
Identifying and Disentangling Spurious Features in Pretrained Image
Representations

Rafayel Darbinyan 1 2 Hrayr Harutyunyan 3 Aram H. Markosyan 4 Hrant Khachatrian 1 2

Abstract
Neural networks employ spurious correlations in
their predictions, resulting in decreased perfor-
mance when these correlations do not hold. Re-
cent works suggest fixing pretrained representa-
tions and training a classification head that does
not use spurious features. We investigate how spu-
rious features are represented in pretrained rep-
resentations and explore strategies for removing
information about spurious features. Considering
the Waterbirds dataset and a few pretrained
representations, we find that even with full knowl-
edge of spurious features, their removal is not
straightforward due to entangled representation.
To address this, we propose a linear autoencoder
training method to separate the representation into
core, spurious, and other features. We propose
two effective spurious feature removal approaches
that are applied to the encoding and significantly
improve classification performance measured by
worst group accuracy.

1. Introduction
In many classification datasets, some features are predictive
of the label but are not causally related. It is often said that
these features are spuriously correlated with the label, as
their correlation might not hold for data collected in another
environment. For example, suppose we collect typical im-
ages of cows and camels and form a binary classification
task. In that case, we will find that the background is corre-
lated with the label, as cows are often photographed in barns
or green pastures, while camels are often photographed in
deserts (Beery et al., 2018). However, this correlation will
be spurious as the background information is not causally
related to the label, and we can easily make another dataset
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of cows and camels in which this correlation does not hold.

It is well-established that neural networks are susceptible to
spurious correlations (Torralba & Efros, 2011; Ribeiro et al.,
2016; Gururangan et al., 2018; Zech et al., 2018; McCoy
et al., 2019; Geirhos et al., 2019; 2020; Xiao et al., 2021).
In such cases, neural networks learn representations that
capture spurious features and make predictions that employ
them. Many approaches have been proposed for learning
representations that do not capture spurious features (Muan-
det et al., 2013; Sun & Saenko, 2016; Ganin et al., 2016;
Wang et al., 2019b;a; Li et al., 2018; Arjovsky et al., 2019;
Zhao et al., 2020; Lu et al., 2022). Some methods are tai-
lored against specific spurious correlations (e.g., texture);
some require specifying a categorical spurious feature, while
others require data collected from multiple labeled environ-
ments. Nevertheless, to our best knowledge, none of such
representation learning methods consistently outperform
standard empirical risk minimization (Gulrajani & Lopez-
Paz, 2021; Koh et al., 2021). This is partly because spurious
features are often easier to learn and get learned early in
training (Shah et al., 2020; Nam et al., 2020; Hermann &
Lampinen, 2020; Pezeshki et al., 2021).

Besides the unsatisfactory results, the approach mentioned
above also goes against one of the main techniques of deep
learning – using pretrained representations instead of learn-
ing from scratch. Recently, a few works indicated a large
potential in fixing pretrained representations and focusing
on training a linear classifier on top of it that does not rely
on spurious correlations. In particular, Galstyan et al. (2022)
find that a significant contribution to the out-of-domain gen-
eralization error comes from the classification head and call
for designing better methods of training the classification
head. Menon et al. (2021) propose to retrain the classifi-
cation head on training data with down-sampled majority
groups. Kirichenko et al. (2023); Izmailov et al. (2022); and
Shi et al. (2023) find that after training on data with spurious
correlations, keeping the representations fixed and retraining
the classification head on small unbiased data gives state-of-
the-art results. When no information about spurious features
is available, Mehta et al. (2022) show that one can still get
good results by using embeddings from a large pretrained
vision model. Interestingly, representations learned by a
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vision transformer (Dosovitskiy et al., 2021) seem to lead
to more robust classification heads (Ghosal et al., 2022).
Overall, these findings indicate that more research is needed
to understand better how spurious features are represented
and design better methods of training classification heads
on representations that capture spurious features.

We consider the Waterbirds dataset (Sagawa* et al.,
2020), which is landbird vs waterbird image classification
task where the background is spuriously correlated with the
label. Namely, most landbird images have land in their back-
ground, while most waterbird images have water in their
background. We consider fixed pretrained representations
learned through supervised or self-supervised learning. We
investigate whether one can remove the spurious features
from the representations in two settings. In the former (and
more prevalent setting), one has access to the value of the
binary spurious feature. In the latter, we also have access to
per-example image masks indicating which parts of images
correspond the spurious feature.

Interestingly, even with full knowledge of the spurious fea-
ture, it is not straightforward to remove it. While we find that
representations are axis-aligned to a certain degree, the ex-
tent of alignment is not enough to remove spurious features
by removing individual representation coordinates. Since
both the spurious feature and the label can be predicted well
from the representation with a linear layer, we hypothesize
that the entanglement of core and spurious features is linear
and can be reversed with a linear transformation. For this
we propose a linear autoencoder to split the representation
into three parts corresponding to the class label, the spu-
rious feature, and other features not related to the former
two but required for reconstruction. Importantly, in contrast
to existing approaches, we do not enforce independence of
the first and second parts on a biased training set. Instead,
we enforce independence on an upsampled variant of the
training set.

We find that a linear classifier trained on the core features
of the encoding performs better than the standard approach
but does not reach the performance of a classifier trained on
an unbiased set. We demonstrate that this gap can be closed
by performing additional feature selection within the core
features.

2. Experimental Design
Waterbirds dataset. We consider the Waterbirds
dataset (Sagawa et al., 2020), which is a benchmark dataset
designed to measure the effect of debiasing spurious corre-
lations. The dataset consists of bird photographs from the
CUB (Welinder et al., 2010) dataset combined with image
backgrounds from the Places (Zhou et al., 2018) dataset.
It has 4,795 training examples, 1,199 val examples, and

5,794 testing examples. The task is to classify birds as
waterbirds or landbirds while ignoring the background.

Bird masks. For every picture of the training set we use
Detic (Zhou et al., 2022) to segment the bird in the image.
The binary mask of the bird in the picture is denoted by
m. We visually evaluate the quality of the masks and they
are close to ideal. The most common error is that in rare
cases there are additional birds in the background which are
included in the mask.

Pretrained representations. We use three pretrained mod-
els in our experiments: ImageNet-pretrained ResNet-50,
SWAG-pretrained and ImageNet-finetuned RegNetY, and
a self-supervised ViT-B/14 from DINOv2. These mod-
els produce d-dimensional representations for each, where
d = 2048, d = 7392, d = 786 for the three models re-
spectively. Mehta et al. (2022) shows that the better models
produce better worst group accuracy (WGA). Throughout
this paper we use z to denote representations.

Attributing neurons. Whether or not individual neurons
can be attributed to specific image regions is not clear. There
is some evidence against it and some evidence in support of
it (Elhage et al., 2022). Certainly some layers and operations
in deep learning give preference to the standard basis. These
include element-wise activations functions, batch normal-
ization, dropout, etc. We use Captum (Kokhlikyan et al.,
2020) to find this attribution. Captum has implementations
of several attribution algorithms. In our preliminary experi-
ments, we found that the results with the Integrated Gradi-
ents method (Sundararajan et al., 2017) are good enough.

For a given image xj ∈ R224×224, with foreground mask
mj ∈ {0, 1}224×224, and representation zj ∈ Rd, we use
Captum to compute attribution heatmap aij ∈ R224×224

of the neuron i-th neuron over input pixels. We define
spuriousness s(xj) ∈ Rd the following way:

si(xj) =

∑
(mj ⊙ |aij |)∑

mj
−

∑
((1−mj)⊙ |aij |)∑

(1−mj)
, (1)

where the sums are over pixels. The first term is the average
attribution on the foreground pixels and the second term
is the average attribution on the background pixels. Note
that the attribution scores given by Captum can be both
negative and positive, indicating the direction of the impact
on the individual neuron. We use absolute values of the
attribution scores as we are only interested in the magnitude
of the impact. The spuriousness of the specific neuron zi is
defined as the average spuriousness over the training set X:

si =
1

|X|

|X|∑
j=1

si(xj). (2)

Linear models. We train a linear classifier on a frozen rep-
resentation using the scikit-learn package. We use L-BFGS
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optimizer and disable regularization. We report overall ac-
curacy and worst group accuracy on the test set, and mostly
focus on optimizing the latter. We note that SGD-based
methods to learn a linear classifier can discover drastically
different solutions, including solutions with higher worst
group accuracy. This is especially true when early stopping
is used. All linear models used in this paper use L-BFGS,
and the analysis of SGD-based optimization is left for future
work.

Upper bound. We compute an upper bound on worst group
accuracy of L-BFGS-trained linear models by splitting the
test set into five equal parts of 1000 samples, and perform
five-fold cross-validation. This way we ensure that each of
the five models is trained on a subset of the same size as the
training set, but with equal number of images with water
backgrounds and land backgrounds. The average of worst
group accuracies of the five models is reported as an upper
bound.

Statistical significance. For selected experiments we per-
formed bootstrapping on the training set to estimate the
variability of the models with respect to changes in the
training set. We resampled with repetitions five versions of
the training set of the same size, and repeated the experi-
ments on the five versions. We report the mean and standard
deviation of the five metrics.

3. Identifying Spurious Features
We start our investigations by studying whether one can
remove spurious features by removing individual neurons
from the pretrained representations.

Removing features that look mostly to background im-
proves worst group accuracy. We sort the d neurons ac-
cording to si and consider keeping only the top N neu-
rons for the linear models. These models are denoted by
CaptumN (z,m). Figure 1 shows the results. In case of
ResNet-50, a linear model on the top N = 50 neurons sig-
nificantly improves the baseline (see also Table 1). The
improvement is seen with up to N = 260 neurons. This
confirms the hypothesis that there are many spurious fea-
tures that harm the worst group accuracy of linear models,
and si can be used as a measure to identify them. A similar
effect is observed with RegNetY, there is improvement for
at least up to N = 1000.

We could not detect this phenomenon in case of DINOv2.
Keeping top neurons in terms of si worsens the metrics.
Most likely this means that the individual neurons are nei-
ther pure spurious nor pure non-spurious. A supporting
evidence is that the variance of si scores across the neurons
is smaller than in case of ResNet-50.

Pretrained representations are relatively axis-aligned.

To verify whether the directions in the representation space
responsible for spurious features are aligned with the axes,
we sample a random rotation matrix, apply it to the represen-
tations z, and recalculate si for them. Then we pick the top
neurons from the rotated space and train new linear mod-
els. These models are denoted by CaptumN (Rot(z),m).
As seen in Figure 1, the scores are significantly worse in
ResNet-50 (for N ≤ 250) and RegNetY (for N ≤ 150).
This implies that the spuriousness directions are aligned
with axes for these two representations. The difference is
much smaller in DINOv2, which is expected, as there were
no distinctive spurious neurons even before the rotation.

4. Disentangling Spurious and Core Features
Designing a group-aware autoencoder. As seen in the pre-
vious section, there exist spurious coordinates in ResNet-50
and RegNetY representations. We also showed that distinc-
tive spuriousness is lost when we apply a random rotation
matrix. This raises a question whether there exists another
linear transformation that will make spurious features even
more axis aligned, i.e. there will be new neurons that more
specifically capture the spurious features. In other words,
we are looking for ways to disentangle spurious and core
features with a linear transformation.

We design a simple autoencoder where the linear encoder
maps input z to three vectors: zy, zc and zn. We force
zy and zc to contain information about the label and the
background, respectively. We do this by adding another
linear layer on top of zy and zc that predict ŷ = Wyzy
and ĉ = Wczc which are supervised by the corresponding
signals. The linear decoder takes the concatenation of zy,
zc and zn and reconstructs ẑ which should be close to the
original z. We assume that zn will store the rest of the
information in z that is not relevant for predicting either
the label or the background. Note that we need group-level
information to train this autoencoder, but we do not need
the masks of the birds. Following (Jaiswal et al., 2019), we
add an additional regularization term that minimizes mutual
information between zy and zc. The final loss function is
the following:

L = ce(ŷ, y)+ce(ĉ, c)+10∥ẑ−z∥+50 HSIC(zy, zc), (3)

where ce(·, ·) is the cross-entropy loss, and HSIC denotes
the Hilbert-Schmidt Independence Criterion (Gretton et al.,
2005).

We train the autoencoder on the upsampled version of the
training set so that each group is represented equally. This
also justifies the minimization of the mutual information
between zy and zc, as they are correlated in the original
training distribution. The sum of the dimensions of the three
vectors zy, zc and zn matches d for each backbone. The
linear model trained on top of the concatenation of the three
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Figure 1: Worst group accuracy of linear models on subsets of N features selected using various methods.

vectors is denoted by GwAE(z, g), where GwAE denotes
the linear encoder of the group-wise trained autoencoder,
and g refers to the group information required for the train-
ing. GwAEy(z, g) denotes only the zy part of the encoder’s
output. Note that the linear classifier trained on top of the
autoencoder still belongs to the space of linear classifiers.

We expect the linear models trained on z and on the full
GwAE(z, g) to perform similarly. We surprisingly see that
this is not the case with ResNet-50. GwAE(z, g) is better by
6 percentage points. One explanation is that the autoencoder
is not ideal, some information is lost by the encoder, and
luckily the lost information contains some of the spurious
features. We leave a deeper analysis for the future work.

Label-aware part has mostly good features. For all back-
bones we see that zy gathers core features and the linear
models trained on them have significantly better worst group
accuracy. In case of ResNet-50 and DINOv2, the results are
even better than the ones by Captum, which means that the
autoencoder managed to isolate core features much better
than it was possible by simply removing neurons in the orig-
inal z. In case of RegNetY, we see that the linear model on
zy performs as good as many models trained on Captum-
filtered neurons. This means that RegNetY features were
already disentangled.

Furthermore, we apply Captum on top of the zy neurons to
see whether we can still identify and remove spurious fea-
tures in zy (the orange plot in Figure 1). This was successful
only in case of ResNet-50.

PCA helps. To separate the core features, the linear encoder
needs to shrink some directions (for example those corre-
sponding to spurious features). For this reason, one can
hypothesize that most of the variance in zy will be along the
core features. This motivates applying principal component
analysis (PCA) on zy to further remove non-core features.
Unlike Captum, PCA does not require additional informa-
tion from the data. We find that, indeed, training linear

models on the N principal components of zy still improves
the worst group accuracy for ResNet and RegNetY. We note
that applying PCA directly on z does not help to identify
core features: the principal components of the original space
usually contain spurious features.

Table 1: Results with ResNet-50.

Method Accuracy WGA

Standard training on z 83.1±1.2 60.2±1.8
PCA20(z) 81.7±0.8 51.3±2.0
Captum100(z,m) 88.0±0.3 67.7±1.3
Captum300(Rot(z),m) 81.4±1.1 55.8±2.7
GwAE(z, g)[y] 91.2±0.3 78.7±0.3
PCAinf (GwAE(z, g)[y]) 91.2±0.3 78.7±0.3
PCA20(GwAE(z, g)[y]) 93.9±0.2 81.7±1.1
Captum20(GwAE(z, g),m) 93.5±0.1 81.0±0.6
Captum20(GwAE(z, g)[y],m) 93.5±0.1 81.0±0.6

Upper bound on z 92.3±0.7 82.9±3.9
Upper bound on GwAE(z, g) 92.6±1.1 81.1±5.0

5. Conclusion
With carefully designed experiments we have shown that
pretrained image representations contain spurious features
that can be identified and removed to improve worst group
accuracy of the linear models. In most representations it is
also possible to disentangle spurious features and further
improve the performance. In future work we plan experi-
ments with more backbones and datasets to see how well
these findings generalize to other settings. We also note that
it is possible to find linear models with better worst group
accuracy if we use stochastic gradient descent with early
stopping. This analysis is also left for future work.
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A. Appendix
In Tables 2 and 3 we show the detailed results for RegNetY and DINOv2.

Table 2: Results with RegNetY.

Accuracy WGA

z 95.2±0.3 83.5±2.2
PCA20(z) 90.7±0.5 74.6±1.7
Captum350(z,m) 94.9±0.3 88.0±1.7
Captum350(Rot(z),m) 93.5±0.8 85.6±1.1
GwAE(z, g)[y] 96.4±0.3 87.4±0.9
PCAinf (GwAE(z, g)[y]) 95.9±0.3 89.7±0.9
PCA20(GwAE(z, g)[y]) 96.5±0.1 90.4±1.7
Captum20(GwAE(z, g),m) 96.3±0.2 88.9±0.3
Captum20(GwAE(z, g)[y],m) 96.3±0.2 88.9±0.3

Upper bound on z 98.4±0.3 94.1±2.0
Upper bound on GwAE(z, g) 98.3±0.3 92.8±2.3

Table 3: Results with DINOv2.

Accuracy WGA

z 95.9±0.3 88.5±0.9
PCA20(z) 93.7±0.4 80.6±1.4
Captum100(z,m) 92.1±0.6 79.8±0.6
Captum100(Rot(z),m) 92.1±0.1 76.6±2.4
Captum700(z,m) 96.3±0.3 88.6±0.6
Captum700(Rot(z),m) 96.3±0.4 89.2±1.9
GwAE(z, g)[y] 96.6±0.3 93.5±0.4
PCAinf (GwAE(z, g)[y]) 96.8±0.2 93.0±0.6
PCA20(GwAE(z, g)[y]) 97.4±0.2 94.0±0.8
Captum100(GwAE(z, g),m) 96.6±0.4 90.6±0.8
Captum20(GwAE(z, g),m) 94.1±0.2 83.8±1.2
Captum20(GwAE(z, g)[y],m) 97.0±0.1 92.7±0.5

Upper bound on z 98.3±0.1 94.6±1.1
Upper bound on GwAE(z, g) 98.0±0.2 93.9±1.9
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