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Abstract

While text-to-3D and image-to-3D generation tasks have
received considerable attention, one important but under-
explored field between them is controllable text-to-3D gen-
eration, which we mainly focus on in this work. To address
this task, 1) we introduce Multi-view ControlNet (MVCon-
trol), a novel neural network architecture designed to en-
hance existing pre-trained multi-view diffusion models by
integrating additional input conditions, such as edge, depth,
normal, and scribble maps. Our innovation lies in the in-
troduction of a conditioning module that controls the base
diffusion model using both local and global embeddings,
which are computed from the input condition images and
camera poses. Once trained, MVControl is able to offer 3D
diffusion guidance for optimization-based 3D generation.
And, 2) we propose an efficient multi-stage 3D generation
pipeline that leverages the benefits of recent large recon-
struction models and score distillation algorithm. Building
upon our MVControl architecture, we employ a unique hy-
brid diffusion guidance method to direct the optimization
process. In pursuit of efficiency, we adopt 3D Gaussians
as our representation instead of the commonly used implicit
representations. We also pioneer the use of SuGaR, a hy-
brid representation that binds Gaussians to mesh triangle
faces. This approach alleviates the issue of poor geom-
etry in 3D Gaussians and enables the direct sculpting of
fine-grained geometry on the mesh. Extensive experiments
demonstrate that our method achieves robust generaliza-
tion and enables the controllable generation of high-quality
3D content. The source code is available at our website:
https://1izhiqi49.github.io/MVControl.

1. Introduction

Remarkable progress has recently been achieved in the
field of 2D image generation, which has subsequently pro-
pelled research in 3D generation tasks. This progress
is attributed to the favorable properties of image diffu-

T Corresponding author.

sion models [27, 39] and differentiable 3D representations
[22, 33, 42, 51]. In particular, recent methods based on
score distillation optimization (SDS) [37] have attempted
to distill 3D knowledge from pre-trained large text-to-image
generative models [27, 39, 43], leading to impressive results
[10, 26, 32, 37, 46, 47, 54].

Several approaches aim to enhance generation quality,
such as applying multiple optimization stages [10, 26], op-
timizing the diffusion prior with 3D representations simul-
taneously [44, 54], refining score distillation algorithms
[20, 58], and improving pipeline details [4, 18, 60]. An-
other focus is on addressing view-consistency issues by in-
corporating multi-view knowledge into pre-trained diffu-
sion models [24, 27, 28, 30, 38, 43]. However, achieving
high-quality 3D assets often requires a combination of these
techniques, which can be time-consuming. To mitigate this,
recent work aims to train 3D generation networks to pro-
duce assets rapidly [7, 17, 19, 23, 35, 48, 52]. While effi-
cient, these methods often produce lower quality and less
complex shapes due to limitations in training data.

While many works focus on text- or image-to-3D tasks,
an important yet under-explored area lies in controllable
text-to-3D generation—a gap that this work aims to address.
In this work, we propose a new highly efficient controllable
3D generation pipeline that leverages the advantages of both
lines of research mentioned in the previous paragraph. Mo-
tivated by the achievements of 2D ControlNet [59], an inte-
gral component of Stable-Diffusion [39], we propose MV-
Control, a multi-view variant. Given the critical role of
multi-view capabilities in 3D generation, MVControl is de-
signed to extend the success of 2D ControlNet into the
multi-view domain. We adopt MVDream [43], a newly in-
troduced multi-view diffusion network, as our foundational
model. MVControl is subsequently crafted to collaborate
with this base model, facilitating controllable text-to-multi-
view image generation. Similar to the approach in [59], we
freeze the weights of MVDream and solely focus on train-
ing the MV Control component. However, the conditioning
mechanism of 2D ControlNet, designed for single image
generation, does not readily extend to the multi-view sce-
nario, making it challenging to achieve view-consistency
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Figure 1. Given a text prompt and a condition image, our method is able to achieve high-fidelity and efficient controllable text-to-3D

generation of Gaussian binded mesh and textured mesh.

by directly applying its control network to interact with the
base model. Additionally, MVDream is trained on an ab-
solute camera system conflicts with the practical need for
relative camera poses in our application scenario. To ad-
dress these challenges, we introduce a simple yet effective
conditioning strategy.

After training MVControl, we can leverage it to estab-
lish 3D priors for controllable text-to-3D asset generation.
To address the extended optimization times of SDS-based
methods, which can largely be attributed to the utiliza-
tion of NeRF[33]-based implicit representations, we pro-
pose employing a more efficient explicit 3D representa-
tion, 3D Gaussian[22]. Specifically, we propose a multi-
stage pipeline for handling textual prompts and condition
images: 1) Initially, we employ our MVControl to gener-
ate four multi-view images, which are then inputted into
LGM[48], a recently introduced large Gaussian reconstruc-
tion model. This step yields a set of coarse 3D Gaussians.
2) Subsequently, the coarse Gaussians undergo optimiza-
tion using a hybrid diffusion guidance approach, combining
our MVControl with a 2D diffusion model. We introduce
SuGaR [16] regularization terms in this stage to improve
the Gaussians’ geometry. 3) The optimized Gaussians are
then transformed into a coarse Gaussian-bound mesh, for
further refinement of both texture and geometry. Finally,
a high-quality textured mesh is extracted from the refined
Gaussian-bound mesh.

In summary, our main contributions are as follows:
* We introduce a novel network architecture designed for

controllable fine-grain text-to-multi-view image genera-
tion. The model is evaluated across various condition
types (edge, depth, normal, and scribble), demonstrating
its generalization capabilities;

* We develop a multi-stage yet efficient 3D generation
pipeline that combines the strengths of large reconstruc-
tion models and score distillation. This pipeline optimizes
a 3D asset from coarse Gaussians to SuGaR, culminating
in a mesh. Importantly, we are the first to explore the po-
tential of a Gaussian-Mesh hybrid representation in the
realm of 3D generation;

» Extensive experimental results showcase the ability of our
method to produce high-fidelity multi-view images and
3D assets. These outputs can be precisely controlled us-
ing an input condition image and text prompt.

2. Related Work

Multi-view Diffusion Models. The success of text-to-
image generation via large diffusion models inspires the
development of multi-view image generation. Commonly
adopted approach is to condition on a diffusion model by
an additional input image and target pose [27, 28, 30]. Un-
like those methods, Chan et al. recently proposed to learn
3D scene representation from a single or multiple input im-
ages and then exploit a diffusion model for target novel
view image synthesis [9]. Instead of generating a single
target view image, MVDiffusion [49] proposes to gener-
ate multi-view consistent images in one feed-forward pass.
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Figure 2. Architecture of proposed MVControl. (a) MVControl consists of a frozen multi-view diffusion model and a trainable MV-
Control. (b) Our model takes care of all input conditions to control the generation process both locally and globally through a conditioning
module. (c) Once MVControl is trained, we can exploit it to serve a hybrid diffusion prior for controllable text-to-3D content generation

via SDS optimization procedure.

They build upon a pre-trained diffusion model to have bet-
ter generalization capability. MVDream [43] introduces a
method for generating consistent multi-view images from
a text prompt. They achieve this by fine-tuning a pre-
trained diffusion model using a 3D dataset. The trained
model is then utilized as a 3D prior to optimize the 3D
representation through Score Distillation Sampling. Sim-
ilar work ImageDream[50] substitutes the text condition
with an image. While prior works can generate impres-
sive novel/multi-view consistent images, fine-grained con-
trol over the generated text-to-multi-view images is still dif-
ficult to achieve, as what ControlNet [59] has achieved for
text-to-image generation. Therefore, we propose a multi-
view ControlNet (i.e. MVControl) in this work to further
advance diffusion-based multi-view image generation.

3D Generation Tasks. The exploration of generat-
ing 3D models can typically be categorized into two ap-
proaches. The first is SDS-based optimization method, ini-
tially proposed by DreamFusion[37], which aims to extract
knowledge for 3D generation through the utilization of pre-
trained large image models. SDS-based method benefits
from not requiring expansive 3D datasets and has there-
fore been extensively explored in subsequent works[10,
26, 38, 44, 46, 54, 56, 60]. These works provide in-
sights of developing more sophisticated score distillation
loss functions [38, 44, 54], refining optimization strategies

[10, 26, 44, 46, 60], and employing better 3D representa-
tions [10, 44, 46, 54, 56], thereby further enhancing the
quality of the generation. Despite the success achieved by
these methods in generating high-fidelity 3D assets, they
usually require hours to complete the text-to-3D gener-
ation process. On the contrary, feed-forward 3D native
methods can produce 3D assets within seconds after train-
ing on extensive 3D datasets[13]. Researchers have ex-
plored various 3D representations to achieve improved re-
sults, such as volumetric representation[6, 14, 25, 55], trian-
gular mesh[12, 15,45, 57], point cloud[ 1, 2], implicit neural
representation[8, 11, 17, 23, 31, 36, 41, 53], as well as the
recent 3D Gaussian[48]. While some methods efficiently
generate 3D models that meet input conditions, 3D gener-
ative methods, unlike image generative modeling, struggle
due to limited 3D training assets. This scarcity hinders their
ability to produce high-fidelity and diverse 3D objects. Our
method merges both approaches: generating a coarse 3D
object with a feed-forward method conditioned on MVCon-
trol’s output, then refining it using SDS loss for the final
representation.

Optimization-based Mesh Generation. The cur-
rent single-stage mesh generation method, such as
MeshDiffusion[29], struggles to produce high-quality mesh
due to its highly complex structures. To achieve high grade
mesh in both geometry and texture, researchers often turn to



multi-stage optimization-based methods[ 10, 26, 44]. These
methods commonly use non-mesh intermediate represen-
tations that are easy to process, before transforming them
back into meshes with mesh reconstruction methods, which
can consume a long optimization time. DreamGaussian[46]
refer to a more efficient representation, 3D Gaussians, to
effectively reduce the training time. However, extracting
meshes from millions of unorganized tiny 3D Gaussians
remains challenging. LGM][48] presents a new mesh ex-
traction method for 3D Gaussians but still relies on implicit
representation. In contrast, we adopt a fully explicit rep-
resentation, a hybrid of mesh and 3D Gaussians as pro-
posed by SuGaR[16]. This approach enables us to achieve
high-quality mesh generation within reasonable optimiza-
tion time.

3. Method

We first review relevant methods, including the 2D Control-
Net [59], score distillation sampling [37], Gaussian Splat-
ting [22] and SuGaR [16] in Section 3.1. Then, we an-
alyze the strategy of introducing additional spatial condi-
tioning to MVDream by training a multi-view ControlNet
in Section 3.2. Finally in Section 3.3, based on the trained
multi-view ControlNet, we propose an efficient 3D genera-
tion pipeline, to realize the controllable text-to-3D genera-
tion via Gaussian-binded mesh and further textured mesh.

3.1. Preliminary

Score Distillation Sampling. Score distillation sampling
(SDS) [26, 37] utilizes a pretrained text-to-image diffusion
model as a prior to guide the generation of text-conditioned
3D assets. Specifically, given a pretrained diffusion model
€4, SDS optimizes the parameters 0 of a differentiable 3D
representation (e.g., neural radiance field) using the gradient
of the loss Lgps with respect to 6:

VoLsns(6.%) = Br [u(0)(6 - 5] )

where x = ¢(0, ¢) is an image rendered by g under a cam-
era pose ¢, w(t) is a weighting function dependent on the
timestep t, and z; is the noisy image input to the diffu-
sion model obtained by adding Gaussian noise € to x cor-
responding to the ¢-th timestep. The primary insight is to
enforce the rendered image of the learnable 3D represen-
tation to adhere to the distribution of the pretrained diffu-
sion model. In practice, the values of the timestep ¢ and the
Gaussian noise € are randomly sampled at every optimiza-
tion step.

Gaussian Splatting and SuGaR. Gaussian Splatting [22]
represents the scene as a collection of 3D Gaussians, where
each Gaussian g is characterized by its center i, € R3 and

covariance ¥, € R**3. The covariance X, is parameter-
ized by a scaling factor s, € R? and a rotation quaternion
q, € R*. Additionally, each Gaussian maintains opacity
ag € R and color features ¢, € R for rendering via splat-
ting. Typically, color features are represented using spher-
ical harmonics to model view-dependent effects. During
rendering, the 3D Gaussians are projected onto the 2D im-
age plane as 2D Gaussians, and color values are computed
through alpha composition of these 2D Gaussians in front-
to-back depth order. While the vanilla Gaussian Splatting
representation may not perform well in geometry model-
ing, SuGaR [16] introduces several regularization terms to
enforce flatness and alignment of the 3D Gaussians with the
object surface. This facilitates extraction of a mesh from
the Gaussians through Poisson reconstruction [21]. Fur-
thermore, SuGaR offers a hybrid representation by binding
Gaussians to mesh faces, allowing joint optimization of tex-
ture and geometry through backpropagation.

3.2. Multi-view ControlNet

Inspired by ControlNet in controlled text-to-image gener-
ation and recently released text-to-multi-view image diffu-
sion model (e.g. MVDream), we aim to design a multi-view
version of ControlNet (i.e. MVControl) to achieve con-
trolled text-to-multi-view generation. As shown in Fig. 2,
we follow similar architecture style as ControlNet, i.e. a
locked pre-trained MVDream and a trainable control net-
work. The main insight is to preserve the learned prior
knowledge of MVDream, while training the control net-
work to learn the inductive bias with a small amount of data.
The control network consists of a conditioning module and
a copy of the encoder network of MVDream. Our main con-
tribution lies at the conditioning module and we will detail
it as follows.

The conditioning module (Fig. 2b) receives the condi-
tion image ¢, four camera matrices V, € R4x4x4 gpd
timestep ¢ as input, and outputs four local control embed-
dings ei’cyv* and global control embeddings ¢ .., . The lo-
cal embedding is then added with the input noisy latent fea-
tures Z, € R*XCXHXW a4 the input to the control network,
and the global embedding eZ c,v. 18 injected to each layer of
MVDream and MV Control to globally control generation.

The condition image ¢ (i.e. edge map, depth map etc.)
is processed by four convolution layers to obtain a feature
map V. Instead of using the absolute camera pose matri-
ces embedding of MVDream, we move the embedding into
the conditioning module. To make the network better un-
derstand the spatial relationship among different views, the
relative camera poses V, with respect to the condition image
are used. The experimental results also validate the effec-
tiveness of the design. The camera matrices embedding is
combined with the timestep embedding, and is then mapped
to have the same dimension as the feature map ¥ by a zero-
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initialized module M. The sum of these two parts is pro-
jected to the local embedding eiﬁw* through a convolution
layer.

While MVDream is pretrained with absolute camera
poses, the conditioning module exploits relative poses as
input. We experimentally find that the network hardly con-
verges due to the mismatch of both coordinate frames. We
therefore exploit an additional network M to learn the
transformation and output a global embedding ef e, tOTe-
place the original camera matrix embedding of MVDream
and add on timestep embeddings of both MVDream and
MVControl part, so that semantical and view-dependent
features are injected globally.

3.3. Controllable 3D Textured Mesh Generation

In this section, we introduce our highly efficient multi-stage
textured mesh generation pipeline: Given a condition image
and corresponding description prompt, we first generate a
set of coarse 3D Gaussians using LGM [48] with four multi-
view images generated by our trained MVControl. Subse-
quently, the coarse Gaussians undergo refinement utilizing
a hybrid diffusion prior, supplemented with several regular-
ization terms aimed at enhancing geometry and facilitating
coarse SuGaR mesh extraction. Both the texture and geom-
etry of the extracted coarse SuGaR mesh are refined using
2D diffusion guidance under high resolution, culminating
in the attainment of a textured mesh. The overall pipeline is

illustrated in Fig. 3.

Coarse Gaussians Initialization. Thanks to the remark-
able performance of LGM [48], the images generated by
our MVControl model can be directly inputted into LGM
to produce a set of 3D Gaussians. However, owing to the
low quality of the coarse Gaussians, transferring them di-
rectly to mesh, as done in the original paper, does not yield
a satisfactory result. Instead, we further apply an optimiza-
tion stage to refine the coarse Gaussians, with the starting
point of optimization either initialized with all the coarse
Gaussians’ features or solely their positions.

Gaussian-to-SuGaR Optimization.  In this stage, we
incorporate a hybrid diffusion guidance from a 2D diffu-
sion model and our MVControl to enhance the optimiza-
tion of coarse Gaussians §. MVControl offers robust and
consistent geometry guidance across four canonical views
V., while the 2D diffusion model contributes fine geometry
and texture sculpting under other randomly sampled views
V, € RBX4X4 Here, we utilize the DeepFloyd-IF base
model [3] due to its superior performance in refining coarse
geometry. Given a text prompt y and a condition image h,
the hybrid SDS gradient VL2425 can be calculated as:

VoLhe® = XapVoLdDs(x, = g(0,Vr)it,y)
+>\3Dv9£g%s(x* = 9(97 V*)7 t? Y, h’):

where \; and Ao are the strength of 2D and 3D prior re-
spectively. To enhance the learning of geometry during the

(@)
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Figure 4. Comparison with baseline 3D generation methods. Our method yields more delicate texture, and generates much better
meshes than the compared methods. We use different color blocks to emphasize that our method only takes the conditioning image rather
than RGB as input. Corresponding textual prompts are provided in appendix.

Gaussians optimization stage, we employ a Gaussian raster-
ization engine capable of rendering depth and alpha values
[5]. Specifically, in addition to color images, depth d and
alpha m of the scene are also rendered, and we estimate
the surface normal 7 by taking the derivative of d. Conse-
quently, the total variation (TV) regularization terms [40] on
these components, denoted as L4, and L%, are calculated
and incorporated into the hybrid SDS loss. Furthermore,
as the input conditions are invariably derived from existing
images, a foreground mask mg; is generated during the in-
termediate process. Therefore, we compute the mask loss
Linask = MSE(, mg:) to ensure the sparsity of the scene.
Thus, the total loss for Gaussian optimization is expressed
as:

EGS - EgyDbgld + A]K%V + )\2;6?1‘/ + )\SEmask; (3)

where Ap—1 23 are the weights of depth TV loss, normal
TV loss and mask loss respectively. Following the approach

in [10], we alternately utilize RGB images or normal maps
as input to the diffusion models when calculating SDS gra-
dients. After a certain number of optimization steps N,
we halt the split and pruning of Gaussians. Subsequently,
we introduce SuGaR regularization terms [16] as new loss
terms to Lgs to ensure that the Gaussians become flat and
aligned with the object surface. This process continues
for an additional N steps, after which we prune all points
whose opacity is below a threshold &.

SuGaR Refinement. Following the official pipeline of
[16], we transfer the optimized Gaussians to a coarse mesh.
For each triangle face, a set of new flat Gaussians is bound.
The color of these newly bound Gaussians is initialized
with the colors of the triangle vertices. The positions of
the Gaussians are initialized with predefined barycentric co-
ordinates, and rotations are defined as 2D complex num-
bers to constrain the Gaussians within the corresponding
triangles. Different from the original implementation, we
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initialize the learnable opacities of the Gaussians with a
large number, specifically 0.9, to facilitate optimization at
the outset. Given that the geometry of the coarse mesh is
nearly fixed, we replace the hybrid diffusion guidance with
solely 2D diffusion guidance computed using Stable Dif-
fusion [39] to achieve higher optimization resolution. Ad-
ditionally, we employ Variational Score Distillation (VSD)
[54] due to its superior performance in texture optimization.
Similarly, we render the depth d’ and alpha 772’ through the
bound Gaussians. However, in contrast, we can directly ren-
der the normal map 7 using mesh face normals. With these
conditions, we calculate the TV losses, E’{!V and ’{fv, and
the mask loss £/ . similarly to the previous section. The

mas
overall loss for SuGaR refinement is computed as:

»CSuGaR = ['VSD + )\Il'c/jt”iv + >‘/2 /J?V + )‘2/3 {maskv (4)

where X} _, , 5 represent the weights of the different loss
terms, respectively.

4. Experiments

4.1. Qualitative Comparisons

Multi-view Image Generation. To assess the control-
ling capacity of our MVControl, we conduct experiments
on MVDream both with and without MVControl attached
as shown in Fig. 5. In the first case, MVDream fails to
generate the correct contents according to the given prompt,
producing a squatting cat without clothes, which contradicts
the prompt. In contrast, it successfully generates the cor-
rect contents with the assistance of MVControl. The sec-
ond case also demonstrates that our MVControl effectively
controls the generation of MVDream, resulting in highly
view-consistent multi-view images.

3D Gaussian-based Mesh Generation. Given that our 3D
generation pipeline aims to produce textured mesh from 3D
Gaussians, we compare our method with recent Gaussian-
based mesh generation approaches, DreamGaussian [46]
and LGM [48], both of which can be conditioned on RGB
images. Moreover, we also take the state-of-the-art image-
to-3D generation method, DreamCraft3D [44] into compar-
ison. For fair comparison, we generate 2D RGB images

Optimiztion Stage CLIP-Tt CLIP-IT
DreamGaussian GS—Mesh 0.200 0.847
LGM GS—Mesh 0.228 0.872
DreamCraft3D NeRF—NeuS—DMTet 0.275 0.884
MV Control(Ours) GS—SuGaR 0.279 0.909

Table 1. Quantitative comparison with baselines. Our method
achieves the best result.

without cherry picking using the pre-trained 2D Control-
Net as the input for the compared methods. As illustrated
in Fig. 4, DreamGaussian struggles to generate the geome-
try for most of the examples, resulting in many broken and
hollow areas in the generated meshes. LGM performs bet-
ter than DreamGaussian, however, its extracted meshes lack
details and still contain broken areas in some cases. Al-
though DreamCraft3D can produce unbroken shapes, it still
suffer from unsmoothed surface in the meshes. In contrast,
our method produces fine-grain meshes with more delicate
textures, even without an RGB condition. Due to space lim-
itations, the textual prompts are not provided in Fig. 4, and
we will include them in our appendix.

4.2. Quantitative Comparisons

In this section, we adopt CLIP-score [34] to evaluate the
compared methods and our method. We calculate both
image-text and image-image similarities. For each object,
we uniformly render 36 surrounding views. The image-
text similarity, denoted as CLIP-T, is computed by aver-
aging the similarities between each view and the given
prompt.Similarly, the image-image similarity, referred to as
CLIP-I, is the mean similarity between each view and the
reference view. The results, calculated for a set of 60 ob-
jects, are reported in Table 1. When employing our method,
the condition type used for each object is randomly sampled
from edge, depth, normal, and scribble map. Additionally,
the RGB images for DreamGaussian and LGM are gener-
ated using 2D ControlNet with the same condition image
and prompt. Our method achieves the best performance in
terms of both the CLIP-T and CLIP-I score.

4.3. Ablation Study
CLIP-TT CLIP-IT
Stage 2 wio Vo LD o 0.245 0.866
Stage 2 w/o normal losses 0.263 0.876
Full stage 2 0.267 0.882
Stage 1 only 0.230 0.859
Full method 0.279 0.909

Table 2. Quantitative comparison of ablation study.

Conditioning Module of MVControl. We evaluate the
training of our model under three different settings to intro-
duce camera condition: 1) we utilize the absolute (world)
camera system (i.e., Abs. T) as MVDream [43] does, with-
out employing our designed conditioning module (retaining
the same setup as 2D ControlNet); 2) we adopt the relative
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Figure 6. Ablation study on conditioning module. It achieves
precise controlling on multi-view image generation with our con-
ditioning module.

camera system without employing the conditioning mod-
ule; 3) we employ the complete conditioning module. The
experimental results, depicted in Fig. 6, demonstrate that
only the complete conditioning module can accurately gen-
erate view-consistent multi-view images that adhere to the
descriptions provided by the condition image.

Hybrid Diffusion Guidance. We conduct ablation study
on hybrid diffusion guidance utilized in the Gaussian opti-
mization stage. As illustrated in Fig. 7 (top right), when
excluding VL3 ¢ provided by our MVControl, the gen-
erated 3D Gaussians lack texture details described in the
given condition edge map. For instance, the face of the
rabbit appears significantly blurrier without Vo L35 ¢. The
quantitative evaluation is provided in Table 2 (line 1 and 3).

Losses on Rendered Normal Maps. The normal-related
losses in our method are alternately calculated using SDS
loss with the normal map as input in stage 2, and the nor-
mal TV regularization term. We conduct experiments by
dropping all of them in stage 2, and the results are illus-
trated in Fig. 7 (bottom left). Compared to our full method,
the surface normal of 3D Gaussians deteriorates without the
normal-related losses. The corresponding quantitative re-
sults are provided in Table 2 (line 2 and 3).

Multi-stage Optimization. We also assess the impact of
different optimization stages, as shown in Fig. 8. Initially,
in stage 1, the coarse Gaussians exhibit poor geometry con-
sistency. However, after the Gaussian optimization stage,
they become view-consistent, albeit with blurry texture. Fi-
nally, in the SuGaR refinement stage, the texture of the 3D
model becomes fine-grained and of high quality. We have
also provided the quantitative evaluation on different opti-
mization stages in Table 2 (the lower 3 lines).

5. Conclusion

In this work, we delve into the important yet under-explored
field of controllable 3D generation. We present a novel
network architecture, MV Control, for controllable text-to-

“A lovely rabbit sat in
a bucket, showing
itself, adorable”
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w/o0 normal losses full method

Figure 7. Ablation study on Gaussian optimization stage. The
qualitative results demonstrate the effects of the VL3 ¢ and nor-
mal related loss terms during optimization.
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Figure 8. Ablation study on multi-stage optimization. We con-
duct the ablation study under different optimization stages. Both
Gaussian optimization and SuGaR refinement stage promote the
quality largely. We also report the consumed time of every stage.

multiview image generation. Our approach features a train-
able control network that interacts with the base image dif-
fusion model to enable controllable multi-view image gen-
eration. Once trained, our network offers 3D diffusion
guidance for controllable text-to-3D generation using a hy-
brid SDS gradient alongside another 2D diffusion model.
We propose an efficient multi-stage 3D generation pipeline
using both feed-forward and optimization-based methods.
Our pioneering use of SuGaR—an explicit representation
blending mesh and 3D Gaussians—outperforms previous
Gaussian-based mesh generation approaches. Experimental
results demonstrate our method’s ability to produce control-
lable, high-fidelity text-to-multiview images and text-to-3D
assets. Furthermore, tests across various conditions show
our method’s generalization capabilities. We believe our
network has broader applications in 3D vision and graphics
beyond controllable 3D generation via SDS optimization.
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