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ABSTRACT

Large language models can exhibit undesirable and unexpected behavior in the
blink of an eye. In a recent Anthropic demo, Claude switched from coding to
Googling pictures of Yellowstone, and these sudden shifts in behavior have also
been observed in reasoning patterns and jailbreaks. This phenomenon is not unique
to autoregressive models: in diffusion models, key features of the final output
are decided in narrow “critical windows” of the generation process. In this work
we develop a simple, unifying theory to explain this phenomenon. We show that
it emerges generically as the generation process localizes to a sub-population of
the distribution it models. While critical windows have been studied at length in
diffusion models, existing theory heavily relies on strong distributional assumptions
and the particulars of Gaussian diffusion. In contrast to existing work our theory
(1) applies to autoregressive and diffusion models; (2) makes no distributional
assumptions; (3) quantitatively improves previous bounds even when specialized
to diffusions; and (4) requires no Girsanov or statistical-physics-based machinery.

1 INTRODUCTION

In large language models (LLMs), undesirable behavior can often emerge very suddenly. For example,
Claude transitioned from coding to browsing pictures of Yellowstone while using a computer (An-
thropic, 2024); the Phi-4 team reported that the probability of correctly answering a math problem
can plummet with a single token (Abdin et al., 2024; Lin et al., 2024); Gemini abruptly threatened a
student who was using it to study (Gemini, 2024); Llama models can be jailbroken by manipulating
the first handful of generated tokens (Qi et al., 2024; Haize Labs, 2024b).

Figure 1: Examples of critical windows across different modalities and samplers, including image
diffusion models (Georgiev et al., 2023), and chain of thought for reasoning and jailbreaks in
LLMs (Abdin et al., 2024; Haize Labs, 2024b).

These abrupt shifts are not unique to autoregressive models. In diffusion models, it has been observed
that certain properties like the presence of an object in the background or the image class emerge in
narrow time intervals, sometimes called critical windows, of the generation process (Ho et al., 2020;
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Meng et al., 2022; Choi et al., 2022; Raya & Ambrogioni, 2023; Georgiev et al., 2023; Sclocchi et al.,
2024; 2025; Biroli et al., 2024; Li & Chen, 2024). Critical windows, more broadly characterizable
as a few steps of the sampling procedure during which features of the final output appear, arise in
many different generative models and data modalities (Figure 1). They are extremely useful from an
interpretability perspective as they represent the steps of the sampler responsible for a given property
of the output (Georgiev et al., 2023; Qi et al., 2024), and have also been used to provide richer
stepwise rewards for preference optimization and finetuning (Abdin et al., 2024; Lin et al., 2024; Qi
et al., 2024). As the applications of generative models proliferate, it is crucial from interpretability,
safety, and capability perspectives to understand how and why these critical windows emerge.

Recently, this phenomenon has received significant attention within the theoretical literature on
diffusion models (Raya & Ambrogioni, 2023; Sclocchi et al., 2024; 2025; Biroli et al., 2024; Li &
Chen, 2024). While existing works do offer predictive theory in the diffusions setting, they either
(A) make strong distributional assumptions or (B) rely heavily on the particulars of diffusion, which
do not straightforwardly extend to autoregressive models. Works in the former category carry out
non-rigorous statistical physics calculations tailored to specific toy models of data like mixtures of
Gaussians or context-free grammars with random production rules (Sclocchi et al., 2025; 2024; Biroli
et al., 2024; Raya & Ambrogioni, 2023). Works in the latter category derive rigorous bounds in
settings without explicit parametric structure, e.g. mixtures of strongly log-concave distributions (Li
& Chen, 2024), but they rely on tools like Girsanov’s theorem which are specific to Gaussian diffusion.
Additionally, the bounds in the latter are generally cruder, losing dimension-dependent factors. We
ask:

Is there a simple, general theory that can explain critical windows across all generative modeling
paradigms and data modalities?

1.1 OUR CONTRIBUTIONS

In this work, we develop a simple theoretical framework that explains critical windows in both
diffusion models and autoregressive models. Our bounds are fully rigorous and show that such
windows arise generically when the model localizes from a larger sub-population to a smaller one,
which we will formalize in the following section. Below we highlight our main contributions:

1. Generality: In comparison to existing work, our theory (Theorem 3.1) makes no distributional
assumptions, requires no statistical physics or stochastic calculus machinery, and removes the
dimension dependence suffered by existing rigorous bounds.

2. Diverse instantiations: To illustrate the flexibility of our bounds, we explicitly compute the
locations and widths of these windows for different generative models and data modalities
(Section 4) and empirically verify our predictions on structured output examples. One such
example we provide elucidates a new connection between critical windows for in-context learning
and the all-or-nothing phenomenon in statistical inference.

3. Insights into hierarchical data: We instantiate our bounds for hierarchically structured models
of data, significantly generalizing results of (Li & Chen, 2024) which only applied to diffusions
and Gaussian mixtures (Section 5). This allows us to show that the hierarchy for a generative
model may resemble the hierarchy of the true data generating process if both come from the same
kind of sampler, but in general may differ.

4. Experimental results: Finally, we empirically demonstrate critical windows for generations
from LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct on 7 different math
and reasoning benchmarks (App. F). Concurrent with (Abdin et al., 2024; Lin et al., 2024), we
observe that critical windows occur during important mistakes in the reasoning patterns of LLMs.

In fact, our theory applies more generally to any stochastic localization sampler (see Section 2.1
for a formal description) Montanari (2023b); Chen & Eldan (2022). Roughly speaking, a stochastic
localization scheme is any generative model given by a time-reversal of a Markovian degradation
process which takes a sample from the target distribution and generates progressively less informative
“observations” of it. In diffusion models, the degradation is a convolution of the original sample
with larger and larger amounts of Gaussian noise. In autoregressive models, the degradation is the
progressive masking of entries from right to left. Importantly, our theory does not use anything about
the specific structure of the sampler beyond the Markovianity of the observation process.
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Finally, our theory provides valuable insights for practitioners. For instance, in Example 4.3 we
provide a model for critical windows in jailbreaks and the Yellowstone example (Anthropic, 2024;
Qi et al., 2024), and argue that training on corrections from critical windows can enable models to
recover from these ‘bad’ modes of behavior. This provides rigorous theoretical justification for Qi
et al. (2024)’s approach for deepening safety alignment through finetuning.

2 TECHNICAL PRELIMINARIES

Probability notation. Given distributions P,Q defined on (Ω,F) with a base measure µ, the total
variation distance is defined as TV(P,Q) ≜ 1

2

∫
|dP − dQ|dµ. For random variables X,Y , we will

also use TV(X,Y ) as shorthand to denote the TV of the measures of X,Y . Let supp(P ) = {x ∈
Ω|dP (x) > 0} denote the support. We will also use the following well-known relationship.

Lemma 2.1. For probability measures P,Q, Ex∼P

[
dQ

dP+dQ

]
≤ 1

2

√
1− TV2(P,Q).

To study feature localization in diffusion and autoregressive models, we consider a forward-reverse
experiment. A forward-reverse experiment considers the amount of “noise” so that running the
generative model starting from the noised generation would still yield a sample with the same
feature. For a diffusion model, this could mean taking an image of a cat, adding Gaussian noise, and
resampling to see if the result is still a cat. For a language model, it could mean truncating a story
about a cat and resampling to check if the story remains about a cat. Now, we will use the language
of stochastic localization to place these analogous experiments for diffusion and language models
within the same framework.

2.1 STOCHASTIC LOCALIZATION SAMPLERS

We formally define the framework for stochastic localization samplers, following Montanari (2023b).
Let X ∼ p be a random variable over Rd.1 We consider a sequence of random variables (Yt)t∈I with
a compact index set I ⊂ [0,∞)

⋃
{∞}. As t increases, Yt becomes less informative and degrades

the original information about X (Definition 2.2). As in Montanari (2023b), we will only consider
complete observation processes, where information about the path (Yt)t∈I uniquely identifies X: for
any measurable set A ⊂ Rn, we require P (X ∈ A|(Yt)t∈I) ∈ {0, 1}. For the sake of simplicity, we
will assume 0,∞ ∈ I and Y∞ is totally uninformative about X .
Definition 2.2. (Yt)t∈I is an observation process with respect to X if for any positive integer k and
sequence t1 < t2 < · · · < tk ∈ I, the sequence X → Yt1 → Yt2 → · · · → Ytk forms a Markov
chain.

Because X → Yt1 → · · · → Ytk is a Markov chain, its reverse Ytk → · · · → Yt1 → X is also a
Markov chain. To any such observation process one can thus associate a generative model as follows:
Definition 2.3. Given observation process (Yt)t∈I and times t1 < · · · < tm = ∞ in I, the associated
stochastic localization sampler is the algorithm that generates a sample for X by first sampling Ytm
and then, for k = m− 1,m− 2, . . . , 0, sampling from the posterior on Ytk conditioned on Ytk+1

by
taking one step in the reverse Markov chain above, and finally sampling X conditioned on Yt0 .

In Appendix B, we formally verify that diffusion and autoregressive models are special cases of this
framework. In practice, one does not have access to the true posteriors of the data distribution and
must learn approximations to the posterior from data. This issue of learning the true distribution is
orthogonal to our work, and thus we define X ∼ p to be the sampler’s distribution. Furthermore, it is
more natural to study the sampler’s distribution for applications such as interpretability or jailbreaks.

Features, mixtures, and sub-mixtures. To capture the notion of a feature of the generation, we
assume that the distribution X ∼ p is a mixture model. Consider a discrete set Θ = {θ1, . . . , θK}
with non-negative weights w1, . . . , wK summing to 1. Each θi ∈ Θ is associated with a probability
density function pθi : Rn → R≥0. To generate a sample X ∼ p, we first draw θ ∼ Cat(Θ, {wi}Ki=1)

and return X ∼ pθ. This yields an overall density of p ≜
∑

θ∈Θ wθp
θ. For any non-empty S ⊂ Θ,

we also define the sub-mixture pS by pS ≜
∑

θ∈S
wθ∑

ϕ∈S wϕ
pθ.

1These definitions are easily carried over to the setting where X lives in a discrete space.
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Here we study a family of observation processes corresponding to observation processes for different
initial distributions of X ∼ pS for S ⊂ Θ. To ensure that we can meaningfully compare the
observation processes within this family, we will assume that the degradation procedure is fixed. To
formalize this intuition, we borrow the language from diffusion models of a forward process, which
degrades X , and a reverse process, which takes a degraded Yt and produces X .

2.2 FORWARD-REVERSE EXPERIMENT

Now we describe the general formalism under which we will study critical windows. Fixing some
t ∈ I and S ⊂ Θ, we start with some X ∼ pS , sample Yt|X from the observation process
conditioning on X , and finally take X ′|Yt from the stochastic localization sampler conditioning on Yt.
The can be understood as a generalization of the forward-reverse experiment in diffusions, originally
studied in (Sclocchi et al., 2025; 2024; Li & Chen, 2024), to arbitrary stochastic localization samplers.

Forward process. For any t ∈ I, define the forward Markov transition kernel P→t (A|X) = P (Yt ∈
A|X). Note the forward Markov transition kernel does not depend on the distribution of X . The fact
that the forward process is agnostic to the specifics of the original distribution is shared by the most
widely used stochastic localization samplers. For example, in diffusion and flow-matching models,
the forward transition is a convolution of X with a Gaussian; in autoregressive language models, it is
masking of the last remaining token in the sequence.

For any t ∈ I and S ⊂ Θ, we let pSt denote the law of Y S
t , where we sample XS ∼ pS and then

sample Y S
t ∼ P→t (·|XS). We omit the Θ in pΘt .

Reverse process. For any t ∈ I and initial distribution X ∼ p, we define the posterior of X given
Yt by P←(A|Yt) = PX∼p(X ∈ A|Yt), that is, the distribution of X given by starting the sampling
process at t ∈ I and Yt instead of ∞ and Y∞. We will also use this notation for the probability
density.

We are ready to describe the main forward-reverse experiment that we will study.

Definition 2.4 (Forward-reverse experiment (Sclocchi et al., 2025; 2024; Li & Chen, 2024)). For
nonempty S ⊂ Θ and T̂ ∈ I, let pS,T̂ be the distribution of XS,T̂ defined by the following procedure:
(1) Sample Y S

T̂
∼ pS

T̂
, i.e. run the forward process for time T̂ starting at the sub-mixture pS ; (2)

Sample XS,T̂ ∼ P←(·|Y S
T̂
), i.e. run the reverse process starting at Y S

T̂
to sample from the posterior

on X .2

We emphasize that in the second step, we run the reverse process with the prior on X given by the
entire distribution p rather than the sub-mixture pS . If we did the latter, the marginal distribution of
the result would simply be pS . Instead, the marginal distribution of XS,T̂ is some distribution whose
relation to p and sub-mixtures thereof is a priori unclear. Intuitively, as T̂ → 0, this distribution
converges to pS , and as T̂ → ∞, this distribution converges to p. The essence of our work is to
understand the transition between these two regimes as one varies T̂ .

3 CHARACTERIZATION OF CRITICAL WINDOWS

Let Sinit ⊂ Θ denote some sub-mixture, corresponding to a sub-population of p that possesses a
certain property. For instance, if p corresponds to some autoregressive model, Sinit might correspond
to sentences which correctly answer a particular math question. Let Starg ⊃ Sinit denote some
sub-mixture containing Sinit. For instance, Starg might correspond to all possible responses to the
math question, including incorrect ones. We are interested in the following question: if we run
the forward-reverse experiment for time T̂ starting from pSinit , is there some range of times for
which the resulting distribution is close to pStarg? That is, can we characterize the T̂ for which
TV(pSinit,T̂ , pStarg) is small? Suppose one could prove that the range of T̂ for which this is the case
is some interval [T0, T1]. This would mean that if the stochastic localization sampler runs for time T

2Note that this equips 2Θ with the structure of a poset, i.e. A ⊂ B if and only if there exists some t ∈ I such
that running the forward-reverse experiment up to t from pA yields pB .

4



Published as a conference paper at ICLR 2025

and ends up at a sample from pSinit , then from time T − T1 to time T − T0 of the generation process,
the sampler has not yet localized the features that distinguish pSinit from the larger sub-mixture pStarg .
However, the sampler has localized the features that distinguish pStarg from pΘ−Starg . When there is
a shift from localizing the features Starg to the features Sinit, we say there is a critical window. We
now formally state and prove our main result.

3.1 MAIN RESULT

For an error parameter 0 < ϵ < 1, define Tst(ϵ) ∈ sup{t ∈ I : TV(p
Starg

t , p
Θ−Starg

t ) ≥ 1 − ϵ2 }
and Tend(ϵ) ∈ inf{t ∈ I : TV(pSinit

t , p
Starg

t ) ≤ ϵ}. This is well-defined for continuous observation
processes.3 When the value of ϵ is understood, we abbreviate the above with Tst and Tend. Our main
result is that in T̂ ∈ I ∩ [Tend, Tst], the distance TV(pSinit,T̂ , pStarg) is small:

Theorem 3.1. Let Sinit ⊂ Starg ⊂ Θ and W =

∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ
. For ϵ > 0, if T̂ ∈ I ∩ [Tend, Tst],

then TV(pSinit,T̂ , pStarg) ≤ ϵ ·
(
1 + max (1,W ) /

√
2
)
.

We defer the proof to Appendix C. Intuitively, Tst represents the largest t for which there is still
separation between Starg and Θ− Starg, and Tend represents the smallest t for which samples from
Sinit, Starg are indistinguishable. Thus, running it for T̂ ∈ I ∩ [Tend, Tst] erases the differences
between samples from Sinit and Starg but preserves the difference between Starg and Θ − Starg,
yielding samples looking like pStarg . Crucially, our proof relies in several places on the Markov
property of stochastic localization samplers, together with the data processing inequality. Note a
similar bound was shown in the context of diffusions by Li & Chen (2024) (see Theorem 7 therein).
Our result is a strict improvement of that bound along several important axes. First, our results apply
to all stochastic localization samplers, not just diffusions. Secondly, Li & Chen (2024) needed to
assume that the components of p were strongly log-concave and that the score, i.e. gradient of the
log-density, of pt was Lipschitz and moment-bounded for all t. Thirdly, their final bound includes a
polynomial dependence on the moments of the score, which scale with the dimension d; in contrast,
our final bound is independent of d. With Theorem 3.1 in place, we are ready to formally define
critical windows. These capture the moments where we transition from sampling from a sub-mixture
to a subset of that sub-mixture.
Definition 3.2. Define Safter ⊂ Sbefore ⊂ Θ. For Sbefore, we define Tbefore = inf{t ∈ I :

TV(pSafter
t , pSbefore

t ) ≤ ϵ and TV(pSbefore
t , pΘ−Sbefore

t ) ≥ 1 − ϵ2} (Sinit ≜ Safter;Starg ≜ Sbefore).
For Safter, consider Tafter = sup{t ∈ I : TV(pSafter

t , pΘ−Safter
t ) ≥ 1 − ϵ2} (Sinit, Starg ≜ Safter).

A critical window is the interval [Tafter, Tbefore], where there is a transition from sampling from
Sbefore to the smaller subset Safter.

T

P (Safter)

Tafter Tbefore

Safter critical window Sbefore

Figure 2: Illustration of the definition of a crit-
ical window for a simple mixture of two Gaus-
sians, with Sbefore ≜ {N (µ, Id),N (−µ, Id)} and
Safter ≜ {N (µ, Id)}.

4 EXAMPLES OF CRITICAL WINDOWS

In this section, we analytically compute Tbefore, Tafter for diverse stochastic localization samplers
and models of data, including diffusion and autoregression processes. In these natural settings, the
critical window is small and has size which shrinks or does not depend on the dimension or context
length. 4

3See Remark C.1 for a more thorough discussion.
4Proofs are deferred to Appendix D.
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4.1 DIFFUSION

We first consider two examples of Gaussian Mixture Models and a diffusion model. We show that
with two isotropic Gaussians, the critical window appears around a single point, ln ∥µ∥, with width
independent of the dimension.
Example 4.1. [Two Isotropic Gaussians] Let Θ = {±1}, p+1 = N (µ, Id), p−1 = N (−µ, Id). Then,
we have a critical window transitioning from sampling from both components to the component +1

between Tbefore = ln ∥µ∥ + ln 2 + ln 1/ϵ and Tafter = ln ∥µ∥ − ln ln 1
2ϵ2 . When T̂ ≤ Tafter, then

TV(p+1,T̂ , p+1) ≲ ϵ. When T̂ ≥ Tbefore, TV(p+1,T̂ , p) ≲ ϵ.

For an isotropic Gaussian mixture model with randomly selected means, the critical window between
sampling from one component to the entire mixture is also narrow. Note that we derive dimension-free
widths in Example 4.2, an improvement over (Li & Chen, 2024) who had a ln ln d dependence on
dimension for isotropic Gaussians.
Example 4.2. [Random mean spherical Gaussians] We first sample µi ∼ N (0, Id) for i ∈ [K] i.i.d.
and let Θ = {N (µi, Id)}i∈[K]. We let Sbefore = Θ and Safter = {µ1}. Then, we can compute
Tbefore = maxj∈[K] ln ∥µi − µj∥+ ln(1/ϵ) and Tafter = minj∈[K],i̸=j ln ∥µi − µj∥ − 1

2 ln 8 ln
K
ϵ .

Furthermore, with high probability over the selection of the means, Tbefore − Tafter = OK,ϵ(1) as
d → ∞.

Example D.5 of a discrete diffusion model, where Tbefore − Tafter → 0, is deferred to Appendix D.5.

4.2 AUTOREGRESSION

We first present a theoretical model for important critical windows in LLMs, e.g., jailbreaks that
occur over the first generated tokens and the Yellowstone example (Anthropic, 2024; Qi et al., 2024).
Example 4.3. [“Critical Tokens” for Jailbreaks and Yellowstone (Qi et al., 2024; Anthropic, 2024)]
Again consider an autoregressive language model, with A denoting the vocabulary, p ∈ AT , a
forward process indexed by I = {0, 1, 2, . . . , T}, and Yt to be the first T − t tokens of X . Let
Θ = {θharmful, θsafe} (or {θGoogling Yellowstone, θcoding}). We assume that these two modes do not differ
until some T − T ′ ∈ I. Between T − T ′ and T − T ′ − k, the distributions become nearly disjoint,
P
x∼pθharmful

T−T ′−k

(
x ∈ supp(pθsafe

T−T ′−k)
)
≤ ϵ. In the jailbreaking example, T ′ = 0 and they are disjoint

because the first tokens generated in the safe mode is always some form of refusal. In the Yellowstone
example, they are disjoint the first time the agent decides to Google Yellowstone pictures. Then, on
component θharmful we have the critical window Tbefore = T − T ′ and Tafter = T − T ′ − k.

Notice that we can actually mitigate the effect of these critical windows by finetuning on examples
of corrections to increase P

x∼pθharmful
T−T ′−k

(
x ∈ supp(pθsafe

T−T ′−k)
)

. This explains the effectiveness of

finetuning on corrections in (Qi et al., 2024).
Remark 4.4. The quantity that measures probability of mode-switching, pθharmful/p, suggests using a
likelihood ratio to distinguish between harmful and benign prompts. In App. G.1.2, we test a class
of likelihood ratio methods that obtain recall 5-10× the false positive rate for 5 different types of
jailbreaks (Table 2).

Example 4.5. [Math problem-solving as a random walk] We model solving a math problem as taking
a random walk on Z with stepsize 1 of length T . If the random walk hits +A, then it has ‘solved‘ the
problem; if the random walk hits −A, then it has obtained an incorrect solution. Assume that we have
two modes: a strong problem solving mode (denoted +1), which takes a +1 step with probability
0.5 + ∆, and a weak problem solving mode (denoted −1), which takes a +1 step with probability
0.5−∆. Assuming that ln(2/ϵ2)

2∆2 < A and ϵ2 < 10−3(0.5−∆)(0.5 + ∆), there is a critical window

for the strong problem solving window of Tbefore = T − ϵ2

∆2 + 2 and Tafter = T − ln(2/ϵ2)
2∆2 . Note

the critical window has width Θ(1/∆2) independent of T .

We defer an example of a critical window for an autoregressive model which expresses the outputs as
emissions from a random walk of an underlying concept variable, akin to the model in (Arora et al.,
2019), to Appendix D.2.1.
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4.2.1 IN-CONTEXT LEARNING

Autoregressive critical windows can also be applied to describe in-context learning. In particular,
we can capture the idea that with sufficiently many in-context examples, we learn the θ∗ ∈ Θ that
generated the transitions for in-context examples, with a sample complexity in terms of Tafter.
Example 4.6 (Informal, see Example D.16). Consider an in-context learning setup, where the
context [x1, y1, o, . . . , xT+1, yT+1, o] consists of question-answer pairs (xi, yi), delimiters o, and
xi → yi sampled from pθ

∗
for some θ∗ ∈ Θ. In the forward-reverse experiment, we truncate it

to [x1, y1, o, . . . , xT+1], and then resample with p to produce [x1, . . . , xT+1, ỹT+1, o]. The total
variation between the sequences [x1, y1, o, . . . , xT+1] and [x1, . . . , xT+1, ỹT+1, o] can be viewed
as the average-case error of the in-context learner and can be bounded within our critical windows
framework. We have Tafter = 3T + 3−Oϵ(1), with Oϵ(1) independent of T (Safter ≜ {θ∗}). Note
that Tafter is the order of how many samples that can be erased so that we still are able to learn
θ∗ ∈ Θ.

One might ask if there is a Tbefore for in-context learning, a threshold such that it is impossible to
distinguish between Safter, Sbefore with that many samples. In the next section, we will provide an
example of a Tbefore with the all-or-nothing phase transition.

4.2.2 ALL-OR-NOTHING PHASE TRANSITION

Here we elucidate a formal connection between the critical windows phenomenon in in-context
learning and the all-or-nothing phenomenon (see Appendix D.4 for details). To begin, we first define
the notions of strong and weak detection:
Definition 4.7. Let (Ns) be an increasing sequence of integers. Given sequences of distributions
(ps), (qs) over z ∈ RNs , a sequence of test statistics (As : RNs → R) with threshold (τs) achieves
strong (resp. weak) detection if lim sups→∞{Prz∼ps

[As(z) < τs] + Prz∼qs [As(z) ≥ τs]} = 0
(resp. lim sups→∞{Prz∼ps

[As(z) < τs] + Prz∼qs [As(z) ≥ τs]} < 1).

Consider the following Bayesian inference problem, given by a joint distribution π over (θ, z) ∈
Rn × Rm. Nature samples unknown signal θ ∈ Rn from πθ. Given sample size N , we receive
observations {zi}Ni=1 drawn i.i.d. from πz|θ; the goal is to infer θ from these observations. Let π(N)

denote the distribution over {zi}Ni=1, the mixture of product measures parametrized by θ.

Definition 4.8. Let (πs) be a sequence of inference tasks over Rns×Rms and (πnulls) be a sequence of
distributions over Rms . (πs) exhibits an all-or-nothing phase transition at threshold (Ns) with respect
to null models (πnulls) if: (1) For any β < 1: weak detection between (π(βNs)) and ((πnulls)⊗βNs) is
information-theoretically impossible and (2) For any β > 1: strong detection between the planted
model (π(βNs)) and the null model ((πnulls)⊗βNs) is information-theoretically possible.

All-or-nothing phase transitions have been established for a number of natural inference tasks like
sparse linear regression (Reeves et al., 2019; Gamarnik & Zadik, 2019), sparse PCA (Niles-Weed &
Zadik, 2020), generalized linear models (Barbier et al., 2020), group testing (Truong et al., 2021;
Coja-Oghlan et al., 2022), linear and phase retrieval models (Scarlett & Cevher, 2016; Truong &
Scarlett, 2020), planted subgraphs (Mossel et al., 2023), and planted Gaussian perceptron (Niles-Weed
& Zadik, 2023).
Theorem 4.9 (Informal, see Theorem D.17 (Reeves et al., 2019)). In an instance of sparse linear
regression, if one receives at most 0.99N∗s samples (xi, yi), then it is information-theoretically
impossible to tell whether these samples were generated with respect to some ground truth signal θ,
or whether the yi’s were generated completely independently from the xi’s; on the other hand, if one
receives at least 1.01N∗s samples, then one can perfectly distinguish between these two scenarios.

We can instantiate the all-or-nothing phenomenon as a critical window for in-context learning.
Definition 4.10. To any inference task π, null model πnull, and sequence length N , we can associate
the following in-context learning task. Let Θ = Θsignal ⊔ {NULL} where Θsignal ≜ supp(πθ). Given
θ ∈ supp(πθ), let pθ(N) denote the distribution over sequences (z1, . . . , zN , ?, θ) where z1, . . . , zN

are i.i.d. samples from pz|θ. Let pnull(N) denote the distribution over observations (z1, . . . , zN , ?,NULL)

where z1, . . . , zN are i.i.d. samples from πnull. We then take pΘ(N) ≜ Eθ∼ 1
2πθ+

1
2 δNULL

pθ(N).
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Theorem 4.11 (Informal, see Theorem D.18). Consider a sequence of N in-context examples
generated by some real signal θ and index s. Masking all but (1− δ)N∗s in-context examples and
resampling according to the full model pΘs will yield sequence with an equal chance of having
been generated by a signal or the null. If we mask all but (1 + δ)N∗s examples and resample, the
distribution over the resulting sequence is the same as the original sequence. In other words, we have
Tbefore ≜ N + 2− (1− δ)N∗s and Tafter ≜ N + 2− (1 + δ)N∗s .

5 HIERARCHIES IN STOCHASTIC LOCALIZATION SAMPLERS

Herein we propose a theory of hierarchical sampling within our critical windows framework.5 It is
motivated by the observation that a single trajectory can contain multiple critical windows (Figure 3),
each splitting a sub-population into smaller sub-populations. This hierarchy is naturally represented
as a tree: the root signifies that all sub-populations are indistinguishable under enough noise, while the
leafs represent distinct modes in p. A path from the root to a leaf captures the progressive refinement
of the original distribution p into increasingly specific components. To formalize this, we introduce
the concept of an ϵ-mixture tree, which decomposes p into a hierarchical structure.

Definition 5.1 (Informal, see Definition E.1). For an error term ϵ > 0 and mixture model p, an
ϵ-mixture tree is a tuple (T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ,Subset,NoiseAmount). T = (V,E) is a
tree associated with a function Subset: V → 2Θ\{∅}, which maps vertices to subsets of Θ and
NoiseAmount: V → R≥0, which characterizes the noises levels for different aggregations in the
mixture tree. If u is a parent of v, Subset(v) ⊂ Subset(u) for u ∈ V ; NoiseAmount(u) is defined
such that all pθNoiseAmount(u) for θ ∈ Subset(u) overlap greatly and for pSubset(u)

NoiseAmount(u), p
Θ−Subset(u)
NoiseAmount(u)

have negligible overlap.

We emphasize that this framework is highly general, solely defined with the initial distribution p
and the forward process. It strictly expands the definition in (Li & Chen, 2024), which focused on
hierarchies of isotropic Gaussians, to all localization-based samplers and mixture models. We can
also relate it to the sequences of critical windows we observe in Figure 3, capturing the idea that each
critical window represents the refinement into smaller subpopulations of p.

Corollary 5.2. Consider an ϵ-mixture tree. For θi ∈ Θ, consider the path u1, u2, u3, . . . , uH′ ∈ V
where u1 is the leaf node with θi ∈ Subset(u1) and uH′ is the root. There is a sequence of times
T1 < T2 < · · · < TH′ with TV(p{i},Tℓ , pSubset(uℓ)) ≲w ϵ.

We first observe that the hierarchy of two samplers with the same forward process are identical if
the samplers agree on sub-populations. Assume we have {pθ}θ∈Θ (e.g. the true distribution) and
{qθ}θ∈Θ (e.g. a generative model), where qθ ≈ pθ across all θ ∈ Θ with the same {wθ}θ∈Θ.

Corollary 5.3. Consider an ϵ-mixture tree (T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ, Subset,NoiseAmount).
Suppose we have another distribution {qθ}θ∈Θ such that TV(pθ, qθ) ≤ δ/2 for all θ ∈ Θ. Then we
have ϵ+

√
δ-mixture tree given by (T, {P→(·|·)}, I,Θ, {qθ}θ∈Θ, Subset,NoiseAmount).

However, we can define arbitrary hierarchies by choosing the right forward process.
Example 5.4. Consider a set of alphabets {Ai}di=1 and define Θ = {(ai)di=1 : ∀i ∈ [d], ai ∈ Ai}
and pθi = δθi . Let I = [0, 1, 2, . . . , d]. and for any permutation i1, i2, . . . , id of [d], define a forward
process such that at t ∈ I, we mask all id, id−1, . . . , id−t. This constructs a hierarchy where the
values for i1, i2, . . . , id are decided in that order.

Finally, we note that hierarchies of diffusions are in general shallower than for autoregressive models.
The hierarchy for a mixture of Gaussians has depth O(1) (Example 4.2), as the forward process
simultaneously contracts all distances with a similar dependence on d. For autoregressive models,
depth can scale linearly with the context length (Example 5.4). We speculate that this could mean
autoregressive models can learn more complex feature hierarchies than diffusions.

5Details in Appendix E.
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ETHICS STATEMENT

While this paper is largely theoretical in nature, it does describe a theory for jailbreaks which could
impact model safety in the future. We hope the insights in this manuscript about jailbreaks lead to
better alignment strategies and training methods.
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computes the critical time at which the reverse process specializes to one component for a mixture
of two spherical Gaussians using a Landau-type perturbative calculation, and Sclocchi et al. (2025;
2024) passed through a mean-field approximation to compute the critical windows for a random
hierarchy model (Petrini et al., 2023), a multi-level context-free grammar with random production
rules. Our work is most similar to (Li & Chen, 2024), which derives rigorous, non-asymptotic bounds
analogous to our Theorem 3.1 for mixtures of log-concave distributions with Girsanov’s theorem
(Chen et al., 2023).

In contrast to existing work, our theory applies to all localization-based samplers, including diffusion
and autoregressive language models, and imposes no functional form or log-concavity assumptions
on the distribution. We also improve upon the main theorem of (Li & Chen, 2024) by obtaining
dimension-independent error bounds. Using our improved theorem, we can extend the definition
of hierarchy of critical windows from Li & Chen (2024) to all localization-based samplers and, for
continuous diffusions, to distributions beyond mixtures of Gaussians.

Forward-reverse experiment. Here we study the forward-reverse experiment, also explored in
(Li & Chen, 2024; Sclocchi et al., 2025; 2024), to study critical windows. This is very similar to the
framework studied in Georgiev et al. (2023); Biroli et al. (2024); Raya & Ambrogioni (2023) in which
one imagines re-running the reverse process at an intermediate point Yt. Both perspectives provide
rigorous frameworks to understand critical windows, and in the case where the forward process is
deterministic, i.e. autoregressive language models, these frameworks are equivalent.

Stochastic localization. El Alaoui et al. (2022); Montanari & Wu (2023); Alaoui et al. (2023);
Montanari (2023a); Huang et al. (2024) applied Eldan’s stochastic localization method (Eldan, 2013;
2020) to develop new sampling algorithms for certain distributions inspired by models in statistical
physics. Our work uses the stochastic localization framework (Montanari, 2023b; Holderrieth et al.,
2025) to understand an empirical phenomenon across different localization-based samplers widely
used in practice. Note that our formulation of stochastic localization differs slightly in several minor
ways. First, in that work the index set I is not necessarily compact; while we assume compactness of
I, this still encapsulates most applications of generative models, in which the sample X is realized in
finitely many steps. Secondly, our indexing of time is the reverse of that of in (Montanari, 2023b); in
that work, the Yt’s become more informative about X as t increases. We make this choice purely for
cosmetic reasons.

Chain of thought. (Lin et al., 2024; Abdin et al., 2024) also observed that the presence of critical
windows in the chain of thought of math and reasoning tasks and their significance in leading the
model to incorrect outputs, concurrent with our results in Figure 5. They then used them to provide
rewards or data for a preference optimization algorithm to improve reasoning performance. (Lin
et al., 2024) called them critical tokens and utilized a contrastive estimation algorithm to identify
critical windows and provide token-level rewards. The Phi-4 Technical report called them pivotal
tokens, developed a binary-search based algorithm to identify the location of critical windows, and
used them to produce contrasting pairs for preference optimization (Abdin et al., 2024). Using our
broad theoretical perspective, we provide new insight into critical windows of these kinds and view
our work as corroborating and extending these empirical works.

Jailbreaks. Existing work on jailbreaks has studied the appearance of critical windows in the first
few generated tokens (Qi et al., 2024; Zhang & Wu, 2024; He et al., 2024; Lin et al., 2023). Our
theory provides a simple explanation for when jailbreaks occur: when the unaligned component
assigns a much higher probability to the current text than the aligned component, then the model is
jailbroken. This generalizes the explanation from Qi et al. (2024) (see Example 4.3 for our particular
formalism of their insights). It also explains the success of perplexity-based monitors for jailbreaks
(Alon & Kamfonas, 2023), which monitor for a low probability of the context and generation. We
view our work as providing a rigorous mathematical framework for jailbreaks, as well as highlighting
the important role off-distribution contexts play in eliciting harmful behaviors; we also develop a
novel jailbreak from our framework (Section G.1.2 ) similar to the adversarial contrast decoding
method proposed by (Zhao et al., 2024), which also uses a likelihood ratio between an unaligned and
an aligned model. However, we use a jailbroken and non-jailbroken pair of models instead of two
versions of the model with different prompts.
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Theory of in-context learning for language models. With respect to theory for language models,
our results are most closely related to the Bayesian framework for in-context learning (Xie et al.,
2022; Akyürek et al., 2023; Garg et al., 2023; Zhang et al., 2023; Arora et al., 2024). For example,
(Xie et al., 2022) also considered a mixture model of topics and showed that language models can
learn the underlying class despite in-context learning and training distribution mismatch. We view
this manuscript as connecting the Bayesian framework for in-context learning to other empirical
phenomena observed in language models and diffusion models and the all-or-nothing phenomenon.

B EXAMPLES OF STOCHASTIC LOCALIZATION

In this section, we present several kinds of generative models within the stochastic localization
framework and their forward and reverse processes.
Example B.1 (Continuous Diffusion Models (Li & Chen, 2024)). For continuous diffusion models,
the forward process progressively degrades samples X ∼ p into pure Gaussian noise through scaling
and convolution with Gaussian noise. It is the Ornstein-Uhlenbeck process, a stochastic process
(Xt)t≥0 given by the following stochastic differential equation (SDE),

dXt = −Xt dt+
√
2dBt , X0 ∼ p ,

where (Bt)t≥0 is a standard Brownian motion. Let qt ≜ law(Xt) for t ≥ 0, and observe that as
t → ∞, qt converges exponentially quickly to the standard Gaussian distribution N (0, Id). Assume
we end the forward process at time T ≥ 0. For the reverse process (X←t )t∈[0,T ], we employ the
reversal of the Ornstein-Uhlenbeck SDE, given by

dX←t = {X←t + 2∇ ln qT−t(X
←
t )} dt+

√
2 dBt , X←T ∼ qT

where here (Bt)t≥0 is also a Brownian motion. Defining (Yt)t∈I = (Xt)t∈I, we see that the forward
process satisfies the Markov property in Definition 2.2, and the information from the original sample
X0 is degraded by more steps in the SDE. Furthermore, the reverse SDE with parameterized by
the score function ∇ ln qT−t(X

←
t ) can be viewed as successively sampling from the posteriors via

Tweedie’s formula.
Example B.2 (Discrete Diffusion Models (Lou et al., 2024)). Consider a set A denoting the vocabulary
and let p ∈ AT , and consider a forward process with index set I = [0,K] ∪ {∞}, Y0 = X , and
Yt ∈ AT defined in the limit as follows,

p(Yt+∆t = a | Yt = b) = δab +Qt(b, a)∆t+O(∆t2),

where Qt ∈ Rn×n are diffusion matrices with nonnegative non-diagonal entries and columns which
sum to 0. (Yt)t∈I is also a Markov chain and as t → ∞, Yt is degraded until it is eventually
uninformative about the original sample Y0.
Example B.3 (Autoregressive Language Models). Consider a set A denoting the vocabulary and
let p ∈ AT , and consider a forward process with index set I = {0, 1, 2, . . . , T}, Y0 = X , and
Yt ∈ AT−t. For t ∈ I, we let Yt equal the last first T − t tokens of X . Clearly this is a Markov
Chain, and the reverse process is equivalent to next-token prediction.

C DEFERRED DETAILS FROM SECTION 3

Remark C.1 (Technicality in defining Tst, Tend). For general stochastic localization schemes, we
can only ask that Tst(ϵ) ∈ {r ∈ I : TV(p

Starg

t , p
Θ−Starg

t ) ≥ 1 − ϵ2 } and Tend(ϵ) ∈ {t ∈ I :

TV(pSinit
t , p

Starg

t ) ≤ ϵ} instead of sup, inf like (Li & Chen, 2024), because the sets {t ∈ I :

TV(p
Starg

t , p
Θ−Starg

t ) ≥ 1− ϵ2 }, {t ∈ I : TV(pSinit
t , p

Starg

t ) ≤ ϵ} may not be closed for observation
processes which are discontinuous. For autoregressive language models and continuous diffusion, the
observation process is continuous, so we will elide these technicalities.

Theorem 3.1. Let Sinit ⊂ Starg ⊂ Θ and W =

∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ
. For ϵ > 0, if T̂ ∈ I ∩ [Tend, Tst],

then TV(pSinit,T̂ , pStarg) ≤ ϵ ·
(
1 + max (1,W ) /

√
2
)
.
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For nonempty S ⊂ Θ and t ∈ I, we define P←(·|Yt, S) to be the posterior of X with the prior
X ∼ pS . We similarly define P←t→Θ(·|Yt) and P←t→Θ(·|Yt, S) to be the posterior of θ conditioning on
Yt with X ∼ p or X ∼ pS , respectively. When S = {i}, we exclude the braces.

Proof of Theorem 3.1. By the triangle inequality, we can write TV(pSinit,T̂ , pStarg) ≤
TV(pSinit,T̂ , pStarg,T̂ )︸ ︷︷ ︸

(I)

+TV(pStarg,T̂ , pStarg)︸ ︷︷ ︸
(II)

. pSinit,T̂ and pStarg,T̂ are the laws of the posterior

P←(·|·) but applied to YT̂ with distributions pSinit

T̂
and p

Starg

T̂
. Using the Markov property of

localization-based samplers (Definition 2.2), we apply the data processing inequality and the definition
of Tend to bound (I) via TV(pSinit,T̂ , pStarg,T̂ ) ≤ TV(pSinit

Tend
, p

Starg

Tend
) ≤ ϵ.

To bound (II), we apply the definition of TV and a coupling argument. By the law of total probability
we can express pStarg,T̂ (x) = E[P←(x|YT̂ )] and pStarg(x) = E[P←(x|YT̂ , Starg)] for YT̂ ∼ p

Starg

T̂
,

as these observation processes have the same distribution at index T̂ . Thus, TV(pStarg,T̂ , pStarg) =
1
2

∫ ∣∣∣pStarg,T̂ (x)− pStarg(x)
∣∣∣ dx = 1

2

∫ ∣∣E[P←(x|YT̂ )]− E[P←(x|YT̂ , Starg)]
∣∣ dx. By Jensen’s in-

equality and Fubini’s theorem, we bring the expectation outside the integral, TV(pStarg,T̂ , pStarg) ≤
1
2

∫
E
[∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣] dx = 1
2E
[∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣ dx] .
Combining Lemmas C.2 and C.3 (proved below), we find TV(pStarg,T̂ , pStarg) ≤

max (1,W )E
[

p
Θ−Starg

T̂
(YT̂ )

p
Θ−Starg

T̂
(YT̂ )+p

Starg

T̂
(YT̂ )

]
. Then, finally applying Lemma 2.1, we are

able to bound the total variation in terms of ϵ, obtaining TV(pStarg,T̂ , pStarg) ≤
1
2 max (1,W )

√
1− TV2(p

Θ−Starg

T̂
, p

Starg

T̂
) ≤

√
2
2 max (1,W ) ϵ. Combining our bounds on

(I) and (II) achieves the desired result.

For Theorem 3.1, we employ the following two helper lemmas.

Lemma C.2. By applying the law of total probability and Bayes’ rule, we can show for YT̂ ∈
supp(p

Starg

T̂
), ∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣ dx ≤ 2
∑

θ∈Θ−Starg

P←t→Θ(θ|YT̂ ).

Proof. We can rewrite P←(x|YT̂ ), P
←(x|YT̂ , Starg) using the law of total probability and Bayes’

rule.

P←(x|YT̂ ) =
∑
θ∈Θ

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)

P←(x|YT̂ , Starg) =
∑

θ∈Starg

P←t→Θ(θ|YT̂ , Starg)P
←(x|YT̂ , θ) =

∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)∑

θ∈Starg
P←t→Θ(θ|YT̂ )

.

Note that the second equality on the second line follows from the fact that for all θ ∈ Starg, the
posteriors P←t→Θ(·|Yt) ∝ P←t→Θ(·|Yt, Starg) by the same normalization constant. Therefore the
difference can be written as∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣ dx
=

∫ ∣∣∣∣∣∑
θ∈Θ

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)−

∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)∑

θ∈Starg
P←t→Θ(θ|YT̂ )

∣∣∣∣∣ dx
=

∫ ∣∣∣∣∣
(
1− 1∑

θ∈Starg
P←t→Θ(θ|YT̂ )

) ∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ) +

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)

∣∣∣∣∣dx.
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If
∑

θ∈Θ−Starg
P←t→Θ(θ|YT̂ ) = 0, then the above is equal to 0 and we are done. If it is non-zero,

we can factor out
∑

θ∈Θ−Starg
P←t→Θ(θ|YT̂ ) term, which allows us to write everything in terms of

posteriors with respect to Θ− Starg and Starg,∫ ∣∣∣∣∣
(
1− 1∑

θ∈Starg
P←t→Θ(θ|YT̂ )

) ∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ) +

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)

∣∣∣∣∣dx
=

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ )

∫ ∣∣P←(x|YT̂ , Starg)− P←(x|YT̂ ,Θ− Starg)
∣∣ dx

Employing the trivial observation that∫ ∣∣P←(x|YT̂ , Starg)− P←(x|YT̂ ,Θ− Starg)
∣∣ dx

≤
∫

P←(x|YT̂ , Starg) + P←(x|YT̂ ,Θ− Starg)dx ≤ 2,

we have ∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)
∣∣ dx ≤ 2

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ ).

Lemma C.3. By Bayes’s rule, we can derive for YT̂ ∈ supp(pT̂ ),∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ ) ≤ max (1,W )
p
Θ−Starg

T̂
(YT̂ )

p
Θ−Starg

T̂
(YT̂ ) + p

Starg

T̂
(YT̂ )

Proof. We obtain through Bayes’ rule,∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ ) =

∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ wθpθT̂ (YT̂ )
.

We divide by the same normalizing constant
∑

θ∈Θ−Starg
wθ to obtain

∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ wθpθT̂ (YT̂ )
=

∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ−Starg
wθ∑

θ∈Θ−Starg
wθpθ

T̂
(YT̂ )∑

θ∈Θ−Starg
wθ

+

∑
θ∈Starg

wθpθ
T̂
(YT̂ )∑

θ∈Starg
wθ

·
∑

θ∈Starg
wθ∑

θ∈Θ−Starg
wθ

≤ max

(
1,

∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ

)
p
Θ−Starg

T̂
(YT̂ )

p
Θ−Starg

T̂
(YT̂ ) + p

Starg

T̂
(YT̂ )

.

D OMITTED DETAILS FROM SECTION 4

D.1 DIFFUSIONS

Here we use an alternative f -divergence to characterize the critical windows, the squared Hellinger
distance, defined as H2(P,Q) ≜

∫
(
√
dP −

√
dQ)2dµ, because there are explicit computations for

the Hellinger distance for mixtures of Gaussians. We similarly exploit the following ratio inequality
akin to Lemma 2.1,
Lemma D.1. For probability measures P,Q,

Ex∼P

[
dQ

dP + dQ

]
≤ 1

2
(1− 1

2
H2(P,Q)).
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We apply the following well-known formula for the Hellinger distance between two Gaussians.

Lemma D.2. We have

1−1

2
H2(N (µP ,ΣP ),N (µQ,ΣQ)) =

|ΣP |1/4|ΣQ|1/4∣∣∣ΣP+ΣQ

2

∣∣∣1/2 exp

{
−1

8
(µP − µQ)

⊤
[
ΣP +ΣQ

2

]−1
(µP − µQ)

}
.

Example D.3. [Two Isotropic Gaussians] Let Θ = {±1}, p+1 = N (µ, Id), p−1 = N (−µ, Id). Then,
we have a critical window transitioning from sampling from both components to the component +1

between Tbefore = ln ∥µ∥ + ln 2 + ln 1/ϵ and Tafter = ln ∥µ∥ − ln ln 1
2ϵ2 . When T̂ ≤ Tafter, then

TV(p+1,T̂ , p+1) ≲ ϵ. When T̂ ≥ Tbefore, TV(p+1,T̂ , p) ≲ ϵ.

Proof. The proof for Tbefore, a simple application of Pinsker’s inequality, can be found in Appendix
B.1 of (Li & Chen, 2024). Directly applying the new Master Theorem 3.1 to Tafter, we need only
show that

√
2

2

(
1− 1

2
H2(p+1

Tafter
, p−1Tafter

)

)
≤

√
2

2
exp(−1

2
∥µ∥2e−2t) ≤ ϵ.

Example D.4. [Random mean spherical Gaussians] We first sample µi ∼ N (0, Id) for i ∈ [K] i.i.d.
and let Θ = {N (µi, Id)}i∈[K]. We let Sbefore = Θ and Safter = {µ1}. Then, we can compute
Tbefore = maxj∈[K] ln ∥µi − µj∥+ ln(1/ϵ) and Tafter = minj∈[K],i̸=j ln ∥µi − µj∥ − 1

2 ln 8 ln
K
ϵ .

Furthermore, with high probability over the selection of the means, Tbefore − Tafter = OK,ϵ(1) as
d → ∞.

Proof. The proof for Tbefore can be found in Section 5.2 of (Li & Chen, 2024). We need to slightly
modify the proof of Theorem 3.1 so that we can write the desired bound for Tafter in terms of the
Hellinger distance of individual components. We use the same notation. By convexity, we can bound

E
YT̂∼p

Starg

T̂

[∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ wθpθT̂ (YT̂ )

]
≤

∑
θ∈Θ−Starg

wθ

∑
ϕ∈Starg

wϕEYT̂∼p
ϕ

T̂

[
pθ
T̂
(YT̂ )

wθpθT̂ (YT̂ ) + wϕp
ϕ

T̂
(YT̂ )

]

≤ K max
θ∈Θ−Starg,ϕ∈Starg

(
1− 1

2
H2(pθ

T̂
, pϕ

T̂
)

)
≤ ϵ,

when T̂ ≤ Tafter. To conclude the second part of the theorem, observe that by concentration
of measure (e.g., Theorem 3.1.1 from (Vershynin)) and a union bound, there exists a constant
T independent of d such that ∥µj∥ ∈ [

√
d − T,

√
d + T ] for all j ∈ [K] with high probability.

Furthermore, by known Gaussian Suprema inequalities, we can also assume that there exists a
constant T ′ independent of d such that |⟨µi, µj⟩| ≤ T ′∥µi∥ (Lemma 5.1 from (van Handel, 2016)).
Thus, we can conclude that

max
j∈[K]

∥µi − µj∥2 ≤ 2d+ 4T
√
d+ 2T 2 + 2T ′(

√
d+ T ) = O(d).

max
j∈[K]

∥µi − µj∥2 ≥ 2d− 4T
√
d+ 2T 2 − 2T ′(

√
d+ T ) = Ω(d).

The difference in log scale is thus constant,

1

2

(
ln max

j∈[K]
∥µi − µj∥2 − ln min

j∈[K],i̸=j
∥µi − µj∥2

)
= OK,ϵ(1)

Example D.5. [Two Dirac delta functions with a random masking procedure] Let p ∈ {±1}T , and
consider a forward process with index set I = [0, 1], Y0 = X , and Yt ∈ {±1, [MASKED]}T . For
t ∈ I, we let all the value at index i ∈ [T ] be set to [MASKED] with probability t independently. For
a mixture of two Dirac delta functions, we can express the critical window in terms of the Hamming
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distance between the corresponding strings. Let Θ = {θ±1}, ℓ±1 ∈ {±1}T , pθ±1 ∼ δℓ±1
, w±1 = 1

2 .
Then, on component 1 we have the critical window

Tbefore = exp

[
ln(1− ϵ)

dH(δℓ1 , δℓ−1)

]
, Tafter = exp

[
ln ϵ2

dH(δℓ1 , δℓ−1)

]
When T̂ ≤ Tafter, then TV(p1,T̂ , p1) ≲ ϵ. When T̂ ≥ Tbefore, TV(p1,T̂ , p) ≲ ϵ. For sufficiently
large dH(δℓ1 , δℓ−1

), the window size Tbefore−Tafter = O
(

1
dH(δℓ1 ,δℓ−1

)

)
. If dH(δℓ1 , δℓ−1

) increases
with T , then the width of the critical window compared to the width of the index set becomes
negligible.

Proof. To prove TV(p1,T̂ , p1) ≲ ϵ when T̂ ≤ Tafter, observe that when T̂ ≤ Tafter, the probability
that all the differing elements between ℓ1, ℓ−1 are masked is exactly T̂ dH(δℓ1 ,δℓ−1

) ≤ ϵ2. That means
that there exists a set A with p+1

T̂
(A) ≥ 1− ϵ2 and p−1

T̂
(A) = 0, so by the definition of total variation,

TV(p+1

T̂
, p−1

T̂
) ≥ 1 − ϵ2. Obviously, TV(p+1

T̂
, p+1

T̂
) = 0 as well, so by Theorem 3.1, we obtain

TV(p1,T̂ , p1) ≲ ϵ. To prove that TV(p1,T̂ , p{±1}) ≤ ϵ when T̂ ≥ Tbefore, we need only show that
TV(p+1

T̂
, pT̂ ) ≤ ϵ. By Lemma 15 of (Li & Chen, 2024), it suffices to show that TV(p+1

T̂
, p−1

T̂
) ≤ ϵ

by a simple triangle inequality argument. Consider the set A ⊂ {±1, [MASKED]}T such that
TV(p+1

T̂
, p−1

T̂
) = p+1

T̂
(A) − p−1

T̂
(A). Consider the set B = supp(p+1

T̂
) ∩ supp(p−1

T̂
). For any

x ∈ B, we know p+1

T̂
(x) = p−1

T̂
(x) because the same number of tokens need to be masked from ℓ±1.

This means we have p+1

T̂
(B) = p−1

T̂
(B) ≥ T̂ dH(ℓ+1,ℓ−1) ≥ 1 − ϵ. Because p+1

T̂
(A) − p−1

T̂
(A) =

p+1

T̂
(A−B)−p−1

T̂
(A−B), we have p+1

T̂
(A)−p−1

T̂
(A) ≤ p+1

T̂
({±1, [MASKED]}T −B) ≤ ϵ.

D.2 AUTOREGRESSION

Example D.6. [Math problem-solving as a random walk] We model solving a math problem as taking
a random walk on Z with stepsize 1 of length T . If the random walk hits +A, then it has ‘solved‘ the
problem; if the random walk hits −A, then it has obtained an incorrect solution. Assume that we have
two modes: a strong problem solving mode (denoted +1), which takes a +1 step with probability
0.5 + ∆, and a weak problem solving mode (denoted −1), which takes a +1 step with probability
0.5−∆. Assuming that ln(2/ϵ2)

2∆2 < A and ϵ2 < 10−3(0.5−∆)(0.5 + ∆), there is a critical window

for the strong problem solving window of Tbefore = T − ϵ2

∆2 + 2 and Tafter = T − ln(2/ϵ2)
2∆2 . Note

the critical window has width Θ(1/∆2) independent of T .

Proof. Because only the direction of steps matter, we can model the critical window for this random
walk as observing a sequence of ±1 with an autoregressive language model. Let p ∈ {±1}T , and con-
sider a forward process with index set I = {0, 1, 2, . . . , T}, Y0 = X , and Yt ∈ {±1, [MASKED]}T .
For t ∈ I, we let the last t tokens of Yt be deterministically set to [MASKED]. We generate data
as a mixture of biased coins with separation 2∆ < 0.01. For a mixture of two biased coins, with
probabilities of 0.5±∆ (θ±1 respectively) of yielding 1, we can compute the critical window and
show that it tightly clusters around Θ(1/∆2). Let Θ = {θ±1}, pθ±1 ∼ (Bern(θ±1))⊗T , w±1 = 1

2 .
We also assume ϵ2 < 10−3(0.5−∆)(0.5 + ∆). Then, on component 1 we have the critical window
Tbefore = T − ϵ2

∆2 + 2 and Tafter = T − ln(2/ϵ2)
2∆2 . When T̂ ≤ Tafter, then TV(p1,T̂ , p1) ≲ ϵ. When

T̂ ≥ Tbefore, TV(p1,T̂ , p) ≲ ϵ.

Note that the number of +1 is sufficient for disambiguating θ±1. To prove the bounds Tbefore, we
show that with only ϵ2

∆2 − 2 samples the total variation between 0.5−∆ and 0.5 + ∆ is negligible.
Using Roos (2001), we find

TV(p+1
Tafter

, p−1Tafter
) ≤

2∆
√

T−Tafter+2
2(0.5−∆)(0.5+∆)(

1− 2∆
√

T−Tafter+2
2(0.5−∆)(0.5+∆)

)2 ≲ 3ϵ.
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For Tafter, we compute how many samples it takes for p±1 to have only ϵ overlap in total variation
using Hoeffding’s inequality. If we have n samples, the mean X of the n samples of ±1 for
p = 0.5+∆ satisfies the concentration inequality P (|X − 2∆| > ∆) ≤ 2 exp(−2nt2) (furthermore
we can ignore the stopping condition by our requirement that ln(2/ϵ2)

2∆2 < A). We find P (|X − 2∆| >
∆) ≤ ϵ2 for T − Tafter samples, proving that the total variation is at least 1− ϵ2.

D.2.1 AUTOREGRESSIVE EXAMPLE WITH A GAUSSIAN MIXTURE MODEL AS THE CONCEPT
DISTRIBUTION

We consider a model for autoregressive data similar to the one presented in (Arora et al., 2019). Each
word is a vector w ∈ Rd and the context length is T ∈ Z>0. The original samples are x ∈ RT×d. Let
Θ = {u, v}, where u, v ∈ Sd−1. We define the distribution pθ for θ ∈ Θ as follows. We generate
the path of a discourse vector

(
Cθ

t

)
t∈[0,∞]

∈ Rd with the reverse SDE Orstein-Uhlenbeck process

such that Cθ
∞ ∼ N (0, Id) and Cθ

0 ∼ N (0, Id + αθθ⊤) for some α > 0. We let qθt be the law of Cθ
t

for t ≥ 0. We let I = {0, 1, . . . , T}, and for t ∈ I, we draw samples wθ
t ∈ Rd where we impose a

normal Gaussian prior and have wθ
t |Cθ

t ∝ exp(⟨Cθ
t , ·⟩). Then we return the corpus {wθ

t }t∈I as an
output.
Theorem D.7 (Autoregressive with a mixture of two Gaussians as the concept distribution ). We
assume that exp(−T )

√
α− log(1 + α) ≤ ϵ. Let ϕ(x) = 2+x

(2+x(1+⟨u,v⟩)/2)(2+x(1−⟨u,v⟩)/2) . Then,
on component u we have

Tafter =
1

2
ln

[
α

ϕ−1(ϵ2)

]
, Tbefore =

1

2
ln

[
α
√
1 + α2

√
1− ⟨u, v⟩2

ϵ

]
.

When T̂ ≤ Tafter, then TV(p{u},T̂ , p{u}) ≲ ϵ. When T̂ ≥ Tbefore, TV(p{u},T̂ , p) ≲ ϵ.

This proof will require Theorem D.8 and Lemmas D.2 and D.9, which is stated below:
Theorem D.8 (Section 5.2 of Chen et al. (2023)). Let (Yt)t∈[0,T ] and (Y ′t )t∈[0,T ] denote the solutions
to

dYt = bt(Yt) dt+
√
2dBt , Y0 ∼ q

dY ′t = b′t(Y
′
t ) dt+

√
2dBt , Y ′0 ∼ q .

Let q and q′ denote the laws of YT and Y ′T respectively. If bt, b′t satisfy that
∫ T

0
EQ ∥bt(Yt) −

b′t(Yt)∥2 dt < ∞, then KL(q∥q′) ≤
∫ T

0
EQ ∥bt(Yt)− b′t(Yt)∥2 dt.

Lemma D.9. Let u, v ∈ Sd−1. Then

∥uu⊤ − vv⊤∥op ≤
√
1− ⟨u, v⟩2

λ(uu⊤ + vv⊤) = {1± ⟨u, v⟩}.

Proof. There exists r ∈ Sd−1 such that v = ⟨u, v⟩u+
√

1− ⟨u, v⟩2r and u ⊥ r. We find that

uu⊤ − vv⊤ = (1− ⟨u, v⟩2)uu⊤ − (1− ⟨u, v⟩2)rr⊤ − ⟨u, v⟩
√

1− ⟨u, v⟩2[ur⊤ + ru⊤].

We can explicitly compute the eigenvalues of uu⊤ − vv⊤ using the discriminant and find that they
are equal to ±

√
1− ⟨u, v⟩2. By a similar derivation, we can write

uu⊤ + vv⊤ = (1 + ⟨u, v⟩2)uu⊤ + (1− ⟨u, v⟩2)rr⊤ + ⟨u, v⟩
√

1− ⟨u, v⟩2[ur⊤ + ru⊤].

which gives us eigenvalues for uu⊤ + vv⊤ of 1± ⟨u, v⟩.

Proof. To compute the Tafter bounds, we compare the difference in Hellinger distance of the
distribution of words words at generated at index T̂ , wu

T̂
. By the data processing inequality

1 − 1
2H

2(pu
T̂
, pv

T̂
) ≤ 1 − 1

2H
2(wu

T̂
, wv

T̂
), so it suffices to show 1 − 1

2H
2(wu

T̂
, wv

T̂
) ≲ ϵ. Because

the Gaussian is its own conjugate prior and wu
T̂
|Cθ

t ∝ exp(− 1
2∥w

u
T̂
− Cθ

t ∥2), we can compute
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wu
T̂
|Cθ

t ∼ N (Cθ
t , Id) and wu

T̂
∼ N (0, 2Id + αe−2tuu⊤). Applying Lemmas D.2 and D.9, we can

explicitly compute

1− 1

2
H2(wu

T̂
, wv

T̂
) ≲

√
2 + αe−2T̂

(2 + αe−2T̂ (1 + ⟨u, v⟩)/2)(2 + αe−2T̂ (1− ⟨u, v⟩)/2)
≲
√
ϕ(αe−2T̂ ) ≤ ϵ.

To compute Tbefore, we first use the data processing inequality to reduce the difference in the emitted
tokens to the difference in the paths of the context vectors, and then apply the approximation error
bounds from Theorem D.8 to bound the differences in path measures. When T̂ ≥ Tbefore, we can use
the triangle inequality to write TV(p{u},T̂ , p) = TV(pu

T̂
, p
{u,v}
T̂

) ≤ TV(pu
T̂
, pv

T̂
). Note that pθ

T̂
is

the distribution of the first T − T̂ tokens generated by the model under θ. Note that pu
T̂

is a function
of (Cu

t )t∈I∩[T̂ ,T ] and pv
T̂

is a function of (Cv
t )t∈I∩[T̂ ,T ]. By the data processing inequality, we can

bound the difference in terms of the distributions over the tokens in terms of the law of the process of
the discourse vectors,

TV(pu
T̂
, pv

T̂
) ≤ TV((Cu

t )t∈I∩[T̂ ], (C
v
t )t∈I∩[T̂ ,T ]) ≤ TV((Cu

t )t∈[T̂ ,T ], (C
v
t )t∈[T̂ ,T ]).

Note that for θ ∈ Θ, (Cθ
t )t∈[T̂ ,T ] is generated by the following reverse time SDE,

dCθ
t = {Cθ

t + 2∇ ln qθt (C
θ
t )}dt+

√
2 dBt, t ∈ [T̂ , T ], Cθ

T ∼ qθT .

Now we define (Cu→v
t )t∈[T̂ ,T ] to be the reverse SDE defined by initializing at quT but with the score

of qvt ,

dCu→v
t = {Cu→v

t + 2∇ ln qvt (C
u→v
t )}dt+

√
2 dBt, t ∈ [T̂ , T ], Cu→v

T ∼ quT .

By the triangle inequality, we have

TV((Cu
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ]) ≤ TV((Cu

t )t∈[T̂ ,T ], (C
u→v
t )t∈[T̂ ,T ])︸ ︷︷ ︸

(I)

+TV((Cu→v
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ])︸ ︷︷ ︸

(II)

.

To bound (I), observe that the SDEs have different scores but the same initializations. We apply
Theorem D.8 to TV((Cu

t )t∈[T̂ ,T ], (C
u→v
t )t∈[T̂ ,T ]) and obtain

TV((Cu
t )t∈[T̂ ,T ], (C

u→v
t )t∈[T̂ ,T ]) ≤

√
KL((Cu

t )t∈[T̂ ,T ]||(Cu→v
t )t∈[T̂ ,T ])

≤

√∫ T

T̂

EX∼Cu
t
∥∇ ln put (X)−∇ ln pvt (X)∥2dt

We simplify the inner expectation by using the

∥∇ ln put (X)−∇ ln pvt (X)∥ = ∥
[
(Id + αe−2tuu⊤)−1 − (Id + αe−2tvv⊤)−1

]
x∥

= ∥
[(

Id− αe−2t

1 + αe−2t
uu⊤

)
−
(
Id− αe−2t

1 + αe−2t
vv⊤

)]
x∥

≲ αe−2t∥uu⊤ − vv⊤∥op

∥∥∥∥∥∥
∏

span(u,v)

x

∥∥∥∥∥∥ ,
= αe−2t

√
1− ⟨u, v⟩2

∥∥∥∥∥∥
∏

span(u,v)

x

∥∥∥∥∥∥ . (Lemma D.9)

We can upper bound EX∼Cu
t
∥
∏

span(u,v) X∥2 by considering right-triangular L such that L⊤L =

Id + αuu⊤. and
∏

span(u,v) X =
∏

span(u,v) LY , where Y ∼ N (0, Id). The operator norm of∏
span(u,v) L is ∥∥∥∥∥∥

∏
span(u,v)

◦L

∥∥∥∥∥∥
op

≤ ∥L∥op ≤
√

1 + α2e−2t ≤
√

1 + α2.
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∏
span(u,v) ◦L is also rank 2 and

(∏
span(u,v) ◦L

)
Y =

(∏
span(u,v) ◦L

)
◦
∏

L−1span(u,v) Y , where∏
L−1span(u,v) Y ∼ N (0, Id2). Thus we have

EY∼N (0,Id)


∥∥∥∥∥∥
 ∏

span(u,v)

◦L

Y

∥∥∥∥∥∥
2
 = EY ′∼N (0,Id2)


∥∥∥∥∥∥
 ∏

span(u,v)

◦L

Y ′

∥∥∥∥∥∥
2
 ≲ 1 + α2

Combining this information together, we are able to compute,

TV((Cu
t )t∈[T̂ ,T ], (C

u→v
t )t∈[T̂ ,T ]) ≤

√∫ T

T̂

EX∼Cu
t
∥∇ ln put (X)−∇ ln pvt (X)∥2dt

≲ α
√

1 + α2
√
1− ⟨u, v⟩2e−2T̂

≲ ϵ.

To bound (II), we observe that both are run with the same score so we need only bound the difference at
initialization. By the data processing inequality, we again have TV((Cu→v

t )t∈[T̂ ,T ], (C
v
t )t∈[T̂ ,T ]) ≤

TV(puT , p
v
T ). We can again apply the triangle inequality to get TV(puT , p

v
T ) ≤ TV(puT , γ

d) +
TV(γd, pvT ) ≤. For any θ ∈ Θ, we have by the forward convergence of the OU process
TV(puT , γ

d) ≤ exp(−T )
√

KL(pu||γd). We can explicitly compute KL(pu||γd) as

KL(pu||γd) =
1

2

[
d+ α− d− log(Id + αuu⊤)

]
=

1

2
[α− log(1 + α)] .

Thus, we obtain the following bound on TV((Cu→v
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ]) of

TV((Cu→v
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ]) ≲ exp(−T )

√
α− log(1 + α) ≲ ϵ.

D.3 INTERWEAVING TRANSITIONS FROM OTHER DISTRIBUTIONS

In this section, we extend our critical windows framework to the setting where at certain steps of
sampling procedure, instead of using the reverse Markov transition kernel from the original stochastic
localization sampler, we use an alternative distribution which is not necessarily related to the original
sampler. This includes many important applications of generative models, in which one seeks to
combine the priors learned from data with some other algorithm. For example, one may want to
combine the language model with a problem generation oracle in in-context learning (Dong et al.,
2024).

As Xie et al. (2022) points out, the transition from the answer to one problem to the problem statement
of another example in-context learning is determined by an alternative transition kernel (which they
call pprompt). Although the probability of transition from one answer to the problem statement
of another example is extremely low under the natural data distribution, one still hopes that with
sufficiently many samples, the model selects the correct θ∗ ∈ Θ if these lower probability transitions
are overcome by the distributional difference for θ ∈ Θ with θ ̸= θ∗. Similarly, under our critical
windows framework, we can hope to capture the idea that we specialize to a particular θ∗ given a
sufficiently long context. In Section D.3.1, we first present a general framework for characterizing
critical windows in this setting. Then, in section D.3.2, we consider the case of in-context learning by
autoregressive language models and prove convergence.

D.3.1 GENERAL INTERWEAVING FRAMEWORK

We present this framework for the case where the index set I = {0, 1, . . . ,m} is discrete. Like
before, assume we have a series of reverse Markov transition kernels P←,p

k→k−1(·|·), for k ∈ I, but we
also assume we have an alternative distribution P←,alt

k→k−1(·|·) that we use to sample for transitions
k ∈ A ⊊ I. For our sampling procedure, we sample Ym, and for k = m− 1,m− 2, . . . , 0, we take
Yk ∼ P←,p

k+1→k(·|Yk+1) for k ∈ I − A and Yk ∼ P←,alt

k+1→k(·|Yk+1) for k ∈ A. We denote the final
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distribution palt.

Now, we also need to adjust our definitions of pS to this particular sampling procedure. We define
pS,alt for S ⊂ Θ to the distribution over outputs when we instead use the kernels P←k+1→k(·|Yk+1, S)

instead of P←k+1→k(·|Yk+1). To relate pθ,alt to pθ,alt for θ ∈ Θ, we need to assume transitions from
alt do not affect the posterior distribution over pΘ(θ|Yt).

Assumption D.10. For all y ∈ R and x ∈ supp(P←,alt

k+1→k(·|y)), we have for all θ, θ′ ∈ Θ, the
equality P←k+1→k(x|y, θ) = P←k+1→k(x|y, θ′).

Adopting our definitions from Section 3, we let

Tlower,alt(ϵ) ∈ {t ∈ I : TV(pSinit,alt
t , p

Starg,alt
t ) ≤ ϵ}

Tupper,alt(ϵ) ∈ {t ∈ I : TV(p
Starg,alt
t , p

Θ−Starg,alt
t ) ≥ 1− ϵ2 }.

The main challenge of the below corollary is simply show that the final distribution pΘ,alt can be
written as a mixture of pθ,alt with the same mixing weights as before.

Corollary D.11. Under Assumption D.10, for ϵ > 0, if T̂ ≥ Tlower,alt(ϵ) and T̂ ≤ Tupper,alt(ϵ), then

TV(pSinit,T̂ , pStarg,alt) ≤

(
1 +

√
2max

(
1,

∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ

)
/2

)
ϵ.

Proof. We need only show that pΘ,alt ≜
∑

θ∈Θ wθp
θ,alt. It suffices to shows that the probability

of generating a path Ym, Ym−1, . . . , Y0 are the same under both density functions. We need only
consider transitions for k ∈ I−A, because for k ∈ A, the transitions are both given by the alternative
distribution. For the transitions not given by alt, note that we are using the original model, so

pΘ,alt(Yk−1|Yk) =

∑
θ∈Θ wθp

θ(Yk)P
←
k→k−1(Yk−1|Yk, θ)∑

θ∈Θ wθpθ(Yk)
.

Furthermore, for the mixture model, this probability is

pmix =

∑
θ∈Θ wθp

θ,alt(Ym, Ym−1, . . . , Yk+1, Yk)P
←
k→k−1(Yk−1|Yk, θ)∑

θ∈Θ wθpθ,alt(Ym, Ym−1, . . . , Yk+1, Yk)
.

The distinction between Equation D.3.1 and Equation D.3.1 is that in the former we are using the
likelihood of pθ instead of pθ,alt. Thus it suffices to show that pθ ∝ pθ,alt. We explicitly write out
the probability,

pθ(Ym, Ym−1, . . . , Yk+1, Yk) =

m∏
i=k+1

pθ(Yi−1|Yi) ∝
m∏

i=k+1,i/∈A

pθ(Yi−1|Yi),

where the proportionality follows from the fact that we can ignore the probability of the
transitions produced by alt under Assumption D.10. By definition, this is proportional to
pθ,alt(Ym, Ym−1, . . . , Yk+1, Yk) up to a normalization constant independent of θ.

D.3.2 IN-CONTEXT LEARNING

Now, we will specialize our framework to the case of in-context learning. As in Xie et al. (2022), we
assume that the language model is given inputs of the form [x1, y1, o, x2, y2, o, . . . , xt, yt, o, xt+1],
where x1 is the input, y1 is the output, and o is a delimiter token that separate different in-context
samples from each other. We assume that the transitions yi → o → xi+1 are sampled by some
alternative probability distribution Pother(·|·). We require that Pother selects the xi i.i.d.

Assumption D.12. The distribution of Pother(xt+1|x1, y1, o, x2, y2, o, . . . , xt, yt, o) = Pother(x1).

Then we assume that the transitions xi → yi are generated by some θ∗ ∈ Θ, which does not depend
on any of the previous tokens before the delimiter.
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Assumption D.13. (Well-specification) There exists some θ∗ ∈ Θ such that yi is generated from
yi ∼ P←(·|[x1, y1, o1, . . . , oi−1, xi], θ

∗).
Assumption D.14. For all θ ∈ Θ, we have P←(·|[x1, y1, o1, . . . , oi−1, xi], θ) = P←(·|xi, θ).

We also assume statistical separation of θ∗ from Θ− {θ∗} in terms of Hellinger distance.
Assumption D.15. Let pS(x,y) for S ⊂ Θ be the distribution of (x1, y1, o) where x1 ∼ Pother(·|o) and

y1 ∼ pS(·|x1). There exists δ > 0 such that H2(p
Θ−{θ∗}
(x,y) , pθ

∗

(x,y)) ≥ δ.

Example D.16. Let T ≥ ln
(

1−δ/2
ϵ

)
. Under Assumptions D.10, D.12, D.13, D.14, and D.15, we

have TV([x1, . . . , xT+1, yT+1], [x1, . . . , xT+1, ỹT+1]) ≲ ϵ/wθ∗ .

Proof. It suffices to upper bound 1 − 1
2H

2(P θ,alt
3T , P

Θ−{θ},alt
3T ) by O(ϵ). First observe that the

distribution pS,alt for S ⊂ Θ factors along the delimiters by a factor independent of S using
Assumptions D.12 and D.14, so we have

PS,alt
3t (x1, y1, o1, x2, y2, o2, . . . , xt, yt, ot) ∝

t∏
i=1

PS,alt
3 (xi, yi, oi).

Using the tensorization property of Hellinger distance and our definition of T, δ, we have

1− 1

2
H2(P θ,alt

3T , P
Θ−{θ},alt
3T ) ≲

[
1− 1

2
H2(P θ,alt

3 , P
Θ−{θ},alt
3 )

]T
≤ ϵ.

D.4 ALL-OR-NOTHING

Theorem D.17 (Reeves et al. (2019)). Let πs be the distribution over Rns × Rms for ns = s
and ms = s + 1 where the marginal over θ is given by the uniform distribution over ks-sparse
vectors in {0, 1}s, and the conditional distribution πz|θ is given by sampling x ∼ N (0, Ids), taking
y = ⟨θ, x⟩ + ξ for ξ ∼ N (0, σ2

s), and outputting observation z = (x, y). The null model πnull
s is

given by sampling x ∼ N (0, Ids) and outputting y = N (0, ks + σ2
s).

If σ2
s ≪ ks ≤ s0.499, then (πs) exhibits an all-or-nothing phase transition at threshold (N∗s ) with

respect to null models (πnull
s ) for N∗s ≜ 2ks log(s/ks)

log(1+ks/σ2
s)

.

Theorem D.18. Suppose (πs) is a sequence of inference tasks that exhibits an all-or-nothing phase
transition at threshold (N∗s ) with respect to null models (πs). Given Ns ≥ N∗s , let (ps;θ(Ns)

)θ∈Θs

denote the sequence of in-context learning tasks.

For any constant 0 < ϵ < 1, there exist constants δ, s such that for all s ≥ s, next-token prediction
for (ps;θ(Ns)

)θ∈Θs
exhibits a critical window over [Ns + 2 − (1 + δ)N∗s , Ns + 2 − −(1 − δ)N∗s ] in

which we transition from sampling a distribution O(ϵ)-close in TV to Sbefore = Θs;signal, to sampling
from a distribution O(ϵ)-close in TV to Safter = Θs.

The proof of Theorem D.18 is essentially immediate from Theorem 3.1 and the definition of the
all-or-nothing phase transition:

Proof. By the operational characterization of TV distance, strong detection is (information-
theoretically) possible if and only if lim infs→∞TV(ps, qs) = 1, and weak detection is (information-
theoretically) possible if and only if lim infs→∞ TV(ps, qs) > 0.

Let us first apply Theorem 3.1 to Sinit = Starg = Θs;signal. By the definition of DΘ, the parameter
W therein is 1. Furthermore, we trivially have that Tend(ϵ) = 0. Finally, because strong detection is
possible provided there are N ≥ βN∗s in-context examples for β > 1, there exists δ1 depending only
on ϵ for which TV(p

Starg

t , p
Θs−Starg

t ) ≥ 1− ϵ2 for t = Ns + 2− (1 + δ1)N
∗
s . By Theorem 3.1 we

conclude that TV(pSinit,Ns+2−(1+δ1)N
∗
s ) ≲ ϵ.
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Next, let us apply Theorem 3.1 to Sinit = Θs;signal and Starg = Θs. The parameter W therein is
now 0. Furthermore, we trivially have that Tend(ϵ) = Ns + 2. Finally, because weak detection is
impossible provided there are N ≤ βN∗s in-context examples for β < 1, there exists δ2 depending
only on ϵ for which TV(pSinit

t , p
Starg

t ) ≤ ϵ for t = Ns + 2 − (1 − δ2)N
∗
s . By Theorem 3.1 we

conclude that TV(pSinit,Ns+2−(1−δ2)N∗s ) ≤ ϵ. Taking δ = max(δ1, δ2) concludes the proof.

E DETAILS FROM SECTION 5

Definition E.1. An ϵ-mixture tree is a tuple (T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ,Subset,NoiseAmount).
The tree T = (V,E) is associated with a function Subset: V → 2Θ\{∅}, which maps vertices
to sub-mixtures. We require Subset satisfies the following two properties: (1) Subset(root) = Θ;
(2) If u is a parent of v, Subset(v) ⊂ Subset(u). We consider a NoiseAmount: V → R≥0, which
characterizes the noise levels that result in the aggregations of mixture components described
by vertices in the mixture tree. Thus we require that NoiseAmount satisfy three properties: (1)
For distinct θi, θj ∈ Θ with leaf nodes w, v such that θi ∈ Subset(w), θj ∈ Subset(v), if u is
the lowest common ancestor of w, v, then we require TV(pθiNoiseAmount(u), p

θj
NoiseAmount(u)) ≤ ϵ; (2)

For u ∈ V , we have statistical separation between Subset(u) and Θ − Subset(u) in terms of
TV, TV(p

Subset(u)
NoiseAmount(u), p

Θ−Subset(u)
NoiseAmount(u)) ≥ 1 − ϵ2; and (3) If v ∈ V is a parent of u, we have

NoiseAmount(u) < NoiseAmount(v). Property 1 establishes bounds on Tend, and properties 2 and
3 establishes bounds on Tst.
Corollary E.2. Consider an ϵ-mixture tree. For θi ∈ Θ, consider the path u1, u2, u3, . . . , uH′ ∈ V
where u1 is the leaf node with θi ∈ Subset(u1) and uH′ is the root. There is a sequence of times
T1 < T2 < · · · < TH′ with TV(p{i},Tℓ , pSubset(uℓ)) ≲w ϵ.

Proof. For ℓ ∈ [H ′], we let Tℓ = NoiseAmount(uℓ). We apply Theorem 3.1 with Sinit = {i} and
Starg = Subset(uℓ). We know TV(p

Starg

Tℓ
, p

Θ−Starg

Tℓ
) ≥ 1− ϵ2 by Condition 2 in Definition E.1. By

Lemma 15 of (Li & Chen, 2024), we know TV(p
{i}
Tℓ

, pSinit

Tℓ
) ≤ maxj∈Sinit

TV(p
{i}
Tℓ

, p
{j}
Tℓ

). This is
≤ ϵ for all j ∈ Sinit by Condition 3 on NoiseAmount and the data processing inequality.

Corollary E.3. Consider an ϵ-mixture tree (T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ, Subset,NoiseAmount).
Suppose we have another distribution {qθ}θ∈Θ such that TV(pθ, qθ) ≤ δ/2 for all θ ∈ Θ. Then we
have ϵ+

√
δ-mixture tree given by (T, {P→(·|·)}, I,Θ, {qθ}θ∈Θ, Subset,NoiseAmount).

Proof. We need only check the first and second properties of NoiseAmount with parameter
ϵ +

√
δ. To do this, it suffices to show TV(qθiNoiseAmount(u), q

θj
NoiseAmount(v)) ≤ ϵ + δ and

TV(q
Subset(u)
NoiseAmount(u), q

Θ−Subset(u)
NoiseAmount(u)) ≥ 1− ϵ2 − δ. By the data processing inequality, we just need to

show this at t = 0, and we prove the stronger statement that for S1 ⊂ Θ, TV(pS1 , qS1) ≤ δ/2. This
follows from Lemma 15 of (Li & Chen, 2024) and TV(pθ, qθ) ≤ δ/2 for all θ ∈ Θ.

Example E.4. Consider a set of alphabets {Ai}di=1 and define Θ = {(ai)di=1 : ∀i ∈ [d], ai ∈ Ai}
and pθi = δθi . Let I = [0, 1, 2, . . . , d]. and for any permutation i1, i2, . . . , id of [d], define a forward
process such that at t ∈ I, we mask all id, id−1, . . . , id−t. This constructs a hierarchy where the
values for i1, i2, . . . , id are decided in that order.

Proof. We construct the following 0-mixture tree as follows. We let the leaf nodes be the set Θ. We
let two leaf nodes u, v have the same parent if and only if they share the same values on the alphabet
at i1, i2, . . . , id−1; we also define the parent as the union of all of its children. We now treat the
parents we constructed as the roots, and let them have the same parent if and only if they share the
same values on the tuple i1, i2, . . . , id−2. We continue to do this until we are left with one root
node. We let Subset map each node to the corresponding set and NoiseAmount map each node to its
distance from a leaf node.

By the construction of T , it is clear that Subset satisfies the desired properties. For distinct θi, θj ∈ Θ,
the lowest common ancestor of θi, θj represents the largest k such that indices i1, . . . , ik are the
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same for θi, θj . Because pθiNoiseAmount(u) is just the tuple of the values of θi, θj at i1, . . . , ik, we know

TV(pθiNoiseAmount(u), p
θj
NoiseAmount(u)) = 0. For any u ∈ V representing the values at index (iℓ)

k
ℓ=1, all

θ /∈ Subset(u) does not share the same values at these indices by definition, so we also know

TV(p
Subset(u)
NoiseAmount(u), p

Θ−Subset(u)
NoiseAmount(u)) = 1.

F EXPERIMENTAL OVERVIEW

As many authors (Ho et al., 2020; Meng et al., 2022; Choi et al., 2022; Raya & Ambrogioni, 2023;
Georgiev et al., 2023; Sclocchi et al., 2024; 2025; Biroli et al., 2024; Li & Chen, 2024) have already
empirically studied critical windows in the context of diffusion, we focus on experiments on critical
windows for LLMs. In Section F.1, we validate our theory on outputs with a hierarchical structure,
showing strong agreement with out predictions in Section 5. In Section F.2, we probe critical windows
for LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct in real-world reasoning
benchmarks.

F.1 STRUCTURED OUTPUT EXPERIMENTS

To verify our theory for Tbefore, Tafter, we have to compute the total variation between truncated
responses from an LLM. This usually would take a large number of samples, so to circumvent this
issue, we restrict the diversity of the LLM’s generations and force the LLM to generate tokens in
a structured format. In particular, we have LLAMA-3.1-8B-Instruct6 respond to following prompt,
which asks it to answer a series of fill-in-the-blank questions in a structured format. We also prefill
the model’s generations with \n\n 1. to ensure that the outputs comport to this format. To compute
Tbefore, Tafter, we look at when the generations diverge based on the first occurrence of the identifying
information. For example, the Tbefore of the first critical window is 1. The , because the first
answer has not appeared in the generation, and the Tafter of the first critical window is 1. The
P or 1. The N, because that uniquely identifies the answer. Figure 3 plots the probability of
obtaining the same answers as the original generation after truncating different amounts from the
generation in the forward-reverse experiments, computed with 10, 000 generations. Our theory
predicts that jumps in the probability will occur at Tbefore, Tafter which represent when the model has
committed to a particular answer to a question in the generation. These predictions are validated with
our experiments, as the jumps in probability, representing the model localizing to a more specific set
of answers, occur exactly at Tbefore, Tafter.

Structured Output Prompt

Complete the following by choosing only one option for each blank. The options are provided
in parentheses, and your response must match the exact case and meaning of the chosen
option. Respond with only the completed sentence, no explanations or additional text.
1. The (Pirate/Ninja) jumped across the ship.
2. She adopted a (Dog/Cat) from the shelter.
3. The (River/Bridge) sparkled under the sun.
4. A (Dragon/Knight) guarded the castle gates.
5. He ordered (Pizza/Sushi) for dinner.

6Default sampling parameters of temperature of 0.6 and top-p sampling of 0.9
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Figure 3: Structured output plots for LLAMA-3.1-8B-Instruct. P denotes that we are sampling from
responses whose answer to the first question was Pirate; P,C denotes that we are sampling from
responses whose answers to the first two questions were Pirate and Cat, respectively. We can see that
the critical windows directly correspond to our theoretical values for Tbefore, Tafter.

F.2 CHAIN OF THOUGHT EXPERIMENTS

We then identify critical windows for LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-
Instruct on 7 different math and reasoning benchmarks on which performance is known to improve
with chain of thought reasoning (Lanham et al., 2023): ARC Challenge and Easy (Clark et al.,
2018), AQua (Ling et al., 2017), LogiQA (Liu et al., 2020), MMLU (Hendrycks et al., 2021a),
and TruthfulQA (Lin et al., 2022) multiple-choice benchmarks and the MATH benchmark from
(Hendrycks et al., 2021b).7 In the forward-reverse experiments, we take the original generation,
truncate a fraction of tokens, and check if resampling yields the same answer, using a direct text
comparison for the multiple choice benchmarks and the prm800k grader for MATH (Lightman
et al., 2023). We do this for 400 questions from each dataset and resample at each truncation
fraction 100 times. Critical windows, defined as a > 0.5 jump in probability of obtaining the same
answer in consecutive truncation fractions, appear prominently across all models and benchmarks
that we tested (Figures 4, 8, and 9); for MATH, they occur in 42.2%, 16.6%, 30.2% of generations
from LLAMA-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, and Phi-3-7B-Instruct.

7See Appendix G.2 for more results across models and datasets and a discussion on the effect of temperature
on critical windows.
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Figure 4: Probability that the answer is the same as a function of the percentage of the generation
remaining for different math and reasoning benchmarks for LLAMA-3.1-8B-Instruct. Highlighted
are generations with a 50% increase and no 30% decrease in the probability over subsequent fractions
of sampling. We can see that the frequency of critical windows is especially high for the MATH
benchmark.

These jumps occur during important steps of reasoning: in Figure 5, the correct formula is first
expressed in the critical window. Furthermore, we find that generations with critical windows are
significantly less accurate than generations without critical windows across all datasets and models.
For LLAMA-3.1-8B-Instruct, critical windows result in up to 73% lower accuracy, and incorrect
responses contain 11%-33% more critical windows (Table 1).

Table 1: Differences between Accuracy (Acc) without versus with critical windows and frequency of
critical windows (CW) when the original generation is wrong versus right.

Dataset LLAMA-3.1-8B-Instruct Phi-3-7B-Instruct Qwen-2.5-7B-Instruct
∆Acc ∆CW ∆Acc ∆CW ∆Acc ∆CW

AQUA-RAT 0.42 0.20 0.36 0.16 0.03 0.01
ARC Challenge 0.53 0.22 0.50 0.24 0.38 0.11
ARC Easy 0.73 0.26 0.28 0.13 0.40 0.07
LogiQA 0.15 0.11 0.21 0.19 0.23 0.11
MATH 0.41 0.33 0.36 0.33 0.46 0.29
MMLU 0.45 0.24 0.38 0.21 0.26 0.11
TruthfulQA 0.44 0.20 0.42 0.23 0.55 0.23

G EXPERIMENTAL DETAILS

G.1 JAILBREAK EXPERIMENTS

G.1.1 REPRODUCING CRITICAL WINDOWS FOR JAILBREAKS FROM EXISTING PAPERS

Existing work has already identified the presence of critical windows in the domain of jailbreaks.
Here we present critical windows for a simplified prefill jailbreak based on the prefill attack (Haize
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MATH (Phi-3-7B-Instruct)

Q: If the first term of an arithmetic sequence equals the third minus
the second, and the fourth term is 8, what is the first term?
A: 1. We know that the arithmetic sequence has a common difference,
which we will denote as ”d”. 2. Let’s denote the terms in the sequence
as T1, T2, T3, and T4 for the first, second, third, and fourth terms,
respectively. 3. We’re given the information that T1 = T3 − T2.
Using the general formula for an arithmetic sequence, we can write
this as T1 = T2 + 2d− T2, which simplifies to T1 = 2d. 4. We’re
also given that T4 = 8. The general formula for an arithmetic
sequence tells us that T4 = T1+3d. So we can write 8= T1+3d. 5.
Now we have a system of two equations: 1) T1 = 2d 2) 8 = T1 + 3d
6. We can substitute equation (1) into equation (2), which gives us
8 = 2d + 3d = 5d. 7. Solving for d, we get d = 8/5. 8. Now that
we know d, we can find T1. Using the equation from step 1, we get
T1 = 2d = 2∗ (8/5) = 16/5. Therefore, the first term is T1 = 16/5.

Figure 5: Example of critical window for Phi-3-7B-Instruct (bolded).

Labs, 2024b) and repeating token jailbreak (Nasr et al., 2023) for LLAMA-3.1-8B-Instruct. In the
first figure, we plot the probability of the model giving a harmful response, computed using the
StrongReject Gemma 7b auditor from (Souly et al., 2024), as a function of the fraction of the
phrase Sure, here is how to appended to the front of the model’s generation. We can see
that there is a large jump in the attack success rate after only including a few tokens in the prefix. The
second figure is a reproduction of Figure 12 from Nasr et al. (2023). It shows that the probability of
repeating the next token increases substantially as the first few tokens are included a few times in the
context.

Figure 6: Examples of critical windows in jailbreaks for LLAMA-3.1-8B-Instruct. Left: Critical
window for a prefill jailbreak (Haize Labs, 2024b). Right: Critical window for a repeating token
jailbreak (Nasr et al., 2023).

G.1.2 EXPERIMENTAL DETAILS FROM JAILBREAK

Now we apply our theory to develop a new jailbreak detection method, based on a likelihood ratio
between an aligned and unaligned model. Intuitively, our theory states that when the unaligned
component assigns a high probability to the text compared to the entire model, the model is likely to
be jailbroken. We use a LLAMA-3.1-8B-Instruct model jailbroken with LoRA to not refuse harmful
prompts (grimjim, 2024) as a proxy for the unaligned model. We evaluate these different methods on
a dataset of jailbreaks and benign prompts from (Bailey et al., 2024).
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Dataset. We use the same dataset as (Bailey et al., 2024) but provide details here for completeness.
The benign dataset consists of inputs from UltraChat (Ding et al., 2023), a large dialogue dataset,
and Xstest (Röttger et al., 2024), which contains benign queries that are often incorrectly refused by
language models. The benign queries are filtered to ensure that LLAMA-3.1-8B-Instruct does not
refuse any of them. The dataset of harmful prompts is based off of the Circuit Breakers dataset (Zou
et al., 2024). The datasets include the following jailbreaking methods from the extant literature: PAIR
(Chao et al., 2023), AutoDAN (Liu et al., 2024), Many-Shot Jailbreaking (MSJ) (Anil et al., 2024),
Multi-Turn Attacks (Li et al., 2024; Haize Labs, 2024a), Prefill, GCG (Zou et al., 2023), and other
Misc. attakcs from (Wei et al., 2023). For each jailbreaking method, it is applied to a prompt from
the Circuit Breaker dataset and evaluated to see if the generation from LLAMA-3.1-8B-Instruct is
helpful and harmful, as determined by the StrongReject jailbreaking classifier (Souly et al., 2024)).

Evaluation Metric. As is standard in the jailbreak detection literature (Bailey et al., 2024), we
report the recall at the false positive rate at 0.01.

Table 2 displays the recall and several other baselines. Crucially, the log likelihood ratio methods
does obtain recall > 1 for 5 different categories of jailbreaks. While our methods do perform worse
than existing methods, it is important to note that they still work and that their poor performance
could be explained by the fact that we have to use a proxy for the unaligned mode of the model.

Table 2: Recall (FPR=0.01) for our likelihood ratio threshold, a perplexity threshold (Alon &
Kamfonas, 2023), and a MLP-based detector trained on activations (Bailey et al., 2024) for predicting
different jailbreaks. prompt/gen denote the logprobs of the prompt and generation, respectively.

AutoDAN GCG Multi-Turn Misc MSJ Pair Prefill

log punaligned
prompt − log paligned

prompt 0.000 0.000 0.028 0.000 0.063 0.000 0.077
log punaligned

gen − log paligned
gen 0.082 0.030 0.000 0.100 0.000 0.061 0.051

log paligned
prompt 0.000 0.576 0.056 0.063 0.013 0.000 0.077

log paligned
gen 0.205 0.150 0.570 0.200 0.006 0.015 0.416

MLP 1.00 0.956 0.873 0.663 1.00 0.833 1.00

G.2 CHAIN OF THOUGHT EXPERIMENTS

G.2.1 EXPERIMENTAL DETAILS

We describe the prompts we used in our evaluation of different datasets. The system prompt
for all datasets is Produce a correct solution to the following /TASK/
question., where /TASK/ is the type of question of the dataset, i.e. science, math, or
logic. For each question, we create a user prompt by appending Think of the /TASK/
question thoroughly step by step. Please only respond with the
answer after reasoning thoroughly. in front of the question. Once the model
completes its generation (max generation length set to 2048 and default sampling parameters),
we append the user prompt Given all of the above, what’s the single, most
likely answer? Your answer should have the format "The answer is
ANSWER", where ANSWER is your answer. for the multiple choice benchmarks
and Given all of the above, what’s the single, most likely answer?
Simplify it completely. Your answer should have the format "The
answer is $ANSWER$", where ANSWER is your answer in LaTeX. Note that
when we ask the model for the final answer, we set the temperature to 0.

Across three different models ( LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-
Instruct), we find that conditioned on the occurrence of critical windows, the model generation is
significantly less accurate compared to generations without critical windows.
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Figure 7: Left-to-right: LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-
Instruct barplots of original generation accuracy for generations with (≥ 0.5 jump in probability) and
without critical windows (< 0.5).

Figure 8: Probability that the answer is the same as a function of the percentage of the generation
remaining for different math and reasoning benchmarks for Phi-3-7B-Instruct. Highlighted are
generations with a 50% increase and no 30% decrease in the probability over one step.
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Figure 9: Probability that the answer is the same as a function of the percentage of the generation
remaining for different math and reasoning benchmarks for Qwen-2.5-7B-Instruct. Highlighted are
generations with a 50% increase and no 30% decrease in the probability over one step.

G.2.2 COMPARISON WITH DIRECTLY ANSWERING FOR LLAMA-3.1-8B-INSTRUCT

It is interesting to compare our approach in Figure 7 with that from Lanham et al. (2023), in which
the model is directly asked for the answer (Figure 10). We can see that directly answering has a
lower consistency than resampling across different amounts of generation remaining. Interestingly,
the discrepancy is much higher for the math-datasets (MATH, AQUA) compared to extremely small
difference in consistency for the other reasoning datasets. This may be because it is difficult to extract
the answer from the middle of a chain of thought for math datasets than for other datasets.

Figure 10: Difference between resampling to obtain the answer versus directly asking the model for
the answer (as in (Lanham et al., 2023)) for LLAMA-3.1-8B-Instruct.

G.2.3 EXAMPLES OF CRITICAL WINDOWS

We provide a few more examples of critical windows (bolded).
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LogiQA example (LLAMA-3.1-8B-Instruct)

Q: Recently, some countries in the world, especially the United States and Japan, have
blamed their domestic economic mystery on China’s fixed exchange rate system between the
RMB and the US dollar. Some domestic manufacturing companies have caused pressure. The
following are all questions about the above views, except? (A) Japan has been in recession for
more than ten years. At that time, China’s merchandise exports were very small, and the ren-
minbi was very weak. (B) The US economic recession was mainly caused by the destruction
of the myth of the Internet economy, and the ”9.11” terrorist attacks exacerbated this recession.
(C) China’s GDP accounts for only 3.9 of the world’s total, foreign trade is less than 5 of the
world’s, and it does not have the ability to affect the world market price and supply and de-
mand. (D) Consumers in Western countries have benefited greatly from cheap goods in China.

A: The question is asking which of the following is NOT a view about the views that
the countries have blamed their domestic economic mystery on China’s fixed exchange
rate system between the RMB and the US dollar. We can analyze each choice one by
one. Choices A, B, and D are all views that the countries have blamed their domestic
economic mystery on China’s fixed exchange rate system between the RMB and the US
dollar. Choice C is an argument that China’s fixed exchange rate system between the RMB
and the US dollar has no effect on the world market price and supply and demand. So, it is
not a view about the views that the countries have blamed their domestic economic mystery
on China’s fixed exchange rate system between the RMB and the US dollar. Therefore, the
correct answer is C.

Correct answer: D

MATH example (LLAMA-3.1-8B-Instruct)

Q: Let a and b be the solutions of the equation 2x2 − 10x + 5 = 0. What is the value of
(2a− 3)(4b− 6)?

A: To find the value of (2a − 3)(4b − 6), we need to first find the values of a and b by
solving the equation 2x2 − 10x + 5 = 0. We can use the quadratic formula to solve for
a and b: x = −b±

√
b2−4ac
2a . In this case, a = 2, b = −10, and c = 5. Plugging these

values into the quadratic formula, we get: x =
−(−10)±

√
(−10)2−4(2)(5)
2(2) x = 10±

√
100−40
4

x = 10±
√
60

4 x = 10±2
√
15

4 So, the solutions are a = 10+2
√
15

4 and b = 10−2
√
15

4 . Now that
we have the values of a and b, we can substitute them into the expression (2a− 3)(4b− 6):
(2a− 3)(4b− 6) = (2(10+2

√
15

4 )− 3)(4( 10−2
√
15

4 )− 6) Simplifying the expression, we get:
(2a−3)(4b−6) = (10+2

√
15

2 −3)( 10−2
√
15

1 −6) (2a−3)(4b−6) = ( 10+2
√
15−6

2 )( 10−2
√
15−6

1 )

(2a− 3)(4b− 6) = ( 4+2
√
15

2 )( 4−2
√
15

1 ) Now, we can simplify the expression further by
multiplying the numerators and denominators: (2a− 3)(4b− 6) = (4+2

√
15)(4−2

√
15)

2

Using the difference of squares formula (a+ b)(a− b) = a2 − b2, we can simplify the
numerator: (2a− 3)(4b− 6) = 42−(2

√
15)2

2 (2a− 3)(4b− 6) = 16−60
2 Simplifying

the expression further, we get: (2a− 3)(4b− 6) = −44
2 (2a− 3)(4b− 6) = −22 Therefore,

the value of (2a− 3)(4b− 6) is −22.

Correct answer: −22
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ARC Easy example (LLAMA-3.1-8B-Instruct)

Q: Why are diseases transmitted through the bites of infected animals not considered
contagious diseases? (A) The infected animals do not show symptoms. (B) The person in
direct contact is the only one infected. (C) Humans do not become sick from animal diseases.
(D) The diseases are treatable with antibiotics.

A: To answer this question, we need to understand the definitions of contagious and
non-contagious diseases. Contagious diseases are those that are spread through direct or
indirect contact with an infected person. Non-contagious diseases, on the other hand, are
spread through other means, such as vectors like insects or animals. Step 1: Consider the
definition of contagious diseases. Contagious diseases are spread through direct or indirect
contact with an infected person. Step 2: Consider the definition of non-contagious diseases.
Non-contagious diseases are spread through vectors like insects or animals. Step 3: Analyze
the given options. Option A states that the infected animals do not show symptoms. This is
not necessarily true, as some infected animals may show symptoms. Option B states that
the person in direct contact is the only one infected, which is not a characteristic of
contagious diseases. Option D states that the diseases are treatable with antibiotics,
which is not relevant to the mode of transmission. Step 4: Based on the analysis, the
correct answer is the one that accurately describes the mode of transmission of the diseases.
The final answer is: C .

Correct answer: (B)

AQUA-RAT example (Phi-3-7B-Instruct)

Q: At a conference, one team is made up of 4 men and 4 women. Four presenters are chosen
to present the team’s findings in front of the entire conference. How many different groups of
presenters can be chosen from the team if a team cannot be composed of men only or women
only? (Two groups of presenters are considered different if at least one presenter is different.)
A)120 B)19 C)180 D)420 E)460

A: 1. There are 8 people in the team, 4 men and 4 women. 2. We need to choose 4 presenters
for the conference, without having an all-male or all-female group. 3. We can choose 4 out of
8 using combinations: C(8,4) = 8! / (4! * (8-4)!) = 70 4. We’ll subtract two groups that aren’t
allowed: all men and all women groups. So we’ll subtract combinations of just men (4C4)
and just women (4C4). So, we have: In all, we need to choose from combinations of (8C4 -
4C4 - 4C4) which equals: 70 (total combination for 4 people) - 1 (all men group) - 1 (all
women group) = 68 5. However, we should also consider the mixed group of 2 men and 2
women which would be another prohibited combination. Since the two men and two women
groups would be the same, we subtract: C(4,2) * C(4,2) = 6 6. So, finally, our calculation
will be: 68 - 6 = 62. The correct answer among the choices we have isn’t amongst those.
There seems to be a mistake in the question or the given options. But close to the choices,
an answer of 420 could seem interconnected if we consider combinations when men
and women are mixed in all possible ways which is not the deducted understanding in
our solution. Correct answer: E)420 should be revised or further clarified in the question
context. Otherwise, based on our understanding of how combinations are applied in scenarios
like this, none of these options is quite correct. The answer is E)420.

Correct answer: B
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LogiQA example (Phi-3-7B-Instruct)

Q: The person in charge of the relevant department said that pilots will be carried
out in some areas this year to prepare for the system and policy preparations for the
comprehensive clean-up of ”small property houses”, and require all localities to confirm
the registration and certification of rural collective land. All small-property houses are
not subject to registration and are not protected by law. Therefore, this newly built
house in Hexi Village is not protected by law. Which of the following is true will most
weaken the above argument. (A) This newly built house in Hexi Village has been tacitly
approved by relevant departments. (B) This newly built house in Hexi Village is a
small property house. (C) This newly built house in Hexi Village is built on rural col-
lective land. (D) Some of the newly built houses in Hexi Village are not small property houses.

A: The statement implies that small property houses are not protected by law and can be
demolished if necessary in the preparations for the system and policy preparations for the
comprehensive clean-up. -We have to find the option that weakens this argument the most.
Option A suggests that the department has tacitly approved the newly built house. This
weakens the argument, but it can still be argued that the house is subject to demolition if
the comprehensive clean-up policy is implemented. Option B states that this newly built
house in Hexi Village is a small property house. This directly contradicts the argument
that all small-property houses are not protected by law and not subject to registration
and certification. Therefore, this house would not be demolished and would be protected by
law. Option C says that the house is built on rural collective land. This doesn’t disprove
the argument – it might still be a small-property house without legal protection. Option D
makes only some of the newly built houses in Hexi Village not small property houses. This
doesn’t address the argument that all small-property houses are not protected by law and not
subject to registration, but only carries an exceptional circumstance. Thus, the option that
most weakens the argument is (B) as it directly contradicts the statement by implying that the
specific house is protected by law. The answer is B.

Correct answer: D
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MATH example (Qwen-2.5-7B-Instruct)

Q: Carson flips over the cards of a standard 52-card deck one at a time. What is the
probability that he flips over the ace of spades before any face card (jack, queen or king)?

A: 1. First, we need to identify the relevant cards for our problem. The ace of spades (A♠)
and the face cards (J, Q, K) are the ones we’re focusing on. There are 4 face cards in a
standard deck of 52 cards (12 face cards total, but we only consider 4 for this problem).
2. There are 52 cards in total, and 5 of these (A♠, J♠, Q♠, K♠, J♡, Q♡, K♡, J♢, Q♢,
K♢, J♣, Q♣, K♣) are either the ace of spades or a face card. Therefore, there are 47 other
cards that are neither the ace of spades nor face cards. 3. The problem can be simplified by
considering the probability of the ace of spades coming before any face card in a sequence
of drawing these 9 cards (the ace of spades and the 8 face cards). 4. We can think of the
problem as a sequence of drawing 9 cards, where we are interested in the position of
the ace of spades relative to the face cards. The ace of spades can come in any of the
9 positions, and we want to find the probability that it comes before any of the face
cards. 5. For the ace of spades to come before any face card, it must be in one of the first 5
positions (since there are 4 face cards, and the ace of spades must come before any of them).
There are 9 positions in total, and 5 of these are favorable. 6. Therefore, the probability that
the ace of spades comes before any face card is the ratio of the number of favorable outcomes
to the total number of outcomes, which is 5

9 . So, the probability that Carson flips over the ace

of spades before any face card is
5

9
.

Correct answer: 1
13

AQUA-RAT example (Qwen-2.5-7B-Instruct)

Q: ABCDE is a regular pentagon with F at its center. How many different quadrilaterals can
be formed by joining 4 of the points A,B,C,D,E and F? A)12 B)10 C)5 D)15 E)20

A: We need to form quadrilaterals by selecting 4 points from the 6 points (A, B, C, D, E,
F) where F is the center of the regular pentagon. To form a quadrilateral, we need to select
4 points out of these 6. However, we need to ensure that the quadrilateral is valid. A key
observation here is that the center F must be included in the selection of 4 points because
otherwise, we would only have points on the perimeter of the pentagon, which would
not form a closed quadrilateral with a center point. So, we need to choose 3 points from
the 5 points A, B, C, D, E to form the quadrilateral along with F. The number of ways to
choose 3 points from 5 is given by the combination formula

(
5
3

)
:(

5

3

)
=

5!

3!(5− 3)!
=

5× 4

2× 1
= 10

Thus, there are 10 different ways to choose 3 points from the 5 perimeter points, and each
choice, along with the center F, forms a valid quadrilateral. Therefore, the correct answer is
10 .

Correct answer: D
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MATH example (Phi-3-7B-Instruct)

Q: Square ABCD has side lengths of 13 units. Point E lies in the interior of the square such
that AE = 5 units and BE = 12 units. What is the distance from E to side AD?

A: 1. Since ABCD is a square, we know that all sides are equal and the diagonals bisect
each other at right angles. 2. Drawing a diagram, we can see that △ABE and △BDE
are right triangles with right angles at point B. 3. We can use Pythagoras’ theorem to
find DE: DE =

√
BE2 −AE2 =

√
122 − 52 =

√
144− 25 =

√
119 ≈ 10.91 units.

4. Since ABCD is a square, AD = 13 units. So, the distance from E to AD is
13−AE = 13− 5 = 8 units. The distance from E to side AD is 8 units. The answer is 8.

Correct answer: 25
13
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MMLU example (Qwen-2.5-7B-Instruct)

Q: A store owner noticed that an expensive electronic device was missing from the store. He
assumed that a shoplifter had taken it. Later that day, the store owner was cleaning up the
small room in the back of the store that the employees of the store used to store their personal
items while they were at work. The store owner was straightening up the coat rack in the
back room, when he accidentally knocked one of the employee’s coats off the hanger. As the
coat fell onto the floor, the missing electronic device fell out of the pocket of the coat. It was
still in its original packaging, and the store owner checked the serial number on the package
to confirm that it was the device missing from the store’s shelves. The store owner knew that
the coat belonged to a woman who worked as a cashier in the store. The store owner felt bad,
but decided that he had no choice but to call the police. Two police officers arrived at the
store. They gathered information from the store owner, who signed a criminal complaint
against the woman. The officers then discussed the matter with the woman. Although she
denied stealing anything, the officers arrested her and informed her that they would need to
take her to the police station. After the police took the woman away, another employee of
the store found out that the woman had been arrested. That employee immediately went to
the store owner and admitted that he was actually the one who had stolen the device, and
that he had hidden it in the woman’s coat, intending to retrieve it later before the end of the
woman’s work shift. The store owner promptly called the police and told them that there had
been a mistake and that the theft charge against the woman was invalid. The police released
the woman, who spent a total of approximately 30 minutes in police custody. If the woman
asserts a claim for false imprisonment against the arresting officers, will the woman prevail?
(A) Yes, because the woman had not committed a crime at the time she was arrested. (B)
Yes, because the woman was arrested and held in custody. (C) No, because the woman was
detained for only 30 minutes. (D) No, because the officers had probable cause to arrest the
woman based on the store owner’s complaint and honest belief that the woman had stolen the
device.

A: 1) The key issue here is whether the woman’s arrest was lawful. 2) For an arrest to be
lawful, there must be probable cause to believe the person committed a crime. 3) The store
owner believed the woman had stolen the device based on the device falling out of her coat.
4) However, it was later revealed that the device was actually planted in her coat by
another employee. 5) This means the store owner’s belief was mistaken, and there was
no probable cause for the arrest. 6) False imprisonment occurs when a person is unlawfully
detained. 7) The arrest was unlawful because it was based on a false belief. 8) Therefore, the
woman’s claim for false imprisonment is valid because she was unlawfully detained. Given
these points, the correct answer is: (A) Yes, because the woman had not committed a crime at
the time she was arrested. This answer is correct because the arrest was based on a mistaken
belief and there was no probable cause, which means the arrest was unlawful, and the woman
was falsely imprisoned. The answer is (A).

Correct answer: D

G.2.4 VARIED TEMPERATURE SAMPLING

In our above experiments with critical windows, we have been generating model responses at their
default sampling temperatures: LLAMA-3.1-8B-Instruct: 0.6, Phi-3-7B-Instruct: 1.0, and Qwen-
2.5-7B-Instruct: 0.7. A natural question to ask is whether the sampling temperature affects the
presence or strength of critical windows across these models. At one extreme, sampling at infinite
temperature exhibits no critical windows since each token is generated uniformly at random. At the
other extreme, zero temperature sampling is deterministic, so there is only one mode of behavior and
critical windows again cannot exist. At intermediate temperatures, decreasing sampling temperature
reduces token variance, so the sharpness of transition from general mixture to target submixture
can be heightened. At the same time, reduced sampling variance also reduces the likelihood of
transitioning between modes as well, leaving the overall effect on critical windows unclear.
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First, we report the frequency of critical windows across the different temperatures for the MATH
dataset: 0.1, 0.4, 0.7, and 1.0. Then, we report the average size of a critical window on 400 samples
from MATH, running the forward-reverse experiment on each sample 25 times and taking the max
consecutive jump as the critical window size for that problem. From Figures 11 and 12, each model
has its own relationship between temperature and critical window frequency and size, with no clear
definite relationship across all models.

Figure 11: Temperature versus critical window frequency for LLAMA-3.1-8B-Instruct, Phi-3-7B-
Instruct, and Qwen-2.5-7B-Instruct.

Figure 12: Temperature versus mean critical window size for LLAMA-3.1-8B-Instruct, Phi-3-7B-
Instruct, and Qwen-2.5-7B-Instruct.
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