
MAGIC: Multi-Armed Bandit Guided Iterative Code Generation

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have shown002
remarkable capabilities in code generation,003
yet they often struggle with solution diversity004
and competition-level problems. In this pa-005
per, we introduce MAGIC (Multi-Armed ban-006
dit Guided Iterative Code generator), an ap-007
proach that formalizes plan selection in LLM-008
based code generation as a Multi-Armed Ban-009
dit (MAB) problem, enabling systematic ex-010
ploration of diverse solution strategies. The011
method disentangles the generation process012
into four phases: explicit plan generation, plan013
selection, code implementation, and code re-014
finement. By treating each potential plan as015
an arm in the MAB framework, we employ016
an adapted Upper Confidence Bound (UCB)017
algorithm that balances the exploration of dif-018
ferent solution strategies with the exploita-019
tion of promising plans. With the purpose of020
constraining code refinement to current plans021
to ensure focused solution space exploitation,022
we propose to formalize the plans as code023
skeletons. Experiments on HumanEval, Hu-024
manEval+, CodeContest, and APPS demon-025
strate significant improvements over existing026
methods, with pass@1 up to 97.0% on Hu-027
manEval and 45.5% on CodeContest using028
GPT-4o. Through variance-based diversity met-029
rics, we show that MAGIC substantially in-030
creases solution diversity, particularly benefit-031
ing performance on challenging competitive032
programming tasks.033

1 Introduction034

In the past few years, large language models035

(LLMs) have made significant strides in various036

fields (OpenAI, 2023). Coding, as a critical applica-037

tion area, holds particular importance, making the038

coding capabilities of LLMs especially noteworthy.039

Early research efforts (Rozière et al., 2023; Austin040

et al., 2021) predominantly focused on pre-training041

and fine-tuning LLMs on large-scale code datasets042

to improve their coding proficiency. Recently, the043

rise of general-purpose LLMs with advanced rea- 044

soning ability has shifted attention to using these 045

models as agents (Xia et al., 2024; Xi et al., 2023) 046

for iterative code generation and algorithmic design. 047

Furthermore, scaling inference compute, through 048

methods like iterative code refinement with exter- 049

nal feedback (Shinn et al., 2024) and tree-structured 050

searching (Song et al., 2024), has proven effective 051

in improving code quality. These advancements 052

highlight the potential for addressing increasingly 053

complex coding challenges (Li et al., 2022). 054

Current state-of-the-art methods primarily rely 055

on advanced search algorithms to enhance perfor- 056

mance. For instance, PG-TD (Zhang et al., 2023b) 057

integrates token-level lookahead search using a 058

planner into the Transformer decoding process, 059

while FunCoder (Chen et al., 2024a) employs dy- 060

namic function decomposition to recursively di- 061

vide tasks into simpler sub-functions, optimizing 062

the search for these sub-components. Addition- 063

ally, Monte Carlo Tree Search (MCTS) based ap- 064

proaches (Zhou et al., 2024; Hao et al., 2023) effec- 065

tively balance exploration and exploitation during 066

code generation, demonstrating their utility in nav- 067

igating complex solution spaces. 068

Despite the advancements of current search algo- 069

rithms, several limitations remain. These methods 070

often lack systematically designed structures to 071

handle diverse reasoning processes. For instance, 072

while MCTS approaches (Zhou et al., 2024; Hao 073

et al., 2023) effectively leverage information from 074

ancestor nodes, they may face challenges in utiliz- 075

ing information across different branches. This lim- 076

itation can lead to overlapping generation across 077

branches, reducing both efficiency and diversity. 078

Furthermore, existing approaches fail to fully lever- 079

age the inherent language capabilities of LLMs. 080

Studies (Tang et al., 2023) have shown that while 081

LLMs excel in semantic reasoning, they struggle 082

with symbolic reasoning. Another line of research 083

(Jiang et al., 2023) highlights the advantages of 084

1



explicit planning, where a model first generates085

a structured plan before taking action, leading to086

notable performance improvements. Collectively,087

these limitations prevent current methods from088

fully realizing the potential of LLMs, constrain-089

ing their ability to handle diverse reasoning tasks090

and systematically explore solution spaces.091

Motivated by these limitations, we propose092

MAGIC (Multi-Armed bandit Guided Iterative093

Code generator), a novel framework designed to094

address the challenges of solution diversity and sys-095

tematic exploration in LLM-based code generation.096

Specifically, MAGIC structures the code genera-097

tion process into four distinct phases: explicit plan098

generation, plan selection, code implementation,099

and code refinement. In the plan generation phase,100

inspired by previous work (Wang et al., 2024), we101

leverage the strong semantic planning capabilities102

of LLMs to generate an overall plan in natural lan-103

guage. Beyond generating a textual plan, we also104

prompt the LLM to produce code skeletons based105

on the plan, with detailed reasons provided in Sec.106

4. To systematically explore diverse solution strate-107

gies, we formalize plan selection as a Multi-Armed108

Bandit (MAB) problem. Each potential plan is109

treated as an arm in the MAB framework, and110

we employ an adapted Upper Confidence Bound111

(UCB) algorithm (Auer et al., 2002) to balance the112

exploration of new strategies with the exploitation113

of promising ones. Furthermore, building on previ-114

ous findings (Chen et al., 2024b; Zhong et al., 2024)115

that LLMs can refine their outputs when provided116

with external feedback, we integrate a refinement117

mechanism into our framework to iteratively en-118

hance the generated solutions.119

To evaluate our method, we conduct extensive120

experiments on a variety of code generation bench-121

marks, ranging from simple foundational tasks122

(Chen et al., 2021; Liu et al., 2023) to competition-123

level challenges (Hendrycks et al., 2021; Li et al.,124

2022). Notably, MAGIC achieves a 97.0% Pass@1125

on HumanEval (Chen et al., 2021) and a 45.5%126

Pass@1 on CodeContest (Li et al., 2022), set-127

ting new SOTA performance on both benchmarks.128

These results demonstrate that our method excels129

at handling tasks of varying complexity, showcas-130

ing its effectiveness across both simple and highly131

challenging problems.132

Our contributions can be summarized as follows:133

• We identify key limitations in existing LLM-134

based code generation methods, including135

insufficient solution diversity, repeated sam- 136

pling of suboptimal paths, and underutiliza- 137

tion of LLMs’ semantic reasoning capabili- 138

ties. 139

• We propose MAGIC, a novel framework 140

that formulates LLM-based code generation 141

as a Multi-Armed Bandit (MAB) problem. 142

MAGIC enables systematic exploration and 143

exploitation of diverse solution strategies, ad- 144

dressing limitations in existing methods. 145

• Extensive experiments on multiple bench- 146

marks, including HumanEval, HumanEval+, 147

CodeContest, and APPS, demonstrate the 148

effectiveness of MAGIC. Notably, MAGIC 149

achieves state-of-the-art performance, with a 150

97.0% Pass@1 on HumanEval and a 45.5% 151

Pass@1 on CodeContest. 152

2 Related Works 153

2.1 AI for Code 154

Code-related tasks have become a critical area 155

of focus in artificial intelligence, encompassing a 156

wide range of applications such as code generation, 157

completion, translation, and summarization. Early 158

works explored various aspects of these tasks, lever- 159

aging models like CodeBERT (Feng et al., 2020) 160

and CodeT5 (Wang et al., 2021) to understand code 161

syntax and semantics, enabling advancements in 162

tasks such as code search and summarization. 163

The development of large-scale pre-trained mod- 164

els, such as GPT-4 (OpenAI, 2023) and Llama 165

(Touvron et al., 2023) , has significantly expanded 166

the scope of code-related tasks. These general- 167

purpose models excel not only in code generation 168

but also in reasoning and refining code through nat- 169

ural language interfaces. Additionally, fine-tuned 170

models (Ni et al., 2024; Rozière et al., 2023) can 171

achieve further specialization for code challenges. 172

Building upon these advancements, this work in- 173

vestigates new approaches to enhance code-related 174

tasks, leveraging the strengths of LLMs for system- 175

atic improvements. 176

2.2 Language Model Agent 177

With the advancement of research, there is growing 178

attention on the reasoning, searching, and inter- 179

action capabilities of LLMs, which have become 180

foundational to most SOTA approaches. Tech- 181

niques like Chain-of-Thought (CoT) prompting 182

(Wei et al., 2022) enable step-by-step reasoning by 183

2



breaking problems into intermediate steps, while184

methods like Least-to-Most prompting (Zhou et al.,185

2023) focus on first decomposing complex prob-186

lems into simpler subproblems and then sequen-187

tially solving them. Leveraging LLMs’ strong abil-188

ity for interacting with external environments and189

in-context learning, advanced approaches such as190

ReAct (Yao et al., 2023b) and Self-Edit (Zhang191

et al., 2023a) refine answers iteratively using ex-192

ternal feedback. To explore larger solution spaces,193

methods like Tree-of-Thought (Yao et al., 2023a)194

and MCTS-based techniques (Hao et al., 2023;195

Zhou et al., 2024) utilize tree structures to gener-196

ate diverse outputs, significantly enhancing LLMs’197

problem-solving capabilities on tasks requiring ex-198

tensive exploration.199

2.3 Code Agent200

Recent advances in coding agents have introduced201

innovative frameworks to enhance code generation.202

AgentCoder (Huang et al., 2024) employs a multi-203

agent system where programmer, test designer, and204

executor agents collaborate to iteratively refine205

code based on feedback. LDB (Zhong et al., 2024)206

enables debugging by segmenting programs into207

basic blocks and tracking runtime execution, allow-208

ing efficient error pinpointing. FunCoder (Chen209

et al., 2024a) uses a divide-and-conquer strategy210

with dynamic function decomposition and func-211

tional consensus to tackle complex requirements.212

Recently, SFS (Light et al., 2024) formulates code213

generation as a black-box optimization problem214

and introduces an evolutionary search method that215

enhances diversity and feedback exploitation. All216

these approaches address limitations in traditional217

methods and significantly improve coding perfor-218

mance across diverse benchmarks.219

3 Problem Formulation220

3.1 Plan Space and Code Space Definitions221

To formalize the code generation process, we define222

two key spaces: the Plan Space and the Code223

Space.224

Plan Space Definition. Let T denote the Plan225

Space, which contains all possible plans that can226

be generated by the LLM for solving a given cod-227

ing problem x. A plan T ∈ T is a structured228

representation of the steps or strategies required229

to implement the solution. Each plan T serves230

as a blueprint for generating code and can be rep-231

resented as a sequence of high-level actions or a232

skeleton structure: 233

T = {T1, T2, . . . , Tk | Ti ∼ PLLM (T |x)}. 234

Code Space Definition. Let Y denote the Code 235

Space, the set of all possible code implementations 236

that can be generated by the LLM. Formally, we 237

define: 238

Y = {y1, y2, . . . , yk | yi ∼ PLLM(y | x)} 239

Linking Plan Space and Code Space. The Plan 240

Space T and the Code Space Y are intrinsically 241

connected in the code generation process. For a 242

given coding problem x, the relationship between 243

plans and code implementations can be expressed 244

as: 245

P (y|x) = ET∼P (T |x) [P (y|x, T )] (1) 246

where P (T |x) is the probability of selecting a plan 247

T given X , and P (y|x, T ) is the probability of 248

generating code Y conditioned on both the coding 249

problem x and the selected plan T . This formula- 250

tion highlights that the overall likelihood of gener- 251

ating code y is influenced by both the distribution 252

over plans and the conditional distribution of code 253

generation. 254

3.2 Code Refinement Process 255

The code refinement process can be formalized as 256

an iterative procedure, where at each refinement 257

step j, the current code yj is improved to produce a 258

refined version yi+1. This process can be expressed 259

as: 260

P (yj+1|x, T ) = Eyj∼P (yj |x,T )P (yj+1|yj , x, T ),
(2) 261

where P (yj |x) represents the distribution of code 262

implementations at step j, and P (yj+1|yj , x) mod- 263

els the conditional probability of generating the 264

next refined version based on the current code yj 265

and the problem x. 266

To evaluate the quality of the refined code, we 267

define a correctness function C : Y → [0, 1]: 268

C(y) =

{
1 if y passes all test cases,
np

nt
otherwise,

(3) 269

where np is the number of passed test cases, and 270

nt is the total number of test cases. This correct- 271

ness function provides a quantitative measure of 272

how well the refined code satisfies the problem 273

requirements. 274

3



Figure 1: An overview of MAGIC: When given a problem description, an LLM is prompted to generate multiple
diverse plans in natural language. Then MAGIC formalizes plan selection as an MAB problem by treating different
plans as bandit arms with different reward distributions. By utilizing UCB-P as the plan-selection metric, the
model can effectively search for an optimal code solution in code space with a balance between exploration and
exploitation.

4 Methodology275

At a high level, we disentangle the code generation276

process into four key components: plan generation,277

plan selection, code implementation and code re-278

finement. Below, we explain each component in279

detail.280

4.1 Plan Generation281

Inspired by previous works (Tang et al., 2023;282

Wang et al., 2024), which have shown the benefits283

of natural language guidance in code generation,284

we adopt the plan-then-solve approach(Zhou et al.,285

2023; Jiang et al., 2023; Wang et al., 2023). Instead286

of embedding the reasoning path directly within287

the generated code as comments, we explicitly gen-288

erate standalone plans that serve as blueprints for289

code implementation. Since only a finite set of290

discrete plans can be generated, the previous Eq. 1291

can be rewritten as:292

P (y|x) =
∑
T∈T

P (T |x)P (y|x, T ) (4)293

To ensure plan diversity and reduce content over-294

lap, which may lead to redundant sampling, we pro-295

pose an iterative plan generation strategy. In each it-296

eration, we prompt the LLM to generate a plan that297

differs from the previously generated plans. Each298

plan generated in the next round is conditioned on299

the problem x and all previously generated plans.300

Formally: Ti+1 ∼ P (T |x, T1, T2, . . . , Ti). This301

iterative approach ensures that each new plan is302

informed by previous plans, increasing diversity303

and reducing redundancy.304

In addition to generating textual plans, we also 305

generate a code skeleton based on the plan, which 306

includes function heads and docstrings. This serves 307

two purposes: (1) decomposing the problem into 308

smaller functions helps the LLM better understand 309

and reason about the code, and (2) it provides a 310

structured regularization for the code refinement 311

process, making refinements more robust, as will 312

be discussed in Sec.4.3. 313

4.2 Plan Selection 314

As demonstrated in Eq. 4, to maximize the likeli- 315

hood of obtaining a correct solution, it is crucial to 316

assign greater weight to the most promising plan. 317

Therefore, our objective is to identify and select 318

the optimal plan. Since the plan is already fixed 319

in plan generation phase, we can formalize the 320

plan selection process as a Multi-Armed Bandit 321

(MAB) problem. Building on the pre-defined UCB 322

algorithm, we propose UCB-P with an additional 323

penalty term to adapt better to our framework. For 324

the i-th plan, the UCB-P score is given by: 325

UCB-Pi(t) = µ̂i + λ1 ·

√
2 log(t)

ni
− m

λ2ni
, (5) 326

where µ̂i is the estimated reward mean, reflect- 327

ing the historical performance of the plan and en- 328

courages exploitation of plans with higher aver- 329

age rewards. The second term
√

2 log(t)
ni(t)

can be 330

considered as exploration bonus, plans that have 331

been tried fewer times receive a higher value, en- 332

couraging the framework to gather more informa- 333

4



tion about them. With both terms, UCB can ef-334

fectively balance between exploitation (favoring335

high-reward plans) and exploration (prioritizing336

less-tried plans). In our problem setting, the reward337

for each plan is set as the correctness function C,338

which is defined in Equation. 3.339

Penalty term (− m
λ2ni

): During experiments, we340

observed that in some cases, when the code fre-341

quently failed during the refinement phase, the342

LLM tended to take shortcuts by generating so-343

lutions that could easily pass basic public test cases344

but still failed to fulfill the original requirements.345

To mitigate this issue, we introduce a penalty term346

based on the number of refinements m applied to347

the plan. This penalty term ensures that plans re-348

quiring excessive refinements reveive progressively349

lower UCB-P values, thereby discouraging strate-350

gies that merely optimize for passing public test351

cases rather than comprehensively addressing prob-352

lem requirements, which can significantly prevent353

local optimal solutions. Additionally, a plan re-354

quiring frequent refinements is indicative of poor355

quality, as a high-quality plan should guide the356

LLM toward generating correct solutions with min-357

imal adjustments. The hyperparameter λ2 scales358

the impact of the penalty.359

Our customized UCB-P formula ensures that360

the selection of plans is guided by a balance of361

past performance, the potential for improvement,362

and the need to avoid over-reliance on refinement,363

thereby promoting a better exploration of the solu-364

tion space. The detailed plan selection algorithm365

can be checked in Appendix.366

4.3 Code Implementation and Refinement367

Code Implementation: Similar to how plans are368

conditional on previous plans, each code imple-369

mentation under a plan should also be conditioned370

on previous implementations. We adopt simi-371

lar prompt strategy to ask the LLM tries to gen-372

erate different code implementation from previ-373

ous generated code. This can be formalized as:374

yi+1 ∼ P (yi+1|x, T, y1, y2, . . . , yi). This strategy375

guarantees that even under the same plan, succes-376

sive code implementations maintain sufficient di-377

versity, enabling exploration of different implemen-378

tation variants within the plan.379

Code Refinement: When the initially generated380

code cannot fully pass public test cases, we decide381

to refine it with execution feedback. When refin-382

ing the code, we shift our focus from maintaining383

implementation diversity to optimizing the exist-384

ing code. We observe that if no restrictions are 385

imposed during the code refinement process, the 386

answers generated by the LLM in the refinement 387

phase often lack stability. Specifically, when ini- 388

tial attempts fail to pass the public test cases, the 389

LLM may attempt entirely new implementation, 390

which can lead to significant overlap with answers 391

generated under other plans. This not only under- 392

mines the exploitation of the current code but also 393

reduces overall diversity across plans. Algorithms 394

like MCTS (Zhang et al., 2023b; Zhou et al., 2024) 395

also suffer from similar situation, due to the lack 396

of information sharing across different branches. 397

To handle this limitation, we propose using code 398

skeletons to constrain the search space during the 399

refinement phase. Each code skeleton defines a 400

fixed structure for the solution, which consists of 401

predefined function heads and their description in 402

natural language format. By enforcing these skele- 403

tons, the refinement process is restricted to modi- 404

fying the function implementations while keeping 405

the overall structure fixed. This approach assures 406

that each revision builds on the preceding solutions, 407

retaining the integrity of the current plan and focus- 408

ing on exploiting its potential. 409

This approach can be further understood through 410

the concept of trust region optimization (Schulman 411

et al., 2015). By constraining the changes between 412

the previously generated code and the refined code, 413

we guide the LLM to focus its adjustments on spe- 414

cific, bounded regions of the solution space. Specif- 415

ically, the LLM is allowed to modify only the parts 416

of the code it identifies as incorrect, while the rest 417

remains fixed. This effectively limits the search to 418

a "trust region" around the current solution, pre- 419

venting disruptive changes that might undermine 420

the stability of the refinement process. 421

By limiting the magnitude of modifications, this 422

approach encourages the LLM to focus on in- 423

cremental improvements to the current plan, en- 424

hancing its effectiveness while avoiding disruptive 425

changes that could compromise the stability and 426

coherence of the solution. 427

5 Experiments 428

5.1 Dataset 429

For extensive evaluation, we have used four bench- 430

mark datasets: two from basic programming, 431

which are HumanEval (Chen et al., 2021) and 432

HumanEval+ (Liu et al., 2023). Another two 433

are CodeContest (Li et al., 2022) and APPS 434

5



Table 1: Performance Across Different Approaches and Datasets.

Model Framework Basic Programming Competitive Programming

HE HE+ CC APPS-I APPS-Int APPS-C

GPT-4o

Direct 89.6% 84.1% 19.4% 73.3% 48.3% 18.3%
Reflexion 95.1% 87.2% 40.6% 80.0% 56.7% 33.3%
LATS 95.7% 87.2% 42.4% 81.7% 58.3% 36.7%
LDB 96.3% 89.0% 41.8% 86.7% 56.7% 35%
MAGIC 97.0% 90.2% 45.5% 85.0% 60.0% 38.3%

GPT-4o-mini

Direct 87.2% 80.5% 10.9% 63.3% 40.0% 8.3%
Reflexion 93.9% 84.8% 21.8% 70.0% 50.0% 23.3%
LATS 94.5% 85.4% 23.6% 70.0% 51.7% 26.7%
LDB 93.3% 84.8% 19.4% 73.3% 46.7% 25.0%
MAGIC 94.5 % 86.0% 27.3% 73.3% 53.3% 26.7%

Llama3.1-8B-Instruct

Direct 64.6% 57.9% 4.2% 25.0% 1.7% 0.0%
Reflexion 79.9% 70.1% 11.5% 36.7% 3.3% 3.3%
LATS 82.3% 72.6% 12.1% 40.0% 6.7% 3.3%
LDB 82.3% 72.0% 10.9% 41.7% 5.0% 5.0%
MAGIC 83.5% 75.0% 12.1% 41.7% 6.7% 3.3%

HE = HumanEval, HE+ = HumanEval+, CC = Code Contest, APPS-C = APPS (Competition), APPS-I = APPS (Introduction),
APPS-Int = APPS (Interview)

(Hendrycks et al., 2021), from complex competitive435

programming domains. HumanEval is a dataset436

of 164 problems that only requires to complete437

a single given function. HumanEval+ is an ad-438

vanced version of it, which contains more hidden439

test cases. While for CodeContest and APPS, they440

only provide requirements in natrual language, and441

the LLM needs to output an entire code. CodeCon-442

test contains 165 challenging competition level cod-443

ing problems. For APPS we choose 60 competition-444

level problems, 60 interview-level problems, and445

60 introductory-level problems, which follows the446

choice of previous works (Olausson et al., 2024).447

5.2 Baseline448

We introduce the following baselines: Direct449

means instructs the model to generate code di-450

rectly from the input problem; Reflexion utilizes451

solution’s execution feedback to generate self-452

reflections. The reflections are used to iteratively re-453

fine the solution. LATS augments language models454

with Monte Carlo Tree Search to enable structured455

exploration and planning, incorporating environ-456

ment feedback and self-reflection to iteratively re-457

fine decisions. LDB segments generated programs458

into basic blocks and leverages runtime execution459

information to iteratively debug and refine code by460

verifying correctness block by block.461

5.3 Implementation Details462

Following common practice in code generation463

evaluation, we applied pass@1 (Chen et al., 2021)464

as our evaluating metric. For each question, we can 465

select only one code candidate for final evaluation 466

with hidden test cases. To ensure fair comparison 467

accross different approaches, we fix the total num- 468

ber of samples to 40 for each problem across all 469

approaches, excluding zero-shot direct sampling. 470

Notably, for LDB, each sampling round consists of 471

an initial solution generation followed by one po- 472

tential debugging iteration (counting as 2 samples). 473

To fully utilize sampling budget, we combine LDB 474

with resampling - if the debugged solution fails, 475

we initiate a new round with a fresh solution rather 476

than continuing to debug the same code. For our 477

approach, we set the number of plans to 5, and the 478

refinement chance to 1, we can generate and refine 479

20 code solutions within the 40-sample budget. 480

5.4 Main Results 481

From Table. 1, we observe that our approach 482

achieves superior performance across benchmarks 483

ranging from simple to hard (97.0% pass@1 on 484

HumanEval, 45.5% pass@1 on CodeContest). The 485

improvements are particularly pronounced on com- 486

plex tasks - for GPT-4o, MAGIC outperforms the 487

direct prompting baseline by 26.1% on CodeCon- 488

test. Notably, LATS and LDB also demonstrate 489

strong performance. We also notice that while 490

MAGIC excels with larger models, its effectiveness 491

diminishes when applied to Llama-8B, indicating 492

that our method heavily relies on strong models’ 493

reasoning ability. 494

6



5.5 Analysis of Number of Plans495

Model HumanEval CodeContest

Ours (5 plans) 97.0% 45.5%
Ours (2 plans) 95.7% 41.8%
Ours (1 plan) 94.5% 38.8%

Table 2: Pass@1 on HumanEval and CodeContest using
GPT-4o with different number of plans

In this section, we applied our approach using496

different number of plans with GPT-4o, aiming497

to analyze the impact of varying plan counts on498

the overall performance, as the number of plan is499

closely related to solution diversity. The exper-500

iment results are shown in Table 2. We set the501

number of plans to 5, 2, and 1. For each plan,502

the LLM generated code four times and performed503

one refinement iterations. Our experimental re-504

sults demonstrate that the impact of multiple plans505

varies significantly across problem difficulty. For506

straightforward programming tasks in HumanEval,507

the performance remains relatively stable regard-508

less of the number of plans used (from 97.0%509

to 94.5% pass@1). However, on CodeContest’s510

competition-level problems, we observe a substan-511

tial performance drop from five-plan to single-plan512

approaches (from 45.5% vs 38.8% pass@1). This513

indicates that diverse planning paths become in-514

creasingly crucial when tackling complex program-515

ming challenges, where exploring multiple solution516

strategies helps navigate intricate problem spaces517

and identify optimal implementations.518

5.6 Ablation Study519

Ablation HumanEval CodeContest

Ours 94.5% 27.3%
w/o UCB 94.5% 25.4%
w/o Test Cases 92.7% 18.2%
w/o Constraint 93.3% 23.0%

Table 3: Pass@1 on HumanEval and CodeContest using
GPT-4o-mini for ablation study

Our ablation studies reveal several key insights520

about model performance with GPT-4o-mini. Re-521

moving UCB-based plan selection leads to min-522

imal impact on HumanEval (94.5% pass@1) but523

affects CodeContest performance (25.4% vs 27.3%524

pass@1), as UCB helps balance exploration and525

exploitation among promising solution paths. For 526

test case ablation, while HumanEval performance 527

remains stable (92.7%), CodeContest sees a sig- 528

nificant drop (18.2%). This disparity occurs be- 529

cause for simple HumanEval problems, the LLM 530

can reason effectively and generate appropriate 531

test cases. However, for complex CodeContest 532

problems, the LLM can only generate basic test 533

cases, missing edge cases critical for competition- 534

level problems. Finally, we remove constraints by 535

no longer prompt LLM to generate diverse plans 536

and code, which leads to performance degradation 537

(93.3% and 23.0% respectively) due to repeated 538

sampling and unstable refinement, which reduces 539

sample efficiency within our fixed computation 540

budget. 541

6 Code Space Analysis 542

6.1 Embedding with UniXcoder 543

UniXcoder (Guo et al., 2022) is a pre-trained model 544

for programming languages. Notably, UniXcoder 545

enhaces code representation by integrating cross- 546

modal contents such as Abstract Syntax Trees 547

(ASTs) and code comments, which makes the 548

model better capture the logic and semantic mean- 549

ing of the code. In our experiment, we utilize UniX- 550

coder to embed the generated code due to its strong 551

code representation ability. 552

6.2 Code Diversity 553

Code diversity refers to the extent to which multi- 554

ple generated code solutions differ from each other 555

in terms of structure, logic, and implementation 556

details. Higher diversity implies the exploration of 557

varied approaches to solving the same problem, en- 558

hancing the likelihood of finding optimal solutions, 559

instead of getting stuck in local optimal solutions. 560

Variance-Based Diversity: One straightforward 561

way of quantifying code diversity is to measure 562

the variance of the generated code embeddings. A 563

higher variance indicates greater diversity in the 564

solution space, as it reflects a broader distribution 565

of solutions rather than repeated sampling similar 566

implementations. Formally, given a set of embed- 567

ded code representations {e1, e2, . . . , eN} of cod- 568

ing problem x, we define the code solution variance 569

of problem x as: 570

Var(x) =
1

N

N∑
i=1

∥ei− ē∥2,where ē =
1

N

N∑
i=1

ei 571

7



Pairwise Similarity: From another perspective,572

we can also quantify the code similarity between573

each code solutions, since is has the opposite mean-574

ing to variance, which can also reflect code diver-575

sity. For 2 different code embeddings {ei, ej}, we576

define the pairwise cosine similarity between ei577

and ej as sim(ei, ej), which is the cosine similar-578

ity between the 2 embeddings. Now, given a coding579

problem x and its solution set {e1, e2, . . . , eN}, we580

can define the pairwise code solution similarity of581

problem x as:582

S(x) =
2

N(N − 1)

∑
i<j

sim(ei, ej).583

In out setting, we compute the code embeddings584

with the GPT-4o-mini’s generated code from Code-585

Contest, the results can be shown in Table 4. Based

Method Variance Pairwise Similarity

Resample 0.403 0.885
Reflexion 0.223 0.931
LATS 0.262 0.925
MAGIC 0.336 0.911

Table 4: Embedding Variance for Different Methods

586
on the experiment results presented in Table. 4,587

we observe the Resample method exhibits the high-588

est code diversity, since it generates solutions in-589

dependently without refining any previous code.590

While this results in greater exploration in code591

space, the lack of exploitation limits the perfor-592

mance of Resample. Among methods that con-593

taining phase to refine existing code, our approach594

MAGIC achieves the highest diversity, enabling595

broader exploration of potential optimal solutions596

while also leveraging well-performing code for ef-597

fective exploitation.598

6.3 Code Space Visualization599

In this section, we want to analyze how different600

searching algorithms explore the code space. For a601

random problem, we sample 40 code solutions with602

different approaches. Then, we use UniXcoder as603

the embedding model and apply t-SNE (van der604

Maaten and Hinton, 2008) to project the embed-605

dings into a 2D space. For the MCTS algorithm,606

we adopt LATS as the base method. For the re-607

sampling approach, we generate code solutions for608

40 times in a zero-shot manner while setting the609

temperature to 1.610

Figure 2: Visualization of Different Approaches’ Solu-
tion Embeddings.

We discovered that the embedding space for Re- 611

flexion and Resample does not exhibit clear clus- 612

tering properties. This is because Reflexion can 613

only refine code based on previously generated 614

solutions, while Resample generates solutions in- 615

dependently without leveraging prior information. 616

This observation indicates that both methods lack 617

a systematic approach to exploring the solution 618

space. In contrast, for our approach (MAGIC) and 619

the MCTS-based LATS method, the embedding 620

visualization reveals distinct clustering patterns, es- 621

pecially for our approach. This indicates that our 622

method effectively explores the potential optimal 623

solution space in a structured manner. 624

7 Conclusion 625

In this paper, we introduced Multi-Armed Bandit 626

Guided Iterative Code Generator (MAGIC), a novel 627

code generation framework that formulates plan se- 628

lection as a Multi-Armed Bandit (MAB) problem. 629

By leveraging the strong language planning capa- 630

bilities of LLMs and our customized UCB-P term, 631

MAGIC efficiently avoids redundant sampling and 632

achieves state-of-the-art performance, with notable 633

gains in solution diversity and competitive program- 634

ming tasks. We also conducted comprehensive ab- 635

lation studies to understand the contribution factors 636

behind MAGIC’s strong performance. Code space 637

analysis reveals MAGIC’s property of generating 638

more diverse code. Our findings highlight the im- 639

portance of structured exploration in LLM-based 640

code generation, offering insights into more effi- 641

cient and adaptive search strategies. 642

8



Limitations643

Despite MAGIC’s strong performance, several lim-644

itations warrant discussion. First, the framework645

heavily relies on public test cases for code refine-646

ment. Without these, LLMs can only generate647

low quality test cases due to the limited reason-648

ing ability of current models. Additionally, while649

MAGIC shows substantial improvements with ad-650

vanced models like GPT-4o, the benefits become651

less with weaker models like Llama-8B, which652

indicates MAGIC heavily relies on the reasoning653

ability of LLMs. Moreover, although we introduce654

code skeleton into our framework to constrain code655

refinement, our current implementation does not656

leverage more advanced property of modularized657

code, such as conducting unit tests for each func-658

tion.659

References660

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.661
2002. Finite-time analysis of the multiarmed ban-662
dit problem. Machine Learning, 47:235–256.663

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten664
Bosma, Henryk Michalewski, David Dohan, Ellen665
Jiang, Carrie Cai, Michael Terry, Quoc Le, and666
Charles Sutton. 2021. Program synthesis with large667
language models. Preprint, arXiv:2108.07732.668

Jingchang Chen, Hongxuan Tang, Zheng Chu, Qiang-669
long Chen, Zekun Wang, Ming Liu, and Bing Qin.670
2024a. Divide-and-conquer meets consensus: Un-671
leashing the power of functions in code generation.672
In NeurIPS.673

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,674
Henrique Ponde de Oliveira Pinto, Jared Kaplan,675
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg676
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,677
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela678
Mishkin, Brooke Chan, Scott Gray, and 39 others.679
2021. Evaluating large language models trained on680
code. Preprint, arXiv:2107.03374.681

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and682
Denny Zhou. 2024b. Teaching large language mod-683
els to self-debug. In ICLR.684

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-685
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,686
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-687
BERT: A pre-trained model for programming and688
natural languages. In EMNLP, pages 1536–1547.689

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming690
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-691
modal pre-training for code representation. In ACL,692
pages 7212–7225.693

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, 694
Daisy Wang, and Zhiting Hu. 2023. Reasoning with 695
language model is planning with world model. In 696
EMNLP, pages 8154–8173. 697

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 698
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 699
Samir Puranik, Horace He, Dawn Song, and Jacob 700
Steinhardt. 2021. Measuring coding challenge com- 701
petence with apps. Preprint, arXiv:2105.09938. 702

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen 703
Bu, Yuhao Qing, and Heming Cui. 2024. Agentcoder: 704
Multi-agent-based code generation with iterative test- 705
ing and optimisation. arXiv:2312.13010. 706

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, 707
and Ge Li. 2023. Self-planning code generation with 708
large language models. ACM Transactions on Soft- 709
ware Engineering and Methodology. 710

Yujia Li, David Choi, Junyoung Chung, Nate Kush- 711
man, Julian Schrittwieser, Rémi Leblond, Tom 712
Eccles, James Keeling, Felix Gimeno, Agustin 713
Dal Lago, Thomas Hubert, Peter Choy, Cyprien 714
de Masson d’Autume, Igor Babuschkin, Xinyun 715
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, 716
Alexey Cherepanov, and 7 others. 2022. Competition- 717
level code generation with alphacode. Science, 718
378(6624):1092–1097. 719

Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Xu- 720
jiang Zhao, Ziniu Hu, Haifeng Chen, Wei Cheng, 721
and 1 others. 2024. Scattered forest search: Smarter 722
code space exploration with llms. arXiv preprint 723
arXiv:2411.05010. 724

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 725
ming Zhang. 2023. Is your code generated by chat- 726
GPT really correct? rigorous evaluation of large lan- 727
guage models for code generation. In NeurIPS. 728

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin 729
Deng, Kensen Shi, Charles Sutton, and Pengcheng 730
Yin. 2024. Next: Teaching large language models to 731
reason about code execution. In ICML. 732

Theo X. Olausson, Jeevana Priya Inala, Chenglong 733
Wang, Jianfeng Gao, and Armando Solar-Lezama. 734
2024. Is self-repair a silver bullet for code genera- 735
tion? In ICLR. 736

OpenAI. 2023. GPT-4 technical report. 737
arXiv:2303.08774. 738

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 739
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 740
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 741
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 742
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 743
Grattafiori, Wenhan Xiong, Alexandre Défossez, and 744
7 others. 2023. Code llama: Open foundation models 745
for code. arXiv:2308.12950. 746

John Schulman, Sergey Levine, Pieter Abbeel, Michael 747
Jordan, and Philipp Moritz. 2015. Trust region policy 748
optimization. In ICML. 749

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158


Noah Shinn, Federico Cassano, Ashwin Gopinath,750
Karthik Narasimhan, and Shunyu Yao. 2024. Re-751
flexion: Language agents with verbal reinforcement752
learning. Advances in Neural Information Process-753
ing Systems, 36.754

Jialin Song, Jonathan Raiman, and Bryan Catan-755
zaro. 2024. Effective large language model de-756
bugging with best-first tree search. Preprint,757
arXiv:2407.19055.758

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,759
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.760
2023. Large language models are in-context se-761
mantic reasoners rather than symbolic reasoners.762
arXiv:2305.14825.763

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier764
Martinet, Marie-Anne Lachaux, Timothée Lacroix,765
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal766
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard767
Grave, and Guillaume Lample. 2023. Llama:768
Open and efficient foundation language models.769
arXiv:2302.13971.770

Laurens van der Maaten and Geoffrey Hinton. 2008.771
Visualizing data using t-sne. Journal of Machine772
Learning Research, pages 2579–2605.773

Evan Wang, Federico Cassano, Catherine Wu, Yun-774
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean775
Hendryx, Summer Yue, and Hugh Zhang. 2024. Plan-776
ning in natural language improves llm search for code777
generation.778

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi779
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-780
and-solve prompting: Improving zero-shot chain-of-781
thought reasoning by large language models. In ACL,782
pages 2609–2634.783

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.784
Hoi. 2021. CodeT5: Identifier-aware unified pre-785
trained encoder-decoder models for code understand-786
ing and generation. In ACL, pages 8696–8708.787

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten788
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,789
and 1 others. 2022. Chain-of-thought prompting elic-790
its reasoning in large language models. Advances791
in neural information processing systems, 35:24824–792
24837.793

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen794
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,795
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,796
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran797
Wang, Changhao Jiang, Yicheng Zou, Xiangyang798
Liu, and 10 others. 2023. The rise and potential799
of large language model based agents: A survey.800
arXiv:2309.07864.801

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and802
Lingming Zhang. 2024. Agentless: Demystifying803
llm-based software engineering agents. Preprint,804
arXiv:2407.01489.805

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 806
Thomas L. Griffiths, Yuan Cao, and Karthik 807
Narasimhan. 2023a. Tree of thoughts: deliberate 808
problem solving with large language models. In 809
NeurIPS. 810

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 811
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b. 812
ReAct: Synergizing reasoning and acting in language 813
models. In ICLR. 814

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a. 815
Self-edit: Fault-aware code editor for code gener- 816
ation. In ACL, pages 769–787, Toronto, Canada. 817
Association for Computational Linguistics. 818

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu 819
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023b. 820
Planning with large language models for code gener- 821
ation. In ICLR. 822

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De- 823
bug like a human: A large language model debugger 824
via verifying runtime execution step by step. In ACL, 825
pages 851–870. 826

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, 827
Haohan Wang, and Yu-Xiong Wang. 2024. Lan- 828
guage agent tree search unifies reasoning acting and 829
planning in language models. ICML. 830

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 831
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 832
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. 833
Chi. 2023. Least-to-most prompting enables com- 834
plex reasoning in large language models. In ICLR. 835

10

https://arxiv.org/abs/2407.19055
https://arxiv.org/abs/2407.19055
https://arxiv.org/abs/2407.19055
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489


A MAGIC Algorithm836

Algorithm 1 Code Generation with UCB-P Guided
Plan Selection

1: Input: Number of plans k, termination crite-
rion C, coding problem x

2: Output: Refined code satisfying correctness
conditions

3: Generate k distinct plans {T1, . . . , Tk} using
P (T | x).

4: for i = 1, . . . , k do
5: Generate an initial code implementation yi

based on plan Ti.
6: end for
7: while C is not satisfied do
8: Select a plan Ti based on the greatest UCB

value.
9: Generate code based on the selected plan

Ti.
10: if the generated code fails public test cases

then
11: Refine the code implementation.
12: end if
13: Update the UCB value for plan Ti using

the observed reward.
14: end while

B Apps Tasks Used for Our Evaluation. 837

This subset of APPS is the same as previous work’s 838

(Olausson et al., 2024) subset. 839

Difficulty Task IDs

Introductory 4004, 4058, 4063, 4065, 4100, 4108, 4117,
4155, 4164, 4182, 4193, 4195, 4211, 4217,
4241, 4249, 4270, 4275, 4281, 4293, 4333,
4347, 4350, 4356, 4409, 4426, 4431, 4450,
4465, 4484, 4498, 4505, 4507, 4514, 4544,
4553, 4586, 4610, 4662, 4663, 4667, 4677,
4681, 4704, 4716, 4741, 4750, 4786, 4787,
4801, 4855, 4862, 4864, 4870, 4873, 4890,
4897, 4952, 4966, 4984

Interview 0004, 0013, 0033, 0056, 0073, 0074, 0089,
0091, 0124, 0131, 0139, 0162, 0166, 0183,
0186, 0191, 0199, 0205, 0249, 0253, 0268,
0274, 0300, 0304, 0341, 0342, 0413, 0427,
0434, 0466, 0467, 0496, 0501, 0511, 0537,
0564, 0571, 0575, 0579, 0592, 0597, 0626,
0637, 0676, 0704, 0728, 0757, 0765, 0788,
0794, 0804, 0805, 0811, 0829, 0879, 0904,
0915, 0925, 0937, 0948

Competition 3017, 3019, 3054, 3062, 3063, 3066, 3070,
3077, 3083, 3097, 3117, 3135, 3161, 3186,
3209, 3220, 3286, 3287, 3323, 3335, 3353,
3355, 3371, 3375, 3376, 3388, 3404, 3411,
3433, 3441, 3445, 3470, 3481, 3484, 3548,
3557, 3605, 3609, 3634, 3635, 3671, 3679,
3709, 3754, 3769, 3792, 3798, 3799, 3804,
3810, 3819, 3823, 3836, 3843, 3849, 3876,
3913, 3934, 3972, 3974

Table 5: APPS tasks used for our evaluation (60 Intro-
ductory, 60 Interview, and 60 Competition problems).

C Example Generated Plan and Code 840

Skeleton 841

In this section we also provide a basic example 842

of how our generated plan and code skeleton look 843

like. The detailed information can be checked on 844

the next 2 pages. 845

D AI Usage 846

ChatGPT is used to correct grammatical errors and 847

polish the paper writing. 848

11



Figure 3: Example generated plan.

12



Figure 4: Example generated code skeleton.

13


	Introduction
	Related Works
	AI for Code
	Language Model Agent
	Code Agent

	Problem Formulation
	Plan Space and Code Space Definitions
	Code Refinement Process

	Methodology
	Plan Generation
	Plan Selection
	Code Implementation and Refinement

	Experiments
	Dataset
	Baseline
	Implementation Details
	Main Results
	Analysis of Number of Plans
	Ablation Study

	Code Space Analysis
	Embedding with UniXcoder
	Code Diversity
	Code Space Visualization

	Conclusion
	MAGIC Algorithm
	Apps Tasks Used for Our Evaluation.
	Example Generated Plan and Code Skeleton
	AI Usage

