scales {Xsi
n } consist of codes in a shared codebook Csi, matching probabilities {P si

n }
for the same (super-)pixel region under different scales indicate how confident the model is about
the representation quality. We utilize this to augment the low-quality representation in some scales
with the high-quality in other scales. Take scales n− 1, n and n+ 1 as an example:

1. Given any super-pixel zsi
n := Z

si,(i,j,:)
n ∈ Rc in any scale n, find the corresponding

region/super-pixel(s) in other scales, and mean them along all spatial dimensions as vot-
ing. For scale n− 1, we choose Z

si,(2i:2i+2,2j:2j+2,:)
n−1 ∈ R2×2×c and mean it into a vector

zsi
n−1 ∈ Rc; For scale n+ 1, we choose zsi

n+1 := Z
si,(⌊ i

2 ⌋,⌊
j
2 ⌋,:)

n+1 ∈ Rc.

2. Match {zsi
n−1, z

si
n , z

si
n+1} respectively with codebook Csi as in Eq. 1, then we have corre-

sponding matching probabilities {psi
n−1,p

si
n ,p

si
n+1} ∈ {Rm}. These probabilities can be

taken as the super-pixel quality of the same region in scales {n− 1, n, n+ 1}.

3. Select the most matched code with the highest probability among all scales as the quanti-
zation Ẋ

si,(i,j,:)
n of the super-pixel Zsi,(i,j,:)

n . Specifically, for scales {n− 1, n, n+ 1}, the
most matched code index is

İsi,(i,j)
n = argmaxm(maxn({psi

n−1,p
si
n ,p

si
n+1})) (4)

with which we can determine Ẋ
si,(i,j,:)
n as in Eq. 2.

Lastly, for each scale n, conduct the intra-scale fusion between the fused scale-invariant represen-
tation and scale-variant representation. faf : (Ẋsi

n ,X
sv
n ) → Xn. This combines the augmented

scale-invariant and scale-variant copies back into the final discrete intermediate representation.

Xn = concatc(Ẋ
si
n ,X

sv
n ) ·W (5)

where concatc(·) is channel concatenation; project-down matrix W ∈ R2c×c is trainable.

The above processes can be parallelized using PyTorch, as shown in Algo. 1 pseudo code.

3.4 RESOURCE CONSUMPTION ANALYSIS

Codebook-related parameters. The basis methods use a codebook of size (m, c) = 4096 × 256,
which amounts to 1.048M. We use (1) invertiable projection to project the continuous representation
into two copies (and project them back), up to c × 2c = 217; (2) four groups of codebooks of size
(m0.5, c) = (64, 256), one shared for N = 3 scale-invariant scales, three specifically for N = 3
scale-variant scales, up to m0.5 × c × (1 + N) = 216. Thus our codebook-related parameters are
0.196M – we have 81.25% fewer codebook parameters than the basis methods.

Computation and memory consumption. The exact calculation relates with the VAE encoder/decoder
layers, like Conv2d, GroupNorm, Mish, etc., thus has too many details. But due to the O(n2) complexity
nature of convolution layers, we can quickly get the estimation in ratio. Denote the computation of
the original VAE as unit, then our N = 3 scales’ computations would be 1, 1

4 and 1
16 , since the latter

two has 2× and 4× down sampling rates. Thus in VAE pretraining, our technique requires roughly
31.25% more computation. The memory consumption increase is similar.
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ARI ARIfg mIoU mBO
ClevrTex

SLATEr 20.56 68.14 34.11 34.57
+SysBind@2 23.27 71.27 35.63 36.62
+GDR@g2 34.46 73.38 37.42 36.69

+MSF 32.70 80.70 40.61 41.48
COCO

SLATEr 24.18 24.54 21.37 21.76
+SysBind@2 25.71 24.97 21.46 22.01
+GDR@g2 30.37 29.95 23.47 22.98

+MSF 30.95 30.47 23.33 23.85
VOC

SLATEr 11.64 15.65 15.64 14.99
+SysBind@2 11.75 16.04 15.73 15.01
+GDR@g2 13.20 17.49 16.46 16.65

+MSF 12.17 16.54 16.74 16.69

Table 1: Transformer-based image OCL perfor-
mance on synthetic and real-world datasets.

ARI ARIfg mIoU mBO
MOVi-C

STEVEc 52.20 31.16 16.74 19.05
+SysBind@2 51.87 34.64 17.36 19.12
+GDR@g2 60.14 35.79 20.01 21.95

+MSF 60.94 36.22 20.33 22.74
MOVi-D

STEVEc 35.71 50.24 19.10 20.88
+SysBind@2 35.34 52.16 19.46 21.53
+GDR@g2 40.37 52.47 20.42 22.64

+MSF 43.20 55.64 21.21 23.14
MOVi-E

STEVEc 28.00 52.06 18.78 20.48
+SysBind@2 28.47 55.46 18.95 20.50
+GDR@g2 34.17 53.21 19.47 20.76

+MSF 36.70 54.28 20.39 22.37

Table 2: Transformer-based video OCL on syn-
thetic datasets.

ARI ARIfg mIoU mBO
ClevrTex

SlotDiffuzr 64.21 26.50 31.51 32.44
+GDR@g2 69.21 37.83 34.74 34.03

+MSF 71.47 38.08 35.06 35.67
DINOSAUR 60.74 45.75 30.48 32.56

COCO
SlotDiffuzr 36.54 35.67 22.08 22.75
+GDR@g2 37.68 36.33 22.73 22.25

+MSF 37.63 36.99 22.32 22.87
DINOSAUR 33.24 33.35 22.01 21.93

VOC
SlotDiffuzr 16.97 14.33 15.71 16.02
+GDR@g2 18.20 15.59 16.11 17.04

+MSF 19.40 15.69 16.37 16.76
DINOSAUR 16.00 18.48 15.94 16.37

Table 3: Diffusion-based image OCL on syn-
thetic and real-world datasets. * Subscript “r”
and “c” stand for random and condition query
initialization, respectively.

Inter-Cluster ↑ Intra-Cluster ↓
VQ-VAE +MSF VQ-VAE +MSF

@c256
ClevrTex 0.534 0.786 0.043 0.038
COCO 0.746 1.095 0.184 0.093
VOC 0.633 0.978 0.191 0.101

MOVi-C 0.506 0.842 0.092 0.090
MOVi-D 0.511 0.725 0.089 0.088
MOVi-E 0.499 0.719 0.103 0.094

@c4
ClevrTex 0.857 1.473 0.103 0.099
COCO 1.283 1.745 0.218 0.114
VOC 1.046 1.659 0.196 0.132

Table 4: Object separability of VAE guidance.
“Inter-Cluster” is the mean distance of super-
pixels within a cluster, while “Intra-Cluster” is
that among different clusters. “@c256” and
“@c4” are VAE intermediate dimensions, for
SLATE/STEVE and SlotDiffusion, respectively.

4 EXPERIMENTS

We experiment the following points: (i) Our technique MSF augments performance of mainstream
OCL methods that are either transformer-based or diffusion-based. (ii) MSF fuses multi-scale infor-
mation into VAE discrete representation and guides OCL better. (iii) How the composing designs of
MSF contribute to its effectiveness. Results are mostly averaged over three random seeds.

4.1 OCL PERFORMANCE

To evaluate the quality of OCL object representations, i.e., slots, we use the accuracy of OCL’s
byproduct (unsupervised) segmentation as an intuitive measurement. Metrics including ARI (Ad-
justed Rand Index)1, ARIfg (foreground), mIoU (mean Intersection-over-Union)2 and mBO (mean
Best Overlap) (Caron et al., 2021) are used to measure OCL’s byproduct segmentation accuracy.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted rand score.html
2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard score.html
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Datasets are either synthetic images, i.e., ClevrTex3; or real-world images, i.e., COCO4 and VOC5;
or synthetic videos, i.e., MOVi-C/D/E6.

To evaluate how MSF boosts OCL, we use transformer-based classics, SLATE (Singh et al., 2022a)
for images and STEVE (Singh et al., 2022c) for videos; use diffusion-based state-of-the-arts, Slot-
Diffusion (Wu et al., 2023b) for images. The foundation-based DINOSAUR (Seitzer et al., 2023)
and competitors SysBinder (Singh et al., 2022b) and GDR (Zhao et al., 2024) are compared too. All
primary encoders are unified as DINO (Caron et al., 2021) to form strong baselines.

Our MSF is a general improver to both transformer-based classics and diffusion-based state-of-the-
arts, as shown in Tab. 1, 2 and 3. On complex synthetic dataset ClevrTex, MSF improves SLATE
significantly, up to 12% in ARIfg. On challenging real-world dataset COCO, MSF still manages to
improve SLATE by 6% in ARIfg. MSF even boosts SlotDiffusion, which is state-of-the-art, by 3%
in ARI on VOC. Compared with other improvers, i.e., SysBinder@g2 and GDR@g2, our MSF also
beats or at least ties them on SLATE, while beats them consistently on STEVE. On SlotDiffusion,
our MSF beats the strong competitor GDR@g2, and defeats DINOSUAR.

By the way, our MSF boosts OCL performance on COCO and VOC less than on other datasets. We
attribute this to those object sizes are often out of the coverage of scales 1˜3. Namely, many humans,
trees and grass lands in those real-world images take up the whole scene, and either down sampling
4× (scale 1) or 16× (scale 3) cannot produce scale-invariant patterns for inter-scale fusion.

4.2 VAE GUIDANCE

To investigate how MSF fuses multi-scale information into VAE guidance, we analyze object separa-
bility (Stanic et al., 2024; Lowe et al., 2024). Empirically, better object separability in VAE guidance
contributes to better OCL performance. We cluster on the VAE guidance Xn=1 then calculate inter-
/intra-cluster distances; We also visualize (Caron et al., 2021) object separability of scale-invariant
representations {Ẋsi

n } and scale-variant representations {Xsv
n }, as well as representations before

inter-scale fusion {Xsi
n } and representations after intra-scale fusion {Xn}.

As shown in Fig. 3 and Tab. 4, our MSF contributes to significant object separability boosts both
qualitatively and quantitatively upon basis methods. In contrast, the object separability of basis
methods is consistently inferior to ours.

4.3 ABLATION STUDY

We use SLATE on ClevrTex as an example to evaluate how different designs contribute to our MSF.
We use ARI+ARIfg as the metrics because ARI is mostly dominated by background segmentation
performance while ARIfg only measures the foreground. We employ naive CNN (Kipf et al., 2022)
as the primary encoder to reduce experiment time.

Inter/intra-scale fusion: with vs without. As shown in Tab. 5 upper left, both types of fusion are
crucial to performance. Yet using inter-scale fusion alone can be even worse than disabling both,
meaning that inter-scale fusion enforces scale-invariance at the cost of losing too much information,
wheras intra-scale fusion can recover it. Therefore, enabling both types of fusion is the best setting.

Scale-invariant/variant codebook: shared vs specified. Firstly, using different codebooks as the
scale-invariant codebook is meaningless because the corresponding matching probabilities for the
same super-pixel cannot be compared. As shown in Tab. 5 upper right, sharing one codebook over
different scales for the scale-variance is harmful to the performance. Hence different sets of codes
are necessary to foster diverse patterns that are different among the scales.

Number of scales: 2, 3 or 4. As shown in Tab. 5 lower left, the default number of scales N = 3 is the
best setting. By contrast, N = 2 includes too less explicit scales; As for N = 4, its last scale, i.e.,
scale 4, down samples too much and loses too much spatial information to support the inter-scale
fusion of our MSF technique.

3https://www.robots.ox.ac.uk/˜vgg/data/clevrtex/
4https://cocodataset.org/#panoptic-2020
5http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
6https://github.com/google-research/kubric/tree/main/challenges/movi
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Figure 3: Qualitative object separability in VAE guidance with MSF. Take the upper left as an
example. The circled cube a in column Xsi

n row scale1 is vague and noisy, while its corresponding
representation b in row scale2 is very clear, thus b can augment a, yielding clearer c in column Ẋsi

n
row scale1. As c only captures scale-invariant information, d in column Xsv

n row scale1 supplements
scale-variant information, which has too many details and is not object-like. By combining c and d,
we obtain e in column Xn row scale1, making this cube much more separable from the background
than in column X the corresponding area. Notations are detailed in Sect. 4.2 beginning.

inter-scale fuz intra-scale fuz ARI+ARIfg

✓ ✓ 100.71
✓ 90.85

✓ 95.64
91.03

scale-variant codebook(s)
00specified00 shared ARI+ARIfg

✓ 100.71
✓ 92.28

number of scales ARI+ARIfg

2 95.83
3 100.71
4 98.96

number of guidance
-scale 1- scale 2 ARI+ARIfg

✓ 100.71
✓ ✓ 96.42

✓ 89.59

Table 5: Ablation study of SLATE+MSF on ClevrTex using naive CNN as the primary encoder.
(Upper left) effects of inter-scale fusion and intra-scale fusion; (Upper right) effects of specified or
shared codebooks for scale-variance; (Lower left) effects of number of scales being used in VAE
pretraining; (Lower right) effects of number of VAE guidance being used for OCL training.

Number of guidance: 1 or 2. After MSF in VAE, we have three augmented scales. But as shown
in Tab. 5 lower right, using the augmented scale 1 as VAE guidance is the best choice, compared
with either using both augmented scale 1 and 2, or using augmented scale 2 solely. This is because
the augmented scale 1 representation has the largest resolution, i.e., the most spatial details, and
also multiple scales of information. Although the other two scales are also multi-scale fused, the
information incompleteness due to their low resolution is harmful to guide OCL training.
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5 CONCLUSION

We propose a technique named MSF to improve existing OCL methods, including both transformer-
based classics and diffusion-based state-of-the-arts. Our technique is realized by integrating the
naive image pyramid with our novel inter-scale quantized fusion and intra-scale quantized fusion.
Our technique ensures different sizes of objects are all processed in VAE models’ comfort zone, and
fosters scale-invariance and scale-variance in object representation. This is achieved at acceptable
costs of extra computation and memory. We evaluate our technique via comprehensive experiments,
and also interpret the multi-scale fusion processes by visualizing it. Such multi-scale fusion is also
worth exploring in the primary encoder and slot attention part, or, in VAE designing for generative
models, which are suggested for future work.
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A APPENDIX

A.1 EXTENDED RELATED WORK

Multi-scale & image/feature pyramid. Existing multi-scale methods (i) Either employ an image
pyramid (Adelson et al., 1984; Singh & Davis, 2018; Najibi et al., 2019) without information fusion
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among pyramid levels, wasting useful information among different scales; (ii) Or rely on feature
pyramids, namely, FPN and numerous variants (Lin et al., 2017; Tan et al., 2020; Piao et al., 2021),
where features of different DNN depths are fused by channel-concat or element-wise-sum, mixing
both low- and high-quality representations together. In contrast, our MSF is the first to enable fusion
of multiple scales on VAE representations. By leveraging codebook matching (Van Den Oord et al.,
2017), we selectively fuse high-quality information among scales, rather than mixing them together.
As shown in Tab. 6, our MSF is superior to naive channel-concat or element-wise-sum.

channel-concat element-wise-sum our msf
ARI+ARIfg 92.63 89.18 100.71

Table 6: Effects of different fusions among scales. Model is SLATE; dataset is ClevrTex.

Multi-scale & VAE. Recent works like VAR (Tian et al., 2024) and SPAE (Yu et al., 2024) also
build the multi-scale representations upon VAE. But they are different from our MSF as follows. (i)
VAR vs MSF: VAR auto-regresses from smaller scales of VAE representation to the larger, but with
no information fusion among scales. In contrast, our MSF realizes fusion among different scales
on VAE for the first time. (ii) SPAE vs MSF: SPAE relies on multi-modal foundation model CLIP,
while our MSF does not. SPAE element-wisely averages multiple scales into one, mixing both low-
and high-quality representations together, i.e., no fusion among scales. Our MSF augments any
scaled representation with all other scales’ high-quality representations, i.e., fusion among scales.

Relationships among SSLseg, OCL and WMs. As shown in Fig. 4, (1) SSLseg (Self-Supervised
Learning segmentation), e.g., HCL (Ge et al., 2023) and VideoCutLER (Wang et al., 2024), focuses
on extracting segmentation masks; (2) OCL (Object-Centric Learning), e.g., SLATE (Singh et al.,
2022a) and SlotDiffusion (Wu et al., 2023b), represents each object as a feature vector, with seg-
mentation masks as byproducts, kind of overlapping with SSLseg; (3) WMs (World Models), e.g.,
SlotFormer (Wu et al., 2023a), upon OCL, address downstream tasks like visual reasoning, planning
and decision-making.

Figure 4: SSLseg vs OCL vs WMs.

A.2 EXTENDED EXPERIMENTS

MSF’s effect on different sized objects. We follow COCO’s small/medium/large size splits to
evaluate our MSF’s performance. Results of resolution 128x128 are shown below Tab. 7. Our MSF
does show better performance on small objects.

mIoUS mIoUM mIoUL overall
SLATE 8.57 26.65 34.57 26.94
+MSF 12.63 28.14 34.83 29.57

Table 7: How MSF peforms on different sized objects. Dataset is COCO instance segmentation.

MSF on OpenImages subset with higher resolution. We use input resolutions 128 and 256 to
evaluate on OpenImages subset Ge et al. (2023). Under resolution 128, we use n=3 and 4; under
resolution 256, we use n=3, 4 and 5. Results are shown below Tab. 8. We use ARI+ARIfg as
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the metrics because ARI mostly reflect how well the background is segmented and ARIfg only
measures foreground objects. According to the results, under resolution 128, n=3 is the best choice;
under resolution 256, n=4 is the best choice.

resolution 128×128 256×256
n 3 4 3 4 5

ARI+ARIfg 62.07 60.93 64.82 67.58 62.75

Table 8: Effects of input resolution and #scales n. Model is SLATE+MSF; dataset is OpenImages
subset.

A.3 MODEL ARCHITECTURE

The overall model structure is depicted in Fig. 1 upper right. It consists of a primary encoder,
SlotAttention and primary decoder, as well as VAE encoder, codebook, and VAE decoder.

Primary Encoder

Unlike exiting works, which used a naive CNN or small ResNet, we use a pretrained foundation
model DINO as the primary encoder on all datasets, so that we setup strong baseline to show our
MSF’s effectiveness.

To save computation while maintain strong performance for all methods, we adopt the big-little
design used in (Zhao et al., 2024), which takes small resolution 128 as input while still produce
high resolution (128) feature maps. We employ the DINO v1, tiny, with a downsampling rate of
8, as presented in (Caron et al., 2021). We integrate this into a big-little architecture by running
DINO in parallel with the previously mentioned naive CNN. The output of DINO is then projected,
upsampled, and combined element-wise with the output of the CNN. The architecture is briefly
represented as dino()-conv(k3s1p1)-upsample(k8) + naivecnn(). Notably, the weights of DINO are
frozen, which retains its pretrained features while allowing the CNN to focus on refining high spatial
details.

Hence, no spatial downsampling occurs within this module. This part remains consistent across all
experiments.

SlotAttention

We adhere to the standard design outlined in (Locatello et al., 2020). This design is consistent across
all experiments utilizing this module.

Primary Decoder

This module can be either a transformer decoder or a diffusion model.

For transformer-based OCL, e.g., SLATE and STEVE, we follow the architecture described in
(Singh et al., 2022a), unified across all experiments involving this component. This decoder op-
erates on VAE intermediate feature tensors, which undergo 4x4 spatial downsampling relative to
the input. SlotAttention-derived slots are provided as the conditioning input. The input channel
dimension for this module is set to 256.

For diffusion-based OCL, e.g., SlotDiffusion, we follow the architecture described in (Wu et al.,
2023b). This decoder take VAE representation with noise as input, taking slots, time step as con-
dition, finally produce the reconstruction of the noise being added to the input. The input channel
dimension for this module is set to 4.

VAE Encoder & Decoder

The architecture of this module is in accordance with the design described in (Singh et al., 2022a),
and it is unified for all experiments incorporating this module. The VAE encoder applies a 4x4
spatial downsampling, and the VAE decoder performs a corresponding 4x4 upsampling.

Codebook

This module distinguishes between dVAE and VQ-VAE and is utilized in both transformer-based
and diffusion-based methods.
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Algorithm 1 Implementation of inter/intra-scale quantized fusion in PyTorch.

2024/10/1 15:10 Python-Fiddle: Online Python Compiler, IDE, and Interpreter

https://python-fiddle.com 1/6

Open a folder Upload files

+ Code + Markdown

python-fiddle.com

Share

+ Code + Markdown

def ms_fuz(self_codebook: ModuleList, encodes: list, project: Module) -> list:
    s = len(encodes)
    assert len(self_codebook) == 1 + s  # shared*1 + specified*s
    b, c, h, w = encodes[0].shape

    encodes = [project(_, pinv=True) for _ in encodes]  # s*(b,c,h,w)->s*(b,2c,h,w)

    zidx1s, encode1s, quant1s = [], [], []
    for i1 in range(s):
        encode1_ = []
        for j1, encode in enumerate(encodes):
            if j1 == i1:
                pass
            elif j1 < i1:
                e1_ = avg_pool2d(encode[:, :c, :, :], 2 ** (i1 - j1))
            else:
                e1_ = upsample(encode[:, :c, :, :], scale_factor=2 ** (j1 - i1), mode="nearest")
            encode1_.append(e1_)  # s*(b,c,h,w)
    
        encode1_ = stack(encode1_)  # (s,b,c,h,w)
        zsoft1_, zidx1_ = self_codebook[0].match(encode1_.flatten(0, 1))
        zsoft1_ = zsoft1_.unflatten(0, [s, b])  # (s*b,m,h,w)->(s,b,m,h,w)
        # zidx1_ = zidx1_.unflatten(0, [s, b])  # (s*b,h,w)->(s,b,h,w)

        zsoft11, zidx11 = zsoft1_.max(2)  # (s,b,m,h,w)->(s,b,h,w)
        zidx12 = zsoft11.argmax(0)  # (s,b,h,w)->(b,h,w)
        zidx1 = zidx11.gather(0, zidx12[None, :, :, :])[0]
        # (s,b,c,h,w)->(b,c,h,w)
        encode1 = encode1_.gather(0, zidx12[None, :, None, :, :].expand(-1, -1, c, -1, -1))[0]
        quant1 = self_codebook[0](zidx1).permute(0, 3, 1, 2)

        zidx1s.append(zidx1)  # s*(b,h,w)
        encode1s.append(encode1)  # s*(b,c,h,w)
        quant1s.append(quant1)  # s*(b,c,h,w)

    zidx2s, encode2s, quant2s = [], [], []
    for i2 in range(s):
        encode2 = encodes[i2][:, c:, :, :]
        zsoft2, zidx2 = self_codebook[1 + i2].match(encode2)
        quant2 = self_codebook[1 + i2](zidx2).permute(0, 3, 1, 2)
        zidx2s.append(zidx2)  # s*(b,h,w)
        encode2s.append(encode2)  # s*(b,c,h,w)
        quant2s.append(quant2)  # s*(b,c,h,w)

    zidxs = [stack([u, v], 1) for u, v in zip(zidx1s, zidx2s)]  # s*(b,2,h,w)
    # encodes = [cat([u, v], 1) for u, v in zip(encode1s, encode2s)]  # s*(b,2c,h,w)
    quants = [cat([u, v], 1) for u, v in zip(quant1s, quant2s)]  # s*(b,2c,h,w)
    
    quants = [project(_) for _ in quants]  # s*(b,c,h,w)
    return zidxs, quants

Have a question? Ask the AI Python Tutor!

Python

For the non-grouped codebook design, we adhere to the typical dVAE and VQ-VAE implementations
as described in (Singh et al., 2022a) and (Wu et al., 2023b), respectively. For the grouped codebook
design used in SLATE/STEVE and SlotDiffusion, we take the GDR as the basis, by applying with
our design as mentioned in main body of this paper. Thus except what we describe in the main
body, we also adopt annealing residual connection and Gumbel sampling code matching to stabilize
training.

Implementation of our MSF described in Sect. 3.3 is described in Code 1.

This module operates on VAE intermediate feature tensors with a 4x4 spatial downsampling relative
to the input.
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The non-grouped codebook contains 4096 codes; Similarly, the grouped codebook contains 4096
codes combined from scale-invariant and scale-variant codebooks, for which we introduce code
replacing trick, instead of utilization loss, to improve code utilization. In transformer-based models,
the code dimension (VAE intermediate channel size) is 256, whereas in diffusion-based models, the
code dimension is 4.

Basis Methods

For SLATE/STEVE, we primarily adhere to the original designs for transformer-based models,
SLATE and STEVE. Their primary encoder, SlotAttention, decoder, and VAE conform to the re-
spective designs mentioned earlier. SLATE is tailored for image-based OCL tasks, while STEVE
extends SLATE to video-based OCL tasks by adding an additional transformer encoder block to
bridge current and subsequent queries.

For SlotDiffusion, we also follow its original design for diffusion-based methods. Its primary en-
coder, SlotAttention, decoder, and VAE conform to the designs outlined earlier. For video-based
OCL tasks, we extend SlotDiffusion by adding an extra transformer encoder block to connect cur-
rent and future queries. For the diffusion decoder, we use default noise scheduler and beta values.

DINOSAUR

DINOSAUR is included as a foundational method for OCL, serving primarily as a reference. We
adopt its original design but unify its primary encoder and SlotAttention with those described above.

Competitive Improvers

SysBinder is one of the competitors. This module enhances the SlotAttention module in
SLATE/STEVE. We follow its original design while keeping the other components consistent with
the earlier-described modules. We use group number two.

GDR is another competitors. We use group sizes of two, and leave all the other settings identical to
the original paper.

A.4 DATASET PROCESSING

The datasets used for image OCL include ClevrTex, COCO, and VOC, with the latter two being
real-world datasets. For video OCL, the datasets are MOVi-C, D, and E, all of which are synthetic.
While the processing is mostly consistent across datasets, there are a few differences.

Shared Preprocessing

To speed up experiments, we implement a dataset conversion approach: converting all datasets into
the LMDB database format and storing them on an NVMe or RAM disk to reduce I/O overhead and
maximize throughput.

In particular, all images or video frames, along with their segmentation masks, are center-cropped
and resized to 128x128. These are then stored in the uint8 data type to save space. For images
and videos, we apply the default interpolation mode, whereas for segmentation masks, we use the
NEAREST-EXACT interpolation mode.

During training, for both images and videos, we use an input and output spatial resolution of
128x128. Input images and videos are normalized by subtracting 127.5 and dividing by 127.5, en-
suring all pixel values fall within the range of -1 to 1. For videos, we apply random strided temporal
cropping with a fixed window size of 6 to speed up training and improve generalization.

During testing, image processing remains identical to the training phase. However, for videos, we
omit the random strided temporal cropping and instead use the full 24 time steps.

ClevrTex, COCO & VOC

For ClevrTex, each image can contain up to 10 objects, so we use 10 + 1 slot queries, with the extra
slot representing the background.

Microsoft COCO and Pascal VOC are both real-world datasets. For COCO, we use panoptic seg-
mentation annotations, as OCL favors panoptic segmentation over instance or semantic segmen-
tation. However, for VOC, we rely on semantic segmentation annotations due to the absence of
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panoptic or instance segmentation labels. Given that images can contain numerous objects, includ-
ing very small ones, and considering the 128x128 resolution, we filter out images with more than 10
objects or objects smaller than a 16-pixel bounding box area. As a result, we use a maximum of 10
objects (plus stuff in COCO) per image, corresponding to 11 slot queries.

MOVi-C/D/E

These datasets provide rich annotations, such as depth, optical flow, and camera intrinsic/extrinsic
parameters. However, for simplicity and comparison purposes, we limit our use to segmentation
masks. Additionally, we retain the bounding box annotations for all objects across all time steps,
as this conditioned query initialization is crucial and widely used in video OCL. Given that these
datasets contain 10, 20, and 23 objects, respectively, we use 10+1, 20+1, and 20+1 slot queries.

A.5 TRAINING SCHEME

In line with established practice, our training process comprises two stages. The first stage is pre-
training, during which VAE modules are trained on their respective datasets to acquire robust dis-
crete intermediate representations. In the second stage, OCL training utilizes the pretrained VAE
representations to guide object-centric learning.

Pretraining VAE

Across all datasets, we conduct 30,000 training iterations, with validation every 600 iterations. This
gives us roughly 50 checkpoints for each OCL model on every dataset. To optimize storage, we
retain only the final 25 checkpoints. This approach is uniformly applied across datasets.

For image datasets, the batch size is set to 64, while for video datasets, it is 16, a configuration
maintained across both training and validation phases. This is consistent for all datasets. We employ
4 workers for multi-processing, applicable to both training and validation. This configuration is the
same for all datasets.

We use the Adam optimizer with an initial learning rate of 2e-3, adjusting the learning rate through
cosine annealing scheduling, with a linear warmup over the first 1/20 of the total steps. This config-
uration is standardized across all datasets.

Automatic mixed precision is utilized, leveraging the PyTorch autocast API. In tandem with this,
we use PyTorch’s built-in gradient scaler to enable gradient clipping with a maximum norm of 1.0.
This setting is uniform across all datasets.

Initializing Slot Queries

The query initializer provides the initial values to aggregate the dense feature map of the input into
slots representing different objects and the background.

For image datasets like ClevrTex, COCO, and VOC, we use random query initialization. This
method involves learning a set of Gaussian distributions and sampling from them. There are two
parameters involved: the means of the Gaussian distributions, which are trainable and of dimen-
sion c, and the shared sigma (a scalar value), which is non-trainable and follows a cosine annealing
schedule, fixed at 0 during evaluation. Both parameters are of the same dimension as the slot queries.

For video datasets such as MOVi-C/D/E, initialization takes a different approach. Prior knowledge,
such as bounding boxes, is projected into vectors. The bounding boxes are normalized by the input
frame dimensions and flattened into a 4-dimensional vector corresponding to the number of slots.
This vector is then processed through a two-layer MLP, using GELU activation, to map the bounding
boxes into the channel dimension c, consistent with the slot queries.

Training the OCL Model

On this stage, we load the pretrained VAE weights to guide the OCL model, where the VAE part is
frozen.

For all datasets, we run 50,000 training iterations, validating every 1,000 iterations. This results in
about 50 checkpoints per OCL model for each dataset. To reduce storage demands, only the last 25
checkpoints are saved. This procedure is applied across all datasets.
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The batch size for image datasets is set to 32 for both training and validation. For video datasets, the
batch size is 8 for training and 4 for validation, to account for the increased time steps during video
validation. This setting is shared across datasets.

We utilize 4 workers for multi-process operations, consistent across both training and validation
phases, and applied uniformly across datasets.

The metrics used for evaluation include ARI, mIoU, and mBO, which calculate the panoptic seg-
mentation accuracy for both objects and background. These metrics are applied consistently across
all datasets.

We use the Adam optimizer with an initial learning rate of 2e-4, following a cosine annealing sched-
ule and a linear warmup over the first 1/20 of the total steps. This configuration is standardized
across datasets.

We employ automatic mixed precision using the PyTorch autocast API. Alongside this, we use the
PyTorch gradient scaler to apply gradient clipping, with a maximum norm of 1.0 for images and
0.02 for videos.

For random query initialization, we adjust the σ value of the learned non-shared Gaussian distribu-
tion to balance exploration and exploitation. On multi-object datasets, σ starts at 1 and decays to 0
by the end of training using cosine annealing scheduling. On single-object datasets, σ remains at
0 throughout training. During validation and testing, this value is set to 0 to ensure deterministic
performance.
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