
Dynamic Inverse Reinforcement Learning for
Characterizing Animal Behavior

Zoe C. Ashwood1,2,∗ Aditi Jha1,3,∗ Jonathan W. Pillow1

1Princeton Neuroscience Institute, Princeton University
2Dept. of Computer Science, Princeton University

3Dept. of Electrical and Computer Engineering, Princeton University
{zashwood, aditijha, pillow}@princeton.edu

Abstract

Understanding decision-making is a core objective in both neuroscience and psy-
chology, and computational models have often been helpful in the pursuit of this
goal. While many models have been developed for characterizing behavior in
binary decision-making and bandit tasks, comparatively little work has focused
on animal decision-making in more complex tasks, such as navigation through a
maze. Inverse reinforcement learning (IRL) is a promising approach for under-
standing such behavior, as it aims to infer the unknown reward function of an agent
from its observed trajectories through state space. However, IRL has yet to be
widely applied in neuroscience. One potential reason for this is that existing IRL
frameworks assume that an agent’s reward function is fixed over time. To address
this shortcoming, we introduce dynamic inverse reinforcement learning (DIRL), a
novel IRL framework that allows for time-varying intrinsic rewards. Our method
parametrizes the unknown reward function as a time-varying linear combination of
spatial reward maps (which we refer to as “goal maps”). We develop an efficient
inference method for recovering this dynamic reward function from behavioral data.
We demonstrate DIRL in simulated experiments and then apply it to a dataset of
mice exploring a labyrinth. Our method returns interpretable reward functions for
two separate cohorts of mice, and provides a novel characterization of exploratory
behavior. We expect DIRL to have broad applicability in neuroscience, and to
facilitate the design of biologically-inspired reward functions for training artificial
agents.

1 Introduction

Characterizing the decision-making behavior of humans and animals is a central goal in neuroscience
and psychology [1, 2]. Decision-making tasks such as Two-Alternative Forced Choice (2AFC) and
bandit problems have been widely studied [3–7], and previous work has developed a variety of models
for behavior in these tasks [1, 7–9]. The classic psychometric curve represents one such model [10],
and more recent work has focused on models based on reinforcement learning [1, 8, 11, 12]. Such
models allow us to understand and compare the decision-making strategies used by humans and
animals, and can also provide a low-dimensional description of behavior that can be regressed against
neural data [1, 13].

Although a large literature has focused on models of decision-making in simple 2AFC and bandit tasks,
comparatively few papers have sought to model behavior in larger, complex natural environments.

∗These authors contributed equally to this work.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

water-restricted
labyrinth task: example trajectories

end

start
water-unrestricted

Figure 1: Example mouse trajectories in the
labyrinth task of Rosenberg et al. [15]. Water-
restricted and unrestricted mice moved freely
through a 127 node maze environment for 7 hours.
Over the course of the night, each mouse com-
pleted over 100 such trajectories, which began at
the home port (indicated by an image of a house).
For the water-restricted mice, a water port existed
at the terminal node in the environment that is
shaded grey (next to the water drop image).

[14–16]. In a recent study, Rosenberg et al. [15] introduced a novel experimental paradigm involving
water-restricted mice navigating a 127-node labyrinth equipped with a water port at one terminal node
(Fig. 1). At each node, the mouse could make up to 4 distinct decisions (‘stay’, ‘go left’, ‘go right’, or
‘reverse’). Navigation through a maze is a perfect example of complex yet natural decision-making
behavior that remains poorly understood. Although reinforcement learning may seem like the natural
framework for modeling such goal-driven behavior, the rewards experienced by these mice are not
obvious to the experimenter. Indeed, as noted in Rosenberg et al. [15], the observed trajectories
indicate that mice are not only motivated by the extrinsic water reward, but also by intrinsic rewards
such as their curiosity to explore the environment.

Inverse reinforcement learning (IRL) [17–20] addresses the problem of inferring the unknown reward
function of an agent. Given access to the agent’s trajectories as it interacts with the environment,
IRL identifies the states and actions that the agent finds rewarding. While IRL has found many
successes in robotics [21, 22] and healthcare contexts [23–25], existing IRL methods have not found
broad application in neuroscience. One plausible reason for this dearth is that IRL methods typically
assume that the unknown reward function is fixed over the course of the agent’s trajectory. Yet in
many real-world decision-making tasks, rewards can change over time. For example: the goals of
a mouse, and consequently its intrinsic rewards, can change with time depending on factors such
as fatigue, satiation and curiosity. This motivated us to develop an IRL method for characterizing
animal decision-making in complex environments such as the labyrinth, in which rewards may vary
over time.

Here we propose dynamic inverse reinforcement learning (DIRL), an IRL method that allows for
time-varying reward functions. DIRL parametrizes the animal’s reward function as a time-varying
linear combination of a small number of spatial reward maps, which we refer to as “goal maps”.
A single goal map is a function specifying the amount of reward at each state in the environment.
(Classic IRL methods thus seek to identify a single, fixed goal map.) DIRL posits the existence of
multiple goal maps with time-varying weights, which allows the instantaneous reward function to vary
in time. For example, a “water” goal map could have high levels of reward at the water port, while an
“explore” reward map might have reward evenly dispersed throughout the environment. Time-varying
weights then modulate the extent to which each goal map is active at any timestep. We introduce an
inference method, which extends a fixed reward IRL framework by Ziebart et al. [20], to allow us
to obtain both the goal maps and the time-varying weights from state-trajectory data. Finally, we
demonstrate the application of our framework in simulation (gridworld and labyrinth environments),
as well as on real mouse decision-making data from Rosenberg et al. [15]. Our method recovers
interpretable reward functions for both cohorts of mice studied there, and reveals an “explore” goal
map for one of the cohorts. While exploration remains poorly understood in neuroscience [26], our
method offers a powerful framework for characterizing exploratory, as well as exploitative behavior
from an animal’s trajectories alone.

2 Related Work

The neuroscientific literature describing models of decision-making is vast, including both normative
[1, 8] and descriptive models [9, 10, 27–30]. While some of this work considers models of decision-
making that vary over time, most such models have focused on 2AFC or bandit tasks, and do not
scale easily to complex decision-making tasks such as navigation. To the best of our knowledge,
IRL has found relatively few applications in neuroscience. One exception is Schultheis et al. [31]

2

which performed inverse optimal control to infer the cost function associated with sensorimotor
behavior. Their targeted application—modeling the cost function optimized by a human performing a
reaching task—is very different to ours, which results in different assumptions in their work. Another
exception is Yamaguchi et al.[32] which described an IRL framework for identifying the thermotactic
strategies used by C. elegans. Relative to the work we present here, Yamaguchi et al.[32] assumed
a �xed reward function, and was restricted to the case of a linearly-solvable MDP. In Kwon et al.
[33], the authors considered the problem of “Inverse Rational Control” and inferred the parameters
governing the evolution of an animal's belief state and subjective reward function within a POMDP
(partially observed MDP) framework. Finally, while not the main focus of their paper, Reddy[16]
used the static IRL framework of Ziebart et al.[19] to infer the rewards optimized by mice navigating
in the Rosenberg et al. [15] task.

The literature on IRL [17–20, 34–37] is extensive, but most studies have assumed that the true
underlying reward function is �xed over time. Of particular relevance to our work is the Maximum
Causal Entropy (MCE) framework of Ziebart et al.[20]. MCE infers a reward function under the
assumption that an agent seeks to maximize both discounted future reward and the discounted future
entropy of its policy. We also use discounted future entropy to regularize the goal maps in DIRL,
making our method an extension of MCE to the case of time-varying rewards.

Finally, the IRL frameworks of Babes-Vroman et al.[38], Choi and Kim[39] and Likmeta et al.[40]
pursued a related aim to ours, allowing for multiple agents with differing reward functions. However,
these frameworks did not allow for single agents with time-varying rewards. Surana and Srivastava
[41] developed a Bayesian non-parametric method that assumed that an agent's trajectory could be
partitioned into distinct behavioral states, where each discrete state had a unique reward function;
here, we instead consider the case where rewards vary continuously over time.

3 DIRL: Dynamic Inverse Reinforcement Learning

3.1 The Inverse Reinforcement Learning Problem

Let us consider a Markov Decision Process (MDP),M = fS ; A ; T ; r; g, whereS is the state space,
A is the action space,T : S �S �A ! [0; 1] represents the probability of transitioning between states
when a certain action is taken,r : S � A ! R is the reward function, specifying the reward obtained
from taking actiona 2 A in states 2 S, and 2 [0; 1] is the discount factor. Inverse reinforcement
learning [17–19, 34, 38, 39] aims to infer the unknown reward functionr (s; a) when given access to
fS ; A ; T ; g andN trajectories of agents navigating in this environment,D = f � 1; � 2; :::; � N g. Each
trajectory is a sequence of state-action pairs,� i = f (s1; a1); (s2; a2); :::g. Typically, IRL frameworks
assume that the reward function does not vary over the course of an agent's trajectory. As discussed
earlier, this is a severe limitation when applying IRL in neuroscienti�c settings, where the subjective
value of the rewards an animal receives may vary as a function of time, satiety, thirst, fatigue, curiosity,
etc. In the following, we introduce an extension of IRL that allows for time-varying reward functions.

3.2 DIRL Generative Model: Goal Maps and Time-Varying Weights

Here we extend the MDP de�ned above by assuming a time-varying reward function:r t (a; s). Our
goal is to develop methods for inferring this reward function from a set of observed trajectories
D = f � i gN

i =1 . Following previous work [17–19, 34, 38, 39], we assume that the reward function
depends only on the states, allowing us to write the dynamic reward function asr t (s). However,
inferring the reward for every state at every timepoint still requires learningjSj � T parameters. We
therefore make two assumptions to reduce the number of parameters and make inference tractable: (1)
we model the reward function as low rank, parameterized by a small number of goal maps modulated
by a set of time-varying weights; and (2) we impose a prior encouraging these weights to vary slowly
in time.

In our approach, the time-varying reward function has the following low-rank representation:

r t (s) =
KX

k=1

� k;t uk;s ; (1)

whereuk 2 RS represents thek'th goal map, and� k;t 2 R is the weight on this goal map at timestep
t, andK is the rank of the representation. Each goal map speci�es a reward level for each state in

3

Figure 2: DIRL model schematic. We parametrize the time-varying reward function as a linear
combination of a small number of spatial goal maps, where the weights on each map can vary over
time. A goal map is a map of the environment, indicating the reward available in each state.

the environment, while weight� k;t speci�es the contribution of goal mapk to the animal's reward
function att.

To impose smoothness over time, we place a Gaussian random walk prior over weight trajectories:

� k;t = � k;t � 1 + � k ; � k � N (0; � 2
k); (2)

where� 2
k is a hyperparameter controlling the variance of the weight changes. This prior re�ects our

belief that the factors in�uencing an animal's subjective experience of reward (e.g., thirst, hunger,
fatigue) vary slowly relative to the timescale of individual decisions. The low-rank assumption
reduces the number of parameters specifying the reward function from(jSj � T) to (jSj + T)K ,
a massive reduction providedK � min(jSj; T). The smoothness assumption allows us to further
reduce the effective number of parameters, as the weight trajectories� k;t become more correlated
with decreasing variance� 2

k [42].

Figure 2 illustrates the resulting generative model using a simpli�ed3 � 3 gridworld. In this example,
there are multiple goal maps, one with reward located only at the water port, a second with reward
located only at the home state, and a third with reward distributed broadly across states, which
is associated with exploratory behavior. Each map has a time-varying weight that determines its
contribution to the animal's total reward function at a given moment in time. In this example, the
“home” goal map dominates the reward function at the beginning of the session, while the “water”
goal map dominates at the end of the session (e.g., re�ecting the animal becoming thirsty).

To model decision-making behavior, we assume that animals seek to maximize the discounted
expected future reward under a maximum entropy policy [19, 20, 37, 43, 44], given by:

� t (s; a) =
eQ t (s;a)

P
a02A eQ t (s;a 0)

8 s 2 S; a 2 A ; t 2 f 1; :::Tg; (3)

whereQt (s; a) is the soft Q-function for states and actiona at timet:

Qt (s; a) = r t (s) +
X

s0

P(s0 j s; a) log

X

a0

expQt (s0; a0)

!

; (4)

which arises from the reward function by performing soft value iteration [34] (see Supplementary
Materials, SM, for further details). This is a common choice of policy in IRL frameworks as it is
easily differentiable (unlike maximizing or “greedy” policies), and it has also been widely applied to
data from both humans and animals [13, 28]. Note that our formulation does not require a temperature
parameter, as this is directly incorporated into the scale of the time-varying weights: larger (smaller)
weights give rise to more (less) deterministic policies.

4

3.3 DIRL inference procedure

During inference, our objective is to learn the time-varying weightsf � k gK
k=1 , as well as the goal

mapsf uk gK
k=1 from the trajectories of an agent (animal). To do so, we alternately optimize the goal

maps and time-varying weights to maximize the log-posterior of the observed trajectories inD under
our model. Letu 2 RSK be a vector of concatenated goal mapsf uk gK

k=1 stacked vertically, and
similarly let � 2 RT K contain the concatenated time-varying weightsf � k gK

k=1 . stacked vertically.
We, �rst, initialize the parameters randomly, such that the elements of the goal maps are chosen
from U(0; 1) and the time-varying weights are Gaussian distributed. We then perform coordinate
ascent to iteratively update the time-varying weights and the goal maps while holding the other set of
parameters constant.

Concretely, we obtain the goal map updatesu by maximizing the following objective using gradient
ascent:

u � = argmax
u

NX

i =1

X

(st ;a t) � � i

log � t (st ; at) � � jjujj2 (5)

where� t is the policy given by Eq. 3 and� jjujj2 represents an L2 regularizer.

We then update the time-varying weights� by �rst updating the reward function and policy (Eq. 3)
with the new goal maps,r t (s) =

P
k � t;k u�

k;s . We then use gradient ascent to perform the optimiza-
tion:

� � = argmax
�

0

@
NX

i =1

X

(st ;a t) � � i

log � t (st ; at) � 1
2 log jCj � 1

2 � > C � 1�

1

A : (6)

The last two terms in this objective correspond to the negative log of the Gaussian prior on� (Eq. 2),
whereC � 1 = D > � � 1D is the inverse prior covariance, withD a block diagonal matrix ofK
identicalT � T �rst-order difference matrices (with 1s on the diagonal and -1s on the sub-diagonal),
and� � 1 is a diagonal matrix with inverse noise-variances1=� 2

k along the diagonal.

We iteratively update the goal maps and time-varying weights using Eq. 5 and Eq. 6 until convergence.
(See Alg. 1 for pseudo-code). We consider the number of goal mapsK , the discount factor , the
strength of the goal map prior� , as well as the noise variances associated with the time-varying
weights, f � k gK

k=1 , to be hyperparameters. To restrict the number of hyperparameters, we set
� k = � 8k. We then swept across a broad range of values for all hyperparameters (see SM for the
full list of values considered) and selected the values that optimized the log-likelihood of a set of
held-out trajectories.

Algorithm 1: DIRL Inference Procedure

Input 1: MDP state and action spaces, transition matrix:(S; A ; T) ;
Input 2: N trajectories,D � f � i gN

i =1 ;
Input 3: Hyperparameters: no. of goal mapsK , noise variancesf � k g, discount factor ,
strength of goal map prior,� ;

Output: Parameters governing the rewardsf uk ; � k gK
k=1 ; whereuk 2 RS ; � k 2 RT ;

Let u = [u1; :::uk], � = [� 1; :::� k] ;
Initialize u0; � 0 ;
for iter = 1 :::N iter do

Calculate rewardsr t (s) =
P

k � iter
k;t uiter

k;s 8s 2 S; t 2 f 1:::Tg;

Get policy using soft value iteration :� t (s; a) =
eQ t (s;a)

P
a0 eQ t (s;a 0)

8(s; a; t);

Updateu iter+1 by maximizing the log-posterior of trajectories (Eq. 5).;
Update rewardsr t (s) =

P
k � iter

k;t uiter+1
k;s and learn new policy� t (s; a);

Update� iter+1 by maximizing the log-posterior, with noise variancesf � k g (Eq. 6).;
end
OutputuN iter; � N iter; ;

5

4 Results

4.1 Application to a simulated gridworld environment

Figure 3: Simulations on a5 � 5 gridworld. (A) Example expert trajectories when the time-varying
reward function is obtained using the generative goal maps shown in B and the time-varying weights
shown in C.(B) Generative goal maps: the �rst map has a high reward at the “home state” (upper
left), the other has a high reward at the the “water state” (bottom center).(C) Time varying weights
for the home and water goal maps: solid lines show the generative parameters, while dotted lines
show the recovered parameters along with a 95% con�dence interval. Error bars are computed via
the inverse Hessian of the log-posterior of Eq. 6 at the MAP estimate of the weights.(D) Recovered
goal maps.(E) Rewards for the home and water states are shown in red and blue respectively. The
average reward for the remaining states is shown in green. Solid lines show the generative rewards,
while the dotted lines show the inferred rewards.(F) Held-out test set performance as a function of
the number of goal maps. Higher values are better; units are bits per decision.

We �rst demonstrate our method on simulated trajectories in a5 � 5 gridworld environment, with5
actions per state (up, down, left, right, stay). We generated two goal maps for this environment: a
“home” map and a “water” map, which were rewarding only at the home state and the water state,
respectively (Fig 3B). Corresponding to these goal maps, we also generated time-varying weights
(Fig. 3C, solid lines) for 50 timesteps with the random-walk prior of Eq. 2 (for� k = 2 � 3:5; this was
chosen to provide adequate variation in the reward function during the time period considered). The
weight for the water map started high but decreased over time, thus making the water state the most
rewarding for the �rst� 25 timesteps (Fig. 3E, blue solid line). In contrast, the weight on the home
map started small but increased so that the home state became the most rewarding state at the end of
the 50 timesteps (Fig. 3E, red solid line). All of the other states in the environment had a constant
reward of 0. In order to generate trajectories corresponding to this reward function (Fig. 3E), we used
soft value iteration to learn the corresponding optimal time-varying policy (Eq. 3). We then executed
this policy in order to obtain 200 trajectories (a similar number to the number of trajectories we have
for the real dataset discussed later), two examples of which are shown in Fig. 3A.

Next, we applied our IRL inference method so as to learn the goal maps and time-varying weights
from 80% of the generated trajectories. Fig. 3F shows the log-likelihood of the remaining 20% of
trajectories as a function of the number of goal maps. The held-out test log-likelihood is equally
high for 2 and 3 maps, so we focus on the 2-map solution in order to be able to compare with the
generative parameters. It is important to note that we can only recover rewards at each timestep up to
an additive constant, as the policy remains unchanged upon the addition of a constant to the rewards.
Further, scaling of the goal maps accompanied by an inverse scaling of the time-varying weights also
leaves the recovered rewards unchanged. Thus, to compare to the generative parameters, we perform
a post hoc processing method to the recovered parameters to handle all such invariances (details in
SM). Figures 3C and D show that our method allows us to accurately recover the generative goal
maps and time-varying weights from the simulated trajectories. Finally, combining the goal maps
and time-varying weights, we are able to accurately match the generative time-varying rewards for

6

	Introduction
	Related Work
	DIRL: Dynamic Inverse Reinforcement Learning
	The Inverse Reinforcement Learning Problem
	DIRL Generative Model: Goal Maps and Time-Varying Weights
	DIRL inference procedure

	Results
	Application to a simulated gridworld environment
	Application of DIRL to real mouse trajectories
	Inferring interpretable reward functions from water-restricted mice
	`Exploratory' maps inferred from water-unrestricted mice
	DIRL outperforms existing IRL approaches

	Discussion

