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ABSTRACT

Understanding the neural code requires identifying different functional units in-
volved in the neural circuits. One way to identify these functional units is to solve
a neuron type classification problem. For decades, current clamp electrophysiol-
ogy recordings have provided the means to classify the neurons based on subtle
differences in action potential shapes and spiking patterns. However, significant
variations in neuronal type definitions, classification pipelines, and variability in
the neuronal activities make unambiguous determination of neuron type challeng-
ing. Previous solutions to this electrophysiology-based cell type classification
problem consisted of dimensionality reduction juxtaposed with clustering using
hand-crafted action potential features. Recent discoveries have allowed genetic-
based cell-type classifications, which have fewer ambiguities, but they are less
practical in vivo and have even lower throughput. Leveraging the unprecedented
ground truth data published in the Allen Institute Cell Types Database, which con-
tains anatomical, genetic, and electrophysiology characterizations of neurons in
the mouse neocortex, we construct a robust and efficient convolutional neural net-
work (CNN) that successfully classifies neurons according to their genetic label
or broad type (excitatory or inhibitory) solely using current-clamp electrophysiol-
ogy recordings. The CNN is configured as a multiple-input single-output network
consisting of three subnetworks that take in the raw time series electrophysiol-
ogy recording as well as the real and imaginary components of its Fourier coef-
ficients. Our single pipeline method is fast and streamlined while simultaneously
outperforming previous methods and achieving more classification classes using
only single current-clamp trace as the input. This end-to-end convolutional neural
network-based classification method removes the need for hand-crafted features,
specific knowledge, or human intervention for quick identification of the cell type
with high accuracy, enabling interpretation of the experimental data in a bias-free
manner and a much broader scientific context.

1 INTRODUCTION

The neuronal type classification problem has been present in neuroscience since Ramón y Cajal’s
presentation of the neuron doctrine, which highlighted the ample diversity of neurons. Neurosci-
entists hypothesized that morphology differences play a functional role in the neural circuit. This
intuition was extended to the investigation of differences in neuronal activity with the appearance
of the current clamp technique, which allowed observations of various action potential shapes and
patterns in neurons.
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Features such as action potential (AP) threshold and frequency, full width at half maximum (FWHM)
of an action potential (AP width), or afterhyperpolarization values and their common ratios in subse-
quent action potentials in a train, which are easily distinguishable by a person, aimed to describe the
differences among the observed variabilities in neuronal activities. Although no two neurons have
the same activity, these hand-crafted features were used to define electrophysiological types of neu-
rons (Beierlein et al., 2003; Nowak et al., 2008). Due to intrinsic neuron-to-neuron variabilities and
lack of established features that definitively separate neuron types, no single pipeline is sufficient
enough for unambiguous classification.

Several electrophysiology-based classifications including methods that consider more
features and ones that focus on a single neuronal subpopulation only coexist today
(Petilla Interneuron Nomenclature Group; PING and others, 2008; Markram et al., 2004). Previous
solutions to this cell type classification consisted of dimensionality reduction juxtaposed with
clustering using calculated action potential features and cell morphology. These approaches also
suffered in classification accuracy as they relied on AP shape, spiking pattern, or cell shape
parameters that span a continuous feature space, which do not have clear separation borders.

In addition to the aforementioned classification methods based on morphology and electrophysiol-
ogy, one based on genetic makeup appeared recently in systems and circuit neuroscience (Tasic et al.,
2018). A vast majority of neurons can be clustered according to the genetic encoding characteristic
of the group proteins. This gene-based consideration of neuron types allows a less ambiguous clas-
sification pipeline. The most commonly used genetic types are neuron-derived neurotrophic factor
(Ndnf), parvalbumin (Pvalb), somatostatin (Sst), and vasoactive intestinal peptide (Vip) interneu-
rons, and excitatory (Exc) neurons that are predominantly pyramidal cells.

Furthermore, the appearance of genetically modified transgenic lines of animals, where cells of a
selected genetic type can be marked by fluorophore, enabled studies relating electrophysiological
activity to the genetic type of neurons (Taniguchi et al., 2011). Attempts to characterize the elec-
trophysiological features of specific genetic types of neurons showed that the majority of Pvalb
interneurons correspond to Fast Spiking (FS) electrophysiological cell type, but both Vip and Sst
interneurons as well as excitatory neurons can appear as Regular Spiking (RS) or Low Threshold
Spiking (LTS) types (Contreras, 2004). Therefore, we can conclude that there does not exist a clear
mapping from one classification scheme to another, partially due to low throughput of existing data
and differences in definitions and experimental pipelines.

To address the above neuron type classification and improve on the existing classification pipeline
architectures, a robust and efficient convolutional neural network (CNN) is developed that success-
fully classifies neurons according to their genetic label or broad type (excitatory or inhibitory) solely
using current clamp electrophysiology recordings. The method presented in this paper relies on the
ground truth data published in the Allen Institute Cell Types Database, which contains anatomical
and morphological descriptions, genetic types, and electrophysiology features of thousands of neu-
rons in the mouse neocortex (Gouwens et al., 2019). We use this open access database, which is one
of the flagship initiatives of the Allen Institute for Brain Science, to obtain the genetic type label of a
given neuron based on a short snippet of its action potential activity, bypassing supervised definitions
of signal features as well as the electrophysiology classification scheme. The following sections de-
tail the related state-of-the-art methods, the specifications of our novel deep neural network-based
neuron type classification method, as well as the results achieved using our CNN architecture.

2 RELATED WORK

Gouwens et al. (2019) built and made publicly available the Allen Cell Types Database. From this
database, 17 electrophysiological, 38 morphological, and 46 morpho-electric neuron types were
identified using a custom classification pipeline. The authors employed biocytin-based neuronal re-
construction to extract morphological features and used raw current clamp electrophysiology record-
ings of cells from the mouse visual cortex in vitro as inputs for electrophysiological features. After
computing handcrafted single action potential features including action potential height, threshold,
upstroke speed, and downstroke speed, as well as features corresponding to action potential trains,
such as interspike intervals and spiking frequency, principal component analysis and t-distributed
stochastic neighbor embedding techniques were applied to project the high-dimensional electro-
physiological feature space into two dimensions. With clustering, the authors were able to identify
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17 electrophysiological neuron types, 4 of which were classified as excitatory subtypes and 13 in-
hibitory. The 13 inhibitory subtypes were further mapped to the four inhibitory interneuron type
based on genetic tags: Sst, Vip, Pvalb, and Ndnf.

Ghaderi et al. (2018) successfully developed a semi-supervised technique to classify neuron types
using limited in vivo electrophysiology recordings data. The authors considered only 3 types of neu-
rons: excitatory pyramidal (Pyr) cells, parvalbumin positive (Pvalb) interneurons, and somatostatin
positive (Sst) interneurons from layer 2/3 of the mouse primary visual cortex. After extracting sin-
gle spikes, they extracted discriminative action potential features by computing the Discrete Cosine
Transform of the recorded electrophysiology traces. Principal component analysis and fuzzy c-mean
clustering were then performed, and neurons were classified using minimum distance classifier. The
authors achieved accuracies of 91.59 ± 1.69, 97.47 ± 0.67, and 89.06 ± 1.99 for Pvalb, Pyr, and
Sst, respectively, which yielded an overall accuracy of 92.67± 0.54%. This classification algorithm
pipeline was further applied to the in vitro data from the Allen Institute Cell Types Database contain-
ing Pvalb, Sst, 5HT3a, and Vip genetic types. Testing on a dataset comprised of a pool of 50 neurons
where multiple electrophysiology traces have been recorded for each neuron, the authors achieved
accuracies of 93.57± 0.59%, 89.15± 0.63%, 81.69± 0.56%, 79.23± 1.38%, and 77.02± 0.91%
for Pvalb, Sst, Vip, 5HT3a, and Pyr, respectively.

3 METHODS

In this paper, we present a neuron type classification technique based on a simple convolutional neu-
ral network (CNN) architecture. Using the in vitro current clamp electrophysiology recording traces
of neurons in the mouse neocortex, the CNN is configured as a multiple-input single-output net-
work consisting of three subnetworks. The first subnetwork takes in a portion of the raw time series
recording that is 50 ms in duration and contains at least one action potential. The real and imagi-
nary components of the trace’s Fourier coefficients are fed into the second and third subnetworks,
respectively.

3.1 DATASET

We use data collected from 1947 cells in the Allen Institute Cell Types Database (Gouwens et al.,
2019). Of these, we omitted 81 cells containing only morphological features and lacking electro-
physiology recordings, and only the remaining 1866 cells containing electrophysiology recordings
were used to build our training, validation, and test sets. Every one of these 1866 cells was ob-
tained from transgenic animal lines, and thus is associated with a genetic label (Exc, Ndnf, Vip,
Sst, and Pvalb). Each neuron contains approximately 50 electrophysiology trace recordings that are
responses to multiple current clamp stimuli including short square, long square, ramp, and noise. Of
these traces, we only considered responses to the short square stimulus, which are 3 ms in duration
that is just long enough to induce a single action potential. Each of these recordings are collected
either at 200 kHz or 50 kHz sampling rate. Because each neuron is recorded at a different level of
stimulus, we only take the traces which contain an action potential.

To obtain the most useful information about the neuron type being assessed, the type of classification
task that our architecture solves can be dictated by the needs of a neurophysiologist. One task
is to distinguish neuronal activity coming from an excitatory (Exc) or an inhibitory (Inh) neuron.
This task is less informative, but provides helpful explanation for analyzing electrophysiological
recordings. The more interesting task is to discriminate among the 5 genetic types (Pvalb, Sst,
Vip, and Ndnf inhibitory types and Exc), which constitute the broader excitatory and inhibitory
categories. We train our network to perform the two aforementioned tasks. Accurate discrimination
of the 5 genetic types would be highly valuable to the neuroscience community.

3.2 PREPROCESSING

One of the main objectives of our approach is to remove as much supervised overhead in the data
processing stage of the neuron classification pipeline as possible. The only preprocessing steps we
perform on the raw time series data is removing excess portions of recordings that do not provide
useful information. We are only interested in the portion of the recording containing an action
potential, so only 50 ms of recording, 25 ms before and after the onset of the short square stimulus,
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was considered. The 25 ms of pre- and post-stimulus time duration was chosen to ensure that
potential discriminative features that may be present before and after the onset of stimulus would be
captured by the representation learning performed by our convolutional neural network. The 25 ms
of post-stimulus time guarantees that a single action potential has returned to its resting membrane
potential after depolarization and hyperpolarization.

We also take the fast Fourier transform of these 50 ms time series traces. The real and imaginary
components of the resulting Fourier coefficients are used as inputs to the subnetworks of our convo-
lutional neural network architecture.

For model selection and performance, we divide the collection of aforementioned data from the
Allen Institute Cell Types Database based on the unique cell identification numbers. The ratio be-
tween training and validation sets was fixed at 8:2. Once the best generalized performing model was
identified, we independently split the dataset again based on the unique cell identification numbers.
Eighty percent of the data was reserved for training and the remaining 20% was set aside as the test
set data. The test set was further split as follows: 80% test and 20% validation. The validation set
was used to tune the network hyperparameters. This dataset separation by cell prevents overfitting,
and provides a significant advantage and improvement to existing methods. Due to natural cell-to-
cell variations, basic action potential features like resting membrane potential can vary considerably
among cells of the same genetic type. We therefore use and report the maximum validation accuracy
we obtain over 100 epochs.

3.3 NETWORK ARCHITECTURE

We use a multiple-input single-output convolutional neural network (CNN) for training. To remove
the need for handcrafted features, our deep neural network uses a one-dimensional convolutional
neural network as a feature encoder and employs dense layers to output class predictions. The
standard one-dimensional CNN encoder is implemented using PyTorch. The encoder contains 6
convolutional layers, and each layer is passed through a Rectified Linear Unit (ReLU) activation
function. Batch normalization introduced by Ioffe & Szegedy (2015) is applied to each activated
layer. The exact specifications of each layer is shown in c) of Figure 3.3.

For training, we employ the Adam optimizer with the learning rate set to 10−3 and `2 regularization
parameter set to 10−5 to minimize the cross entropy loss with sum reduction (Kingma & Ba, 2014).
The initial weights were randomly generated.

An 8:2 training-validation data set split was used to select the optimal network model configuration.
We first tried a single-input single-output configuration, where only the top stream in c) of Figure 3.3
was used. This architecture resulted in a validation accuracy of 88.52% for classification among the
5 genetic neuron types: Exc, Pvalb, Sst, Ndnf, and Vip; and a validation accuracy of 96.35% for
classification between excitatory and inhibitory cells.

We then tested using a dual-input single-output configuration. Features were trained independently
on each subnetwork and were concatenated at the final step for classification. Using only the real
component of the Fourier coefficients as input to the additional subnetwork resulted in a validation
accuracies of 91.43% for classification among the 5 genetic neuron types, and 99.38% for classifi-
cation between excitatory and inhibitory broad types. Similarly, using only the complex component
of the Fourier coefficients resulted in validation accuracies of 89.13% for classification among the 5
genetic types, and 96.58% for classification between excitatory and inhibitory broad types.

Finally, we used a triple-input single-output configuration, where we use the raw time series trace in
addition to both the real and imaginary components of the Fourier coefficients. Features were also
trained independently on each subnetwork and were concatenated at the final step for classification.
This configuration was our best performing architecture, which resulted in a validation accuracies of
92.05% for classification among the 5 genetic types and 98.10% for classification between excitatory
and inhibitory broad types. This triple-input network architecture’s `2 regularization hyperparameter
was tuned to 10−5.
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Figure 1: a) Diagram of neuronal activity featuring typical FS, Inh neuron (left) and RS, Exc neuron
(right). Some exemplary AP features are marked on the traces. b) Example plot showing continuous
values of AP features characteristic of Exc and Inh groups of neurons. c) Schematic diagram of the
CNN architecture design developed.

3.4 TRANSFER LEARNING

One of the biggest challenges in neuroscience is obtaining sufficient amount of data for each neuron
type for training. Supervised learning requires a large number of sample points to train efficient clas-
sifiers. We attempt to solve this problem using transfer learning. From the results of our triple-input
single-output network, we can conclude that the 2 class classification task of identifying excitatory
versus inhibitory neurons achieves high accuracy. This observation inspired us to first train the
model on the task it does well, and then fine tune. We therefore trained the aforementioned CNN
network for the two broad type classification task first for 100 epochs. We then changed the task to
the 5 genetic type classification using the network trained on the two broad type classification task.
The network uses the same CNN weights from the 2 type classification task, but has an output layer
changed to the 5 type classification task. Then, the updated network was fine-tuned on the 5 type
classification task for 100 epochs.

The same Adam optimizer with the learning rate of 10−3 and `2 regularization parameter of 10−5

was used for training. We tested the network’s ability to fine tune on the data by carrying out 3:7, 5:5,
and 8:2 training-test set splits. This choice was made to investigate the model’s ability to fine tune
on limited data points. For the 5 class classification task, at the epoch with the highest validation
accuracy, the computed test set accuracies were 86.87%, 87.46%, and 89.22%, for the above three
training-test set split ratios, respectively. Details are shown in Table 2.
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In addition, we fine tuned the network on the 5 type classification task, used a 5 type classification
validation set, selected the epoch with the highest validation accuracy, and evaluated a 2 class clas-
sification task’s test set accuracy. This particular network has never seen this 2 class classification
test set data during training, but resulted in a test set accuracy of 98.30%.

4 RESULTS

Our best performing triple-input single-output network architecture resulted in a test set accuracy of
89.76% for classification among the 5 genetic neuron types: excitatory (Exc), parvalbumin (Pvalb),
somatostatin (Sst), neuron-derived neurotrophic factor (Ndnf), and vasoactive intestinal peptide
(Vip) cells. This finalized network architecture resulted in a test set accuracy of 98.28% for classifi-
cation between excitatory and inhibitory neurons. For both tasks, the individual classes’ precisions,
recalls, and f1-scores are reported in Table 1.

Table 1: Triple-input CNN precision

Type precision (%) recall (%) f1-score (%) support

2 Class Validation Set
Exc 98.78 98.78 98.78 490
Inh 98.52 98.52 98.52 406
weighted avg 98.66 98.66 98.66 896

2 Class Test Set
Exc 97.28 99.51 98.38 611
Inh 99.42 96.80 98.10 532
weighted avg 98.28 98.25 98.25 1143

5 Class Validation Set
Exc 96.27 99.79 98.00 466
Ndnf 84.62 95.65 89.80 46
Pvalb 99.17 98.76 98.96 241
Sst 88.24 87.21 87.72 86
Vip 87.50 46.67 60.87 45
weighted avg 95.23 95.36 94.94 884

5 Class Test Set
Exc 94.93 98.76 96.80 644
Ndnf 57.63 89.47 70.10 38
Pvalb 93.08 93.08 93.08 260
Sst 77.54 82.31 79.85 130
Vip 70.59 16.67 26.97 72
weighted avg 89.76 90.12 88.75 1144

Table 2 reports the test set accuracies of transfer learning.

Table 2: Transfer learning precision

Type 3:7 5:5 8:2

Exc 97.65 98.08 94.60
Ndnf 96.59 89.43 90.00
Pvalb 80.99 79.93 91.25
Sst 71.76 72.26 84.13
Vip 44.65 51.70 45.65
weighted avg 86.87 87.46 89.22

6



Published as a conference paper at ICLR 2022

5 CONCLUSION AND FUTURE WORK

We presented in this paper a solution to the neuron classification problem that avoids using imper-
fect, non-standardized, and cumbersome electrophysiological classification schemes. In turn, the
constructed neural network maps the pool of neurons based on their activity into less ambiguous
genetic classification that is normally not widely accessible or practical in experimental pipelines.
After training, our streamlined end-to-end convolutional neural network-based classification method
does not require any domain specific knowledge or human intervention for quick identification of the
neuron’s cell type with high accuracy. The method presented in this paper provides an efficient and
standardized tool for the neuroscience community to use, thus enabling data analysis in a broader
scientific context. We further showed that the network architecture learns representations that suc-
cessfully distinguishes the neuron types, even when these features are not immediately recognizable
upon inspection as shown by the histograms of the data in the Appendix.

Although we achieved the state-of-the-art results, there exists potential source of noise in our data.
The genetic labels we use in both the training, validation, and test sets are currently based on the
animal type used to obtain the electrophysiology traces. The transgenic animal lines however are
not guaranteed to be accurate. It is known that some portion of recordings coming from a given
type will in fact belong to another genetic type (Hu et al., 2013). It is worth quantifying how much
error is propagated from this potential noise source across all the genetic types for future work, and
obtaining more accurate genetic labels from genetic sequencing data will be considered.

Furthermore, we plan to augment our dataset with in vivo electrophysiology recordings data, which
is characterized by a more noisy background. Such extension will be particularly beneficial for rare
but highly valuable in vivo–often blind to the cell type–current clamp recordings. Moreover, com-
pletely removing the need for tedious handcrafted features computation, which requires scientific
domain expertise of an experimenter, will contribute to better reproducibility as well as faster, less
biased scientific outcomes. On the other hand, studying the network outputs can contribute to im-
proved understanding of what neuronal activity features are best for defining a given neuron type.
It is a common assumption that encrypted in the genes is the ion channel repertoire that defines
the electrophysiologically recorded neuronal activity (Nandi et al., 2020). Finding correlations or
causal relationship between the genetic and electrophysiology classifications is one of the ultimate
longings of a neurophysiologist, which follows the original intuition of Ramón Cajal that various
groups of neurons differ from one another.
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A HISTOGRAMS OF ELECTROPHYSIOLOGY RECORDING DATA

Figure 2: Time series histograms of the current clamp electrophysiology recordings for Sst
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Figure 3: Time series histograms of the current clamp electrophysiology recordings for Vip

Figure 4: Time series histograms of the current clamp electrophysiology recordings for Pvalb

Figure 5: Time series histograms of the current clamp electrophysiology recordings for Ndnf

Figure 6: Time series histograms of the current clamp electrophysiology recordings for Exc
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Figure 7: Fourier spectra histograms of the time series data for Sst

Figure 8: Fourier spectra histograms of the time series data for Vip

Figure 9: Fourier spectra histograms of the time series data for Pvalb

Figure 10: Fourier spectra histograms of the time series data for Ndnf
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Figure 11: Fourier spectra histograms of the time series data for Exc
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