MAGIC: Multi-Armed Bandit Guided Iterative Code Generation

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown
remarkable capabilities in code generation,
yet they often struggle with solution diversity
and competition-level problems. In this pa-
per, we introduce MAGIC (Multi-Armed ban-
dit Guided Iterative Code generator), an ap-
proach that formalizes plan selection in LLM-
based code generation as a Multi-Armed Ban-
dit (MAB) problem, enabling systematic ex-
ploration of diverse solution strategies. The
method disentangles the generation process
into four phases: explicit plan generation, plan
selection, code implementation, and code re-
finement. By treating each potential plan as
an arm in the MAB framework, we employ
an adapted Upper Confidence Bound (UCB)
algorithm that balances the exploration of dif-
ferent solution strategies with the exploita-
tion of promising plans. With the purpose of
constraining code refinement to current plans
to ensure focused solution space exploitation,
we propose to formalize the plans as code
skeletons. Experiments on HumanEval, Hu-
manEval+, CodeContest, and APPS demon-
strate significant improvements over existing
methods, with pass@1 up to 97.0% on Hu-
manEval and 45.5% on CodeContest using
GPT-40. Through variance-based diversity met-
rics, we show that MAGIC substantially in-
creases solution diversity, particularly benefit-
ing performance on challenging competitive
programming tasks.

1 Introduction

In the past few years, large language models
(LLMs) have made significant strides in various
fields (OpenAl, 2023). Coding, as a critical applica-
tion area, holds particular importance, making the
coding capabilities of LLMs especially noteworthy.
Early research efforts (Roziere et al., 2023; Austin
et al., 2021) predominantly focused on pre-training
and fine-tuning LLMs on large-scale code datasets
to improve their coding proficiency. Recently, the

rise of general-purpose LLMs with advanced rea-
soning ability has shifted attention to using these
models as agents (Xia et al., 2024; Xi et al., 2023)
for iterative code generation and algorithmic design.
Furthermore, scaling inference compute, through
methods like iterative code refinement with exter-
nal feedback (Shinn et al., 2024) and tree-structured
searching (Song et al., 2024), has proven effective
in improving code quality. These advancements
highlight the potential for addressing increasingly
complex coding challenges (Li et al., 2022).

Current state-of-the-art methods primarily rely
on advanced search algorithms to enhance perfor-
mance. For instance, PG-TD (Zhang et al., 2023b)
integrates token-level lookahead search using a
planner into the Transformer decoding process,
while FunCoder (Chen et al., 2024a) employs dy-
namic function decomposition to recursively di-
vide tasks into simpler sub-functions, optimizing
the search for these sub-components. Addition-
ally, Monte Carlo Tree Search (MCTS) based ap-
proaches (Zhou et al., 2024; Hao et al., 2023) effec-
tively balance exploration and exploitation during
code generation, demonstrating their utility in nav-
igating complex solution spaces.

Despite the advancements of current search algo-
rithms, several limitations remain. These methods
often lack systematically designed structures to
handle diverse reasoning processes. For instance,
while MCTS approaches (Zhou et al., 2024; Hao
et al., 2023) effectively leverage information from
ancestor nodes, they may face challenges in utiliz-
ing information across different branches. This lim-
itation can lead to overlapping generation across
branches, reducing both efficiency and diversity.
Furthermore, existing approaches fail to fully lever-
age the inherent language capabilities of LLMs.
Studies (Tang et al., 2023) have shown that while
LLMs excel in semantic reasoning, they struggle
with symbolic reasoning. Another line of research
(Jiang et al., 2023) highlights the advantages of

explicit planning, where a model first generates
a structured plan before taking action, leading to
notable performance improvements. Collectively,
these limitations prevent current methods from
fully realizing the potential of LLMs, constrain-
ing their ability to handle diverse reasoning tasks
and systematically explore solution spaces.

Motivated by these limitations, we propose
MAGIC (Multi-Armed bandit Guided Iterative
Code generator), a novel framework designed to
address the challenges of solution diversity and sys-
tematic exploration in LLM-based code generation.
Specifically, MAGIC structures the code genera-
tion process into four distinct phases: explicit plan
generation, plan selection, code implementation,
and code refinement. In the plan generation phase,
inspired by previous work (Wang et al., 2024), we
leverage the strong semantic planning capabilities
of LLMs to generate an overall plan in natural lan-
guage. Beyond generating a textual plan, we also
prompt the LLLM to produce code skeletons based
on the plan, with detailed reasons provided in Sec.
4. To systematically explore diverse solution strate-
gies, we formalize plan selection as a Multi-Armed
Bandit (MAB) problem. Each potential plan is
treated as an arm in the MAB framework, and
we employ an adapted Upper Confidence Bound
(UCB) algorithm (Auer et al., 2002) to balance the
exploration of new strategies with the exploitation
of promising ones. Furthermore, building on previ-
ous findings (Chen et al., 2024b; Zhong et al., 2024)
that LL.Ms can refine their outputs when provided
with external feedback, we integrate a refinement
mechanism into our framework to iteratively en-
hance the generated solutions.

To evaluate our method, we conduct extensive
experiments on a variety of code generation bench-
marks, ranging from simple foundational tasks
(Chen et al., 2021; Liu et al., 2023) to competition-
level challenges (Hendrycks et al., 2021; Li et al.,
2022). Notably, MAGIC achieves a 97.0% Pass@ 1
on HumanEval (Chen et al., 2021) and a 45.5%
Pass@1 on CodeContest (Li et al., 2022), set-
ting new SOTA performance on both benchmarks.
These results demonstrate that our method excels
at handling tasks of varying complexity, showcas-
ing its effectiveness across both simple and highly
challenging problems.

Our contributions can be summarized as follows:

* We identify key limitations in existing LLM-
based code generation methods, including

insufficient solution diversity, repeated sam-
pling of suboptimal paths, and underutiliza-
tion of LLMs’ semantic reasoning capabili-
ties.

* We propose MAGIC, a novel framework
that formulates LLM-based code generation
as a Multi-Armed Bandit (MAB) problem.
MAGIC enables systematic exploration and
exploitation of diverse solution strategies, ad-
dressing limitations in existing methods.

* Extensive experiments on multiple bench-
marks, including HumanEval, HumanEval+,
CodeContest, and APPS, demonstrate the
effectiveness of MAGIC. Notably, MAGIC
achieves state-of-the-art performance, with a
97.0% Pass@1 on HumanEval and a 45.5%
Pass@1 on CodeContest.

2 Related Works
2.1 Alfor Code

Code-related tasks have become a critical area
of focus in artificial intelligence, encompassing a
wide range of applications such as code generation,
completion, translation, and summarization. Early
works explored various aspects of these tasks, lever-
aging models like CodeBERT (Feng et al., 2020)
and CodeT5 (Wang et al., 2021) to understand code
syntax and semantics, enabling advancements in
tasks such as code search and summarization.

The development of large-scale pre-trained mod-
els, such as GPT-4 (OpenAl, 2023) and Llama
(Touvron et al., 2023) , has significantly expanded
the scope of code-related tasks. These general-
purpose models excel not only in code generation
but also in reasoning and refining code through nat-
ural language interfaces. Additionally, fine-tuned
models (Ni et al., 2024; Roziere et al., 2023) can
achieve further specialization for code challenges.
Building upon these advancements, this work in-
vestigates new approaches to enhance code-related
tasks, leveraging the strengths of LLMs for system-
atic improvements.

2.2 Language Model Agent

With the advancement of research, there is growing
attention on the reasoning, searching, and inter-
action capabilities of LLMs, which have become
foundational to most SOTA approaches. Tech-
niques like Chain-of-Thought (CoT) prompting
(Wei et al., 2022) enable step-by-step reasoning by

breaking problems into intermediate steps, while
methods like Least-to-Most prompting (Zhou et al.,
2023) focus on first decomposing complex prob-
lems into simpler subproblems and then sequen-
tially solving them. Leveraging LLMs’ strong abil-
ity for interacting with external environments and
in-context learning, advanced approaches such as
ReAct (Yao et al., 2023b) and Self-Edit (Zhang
et al., 2023a) refine answers iteratively using ex-
ternal feedback. To explore larger solution spaces,
methods like Tree-of-Thought (Yao et al., 2023a)
and MCTS-based techniques (Hao et al., 2023;
Zhou et al., 2024) utilize tree structures to gener-
ate diverse outputs, significantly enhancing LLMs’
problem-solving capabilities on tasks requiring ex-
tensive exploration.

2.3 Code Agent

Recent advances in coding agents have introduced
innovative frameworks to enhance code generation.
AgentCoder (Huang et al., 2024) employs a multi-
agent system where programmer, test designer, and
executor agents collaborate to iteratively refine
code based on feedback. LDB (Zhong et al., 2024)
enables debugging by segmenting programs into
basic blocks and tracking runtime execution, allow-
ing efficient error pinpointing. FunCoder (Chen
et al., 2024a) uses a divide-and-conquer strategy
with dynamic function decomposition and func-
tional consensus to tackle complex requirements.
Recently, SFS (Light et al., 2024) formulates code
generation as a black-box optimization problem
and introduces an evolutionary search method that
enhances diversity and feedback exploitation. All
these approaches address limitations in traditional
methods and significantly improve coding perfor-
mance across diverse benchmarks.

3 Problem Formulation

3.1 Plan Space and Code Space Definitions

To formalize the code generation process, we define
two key spaces: the Plan Space and the Code
Space.

Plan Space Definition. Let 7 denote the Plan
Space, which contains all possible plans that can
be generated by the LLLM for solving a given cod-
ing problem . A plan T € 7T is a structured
representation of the steps or strategies required
to implement the solution. Each plan 7" serves
as a blueprint for generating code and can be rep-
resented as a sequence of high-level actions or a

skeleton structure:

T={N,Ts,..., T | T; ~ Popyp(T|z)}.
Code Space Definition. Let) denote the Code
Space, the set of all possible code implementations
that can be generated by the LLM. Formally, we
define:

Y=A{yn,y2,-- - ur | ¥i ~ Pum(y | 2)}

Linking Plan Space and Code Space. The Plan
Space 7 and the Code Space) are intrinsically
connected in the code generation process. For a
given coding problem x, the relationship between
plans and code implementations can be expressed
as:

P(ylz) = Eropirie) [P(ylz, T)) (D

where P(T'|z) is the probability of selecting a plan
T given X, and P(y|x,T) is the probability of
generating code Y conditioned on both the coding
problem x and the selected plan T'. This formula-
tion highlights that the overall likelihood of gener-
ating code y is influenced by both the distribution
over plans and the conditional distribution of code
generation.

3.2 Code Refinement Process

The code refinement process can be formalized as
an iterative procedure, where at each refinement
step j, the current code y; is improved to produce a
refined version y; 1. This process can be expressed
as:

P(yj+1|$’ T) = EyjNP(yj‘ﬂf,T)P(ijrl‘yj’ €, T)?
@)

where P(y;|x) represents the distribution of code
implementations at step j, and P(y;1|y;,) mod-
els the conditional probability of generating the
next refined version based on the current code y;
and the problem x.

To evaluate the quality of the refined code, we
define a correctness function C' :) — [0, 1]:

if y passes all test cases,

Cly) = {1 3)

% otherwise,

where n,, is the number of passed test cases, and
n; 1s the total number of test cases. This correct-
ness function provides a quantitative measure of
how well the refined code satisfies the problem
requirements.

""| L

L |
o —

PLAN i

1 o — '

o -

o —

Figure 1: An overview of MAGIC: When given a problem description, an LLM is prompted to generate multiple
diverse plans in natural language. Then MAGIC formalizes plan selection as an MAB problem by treating different
plans as bandit arms with different reward distributions. By utilizing UCB-P as the plan-selection metric, the
model can effectively search for an optimal code solution in code space with a balance between exploration and

exploitation.

4 Methodology

At a high level, we disentangle the code generation
process into four key components: plan generation,
plan selection, code implementation and code re-
finement. Below, we explain each component in
detail.

4.1 Plan Generation

Inspired by previous works (Tang et al., 2023;
Wang et al., 2024), which have shown the benefits
of natural language guidance in code generation,
we adopt the plan-then-solve approach(Zhou et al.,
2023; Jiang et al., 2023; Wang et al., 2023). Instead
of embedding the reasoning path directly within
the generated code as comments, we explicitly gen-
erate standalone plans that serve as blueprints for
code implementation. Since only a finite set of
discrete plans can be generated, the previous Eq. 1
can be rewritten as:

P(ylz) =) P(T|2)P(yle,T) 4
TeT

To ensure plan diversity and reduce content over-
lap, which may lead to redundant sampling, we pro-
pose an iterative plan generation strategy. In each it-
eration, we prompt the LLM to generate a plan that
differs from the previously generated plans. Each
plan generated in the next round is conditioned on
the problem x and all previously generated plans.
Formally: T;y; ~ P(T|z,T1,Ts,...,T;). This
iterative approach ensures that each new plan is
informed by previous plans, increasing diversity
and reducing redundancy.

In addition to generating textual plans, we also
generate a code skeleton based on the plan, which
includes function heads and docstrings. This serves
two purposes: (1) decomposing the problem into
smaller functions helps the LLM better understand
and reason about the code, and (2) it provides a
structured regularization for the code refinement
process, making refinements more robust, as will
be discussed in Sec.4.3.

4.2 Plan Selection

As demonstrated in Eq. 4, to maximize the likeli-
hood of obtaining a correct solution, it is crucial to
assign greater weight to the most promising plan.
Therefore, our objective is to identify and select
the optimal plan. Since the plan is already fixed
in plan generation phase, we can formalize the
plan selection process as a Multi-Armed Bandit
(MAB) problem. Building on the pre-defined UCB
algorithm, we propose UCB-P with an additional
penalty term to adapt better to our framework. For
the ¢-th plan, the UCB-P score is given by:

2log(t) m

UCB-P;(t) = [f1; + A1 - —
z() /'L7,+ 1 n;)\27%‘

)

where fi; is the estimated reward mean, reflect-
ing the historical performance of the plan and en-

courages exploitation of plans with higher aver-

2:2%5;) can be

age rewards. The second term
considered as exploration bonus, plans that have
been tried fewer times receive a higher value, en-
couraging the framework to gather more informa-

tion about them. With both terms, UCB can ef-
fectively balance between exploitation (favoring
high-reward plans) and exploration (prioritizing
less-tried plans). In our problem setting, the reward
for each plan is set as the correctness function C,
which is defined in Equation. 3.

Penalty term (—%ni): During experiments, we
observed that in some cases, when the code fre-
quently failed during the refinement phase, the
LLM tended to take shortcuts by generating so-
lutions that could easily pass basic public test cases
but still failed to fulfill the original requirements.
To mitigate this issue, we introduce a penalty term
based on the number of refinements m applied to
the plan. This penalty term ensures that plans re-
quiring excessive refinements reveive progressively
lower UCB-P values, thereby discouraging strate-
gies that merely optimize for passing public test
cases rather than comprehensively addressing prob-
lem requirements, which can significantly prevent
local optimal solutions. Additionally, a plan re-
quiring frequent refinements is indicative of poor
quality, as a high-quality plan should guide the
LLM toward generating correct solutions with min-
imal adjustments. The hyperparameter Ay scales
the impact of the penalty.

Our customized UCB-P formula ensures that
the selection of plans is guided by a balance of
past performance, the potential for improvement,
and the need to avoid over-reliance on refinement,
thereby promoting a better exploration of the solu-
tion space. The detailed plan selection algorithm
can be checked in Appendix.

4.3 Code Implementation and Refinement

Code Implementation: Similar to how plans are
conditional on previous plans, each code imple-
mentation under a plan should also be conditioned
on previous implementations. We adopt simi-
lar prompt strategy to ask the LLM tries to gen-
erate different code implementation from previ-
ous generated code. This can be formalized as:
Yir1 ~ P(yis1|z, T, y1, Y2, . . ., y;). This strategy
guarantees that even under the same plan, succes-
sive code implementations maintain sufficient di-
versity, enabling exploration of different implemen-
tation variants within the plan.

Code Refinement: When the initially generated
code cannot fully pass public test cases, we decide
to refine it with execution feedback. When refin-
ing the code, we shift our focus from maintaining
implementation diversity to optimizing the exist-

ing code. We observe that if no restrictions are
imposed during the code refinement process, the
answers generated by the LLM in the refinement
phase often lack stability. Specifically, when ini-
tial attempts fail to pass the public test cases, the
LLM may attempt entirely new implementation,
which can lead to significant overlap with answers
generated under other plans. This not only under-
mines the exploitation of the current code but also
reduces overall diversity across plans. Algorithms
like MCTS (Zhang et al., 2023b; Zhou et al., 2024)
also suffer from similar situation, due to the lack
of information sharing across different branches.

To handle this limitation, we propose using code
skeletons to constrain the search space during the
refinement phase. Each code skeleton defines a
fixed structure for the solution, which consists of
predefined function heads and their description in
natural language format. By enforcing these skele-
tons, the refinement process is restricted to modi-
fying the function implementations while keeping
the overall structure fixed. This approach assures
that each revision builds on the preceding solutions,
retaining the integrity of the current plan and focus-
ing on exploiting its potential.

This approach can be further understood through
the concept of trust region optimization (Schulman
et al., 2015). By constraining the changes between
the previously generated code and the refined code,
we guide the LLM to focus its adjustments on spe-
cific, bounded regions of the solution space. Specif-
ically, the LLM is allowed to modify only the parts
of the code it identifies as incorrect, while the rest
remains fixed. This effectively limits the search to
a "trust region" around the current solution, pre-
venting disruptive changes that might undermine
the stability of the refinement process.

By limiting the magnitude of modifications, this
approach encourages the LLM to focus on in-
cremental improvements to the current plan, en-
hancing its effectiveness while avoiding disruptive
changes that could compromise the stability and
coherence of the solution.

5 Experiments

5.1 Dataset

For extensive evaluation, we have used four bench-
mark datasets: two from basic programming,
which are HumanEval (Chen et al., 2021) and
HumanEval+ (Liu et al., 2023). Another two
are CodeContest (Li et al., 2022) and APPS

Table 1: Performance Across Different Approaches and Datasets.

Basic Programming

Competitive Programming

Model Framework
HE HE+ CC APPS-1 APPS-Int APPS-C
Direct 89.6% 84.1% 194% 73.3% 48.3% 18.3%
Reflexion 95.1% 87.2% 40.6% 80.0% 56.7% 33.3%
GPT-40 LATS 95.7% 87.2% 424% 81.7% 58.3% 36.7%
LDB 96.3% 89.0% 41.8% 86.7% 56.7% 35%
MAGIC 97.0% 90.2% 45.5% 85.0% 60.0% 38.3%
Direct 87.2% 80.5% 109% 63.3% 40.0% 8.3%
Reflexion 93.9% 84.8% 21.8% 70.0% 50.0% 23.3%
GPT-40-mini LATS 94.5% 85.4% 23.6% 70.0% 51.7% 26.7%
LDB 93.3% 84.8% 194% 73.3% 46.7% 25.0%
MAGIC 94.5 % 86.0% 273% 73.3% 53.3% 26.7%
Direct 64.6% 57.9% 4.2% 25.0% 1.7% 0.0%
Reflexion 79.9% 70.1% 11.5% 36.7% 3.3% 3.3%
Llama3.1-8B-Instruct LATS 82.3% 72.6% 12.1% 40.0% 6.7% 3.3%
LDB 82.3% 72.0% 109% 41.7% 5.0% 5.0%
MAGIC 83.5% 75.0% 121% 41.7% 6.7% 3.3%

HE = HumanEval, HE+ = HumanEval+, CC = Code Contest, APPS-C = APPS (Competition), APPS-I = APPS (Introduction),

APPS-Int = APPS (Interview)

(Hendrycks et al., 2021), from complex competitive
programming domains. HumanEval is a dataset
of 164 problems that only requires to complete
a single given function. HumanEval+ is an ad-
vanced version of it, which contains more hidden
test cases. While for CodeContest and APPS, they
only provide requirements in natrual language, and
the LLM needs to output an entire code. CodeCon-
test contains 165 challenging competition level cod-
ing problems. For APPS we choose 60 competition-
level problems, 60 interview-level problems, and
60 introductory-level problems, which follows the
choice of previous works (Olausson et al., 2024).

5.2 Baseline

We introduce the following baselines: Direct
means instructs the model to generate code di-
rectly from the input problem; Reflexion utilizes
solution’s execution feedback to generate self-
reflections. The reflections are used to iteratively re-
fine the solution. LATS augments language models
with Monte Carlo Tree Search to enable structured
exploration and planning, incorporating environ-
ment feedback and self-reflection to iteratively re-
fine decisions. LDB segments generated programs
into basic blocks and leverages runtime execution
information to iteratively debug and refine code by
verifying correctness block by block.

5.3 Implementation Details

Following common practice in code generation
evaluation, we applied pass@1 (Chen et al., 2021)

as our evaluating metric. For each question, we can
select only one code candidate for final evaluation
with hidden test cases. To ensure fair comparison
accross different approaches, we fix the total num-
ber of samples to 40 for each problem across all
approaches, excluding zero-shot direct sampling.
Notably, for LDB, each sampling round consists of
an initial solution generation followed by one po-
tential debugging iteration (counting as 2 samples).
To fully utilize sampling budget, we combine LDB
with resampling - if the debugged solution fails,
we initiate a new round with a fresh solution rather
than continuing to debug the same code. For our
approach, we set the number of plans to 5, and the
refinement chance to 1, we can generate and refine
20 code solutions within the 40-sample budget.

5.4 Main Results

From Table. 1, we observe that our approach
achieves superior performance across benchmarks
ranging from simple to hard (97.0% pass@1 on
HumanEval, 45.5% pass@1 on CodeContest). The
improvements are particularly pronounced on com-
plex tasks - for GPT-40, MAGIC outperforms the
direct prompting baseline by 26.1% on CodeCon-
test. Notably, LATS and LDB also demonstrate
strong performance. We also notice that while
MAGIC excels with larger models, its effectiveness
diminishes when applied to Llama-8B, indicating
that our method heavily relies on strong models’
reasoning ability.

5.5 Analysis of Number of Plans

Model HumanEval CodeContest
Ours (5 plans) 97.0% 45.5%
Ours (2 plans) 95.7% 41.8%
Ours (1 plan) 94.5% 38.8%

Table 2: Pass@1 on HumanEval and CodeContest using
GPT-40 with different number of plans

In this section, we applied our approach using
different number of plans with GPT-40, aiming
to analyze the impact of varying plan counts on
the overall performance, as the number of plan is
closely related to solution diversity. The exper-
iment results are shown in Table 2. We set the
number of plans to 5, 2, and 1. For each plan,
the LLM generated code four times and performed
one refinement iterations. Our experimental re-
sults demonstrate that the impact of multiple plans
varies significantly across problem difficulty. For
straightforward programming tasks in HumanEval,
the performance remains relatively stable regard-
less of the number of plans used (from 97.0%
to 94.5% pass@1). However, on CodeContest’s
competition-level problems, we observe a substan-
tial performance drop from five-plan to single-plan
approaches (from 45.5% vs 38.8% pass@1). This
indicates that diverse planning paths become in-
creasingly crucial when tackling complex program-
ming challenges, where exploring multiple solution
strategies helps navigate intricate problem spaces
and identify optimal implementations.

5.6 Ablation Study

Ablation HumanEval CodeContest
Ours 94.5% 27.3%
w/o UCB 94.5% 25.4%
w/o Test Cases 92.7% 18.2%
w/o Constraint 93.3% 23.0%

Table 3: Pass@1 on HumanEval and CodeContest using
GPT-40-mini for ablation study

Our ablation studies reveal several key insights
about model performance with GPT-40-mini. Re-
moving UCB-based plan selection leads to min-
imal impact on HumanEval (94.5% pass@1) but
affects CodeContest performance (25.4% vs 27.3%
pass@1), as UCB helps balance exploration and

exploitation among promising solution paths. For
test case ablation, while HumanEval performance
remains stable (92.7%), CodeContest sees a sig-
nificant drop (18.2%). This disparity occurs be-
cause for simple HumanEval problems, the LLM
can reason effectively and generate appropriate
test cases. However, for complex CodeContest
problems, the LLM can only generate basic test
cases, missing edge cases critical for competition-
level problems. Finally, we remove constraints by
no longer prompt LLM to generate diverse plans
and code, which leads to performance degradation
(93.3% and 23.0% respectively) due to repeated
sampling and unstable refinement, which reduces
sample efficiency within our fixed computation
budget.

6 Code Space Analysis

6.1 Embedding with UniXcoder

UniXcoder (Guo et al., 2022) is a pre-trained model
for programming languages. Notably, UniXcoder
enhaces code representation by integrating cross-
modal contents such as Abstract Syntax Trees
(ASTs) and code comments, which makes the
model better capture the logic and semantic mean-
ing of the code. In our experiment, we utilize UniX-
coder to embed the generated code due to its strong
code representation ability.

6.2 Code Diversity

Code diversity refers to the extent to which multi-
ple generated code solutions differ from each other
in terms of structure, logic, and implementation
details. Higher diversity implies the exploration of
varied approaches to solving the same problem, en-
hancing the likelihood of finding optimal solutions,
instead of getting stuck in local optimal solutions.
Variance-Based Diversity: One straightforward
way of quantifying code diversity is to measure
the variance of the generated code embeddings. A
higher variance indicates greater diversity in the
solution space, as it reflects a broader distribution
of solutions rather than repeated sampling similar
implementations. Formally, given a set of embed-
ded code representations {eq, ez, . .., exn} of cod-
ing problem x, we define the code solution variance
of problem z as:

1 1 &
Var(z) = N Z |e; —é||?, where &= N Zei
i=1 ‘

Pairwise Similarity: From another perspective,
we can also quantify the code similarity between
each code solutions, since is has the opposite mean-
ing to variance, which can also reflect code diver-
sity. For 2 different code embeddings {e;, e;}, we
define the pairwise cosine similarity between e;
and e; as sim(e;, e;), which is the cosine similar-
ity between the 2 embeddings. Now, given a coding
problem z and its solution set {e1, e, ...,en}, we
can define the pairwise code solution similarity of
problem zx as:

2 .
S(z) = NN-1) Z sim(e;,).

1<j

In out setting, we compute the code embeddings
with the GPT-40-mini’s generated code from Code-
Contest, the results can be shown in Table 4. Based

Method Variance Pairwise Similarity
Resample 0.403 0.885
Reflexion 0.223 0.931
LATS 0.262 0.925
MAGIC 0.336 0911

Table 4: Embedding Variance for Different Methods

on the experiment results presented in Table. 4,
we observe the Resample method exhibits the high-
est code diversity, since it generates solutions in-
dependently without refining any previous code.
While this results in greater exploration in code
space, the lack of exploitation limits the perfor-
mance of Resample. Among methods that con-
taining phase to refine existing code, our approach
MAGIC achieves the highest diversity, enabling
broader exploration of potential optimal solutions
while also leveraging well-performing code for ef-
fective exploitation.

6.3 Code Space Visualization

In this section, we want to analyze how different
searching algorithms explore the code space. For a
random problem, we sample 40 code solutions with
different approaches. Then, we use UniXcoder as
the embedding model and apply t-SNE (van der
Maaten and Hinton, 2008) to project the embed-
dings into a 2D space. For the MCTS algorithm,
we adopt LATS as the base method. For the re-
sampling approach, we generate code solutions for
40 times in a zero-shot manner while setting the
temperature to 1.

Figure 2: Visualization of Different Approaches’ Solu-
tion Embeddings.

We discovered that the embedding space for Re-
flexion and Resample does not exhibit clear clus-
tering properties. This is because Reflexion can
only refine code based on previously generated
solutions, while Resample generates solutions in-
dependently without leveraging prior information.
This observation indicates that both methods lack
a systematic approach to exploring the solution
space. In contrast, for our approach (MAGIC) and
the MCTS-based LATS method, the embedding
visualization reveals distinct clustering patterns, es-
pecially for our approach. This indicates that our
method effectively explores the potential optimal
solution space in a structured manner.

7 Conclusion

In this paper, we introduced Multi-Armed Bandit
Guided Iterative Code Generator (MAGIC), a novel
code generation framework that formulates plan se-
lection as a Multi-Armed Bandit (MAB) problem.
By leveraging the strong language planning capa-
bilities of LLMs and our customized UCB-P term,
MAGIC efficiently avoids redundant sampling and
achieves state-of-the-art performance, with notable
gains in solution diversity and competitive program-
ming tasks. We also conducted comprehensive ab-
lation studies to understand the contribution factors
behind MAGIC'’s strong performance. Code space
analysis reveals MAGIC’s property of generating
more diverse code. Our findings highlight the im-
portance of structured exploration in LLM-based
code generation, offering insights into more effi-
cient and adaptive search strategies.

Limitations

Despite MAGIC’s strong performance, several lim-
itations warrant discussion. First, the framework
heavily relies on public test cases for code refine-
ment. Without these, LLMs can only generate
low quality test cases due to the limited reason-
ing ability of current models. Additionally, while
MAGIC shows substantial improvements with ad-
vanced models like GPT-40, the benefits become
less with weaker models like Llama-8B, which
indicates MAGIC heavily relies on the reasoning
ability of LLMs. Moreover, although we introduce
code skeleton into our framework to constrain code
refinement, our current implementation does not
leverage more advanced property of modularized
code, such as conducting unit tests for each func-
tion.

References

Peter Auer, Nicoldo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine Learning, 47:235-256.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Jingchang Chen, Hongxuan Tang, Zheng Chu, Qiang-
long Chen, Zekun Wang, Ming Liu, and Bing Qin.
2024a. Divide-and-conquer meets consensus: Un-
leashing the power of functions in code generation.
In NeurlPS.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, and
Denny Zhou. 2024b. Teaching large language mod-
els to self-debug. In ICLR.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In EMNLP, pages 1536-1547.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In ACL,
pages 7212-7225.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang,
Daisy Wang, and Zhiting Hu. 2023. Reasoning with
language model is planning with world model. In
EMNLP, pages 8154-8173.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. Preprint, arXiv:2105.09938.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen
Bu, Yuhao Qing, and Heming Cui. 2024. Agentcoder:
Multi-agent-based code generation with iterative test-
ing and optimisation. arXiv:2312.13010.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang,
and Ge Li. 2023. Self-planning code generation with
large language models. ACM Transactions on Soft-
ware Engineering and Methodology.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin
Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, and 7 others. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092-1097.

Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Xu-
jiang Zhao, Ziniu Hu, Haifeng Chen, Wei Cheng,
and 1 others. 2024. Scattered forest search: Smarter
code space exploration with llms. arXiv preprint
arXiv:2411.05010.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In NeurIPS.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin
Deng, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2024. Next: Teaching large language models to
reason about code execution. In /ICML.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is self-repair a silver bullet for code genera-
tion? In ICLR.

OpenAl. 2023.
arXiv:2303.08774.

GPT-4 technical report.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, and
7 others. 2023. Code llama: Open foundation models
for code. arXiv:2308.12950.

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. 2015. Trust region policy
optimization. In ICML.

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Jialin Song, Jonathan Raiman, and Bryan Catan-
zaro. 2024. Effective large language model de-
bugging with best-first tree search. Preprint,
arXiv:2407.19055.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.
2023. Large language models are in-context se-
mantic reasoners rather than symbolic reasoners.
arXiv:2305.14825.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama:
Open and efficient foundation language models.
arXiv:2302.13971.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, pages 2579-2605.

Evan Wang, Federico Cassano, Catherine Wu, Yun-
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean
Hendryx, Summer Yue, and Hugh Zhang. 2024. Plan-
ning in natural language improves llm search for code
generation.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In ACL,
pages 2609-2634.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In ACL, pages 8696-8708.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, and 10 others. 2023. The rise and potential
of large language model based agents: A survey.
arXiv:2309.07864.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystifying
Ilm-based software engineering agents. Preprint,
arXiv:2407.01489.

10

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: deliberate
problem solving with large language models. In
NeurlPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
ReAct: Synergizing reasoning and acting in language
models. In ICLR.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a.
Self-edit: Fault-aware code editor for code gener-
ation. In ACL, pages 769-787, Toronto, Canada.
Association for Computational Linguistics.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023b.
Planning with large language models for code gener-
ation. In ICLR.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In ACL,
pages 851-870.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-
guage agent tree search unifies reasoning acting and
planning in language models. /I[CML.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In ICLR.

https://arxiv.org/abs/2407.19055
https://arxiv.org/abs/2407.19055
https://arxiv.org/abs/2407.19055
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489

A MAGIC Algorithm

Algorithm 1 Code Generation with UCB-P Guided
Plan Selection
1: Input: Number of plans &, termination crite-
rion C, coding problem x

2: Output: Refined code satisfying correctness
conditions

3: Generate k distinct plans {771, ..., T} using
P(T | x).

4: fori=1,...,kdo
Generate an initial code implementation y;
based on plan 7;.
6: end for
7: while C is not satisfied do
Select a plan 7T} based on the greatest UCB
value.
Generate code based on the selected plan
T;.
10: if the generated code fails public test cases
then
11:
12:
13:

Refine the code implementation.
end if
Update the UCB value for plan 7; using
the observed reward.

14: end while

11

B Apps Tasks Used for Our Evaluation.

This subset of APPS is the same as previous work’s
(Olausson et al., 2024) subset.

Task IDs

4004, 4058, 4063, 4065, 4100, 4108, 4117,
4155, 4164, 4182, 4193, 4195, 4211, 4217,
4241, 4249, 4270, 4275, 4281, 4293, 4333,
4347, 4350, 4356, 4409, 4426, 4431, 4450,
4465, 4484, 4498, 4505, 4507, 4514, 4544,
4553, 4586, 4610, 4662, 4663, 4667, 4677,
4681, 4704, 4716, 4741, 4750, 4786, 4787,
4801, 4855, 4862, 4864, 4870, 4873, 4890,
4897, 4952, 4966, 4984

0004, 0013, 0033, 0056, 0073, 0074, 0089,
0091, 0124, 0131, 0139, 0162, 0166, 0183,
0186, 0191, 0199, 0205, 0249, 0253, 0268,
0274, 0300, 0304, 0341, 0342, 0413, 0427,
0434, 0466, 0467, 0496, 0501, 0511, 0537,
0564, 0571, 0575, 0579, 0592, 0597, 0626,
0637, 0676, 0704, 0728, 0757, 0765, 0788,
0794, 0804, 0805, 0811, 0829, 0879, 0904,
0915, 0925, 0937, 0948

3017, 3019, 3054, 3062, 3063, 3066, 3070,
3077, 3083, 3097, 3117, 3135, 3161, 3186,
3209, 3220, 3286, 3287, 3323, 3335, 3353,
3355, 3371, 3375, 3376, 3388, 3404, 3411,
3433, 3441, 3445, 3470, 3481, 3484, 3548,
3557, 3605, 3609, 3634, 3635, 3671, 3679,
3709, 3754, 3769, 3792, 3798, 3799, 3804,
3810, 3819, 3823, 3836, 3843, 3849, 3876,
3913, 3934, 3972, 3974

Difficulty

Introductory

Interview

Competition

Table 5: APPS tasks used for our evaluation (60 Intro-
ductory, 60 Interview, and 60 Competition problems).

C Example Generated Plan and Code
Skeleton

In this section we also provide a basic example
of how our generated plan and code skeleton look
like. The detailed information can be checked on
the next 2 pages.

D AI Usage

ChatGPT is used to correct grammatical errors and
polish the paper writing.

To solve this problem, we need to efficiently handle two types of operations on a tree
structure with rooms, each having an illusion rate. The operations involve updating

the illusion rate of a room and computing the minimum energy required to travel between
two rooms.

Here’s a plan to tackle this problem:

1. x+xParse Input:+% Start by reading the number of rooms ‘n‘' and the number of queries
‘gq'. Then, read the initial illusion rates for each room. Next, read the ‘n-1‘

tunnels that form the tree structure connecting the rooms. Finally, read the queries
which can either update an illusion rate or ask for the minimum energy path.

2. xxData Structure Selection:sx
- Use an adjacency list to represent the tree. This will help in efficiently
navigating through the tree.
- Maintain a list to store the illusion rates of each room, which can be updated in
constant time.

3. *xHandling Queries:+x
- For type 1 queries, update the illusion rate of the specified room.
- For type 2 queries, calculate the minimum energy required to travel from room ‘u’
to room ‘v'. Since the structure is a tree, use Depth-First Search (DFS) or
Breadth-First Search (BFS) to find the path and calculate the energy for each
segment of the path using the given formula: '‘max(la_x + a_yl, la_x — a_yl)".

4. *xOutput Results:xx For each type 2 query, compute the result and print it.

Figure 3: Example generated plan.

12

def

def

def

def

main():
nnun

Main function to handle input parsing, processing gueries, and outputting results.

Input:
— First line: Two integers n (number of rooms) and g (number of gueries).
— Second line: n integers representing the initial illusion rates cof the rooms.
- Next n-1 lines: Each contains two integers indicating a tunnel between
two rooms.
— Next g lines: Each contains a guery, either type 1 (update illusion rate)
or type 2 (calculate minimum energy) .

Output:

- For each type 2 guery, print the minimum sum of energy regquired to move from
room u to reoom v.
nnn

update_illusion_rate(illusion_rates, room_index, new_rate):
nnun

Updates the illusion rate of a specific room.

Input:
— i1llusion_rates (List[int]): Current list of illusion rates for all rooms.
- room_index (int): Index of the rcom whose illusion rate is to be updated.
- new_rate (int): New illusion rate for the specified room.

Output:

— Neone. The function updates the illusion_rates list in place.

calculate_minimum_energy(tree, illusion_rates, start, end):
nnn

Calculates the minimum energy required to travel from start room to end room.

Input:
- tree (Dict[int, List[int]]): Adjacency list representing the tree of rooms.
— illusion_rates (List[int]): List of current illusion rates for each room.
- start (int): The starting room index.
- end (int): The ending room index.

Qutput:
- min_energy (int): The minimum energy regquired to travel from start to end
room.

find_path_and_energy(tree, illusion_rates, current, target, visited):

Helper function to find the path and compute energy using DFS or BFS.

Input:
- tree (Dict[int, List[int]]): Adjacency list representing the tree of rooms.
— illusion_rates (List[int]): List of current illusion rates for each room.
— current (int): Current room index in the traversal.

- target (int): Target room index to reach.
- visited (Set[int]): Set of wvisited nodes to avoid cycles.

Output:

- energy (int): Total energy calculated for the path from current to target.
nnn

Figure 4: Example generated code skeleton.

13

	Introduction
	Related Works
	AI for Code
	Language Model Agent
	Code Agent

	Problem Formulation
	Plan Space and Code Space Definitions
	Code Refinement Process

	Methodology
	Plan Generation
	Plan Selection
	Code Implementation and Refinement

	Experiments
	Dataset
	Baseline
	Implementation Details
	Main Results
	Analysis of Number of Plans
	Ablation Study

	Code Space Analysis
	Embedding with UniXcoder
	Code Diversity
	Code Space Visualization

	Conclusion
	MAGIC Algorithm
	Apps Tasks Used for Our Evaluation.
	Example Generated Plan and Code Skeleton
	AI Usage

