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ABSTRACT

Long-horizon manipulation tasks represent a significant challenge in robotics, de-
manding both strategic, high-level reasoning and fast, precise, low-level control.
While recent advances in generative models have shown promise in generating
behavior plans for long-horizon tasks, they often lack a principled framework
for hierarchical decomposition and struggle with the computational demands of
real-time execution, due to their iterative denoising process. In this work, we in-
troduce Hierarchical Diffusion-Flow (HDFlow), a novel hierarchical planning
framework that optimally leverages the strengths of diffusion and rectified flow
models. HDFlow employs a high-level diffusion planner to generate sequences
of strategic subgoals in a learned latent space, capitalizing on diffusion’s power-
ful exploratory capabilities. These subgoals then guide a low-level rectified flow
planner that generates smooth and dense trajectories, exploiting the speed and ef-
ficiency of ordinary differential equation (ODE)-based trajectory generation. This
hybrid approach synergistically combines the strengths of both models to over-
come the limitations of single-paradigm generative planners, enabling robust and
efficient long-horizon planning. We evaluate HDFlow on four challenging fur-
niture assembly tasks in both simulation and real-world, where it significantly
outperforms state-of-the-art methods. Project website: https://hdflow.github.io/

1 INTRODUCTION

Robotic manipulation for complex, long-horizon tasks such as robotic assembly Kimble et al.
(2020); Suárez-Ruiz & Pham (2016); Lee et al. (2021); Heo et al. (2025); Ankile et al. (2024a;b)
remains a significant challenge requiring not only understanding multi-stage instructions and spatial
relationships but also executing precise, contact-rich motions over extended periods. Traditional
planning methods struggle with long-horizon problems because small inaccuracies in state estima-
tion, dynamics prediction, or control execution accumulate over time, compounding into signifi-
cant deviations that ultimately lead to task failure. This has motivated a shift towards hierarchical
planning (Sacerdoti, 1974; Knoblock, 1990; Singh, 1992; Kaelbling & Lozano-Pérez, 2011), which
decomposes a complex goal into a sequence of simpler, more manageable subgoals. A power-
ful approach within this paradigm is to perform planning in the latent space of a learned world
model (Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020). By forecasting future states in a com-
pressed representation, world models allow planners to reason efficiently and abstract away from
high-dimensional, noisy observations (Hafner et al., 2022; Wang & Ba, 2020). However, standard
world models, trained primarily on reconstruction and dynamics prediction, do not guarantee that
the learned latent space is semantically structured for planning. The distance between states in this
space does not correlate with progress toward a goal, making it difficult for a planner to navigate
effectively.

The advent of generative models, particularly denoising diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021), have achieved strong results across various domains (Nichol
et al., 2022; Luo & Hu, 2021; Li et al., 2022; Gupta et al., 2024; Avdeyev et al., 2023). Building
upon these successes, they have recently revolutionized planning in robotics (Janner et al., 2022;
Ajay et al., 2023; Lu et al., 2025). By treating planning as a conditional generation problem, these
models can produce diverse and high-quality trajectories. However, their iterative denoising pro-
cess is computationally intensive (Dong et al., 2024), making them ill-suited for the fast, low-level
control required for real-time robotic interaction. Applying diffusion models naively at all levels
of a hierarchy (Chen et al., 2024; Li et al., 2023; Hao et al., 2025) inherits this critical drawback,
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Figure 1: Overview of HDFlow: a hybrid hierarchical planning framework for long-horizon robotic
assembly. Compared to previous methods such as Traditional Diffuser (TD) and Decision Diffuser
(DD) which use a single generative model, and Simple Hierarchical Diffuser (Simple HD) which
uses diffusion models at both high and low levels, HDFlow employs a high-level diffusion planner
for strategic subgoal generation and a low-level rectified flow planner for efficient trajectory syn-
thesis. This hybrid architecture optimally leverages the strengths of both generative paradigms for
robust and efficient planning.

creating a bottleneck at the trajectory generation stage. This raises a fundamental question: Is a
single generative modeling paradigm optimal for all levels of a planning hierarchy?

We empirically show that the answer is no. The requirements for high-level strategic planning are
fundamentally different from those of low-level trajectory generation. High-level planning demands
exploration and multi-modal diversity to discover viable sequences of subgoals. In contrast, low-
level planning demands speed, precision, and deterministic execution to translate a chosen subgoal
into a smooth, dense trajectory.

In this paper, we introduce Hierarchical Diffusion-Flow (HDFlow), a new hierarchical framework
for long-horizon manipulation that is built on this core insight. HDFlow leverages a hybrid gener-
ative architecture that assigns the right tool to the right job. For high-level, strategic planning, we
employ a diffusion model to generate diverse sequences of subgoals within a learned latent space of
a world model. While standard conditional diffusion models can generate plans that are consistent
with the goal, they lack an explicit mechanism to assess the quality or long-term viability of those
plans. In complex, sparse-reward settings, many plausible-looking sequences of subgoals can lead
to irreversible failures. To address this, we introduce an energy-based model (EBM) to provide ex-
plicit guidance. The EBM is trained to assign low energy to successful strategies and high energy
to failing ones, effectively learning a dense reward signal. This energy function then steers the dif-
fusion planner away from potential dead ends and towards high-quality solutions, which is critical
for robust, long-horizon performance. Furthermore, to mitigate the failures caused by inaccurate
guidance, we enhance the standard EBM guidance with a two-step manifold-aware process (Lee &
Choi, 2025). For low-level, tactical planning, we introduce a rectified flow model to rapidly generate
dense latent trajectories to reach each subgoal. The underlying world model itself is trained with a
contrastive objective to create a semantically structured latent space, which facilitates more effec-
tive planning by organizing representations of intermediate states from successful episodes closer
to the final goal and pushing them away from failure cases, creating a smoother, more monotonic
representation of task progress that is crucial for effective long-horizon planning.

Furthermore, while prior work has been limited to simple tasks with very short-horizons like
Maze2D, and AntMaze (Fu et al., 2020), we evaluate our proposed method on four contact-rich
assembly tasks from the FurnitureBench (Heo et al., 2025) benchmark in both simulation and real-
world settings, including tasks with very long horizons of upto ∼1500 timesteps, involving 11
phases, and assemblies of up to 4 parts to be precisely grasped, oriented, and inserted.

In summary, our contributions are as follows:

• We propose HDFlow, a novel, hybrid hierarchical planner that combines a diffusion model
for high-level exploration and a rectified flow model for low-level trajectory generation.
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• We introduce a two-stage training process featuring a contrastive-trained world model for
structured representation learning and a manifold-aware EBM for explicit guidance of the
high-level planner, enabling robust planning in sparse-reward environments.

• We demonstrate state-of-the-art performance on four challenging tasks from the Furni-
tureBench benchmark in both simulation and real-world settings.

2 RELATED WORKS

Recent advancements in generative models, particularly denoising diffusion probabilistic mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Karras et al., 2022), have signifi-
cantly impacted planning in robotics by framing it as a conditional generation problem. Early works
such as Diffuser (Janner et al., 2022) leverage iterative denoising to generate flexible trajectories
conditioned on objectives like rewards or constraints. Building on this, Decision Diffuser (DD)(Ajay
et al., 2023) further demonstrated that return-conditional diffusion models can outperform tradi-
tional offline reinforcement learning by enabling conditioning on various factors like constraints
and skills. While powerful, the iterative nature of diffusion models can be computationally inten-
sive (Dong et al., 2024). To tackle long-horizon tasks, hierarchical planning with diffusion models
has emerged, as seen in (Li et al., 2023; Chen et al., 2024; Hao et al., 2025). Simple Hierarchical Dif-
fuser (SHD)(Chen et al., 2024) employs a high-level diffusion model for sparse subgoal generation
and a low-level one for dense trajectory refinement, aiming for improved efficiency and general-
ization. However, their reliance on diffusion models for both high-level and low-level planning
increases the maintenance burden and makes them computationally expensive.

3 PRELIMINARIES

Notation disambiguation. We use t for environment time indices, ℓ ∈ {1, . . . , L} for diffusion
timesteps, and u ∈ [0, 1] for the continuous flow time in rectified flow. We also denote a clean
(noise-free) latent subgoal sequence by zclean to avoid confusion with the initial environment state
z0.

3.1 DENOISING DIFFUSION MODELS

Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are generative models that
learn a data distribution p(x) by reversing a fixed forward noising process.

Forward Process. The forward process gradually adds Gaussian noise to a data sample x0 over L
discrete timesteps, according to a variance schedule βℓ:

q(xℓ|xℓ−1) = N (xℓ;
√

1− βℓxℓ−1, βℓI) (1)

A key property is that we can sample xℓ at any timestep ℓ in closed form: q(xℓ|x0) =

N (xℓ;
√
ᾱℓx0, (1 − ᾱℓ)I), where αℓ = 1 − βℓ and ᾱℓ =

∏ℓ
i=1 αi. As ℓ → L, xL approaches

an isotropic Gaussian distribution N (0, I).

Reverse Process. The reverse process is a learned generative model that starts from noise xL ∼
N (0, I) and iteratively denoises it to produce a sample. This process is modeled by a neural network
ϵθ(xℓ, ℓ) trained to predict the noise ϵ that was added to the original sample x0 to produce xℓ. The
training objective is to minimize the mean squared error between the true and predicted noise:

LDDPM = Eℓ,x0,ϵ

[∥∥ϵ− ϵθ(
√
ᾱℓx0 +

√
1− ᾱℓϵ, ℓ)

∥∥2] (2)

For conditional generation (e.g., on a context c), classifier-free guidance (CFG) (Ho & Salimans,
2022) is commonly used. The model is trained on both conditional and unconditional inputs, and
the noise prediction during inference is modified to steer generation towards the context:

ϵ̂θ(xℓ, ℓ, c) = ϵθ(xℓ, ℓ, ∅) + w · (ϵθ(xℓ, ℓ, c)− ϵθ(xℓ, ℓ, ∅)) (3)

where w is the guidance scale and ∅ denotes the unconditional case. While powerful, the iterative
sampling process can be computationally intensive.

3
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3.2 RECTIFIED FLOW

Rectified Flow (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) is a genera-
tive modeling approach based on ordinary differential equations (ODEs) that offers a more efficient
alternative to diffusion models. It learns a deterministic mapping from a simple prior distribution to
a data distribution.

Let p0 be a prior distribution (e.g., N (0, I)) and p1 be the data distribution. Rectified Flow constructs
straight-line paths between pairs of samples (x0,x1) drawn from these distributions. The path is
defined by the linear interpolation xu = (1−u)x0+ux1 for u ∈ [0, 1]. The corresponding velocity
vector field is simply x1−x0. The model trains a neural network vθ(x, u) to approximate this vector
field by minimizing the flow-matching objective:

LRF = Eu,x0,x1

[
∥vθ((1− u)x0 + ux1, u)− (x1 − x0)∥2

]
(4)

Once trained, generation is performed by starting with a sample from the prior, x0 ∼ p0, and solving
the initial value problem for the learned ODE from u = 0 to u = 1:

dxu

du
= vθ(xu, u) (5)

This is done using a numerical ODE solver. Because it follows a deterministic, straight-line path,
Rectified Flow can often generate high-quality samples in significantly fewer function evaluations
than required by iterative diffusion models, making it ideal for applications requiring fast synthesis,
such as real-time trajectory generation.

4 METHOD

In this section, we introduce HDFlow, a hierarchical planning framework that tackles long-horizon
manipulation tasks using a two-stage training process. First, we train a world model with a con-
trastive objective to learn a semantically structured latent space that embeds a notion of progress.
Second, we train a hierarchical planner on top of the frozen, pre-computed latent representations
from this world model. This planner consists of a high-level diffusion model for strategic subgoal
generation and a low-level rectified flow model for efficient trajectory synthesis.

4.1 STAGE 1: WORLD MODEL LEARNING

Our framework operates within the latent space of a world model, which is trained to model the en-
vironment’s dynamics from multi-modal, high-dimensional observations (denoted as o). We adopt a
Recurrent State Space Model (RSSM) architecture (Hafner et al., 2023) with an encoder that lever-
ages a pretrained DINOv2 model (Oquab et al., 2024). The RSSM learns to encode observations
into a latent space Z , and is trained to accurately reconstruct observations and predict future states.
For a detailed explanation of the architecture and training objective, please see Appendix B.

LWM = Eqϕ(z1:T |o1:T )

[
T∑

t=1

(log pϕ(ôt|zt, ht)−DKL[qϕ(zt|ht, et)||pϕ(ẑt|ht)])

]
(6)

While the standard world model objective, LWM, encourages predictable dynamics, it does not ex-
plicitly structure the latent space to reflect a notion of progress towards a goal, making long-horizon
planning challenging. To address this, we introduce a contrastive learning objective designed to pro-
vide a dense learning signal and organize the latent space for more effective downstream planning.
The goal is to pull representations of intermediate latent states from successful trajectories closer to
their final goal representation, while pushing them away from intermediate latent states from failed
trajectories.

Let f(·) be a projection head that maps latent states z to a new embedding space. For a given
intermediate latent state zk from a successful trajectory with final goal zG, we form a positive pair
(f(zk), f(zG)). Negative pairs are formed with intermediate latent states from failed trajectories.
The contrastive loss is then given by the modified InfoNCE objective (Oord et al., 2018) as suggested
by (Schroff et al., 2015; Sohn, 2016):

Lcontrastive = −E

[
log

exp(sim(f(zk), f(zG))/τ)∑N
j=1 exp(sim(f(zk), f(zj))/τ)

]
(7)

4
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Figure 2: HDFlow pipeline. The framework consists of two main stages: World Model Learning
(left), where observations are encoded into a structured latent space, and Hierarchical Planner
Training (right). The latter involves a High-Level diffusion planner generating sparse strategic
subgoals (z1, . . . , zK) with EBM guidance, and a Low-Level rectified flow planner synthesizing
dense trajectories τ = [τ1, . . . , τH ] between subgoals using an ODE solver.

where sim(·, ·) is the cosine similarity and τ is a temperature hyperparameter (Wang & Liu, 2021).

To further encourage the latent space to be informative for control, we also include an inverse dy-
namics model (Agrawal et al., 2016; Pathak et al., 2018). This model, at ∼ pϕ(at|zt, zt+1), is
trained to predict the action that was taken to transition between two consecutive latent states. It is
trained with a mean squared error loss:

LIDM = E
[
∥at − MLP(zt, zt+1)∥2

]
(8)

This objective ensures that the latent states encode action-relevant information, which is beneficial
for the downstream planner. The full training objective combines the world model loss, the inverse
dynamics loss, and the contrastive loss:

LWM-total = λWMLWM + λIDMLIDM + λcontrastiveLcontrastive (9)

After this stage, the world model’s weights are frozen, and its encoder is used to generate a static
dataset of structured latent representations for the next stage.

4.2 STAGE 2: HIERARCHICAL PLANNER TRAINING

With the structured latent space from Stage 4.1 fixed, we frame the long-horizon planning prob-
lem as a conditional generative modeling task. We decompose the problem by defining a temporal
abstraction, a common and effective strategy in hierarchical planning (Li et al., 2023; Chen et al.,
2024). For each full-length trajectory in our latent dataset, we define subgoals by subsampling the
trajectory at a fixed interval of H timesteps. For a trajectory of length T (environment timesteps),
this yields K = ⌊T/H⌋ subgoals, which can vary across trajectories. This process creates two
distinct datasets for our planners:

• For the high-level planner, we create sparse sequences of K latent subgoals, z =
(z1, . . . , zK), where each subgoal zk corresponds to the latent state at timestep k ·H .

• For the low-level planner, we create a dataset of dense, fixed-length trajectory segments.
Each segment τk contains the H latent states and actions between consecutive subgoals
zk−1 and zk.

This decomposition allows us to train a high-level planner πHL to generate a sequence of latent sub-
goals, and a low-level planner πLL to generate the dense trajectory segment to reach each subgoal.

4.2.1 HIGH-LEVEL PLANNER: MANIFOLD-AWARE EBM-GUIDED DIFFUSION

The high-level planner is a conditional diffusion model, trained to generate a sequence of K latent
subgoals, z = (z1, . . . , zK), conditioned on the context c = (z0, zG), where z0 is the current latent

5
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state and zG is the goal latent state. It is trained by minimizing the standard noise prediction error
from Eq. 2:

LHL = Eℓ,zclean,ϵ

[∥∥ϵ− ϵθ
(√

ᾱℓ z
clean +

√
1− ᾱℓ ϵ, ℓ, c

)∥∥2] (10)

While this provides a strong prior for generating plausible plans, it does not guarantee that all gen-
erated plans will be successful, especially in long-horizon scenarios where small errors can com-
pound. To address this and actively steer the planner towards high-quality solutions, we introduce
an Energy-Based Model (EBM) for explicit guidance at inference time. The EBM, Eϕ(z|z0, zG), is
a separate network trained to predict a low energy for high-quality latent subgoal sequences and a
high energy for poor ones. It is trained with a contrastive loss that pushes down the energy of plans
from successful trajectories (zpos) and pushes up the energy of plans from failed trajectories (zneg):

LEBM = log(1 + exp(Eϕ(zpos)− Eϕ(zneg))) (11)

However, in high-dimensional latent spaces, inexact guidance can cause manifold deviation (He
et al., 2024), a phenomenon where guided samples drift away from the feasible latent subgoal man-
ifold Mt. We formalize this issue through the guidance gap:

Definition 1 Let ∇ztEtrue(zt|c) denote the true optimal energy guidance and ∇ztEϕ(zt|c) be our
learned EBM guidance. The guidance gap at zt is:

∆EBM(zt) = ∥∇ztEtrue(zt|c)−∇ztEϕ(zt|c)∥2 (12)

Proposition 4.1 (Proof in Appendix) The EBM guidance gap ∆EBM(zt) has a lower bound scaling
as c√

1−ᾱt

√
d in high-dimensional latent spaces, where c > 0 is a constant independent of dimen-

sionality d.

Definition 1 and Proposition 4.1 show that inaccuracies in energy guidance grow with scenarios
involving long planning horizons and high-dimensional latent spaces, leading sampled trajectories
to deviate away. Check Appendix D.3 for a detailed proof.

Manifold-Aware Guidance. High-dimensional latent representations often exhibit intrinsic low-
dimensional structure. Under our contrastive training, successful latent subgoal sequences concen-
trate on a k-dimensional submanifold M0 ⊂ Rd with k ≪ d. To mitigate this manifold devia-
tion, we enhance the standard EBM guidance with a two-step manifold-aware process as suggested
in (Lee & Choi, 2025). Rather than applying guidance directly to the noise prediction, we perform:

Step 1: Guided Sampling.
ztemp
ℓ−1 ∼ N

(
µθ(zℓ) + webm Σℓ g,Σℓ

)
(13)

where g = ∇zℓEϕ(zℓ|c) is the EBM guidance and µθ,Σ
ℓ are the mean and covariance of the reverse

diffusion transition (scheduler-dependent, e.g., DDPM variance-preserving).

Step 2: Manifold Projection.
zℓ−1 = PTzℓ−1

Mℓ−1

(
ztemp
ℓ−1

)
(14)

where PTzℓ−1
Mℓ−1

projects onto the local tangent space of the latent manifold Mℓ−1.

The manifold projection is computed using local low-rank approximation: we first obtain a denoised
estimate using Tweedie’s formula (Robbins, 1992; Chung et al., 2022; 2023):

ẑ0|ℓ−1 =
1

√
ᾱℓ−1

(
ztemp
ℓ−1 −

√
1− ᾱℓ−1 ϵθ(z

temp
ℓ−1 , ℓ− 1, c)

)
(15)

We then retrieve k nearest neighbors from successful latent subgoal sequences using cosine similar-
ity (Feng et al., 2024), forward diffuse them to timestep ℓ − 1, and perform rank-r PCA to obtain
the projection basis U ∈ Rd×r. Let µ be the local mean of these neighbors. The mean-centered
projection is

P(z) = µ+UUT (z− µ).

Proposition 4.2 Given a base diffusion planner ϵθ trained for classifier-free guidance, a learned en-
ergy function Eϕ(z|c), and a manifold projection operator PM, the manifold-aware guided planner,
which combines EBM guidance with manifold projection, corresponds to sampling from a posterior
distribution p(z|y = 1, z ∈ M, c) that maximizes the likelihood of generating a successful and
feasible goal-conditioned plan.

6
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4.2.2 LOW-LEVEL PLANNER: RECTIFIED FLOW FOR TRAJECTORY GENERATION

The low-level planner’s role is to generate a dense, short-horizon latent trajectory τz to a given
subgoal zk. We can frame this subproblem through the lens of optimal transport, which seeks the
most efficient way to transform one probability distribution into another. Here, the task is to find
the optimal mapping from the distribution of initial states around zk−1 to the distribution of target
states around zk. The cost of transport is minimized by trajectories that are as straight as possible in
the latent space. We use a conditional rectified flow model, vθ(τu, u, ck), for its speed. It is trained
to generate a trajectory segment τ conditioned on the context ck = (zk−1, zk) by minimizing the
standard flow-matching objective from Eq. 4:

LLL = Eu,τ0,τ1

[∥∥vθ((1− u)τ0 + uτ1, u, ck
)
− (τ1 − τ0)

∥∥2] (16)

Construction of training pairs. For each consecutive latent subgoal pair (zk−1, zk), we extract the
dense H-step latent segment from successful demonstrations. We set τ1 to be the observed segment
that ends at zk and τ0 to be the segment that starts at zk−1 from the same demonstration. We
optionally apply small Gaussian perturbations in latent space and mild time-warping for robustness;
see Appendix B for details.

4.2.3 PLANNER TRAINING OBJECTIVE

The components of the hierarchical planner are trained jointly with a composite loss function that
combines the objectives for the high-level planner, the low-level planner, the EBM, and manifold
consistency:

Lplanner = λHLLHL + λLLLLL + λEBMLEBM + λprojLprojection (17)

where the λ terms are hyperparameters and Lprojection encourages the generated latent subgoals to
remain close to the learned latent manifold:

Lprojection = Ez∼πHL

[
∥z − PM(z)∥2

]
(18)

4.2.4 INFERENCE AND ONLINE DEPLOYMENT

During online deployment in an MPC framework, the high-level planner is invoked iteratively. At
each replanning step, it takes the robot’s current latent state (which updates as the low-level plan-
ner executes segments) and the goal state as input to generate a new sequence of subgoals for the
remaining portion of the task. The low-level planner takes the first subgoal from this sequence,
and generates a dense latent trajectory. Then consecutive latent pairs (zt, zt+1) along the generated
latent trajectory are mapped to control actions via the inverse dynamics model pϕ(at | zt, zt+1) in-
troduced in Stage 4.1. Actions are executed for H steps within an MPC loop before replanning with
the updated state.

5 EXPERIMENTS

To evaluate the efficacy of our proposed framework, we design a set of experiments to answer
the following key questions: (1) Does HDFlow achieve state-of-the-art performance on complex,
long-horizon robotic assembly tasks compared to existing methods? (2) How does our hybrid archi-
tecture compare against non-hybrid hierarchical planner as well as single planner approaches? (3)
What are the contributions of the core components of HDFlow? We will conduct ablation studies
to analyze the impact of our hierarchical structure and planner choices. (4) Does HDFlow offer
superior computational efficiency during inference, a critical factor for real-time robotic control?

5.1 SIMULATION EXPERIMENTS

Tasks and Environment. We evaluate our method on FurnitureBench (Heo et al., 2025), a chal-
lenging benchmark for long-horizon, contact-rich robotic assembly. We chose 4 tasks from the
benchmark: one leg, lamp, round table, and cabinet (see Figure 4 for start and goal posi-
tions), with the default initial randomization protocol: Low, Med, and High. We define task success
as assembling all the furniture parts in their goal poses. We report the success rate calculated over
100 episodes for each task. Further details about the tasks and dataset collection are provided in
Appendix A
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one leg lamp round table cabinet

Method Low Med High Low Med High Low Med High Low Med

BC 0 0 0 0 0 0 0 0 0 0 0
DP 51 19 3 18 7 1 6 2 0 4 1
JUICER 68 22 3 27 12 2 23 8 2 11 5

Diffuser 56 22 4 22 9 1 21 7 1 6 2
DD 60 22 4 24 11 1 22 8 2 9 3
HDMI 66 26 11 37 16 11 33 15 9 17 8
SHD 71 31 15 43 22 16 41 21 12 21 11

Ours 92 71 39 68 49 34 61 43 27 55 36

Table 1: Main results on FurnitureBench tasks in simulation. Success rates (%) are reported for different initial
randomization levels (Low, Med, High).

Method one leg lamp

FD 60 24
HF 63 24
HD 71 43

Ours 92 68

Table 2: Ablation study on the choice of genera-
tive models for the high-level and low-level planners.
Success rates (%) are reported for the one leg and
lamp tasks under Low randomization.

Method one leg lamp

Ours 92 68
w/o Manifold Projection 84 57
w/o Manifold-aware EBM 61 33
w/o Contrastive WM 58 27

Table 3: Ablation study on the core components
of HDFlow. Success rates (%) are reported for the
one leg and lamp tasks under Low randomization.

Implementation Details. We adopt Diffusion Transformer (DiT) (Peebles & Xie, 2023) as the
backbone for the high-level diffusion planner and Rectified Flow Transformer (Esser et al., 2024)
for the low-level rectified flow planner. Detailed descriptions of our experimental setup, including
model architectures, training procedures, and hyperparameter settings, are provided in Appendix B

Baselines. We compare HDFlow against a comprehensive set of state-of-the-art methods that cover
different paradigms for long-horizon manipulation. We provide more details about each baseline in
the Appendix C.

• Imitation Learning (IL) Baselines: These methods learn directly from successful demon-
strations without the use of explicit reward signals.(a) Vanilla behaviour cloning (BC) (b)
Diffusion Policy (DP) (Chi et al., 2023) (c) JUICER (Ankile et al., 2024a)

• Diffusion-based Planners: These methods use diffusion-based planning methods from
a mixed dataset of successful and failure demonstrations. (a) Diffuser (Janner et al.,
2022): A diffusion probabilistic model that plans by iteratively denoising trajectories. It
treats planning as a conditional generation problem and can produce diverse and high-
quality trajectories. (b) Decision Diffuser (DD) (Ajay et al., 2023) (c) HDMI (Li et al.,
2023) (d) Simple Hierarchical Diffuser (SHD) (Chen et al., 2024)

Analysis. The results presented in Table 1 demonstrate HDFlow’s superior performance across
all four challenging furniture assembly tasks and varying levels of initial randomization. Our hy-
brid, hierarchical planning framework consistently achieves the highest success rates, significantly
outperforming imitation learning, non-hierarchical, and other hierarchical diffusion planners.

5.2 ABLATION STUDIES

To systematically analyze the contribution of each component within HDFlow, we conduct exten-
sive ablation studies. In this section, we consider one leg and lamp tasks under Low randomiza-
tion. For more ablation experiments, please see Appendix E

Choice of Generative Model. We compare HDFlow against variants that use alternative generative
models. Specifically, we consider FD (flat diffusion), HF (hierarchical flow), and HD (hierarchical
diffusion). Table 2 shows that our planner significantly outperforms single-paradigm or flat planning
approaches.

Comparison of Wall-clock times. To assess the computational efficiency of HDFlow and its vari-
ants, we conducted an ablation study measuring the average inference time per planning step. Table 4

8
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One - leg Assembly in Simulator 

One - leg Assembly in Real WorldReal Robot Setup

3 x RealSense 435 Cameras

Franka Research 3 Robot

Figure 3: (left) Real-world FurnitureBench setup. (right) A successful rollout of HDFlow planner on the
one leg assembly task initialized with Med randomness in both simulation (top) and real-world (bottom).

Method SR Inference Time

FD 24 197
HF 24 53
HD 43 142

Ours 68 88

Table 4: Ablation study on computational efficiency
for the lamp task (Low randomization). This table
presents both success rates (SR, %) and average infer-
ence time (milliseconds per planning step).

one leg lamp round table

Method Low Med Low Med Low Med

BC 0/10 0/10 0/10 0/10 0/10 0/10
IQL 3/10 1/10 1/10 0/10 0/10 0/10

Ours 8/10 6/10 5/10 4/10 4/10 3/10

Table 5: Main results on FurnitureBench tasks in
real-world. Success rates (number of successes out
of 10 episodes) are reported for different initial ran-
domization levels (Low, Med).

presents these results alongside the success rates for the lamp task (Low randomization), directly
building upon the analysis from Table 2.

Contribution of Core Components. We investigate the impact of the contrastive world model,
EBM guidance, and manifold projection by progressively removing them from HDFlow. Table 3
demonstrates that each novel component measurably contributes to HDFlow’s overall success, high-
lighting the importance of our multi-faceted approach to long-horizon robotic assembly.

5.3 REAL-WORLD EXPERIMENTS

We conduct experiments in the real-world using a Franka Research 3 robot arm by setting up the
benchmark as shown in Figure 3. We finetune our world model and hierarchical planners using 50
real-world demonstrations for each task, and report success rate on 10 evaluation episodes in Ta-
ble 5. We compare our method with (a) Vanilla Behavior Cloning (BC), and (b) Implicit Q-Learning
(IQL) (Kostrikov et al., 2022). HDFlow significantly outperforms both baselines, achieving high
success rates on all tasks and maintaining robust performance even under increased initial random-
ization, which validates its effectiveness for real-world robotic assembly.

6 CONCLUSION

In this work, we introduced HDFlow, a novel hierarchical planning framework that effectively ad-
dresses long-horizon, contact-rich robotic assembly tasks by synergistically combining the strengths
of diffusion and rectified flow models. Our approach leverages a contrastively-trained world model
to learn a semantically structured latent space, a manifold-aware EBM-guided high-level diffusion
planner for strategic subgoal generation, and a fast low-level rectified flow planner for efficient
trajectory synthesis. We demonstrated state-of-the-art performance on challenging FurnitureBench
tasks, showcasing the robustness and efficiency of HDFlow in both simulation and real-world set-
tings.

Limitations. Despite its significant performance, HDFlow has several limitations that suggest av-
enues for future research. Currently, our framework relies on a dataset of successful and failed
demonstrations for training the world model and the EBM. While effective, collecting such data
can be resource-intensive. Another area for improvement lies in the computational efficiency of the
high-level diffusion planner. Although rectified flow handles low-level trajectory generation effi-
ciently, the iterative nature of diffusion can still pose a bottleneck for tasks that require rapid online
replanning.
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REPRODUCIBILITY STATEMENT

We recognize the importance of reproducible research in machine learning and robotics. To ensure
the reproducibility of our work, we have made comprehensive efforts throughout the development
and evaluation of HDFlow. We encourage readers to refer to the following sections for details: For
our novel hierarchical planning framework and its components, including the high-level diffusion
planner and low-level rectified flow planner, their architectural specifics, training procedures, and
hyperparameter settings are thoroughly described in Section 4.2 and Appendix B. The mathemat-
ical derivations and proofs for our theoretical propositions, including the EBM guidance gap and
manifold-aware guided planning, are provided in Appendix D. Regarding the experimental setup
and datasets, a complete description of the FurnitureBench tasks, environment configurations, data
collection protocols, and action/observation spaces can be found in Section 4.1 and Appendix A.
Upon acceptance of this paper, we will publicly release the source code for HDFlow and all experi-
mental setups to facilitate further research and validation.

LLM USAGE STATEMENT

We utilized large language models (LLMs) to polish the presentation of this paper and to assist with
grammar and style corrections. All scientific content, experimental design, and analysis remain the
sole work of the authors.
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A TASKS AND DATASET

One Leg Round TableLamp Cabinet
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Figure 4: Overview of tasks from FurnitureBench in simulation.

FurnitureBench (Heo et al., 2025) is a novel furniture assembly benchmark for testing complex,
long-horizon manipulation tasks. We choose a subset of 4 tasks from the available 9 tasks in the
benchmark. The tasks involve assembling various pieces of furniture from individual parts using a
simulated Franka Emika Panda robot in a IsaacGym environment. The robot receives multi-modal
observations, including front and wrist RGBD images and its proprioceptive state. The goal is to
assemble the furniture correctly, which requires a sequence of precise manipulations over a long time
horizon as shown in Fig 4. Each task comes with three different levels with respect to the randomness
in the initial furniture part configuration, making the manipulation task more challenging.

• Low: Furniture parts are randomly offset from their original positions by [−1.5, 1.5] cm in
the horizontal plane

• Med: Furniture parts are randomly offset from their original positions by [−5, 5] cm and
from their original rotations by [−45◦, 45◦] in the horizontal plane.

• High: Furniture parts are randomly initialized on the workspace.

Below we describe each task in detail:

1. One Leg
• Task: The task is to assemble one leg of a table. First, it has to stabilize the tabletop

in one corner of a U-shaped wall, then it has to grasp, insert and screw the leg in its
goal position.

• Phases: 5 phases in total.
• Success Metric: Assemble 2 parts in their goal positions.
• Max. Episode Length: 700

2. Lamp
• Task: The task is to assemble one lamp base, bulb, and lamp hood. First, it has to

stabilize the lamp base in one corner of a U-shaped wall. Then, it has to grasp, insert
and screw the bulb into the lamp base. Finally, it has to grasp, and insert the lamp
hood into the bulb.

• Phases: 7 phases in total.
• Success Metric: Assemble 3 parts in their goal positions.
• Max. Episode Length: 1100

3. Round Table
• Task: The task is to assemble one round tabletop, leg, and table base. First, it has to

stabilize the round tabletop in one corner of a U-shaped wall. Then, it has to grasp,
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insert and screw the leg into the tabletop. Finally, it has to grasp, insert and screw the
table base into the leg.

• Phases: 8 phases in total.
• Success Metric: Assemble 3 parts in their goal positions.
• Max. Episode Length: 1500

4. Cabinet
• Task: The task is to assemble one cabinet body, left door, right door, and cabinet top.

First, it has to stabilize the cabinet body in one corner of a U-shaped wall, then it has
to grasp, insert and slide each door in its goal position. Then, it has to flip the cabinet
body along with the assembled doors orthogonally. Finally, it has to grasp, insert and
screw the cabinet top.

• Phases: 11 phases in total.
• Success Metric: Assemble 4 parts in their goal positions.
• Max. Episode Length: 1500

Simulation. We use a scripted policy provided by the original benchmark to collect 100 successful
and 50 failure demonstrations for each task and randomness type. Unfortunately, we were unable to
collect any successful trajectories with high randomness initialization for cabinet task, so we only
considered low and med initial randmoness.

Real-world. Following (Ankile et al., 2024a;b; Ren et al., 2024), we use 3DConnexion Space-
Mouse, a 6DoF end-effector control device for teleoperated dataset collection. For each task and
randomness type, we collect 50 successful demonstrations and use them to finetune our pretrained
world model and hierarchical planners.

Observation Space. The observation space for our world model consists of two RGBD images
from the front and wrist camera and robot proprioceptive states. The front and wrist camera RGB
images are first resized from 1280 × 720 to 320 × 240, and then center cropped to 224 × 224.
The robot proprioceptive state consists of current end-effector (EE) state and gripper width. In
particular, 3 dimensional EE position, 4 dimensional EE orientation, 3 dimensional linear velocity,
3 dimensional rotational velocity, and 1 dimensional gripper width.

Action Space. We use an 8D action space, which consists of 3 dimensional delta EE position, 3
dimensional delta EE orientation (quaternion), and 1 dimensional gripper action. The action space
is bounded between −1 and +1.

Goal Specification. We initialize the furniture in its final assembled state and capture the front and
wrist RGBD images as well as the robot’s proprioceptive state. These are then passed through the
pre-trained world model’s encoder to produce a fixed latent goal vector zG. This vector is then used
as the conditioning for the planner in all subsequent experiments for that task.
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B IMPLEMENTATION DETAILS

B.1 WORLD MODEL

World models learn a compressed representation of the environment’s state and a model of its dy-
namics within this latent space. We use a Recurrent State-Space Model (RSSM) (Hafner et al.,
2019), which has demonstrated strong performance in modeling complex dynamics from high-
dimensional observations. We use observations from both front and wrist RGB-D cameras. The
RSSM consists of the following components:

• RGB Encoder: A visual encoder leveraging a pretrained DINOv2 model (Oquab et al.,
2024) for RGB images, mapping them to a lower-dimensional embedding.

• Depth Encoder: A separate CNN that encodes depth images into an embedding.
• State Encoder: An MLP that encodes the robot’s proprioceptive state into an embedding.
• Combined Observation Embedding: The embeddings from the RGB, Depth, and State

encoders are concatenated to form the high-dimensional observation embedding et =
Encϕ(ot).

• Dynamics Model: The dynamics are modeled in two parts. A deterministic RNN, ht+1 =
fϕ(ht, zt), updates its hidden state to summarize the history. This hidden state is then used
to predict a prior distribution over the current latent state, ẑt ∼ pϕ(ẑt|ht).

• Representation Model: A posterior distribution over the latent state zt ∼ qϕ(zt|ht, et) is
inferred from the combined observation embedding et and the deterministic hidden state
ht of the RNN.

• Decoder: A decoder ôt ∼ pϕ(ôt|ht, zt) reconstructs the original observation from the
latent state.

The model is trained by maximizing the Evidence Lower Bound (ELBO) on the data log-likelihood,
which encourages accurate reconstruction and prediction while regularizing the latent space. The
objective function is:

LWM = Eqϕ(z1:T |o1:T )

[
T∑

t=1

(log pϕ(ôt|zt, ht)−DKL[qϕ(zt|ht, et)||pϕ(ẑt|ht)])

]
(19)

This objective trains the model to form a compressed and predictive latent space Z , where planning
can be performed efficiently.

Parameter Value
Visual Encoder DINOv2
RGB Images 2
Depth Encoder Yes
RSSM Stochastic Latent State Size 32
RSSM Deterministic State Size 1024
Combined Latent State Size 2048
Training Epochs 100
Batch Size 64
Learning Rate 1e-4
Loss Weight λWM 1.0
Loss Weight λIDM 0.1
Loss Weight λcontrastive 0.1

Table 6: World Model Hyperparameters

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 HIERARCHICAL PLANNERS

Parameter Value
Model Architecture Diffusion Transformer (DiT)
Layers 4
Attention Heads 8
Hidden Dimension 512
Training Epochs 10,000
Batch Size 64
Learning Rate 1e-4
Diffusion Timesteps 1000 (linear beta schedule)
EBM Architecture 4-layer Transformer
Subgoal Interval (H) Task-dependent
Projection Steps t ∈ [T/3, 2T/3]
Nearest Neighbors (k) 10
Projection Variance Retention λ = 0.99
Loss Weight λHL 1.0
Loss Weight λEBM 0.1
Loss Weight λproj 0.05
Inference Steps 100
Classifier-Free Guidance Scale 2.0
EBM Guidance Scale 0.1
Context Conditioning z0, zG

Table 7: High-Level Planner Hyperparameters

Task one leg lamp round table cabinet

Subgoal interval (H) 35 55 75 75

Table 8: Task-dependent high-level planning subgoal intervals (H)

Parameter Value
Model Architecture Conditional Rectified Flow
Layers 4
Attention Heads 8
Hidden Dimension 512
Training Epochs 10,000
Batch Size 64
Learning Rate 1e-4
Loss Weight λLL 1.0
ODE Solver Dormand-Prince
Number of Integration Steps 20
Context Conditioning zk−1, zk

Table 9: Low-Level Planner Hyperparameters
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C BASELINES

In this section, we provide a brief description of each baseline method.

• DP (Chi et al., 2023): A policy learning method that leverages diffusion models to directly
model the distribution of actions conditioned on observations, enabling sample-efficient
learning from offline data.

• JUICER (Ankile et al., 2024a): A data-efficient imitation learning framework for robotic
assembly that leverages expressive policy architectures, dataset expansion, and simulation-
based data augmentation to learn multi-part, long-horizon assembly directly from RGB
images.

• Diffuser (Janner et al., 2022): A diffusion probabilistic model that plans by iteratively
denoising trajectories. It treats planning as a conditional generation problem and can pro-
duce diverse and high-quality trajectories.

• DD (Ajay et al., 2023): A conditional diffusion model that views decision-making as a
conditional generative modeling problem, leveraging classifier-free guidance with low-
temperature sampling to extract high-likelihood, return-maximizing trajectories from of-
fline datasets without relying on dynamic programming.

• HDMI (Li et al., 2023): Hierarchical Diffusion for Offline Decision Making (HDMI) pro-
poses a hierarchical trajectory-level diffusion probabilistic model to tackle challenges in
offline reinforcement learning, especially for long-horizon tasks. It employs a cascade
framework with a Reward-Conditional Goal Diffuser for discovering subgoals and a Goal-
Conditional Trajectory Diffuser for generating action sequences.

• SHD (Chen et al., 2024): A hierarchical diffusion-based planning method that uses a
”jumpy” planning strategy at the high level for subgoal generation and a low-level dif-
fuser for subgoal achievement, aiming for improved efficiency and generalization in long-
horizon tasks.
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D THEORETICAL FRAMEWORK

This section provides the detailed mathematical proofs for the propositions made in the previous
sections.

D.1 PROOF FOR PROPOSITION ON MANIFOLD-AWARE GUIDED PLANNING

Statement. Given a base diffusion planner ϵθ trained for classifier-free guidance, a learned energy
function Eϕ(z|c), and a manifold projection operator PM, the manifold-aware guided planner,
which combines EBM guidance with manifold projection, corresponds to sampling from a posterior
distribution p(z|y = 1, z ∈ M, c) that maximizes the likelihood of generating a successful and
feasible goal-conditioned plan.

Proof. The manifold-aware guidance process can be viewed as implementing constrained Bayesian
inference. We seek to sample from the posterior:

p(z|y = 1, z ∈ M, c) ∝ p(y = 1|z, c)p(z|c)1[z ∈ M]

where 1[z ∈ M] is the indicator function for the feasible manifold.

The two-step process approximates this constrained posterior:

1. The guided sampling step samples from p(y = 1|z, c)p(z|c), implementing the uncon-
strained Bayesian posterior. This is achieved by combining classifier-free guidance for the
conditional term p(z|c) and EBM guidance for the success term p(y = 1|z, c), as detailed
in Proof D.2

2. The projection step enforces the manifold constraint z ∈ M by mapping to the closest
point on the approximated manifold.

By the principle of alternating projections and the contraction property of projection operators, this
two-step process converges to a point that balances optimality (high success probability) with fea-
sibility (remaining on the manifold). The approximation error depends on the quality of the local
manifold approximation, which improves with the number of neighbors k and the intrinsic dimen-
sionality of the subgoal space. This shows that our combined guidance approach is a principled
implementation of Bayes-optimal sampling, steering the generative process towards plans that are
both relevant to the goal and likely to succeed, while remaining on the feasible manifold. □

D.2 PROOF FOR EBM-BASED GUIDANCE

Statement. Given a base diffusion planner ϵθ trained for classifier-free guidance and a learned
energy function Eϕ(z|c) that estimates the probability of success conditioned on context c, the
EBM-guided component of the planner corresponds to sampling from a posterior distribution that
maximizes the likelihood of generating a successful, goal-conditioned plan.

Proof. The proof proceeds in two steps. First, we derive the theoretically optimal score function for
sampling successful, goal-conditioned plans using Bayes’ rule. Second, we show how our combined
guidance mechanism implements an effective approximation of this optimal score.

1. Deriving the Optimal Score Function. Our goal is to sample from the posterior distribution
p(z|y = 1, c), which is the distribution of plans z that are successful (y = 1) given the context
c = (z0, zG). Using Bayes’ rule, we can express this posterior as:

p(z|y = 1, c) =
p(y = 1|z, c)p(z|c)

p(y = 1|c)
∝ p(y = 1|z, c)p(z|c)

Taking the logarithm, we get:

log p(z|y = 1, c) = log p(y = 1|z, c) + log p(z|c) + const.

The score function is the gradient of the log-probability with respect to the plan z. The optimal score
for our desired posterior is therefore:

∇z log p(z|y = 1, c) = ∇z log p(y = 1|z, c) +∇z log p(z|c)
This equation tells us that the optimal guided score is the sum of two terms:
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• ∇z log p(z|c): The score of the original conditional planner. This term ensures the plan is
relevant to the context c.

• ∇z log p(y = 1|z, c): The gradient of the log-probability of success. This term ensures the
plan is viable and likely to succeed.

2. Implementing the Score with Combined Guidance. Our framework approximates each of
these two terms:

• EBM Guidance for Success: The Energy-Based Model Eϕ(z|c) is trained to model the
success probability. We define p(y = 1|z, c) ∝ exp(−Eϕ(z|c)), where low energy cor-
responds to high success probability. The gradient of the log-probability of success is
therefore directly related to the gradient of the energy function:

∇z log p(y = 1|z, c) = −∇zEϕ(z|c)

This is the EBM Guidance term in our equation.
• CFG for Conditional Relevance: The base diffusion model, ϵθ, is trained to predict the

noise, which is proportional to the score. The term ∇z log p(z|c) is the score of the condi-
tional model. Classifier-Free Guidance (CFG) is a technique to strengthen this conditioning
at inference time. The CFG-adjusted score is:

∇̂z log p(z|c) ≈ ∇z log p(z|∅) + wcfg(∇z log p(z|c)−∇z log p(z|∅))

This is the Classifier-Free Guidance term in our equation, expressed in terms of the noise
predictions ϵθ.

By combining these two approximations, our final guided noise prediction implements the theoreti-
cally optimal score:

ϵ̂θ(zℓ, ℓ, c) = ϵθ(zℓ, ℓ, ∅) + wcfg(ϵθ(zℓ, ℓ, c)− ϵθ(zℓ, ℓ, ∅))︸ ︷︷ ︸
Approximates ∇z log p(z|c) via CFG

− webm

√
1− ᾱℓ∇zℓEϕ(zℓ|c)︸ ︷︷ ︸

Approximates ∇z log p(y=1|z,c) via EBM

This shows that our combined guidance approach is a principled implementation of Bayes-optimal
sampling, steering the generative process towards plans that are both relevant to the goal and likely
to succeed. □

D.3 PROOF FOR PROPOSITION ON EBM GUIDANCE GAP

Statement. The EBM guidance gap ∆EBM(zℓ) has a lower bound scaling as c√
1−ᾱℓ

√
d in high-

dimensional latent spaces, where c > 0 is a constant independent of dimensionality d.

Proof. We aim to provide a more detailed derivation for the lower bound of the EBM guidance gap
in high-dimensional latent spaces. The core of this issue stems from the discrepancy between the
true optimal energy guidance and our learned EBM approximation, particularly in how they weight
successful plans.

1. Forward Process and Conditional Score. The forward diffusion process defines how a
clean latent state z0 is noised to zℓ at timestep ℓ:

zℓ =
√
ᾱℓz0 +

√
1− ᾱℓϵ, ϵ ∼ N (0, I)

From this, the conditional distribution q(z0|zℓ) can be expressed as a Gaussian with mean
µ(zℓ, ℓ) =

1√
ᾱℓ
(zℓ −

√
1− ᾱℓϵ) and variance Σ(ℓ) = (1− ᾱℓ)I. The gradient of the log-

probability of this conditional distribution with respect to zℓ is crucial for relating scores in
z0 space to zℓ space:

∇zℓ log q(z0|zℓ) = ∇zℓ logN
(
z0;

1√
ᾱℓ

(zℓ −
√
1− ᾱℓϵ), (1− ᾱℓ)I

)
This simplifies to:

∇zℓ log q(z0|zℓ) = − 1√
1− ᾱℓ

ϵ
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2. True Optimal Energy Guidance. The true optimal energy guidance, ∇zℓEtrue(zℓ|c), aims
to steer the diffusion process towards regions of low energy (high success probability) in the
z0 space. This gradient is given by the expectation of the score of q(z0|zℓ) weighted by the
exponential of the negative energy function, effectively performing importance sampling
towards more successful z0 configurations:

∇zℓEtrue(zℓ|c) =
Eq(z0|zℓ)[e

−E(z0|c)∇zℓ log q(z0|zℓ)]
Eq(z0|zℓ)[e

−E(z0|c)]

Substituting the expression for ∇zℓ log q(z0|zℓ) and assuming Eq(z0|zℓ)[e
−E(z0|c)] is a nor-

malizing constant, we get:

∇zℓEtrue(zℓ|c) =
1√

1− ᾱℓ

Eq(z0|zℓ)[e
−E(z0|c)(−ϵ)]

Eq(z0|zℓ)[e
−E(z0|c)]

= − 1√
1− ᾱℓ

Eq(z0|zℓ)[ϵ|e
−E(z0|c)]

where E[ϵ|e−E(z0|c)] denotes the expectation of ϵ conditioned on z0 being sampled with a
probability proportional to e−E(z0|c).

3. Learned EBM Guidance. Our learned EBM guidance, ∇zℓEϕ(zℓ|c), typically approx-
imates the gradient of the energy function at zℓ. In many practical implementations, this
effectively corresponds to a linear weighting of the score of q(z0|zℓ) by the energy function
itself, rather than its exponential:

∇zℓEϕ(zℓ|c) ≈ Eq(z0|zℓ)[E(z0|c)∇zℓ log q(z0|zℓ)] = − 1√
1− ᾱℓ

Eq(z0|zℓ)[E(z0|c)ϵ]

This approximation introduces a discrepancy because the relationship between the energy
E(z0|c) and the success probability p(y = 1|z0, c) is exponential (p(y = 1|z0, c) ∝
e−E(z0|c)), not linear.

4. Analysis of the Guidance Gap. The EBM guidance gap is defined as ∆EBM(zℓ) =
∥∇zℓEtrue(zℓ|c)−∇zℓEϕ(zℓ|c)∥2. Substituting the expressions, we get:

∆EBM(zℓ) =

∥∥∥∥− 1√
1− ᾱℓ

(
Eq(z0|zℓ)[ϵ|e

−E(z0|c)]− Eq(z0|zℓ)[E(z0|c)ϵ]
)∥∥∥∥

2

Let δ(z0) = e−E(z0|c)

Eq(z0|zℓ)[e
−E(z0|c)]

− E(z0|c) represent the difference between the ideal ex-
ponential weighting (normalized) and the approximate linear weighting. The term in the
parenthesis can be viewed as Eq(z0|zℓ)[δ(z0)ϵ]. In high-dimensional latent spaces (i.e.,
when d is large), the noise vector ϵ typically has a magnitude of approximately

√
d (i.e.,

∥ϵ∥2 ≈
√
d). Furthermore, the components of ϵ are largely independent. Due to the Central

Limit Theorem and concentration inequalities, even small biases in the weighting function
δ(z0) can lead to a significant accumulated error when multiplied by a high-dimensional
random vector. Specifically, if Eq(z0|zℓ)[δ(z0)] ̸= 0, the term ∥Eq(z0|zℓ)[δ(z0)ϵ]∥2 will tend
to scale with

√
d in expectation, as the contributions from different dimensions accumulate.

Therefore, there exists a constant c > 0 (which depends on the magnitude of the mismatch δ(z0)
and the properties of the noise distribution) such that:

∆EBM(zℓ) ≥
c√

1− ᾱℓ

√
d

This lower bound shows that the inaccuracies in energy guidance are exacerbated in high-
dimensional latent spaces and as the diffusion process approaches z0 (i.e., as ℓ → 0, 1 − ᾱℓ → 0,
making the term 1√

1−ᾱℓ
large). This leads sampled trajectories to deviate significantly from the true

data manifold. □
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E MORE ABLATION STUDIES

E.1 CHOICE OF VISION ENCODER

To evaluate the impact of the vision encoder on the performance of our world model and the overall
HDFlow framework, we conducted an ablation study comparing different visual backbones. We
trained the world model with various encoders: a simple CNN, R3M (Nair et al., 2022), VIP (Ma
et al., 2023), MAE (He et al., 2022), and our chosen DINOv2 (Oquab et al., 2024). The results are
summarized in Table 10.

Backbone one leg lamp round table cabinet

Low Med High Low Med High Low Med High Low Med

CNN 55 18 2 28 8 0 20 6 0 3 0
R3M 68 25 5 39 15 4 29 10 2 7 1
VIP 75 32 9 45 20 7 36 14 5 10 3
MAE 83 45 18 57 33 10 48 25 8 15 6
DINOv2 92 71 39 68 49 34 61 43 27 55 36

Table 10: Ablation study on the choice of vision encoder for the world model. This table reports HDFlow
success rates (%) on all tasks with respective randomization levels.

We found out that DINOv2 leads to significantly more accurate and detailed reconstructions of ob-
servations, which translates to a richer and more semantically structured latent space. This improved
latent representation is crucial for both the high-level diffusion planner and the low-level rectified
flow planner, enabling them to generate more effective and feasible plans. The quantitative results
in Table 10 further confirm that DINOv2 consistently yields the highest HDFlow success rates,
underscoring its importance as a foundational component of our framework.

E.2 PERFORMANCE UNDER DIFFERENT TOTAL SUBGOALS

We investigate the impact of the total number of subgoals K on the performance of HDFlow. The
total number of subgoals dictates the temporal abstraction of our hierarchical planner, influencing
both the complexity of high-level subgoals and the length of low-level trajectories. We conduct
experiments on all tasks with varying randomness, varying K and reporting the success rates in
Table 11.

Subgoals one leg lamp round table cabinet

K Low Med High Low Med High Low Med High Low Med

10 61 21 2 33 13 2 23 9 0 6 0
15 78 35 10 52 25 8 40 18 5 25 10
20 92 71 39 68 49 34 61 43 27 55 36
25 89 60 30 63 45 25 58 40 20 50 30
30 85 45 15 60 35 12 50 28 10 35 18

Table 11: Ablation study on the choice of total subgoals K. Success rates (%) of HDFlow on all tasks with
respective randomization levels for different K values, highlighting the importance of temporal abstraction for
optimal performance.

The results indicate that an optimal total number of subgoals K exists for each task. A very small
K (e.g., 10) leads to an overly coarse high-level plan, requiring the low-level rectified flow model
to bridge larger gaps in latent space, which can be challenging. Conversely, a very large K (e.g.,
30) makes the high-level diffusion model generate too many subgoals, which can accumulate errors.
A value of K = 20 consistently yields the highest success rates, representing a balance where the
high-level planner provides meaningful strategic guidance, and the low-level planner can efficiently
and accurately execute the dense trajectories. This ablation highlights the importance of carefully
tuning the temporal abstraction level for optimal performance in hierarchical planning.
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F SIMULATION ROLLOUTS

Initial state Grasp tabletop Place it to corner

Pick up leg Insert leg Screw leg

One Leg Low

Figure 5: A successful rollout of HDFlow planner on the one leg assembly task initialized with Low ran-
domness.

Initial state Grasp tabletop Place it to corner

Pick up leg Insert leg Screw leg

One Leg Med

Figure 6: A successful rollout of HDFlow planner on the one leg assembly task initialized with
Med randomness.
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Initial state Grasp tabletop Place it to corner

Pick up leg Insert leg Screw leg

One Leg High

Figure 7: A successful rollout of HDFlow planner on the one leg assembly task initialized with
High randomness.

Initial state Grasp tabletop Place it to corner Pick up leg

Insert leg Screw leg Pick up base Insert and Screw base

Round Table Low

Figure 8: A successful rollout of HDFlow planner on the round table assembly task initialized
with Low randomness.
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Initial state Grasp base Place it to corner Pick up bulb

Insert bulb Screw bulb Pick up hood Place on the top of base

Lamp Low

Figure 9: A successful rollout of HDFlow planner on the lamp assembly task initialized with Low
randomness.

Initial state Grasp base Place it to corner Pick up bulb

Insert bulb Screw bulb Pick up hood Place on the top of base
Figure 10: A successful rollout of HDFlow planner on the lamp assembly task initialized with Med
randomness.
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Initial state Grasp cabinet box Place it to corner Pick up and insert door

Repeat with another door Make box stand up Pick up cabinet top Insert and Screw top

Cabinet Low

Figure 11: A successful rollout of HDFlow planner on the cabinet assembly task initialized with
Low randomness.

G REAL-WORLD ROLLOUTS

Initial state Grasp tabletop Place it to corner

Pick up leg Insert leg Screw leg

One Leg Low

Figure 12: A successful rollout of HDFlow planner on the one leg assembly task initialized with
Low randomness in the real-world.
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Initial state Grasp base Place it to corner Pick up bulb

Insert bulb Screw bulb Pick up hood Place on the top of base

Lamp Low

Figure 13: A successful rollout of HDFlow planner on the lamp assembly task initialized with Low
randomness in the real-world.

Initial state Grasp tabletop Place it to corner Pick up leg

Insert leg Screw leg Pick up base Insert and Screw base

Round Table Low

Figure 14: A successful rollout of HDFlow planner on the round table assembly task initialized
with Low randomness in the real-world.
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