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Abstract

In semi-supervised graph-based binary classifier learning, a subset of known labels1

x̂i are used to infer unknown labels, assuming that the label signal x is smooth2

with respect to a similarity graph specified by a Laplacian matrix. When restricting3

labels xi to binary values, the problem is NP-hard. While a conventional semi-4

definite programming (SDP) relaxation can be solved in polynomial time using, for5

example, the alternating direction method of multipliers (ADMM), the complexity6

of iteratively projecting a candidate matrix M onto the positive semi-definite7

(PSD) cone (M � 0) remains high. In this paper, leveraging a recent linear8

algebraic theory called Gershgorin disc perfect alignment (GDPA), we propose a9

fast projection-free method by solving a sequence of linear programs (LP) instead.10

Specifically, we first recast the SDP relaxation to its SDP dual, where a feasible11

solution H � 0 can be interpreted as a Laplacian matrix corresponding to a12

balanced signed graph sans the last node. To achieve graph balance, we split the13

last node into two that respectively contain the original positive and negative edges,14

resulting in a new Laplacian H̄. We repose the SDP dual for solution H̄, then15

replace the PSD cone constraint H̄ � 0 with linear constraints derived from GDPA—16

sufficient conditions to ensure H̄ is PSD—so that the optimization becomes an LP17

per iteration. Finally, we extract predicted labels from our converged LP solution18

H̄. Experiments show that our algorithm enjoyed a 40× speedup on average over19

the next fastest scheme while retaining comparable label prediction performance.20

1 Introduction21

Binary classification—assignment of labels to anN -sample set x ∈ {−1, 1}N to separate two distinct22

classes—is a basic machine learning problem [1]. One common setting is semi-supervised graph23

classifier learning, where M known labels, x̂i, 1 ≤ i ≤M , are used to infer N −M unknown labels24

xi, M + 1 ≤ i ≤ N , in signal x, assuming that x is smooth with respect to (w.r.t.) a similarity25

graph G specified by a graph Laplacian matrix L [2, 3, 4]. This graph-based binary classification26

problem is NP-hard in general [5]. A conventional semi-definite programming (SDP) relaxation [6]27

replaces the binary label constraint with a more relaxed positive semi-definite (PSD) cone constraint28

(i.e., matrix variable M related to xx> satisfying M � 0), and the relaxed problem can be solved in29

polynomial time using, for example, the alternating direction method of multipliers (ADMM) [7].30

However, ADMM still requires projection to the PSD cone S = {M |M � 0} per iteration, which is31

expensive (O(N3)) due to full matrix eigen-decomposition. An alternative approach eliminates the32

binary constraint and minimizes directly a quadratic graph smoothness term called graph Laplacian33

regularization (GLR) x>Lx [8] for x ∈ RN , and then rounds xi’s to {−1, 1}. However, in general34

spectral methods such as GLR do not have tight performance bounds common in SDP relaxation [9].35
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Figure 1: Example of a PD matrix M and its similarity transform M̃ = SMS−1, and their respective
Gershgorin discs Ψi. Note that Gershgorin disc left-ends of M̃ are aligned at λmin(M) = 0.1078.

To ensure matrix variable M is PSD without eigen-decomposition, one naïve approach is to enforce36

linear constraints derived directly from the Gershgorin circle theorem (GCT) [10]. By GCT, every37

real eigenvalue λ of a real symmetric matrix M resides inside at least one Gershgorin disc Ψi—38

corresponding to row i of M—with center ci(M) ,Mi,i and radius ri(M) ,
∑

j 6=i |Mi,j |, i.e.,39

ci(M)− ri(M) ≤ λ ≤ ci(M) + ri(M), ∃i. (1)

The corollary is that the smallest eigenvalue, λmin(M), of M is lower-bounded by the smallest40

Gershgorin disc left-end, denoted by λ−min(M), i.e.,41

λ−min(M) , min
i
ci(M)− ri(M) ≤ λmin(M). (2)

Thus, to ensure M � 0, one can impose the sufficient condition λ−min(M) ≥ 0. While replacing42

the PSD cone constraint with a set of N linear constraints, ci(M) − ri(M) ≥ 0,∀i, is attractive43

computationally, GCT lower bound λ−min(M) tends to be loose. As an example, consider the positive44

definite (PD) matrix M in Fig. 1(a) with λmin(M) = 0.1078 [11]. The first Gershgorin disc left-end45

is c1(M)− r1(M) = 2− 3 = −1, and λ−min(M) < 0. Thus, imposing λ−min(M) ≥ 0 directly would46

unnecessarily restrict the search space and result in a sub-optimal solution to the posed problem.47

A recent linear algebraic theory called Gershgorin disc perfect alignment (GDPA) [11] provides a48

theoretical foundation to tighten the GCT lower bound. Specifically, GDPA states that given a graph49

Laplacian matrix L corresponding to a balanced signed graph G [12], one can perform a similarity50

transform1, L̃ = SLS−1, where S = diag(v−1
1 , . . . , v−1

N ) and v is the first eigenvector of L, such51

that the Gershgorin disc left-ends of L̃ are exactly aligned at λmin(L) = λmin(L̃). This means that52

transformed L̃ satisfies λ−min(L̃) = λmin(L̃); i.e., the GCT lower bound is the tightest possible after53

an appropriate similarity transform. Continuing our example, similarity transform M̃ = SMS−1 of54

M has all its disc left-ends exactly aligned at λmin(M) = λmin(M̃) = 0.1078.55

Leveraging GDPA, we develop a fast projection-free algorithm for semi-supervised graph classifier56

learning. We first observe that the optimal solution M of the SDP relaxation is an adjacency matrix57

to a balanced signed graph. However, GDPA requires a Laplacian matrix, which has opposite signs in58

the off-diagonal terms to the corresponding adjacency matrix of the same graph. Thus, we convert the59

problem to its SDP dual [13] and interpret the dual variable H instead as a Laplacian to a balanced60

graph sans the last graph node. To achieve graph balance, we split the last node into two and divide61

the original positive and negative edges among them, resulting in a revised Laplacian H̄. We repose62

the SDP dual problem for solution H̄, then replace the PSD cone constraint H̄ � 0 with linear63

constraints derived from GDPA. This changes the optimization to a linear program (LP) per iteration64

that is solved efficiently using fast LP solvers [14]. Finally, we extract prediction labels from our65

converged LP solution H̄. Experiments show that our algorithm enjoyed a 40× speedup on average66

over the next fastest scheme while retaining comparable label prediction performance.67

2 Related Work68

Graph-based classification was first studied almost two decades ago [2, 3, 4]. With the advent of graph69

signal processing (GSP) [15, 16]—spectral analysis of discrete signals residing on combinatorial70

graphs—interest in the problem was revived [17, 18, 19]. The problem of learning a similarity71

graph from data has been extensively studied [20]. We focus instead on the orthogonal problem of72

predicting binary labels given a similarity graph and a subset of M labels.73

1A similarity transform B = SAS−1 and the original matrix A share the same set of eigenvalues [10].
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The graph-based binary classification problem is NP-hard in general [5]. SDP—useful in approx-74

imating various NP-hard problems [13]—provides an intuitive relaxation [6]. An interior point75

method tailored for the slightly more general binary quadratic problem2 (BQP) has complexity76

O(N3.5 log(1/ε)), where ε is the tolerable error [21]. The complexity was improved to O(N3) by77

SDCut [22, 23] via spectrahedron-based relaxation. Replacing PSD cone constraint M � 0 with a78

factorization M = XX> was proposed in [24], but resulted in a non-convex optimization for X that79

was solved locally via alternating minimization, where in each iteration a matrix inverse of worst-case80

complexity O(N3) was required. More recent first-order methods for SDP such as [7] used ADMM81

[25, 26, 27], but the iterative projection onto PSD cone requires full matrix eigen-decomposition and82

thus expensive. In contrast, leveraging GDPA theory [11], our algorithm is entirely projection-free.83

It is known in graph spectral theory [28] that balanced signed graphs have unique spectral properties84

[29]; for example, the signed graph Laplacian matrix [30] has eigenvalue 0 iff the corresponding85

signed graph is balanced. In contrast, extending the original GCT [10], GDPA [11] states that the86

Gershgorin disc left-ends of a similarity transform SMS−1 of graph Laplacian M to a balanced87

graph can be perfectly aligned at λmin(M). GDPA theory was developed for metric learning [31]88

to optimize a PD matrix M given a convex and differentiable objective Q(M) so that the optimal89

Mahalanobis distance (fi − fj)
>M(fi − fj) for feature vectors fi and fj can be defined. This paper90

leverages GDPA [11] in an entirely different direction for graph-based binary classifier learning.91

Specifically, observing that solution matrix H to the SDP dual is a Laplacian to a balanced graph G92

sans the last graph node, we augment the last node to obtain an overall balanced graph Ḡ, and solve a93

modified SDP dual for Laplacian H̄ to Ḡ via GDPA linearization.94

3 Preliminaries95

3.1 Graph Definitions96

A graph is defined as G(V, E), with node set V = {1 . . . , N}, and edge set E = {(i, j)}, where97

(i, j) means nodes i and j are connected with weight wi,j ∈ R. A node i may have self-loop of98

weights ui ∈ R. Denote by W the adjacency matrix, where Wi,j = wi,j and Wi,i = ui. We assume99

that edges are undirected, and W is symmetric. Define next the diagonal degree matrix D, where100

Di,i =
∑

j Wi,j . The combinatorial graph Laplacian matrix [15] is then defined as L = D−W. To101

account for self-loops, the generalized graph Laplacian matrix is defined as L = D−W+ diag(W).102

Note that any real symmetric matrix can be interpreted as a generalized graph Laplacian matrix.103

The graph Laplacian regularizer (GLR) [8] that quantifies smoothness of signal x ∈ RN w.r.t. graph104

specified by L is105

x>Lx =
∑

(i,j)∈E

wi,j(xi − xj)2 +
∑
i∈V

uix
2
i . (3)

GLR is also the objective of our graph-based classification problem.106

3.2 Iterative GDPA Linearization107

Denote by L a generalized graph Laplacian matrix to a balanced and connected signed graph G (with108

or without self-loops). A balanced graph is a graph with no cycle of odd number of negative edges.109

By Cartwright-Harary Theorem (CHT) [12], a graph is balanced iff nodes can be colored into blue110

and red, such that each positive (negative) edge connects nodes of the same (different) colors. GDPA111

[11] states that a similarity transform L̃ = SLS−1, where S = diag(v−1
1 , . . . , v−1

N ) and v is the first112

eigenvector of L, has its Gershgorin disc left-ends aligned exactly at λmin(L), i.e.,113

L̃i,i −
∑
j 6=i

|L̃i,j | = Li,i −
∑
j 6=i

|siLi,j/sj | = λmin(L), ∀i ∈ {1, . . . , N}. (4)

To solve an optimization of the form minL�0Q(L), one can leverage GDPA and optimize iteratively114

as follows. At iteration t with solution Lt, compute first eigenvector vt to Lt corresponding to115

λmin(Lt); extreme eigenvector vt can be efficiently computed in complexity O(ab) using Locally116

2BQP objective takes a quadratic form x>Qx, but Q is not required to be a Laplacian to a similarity graph.
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Figure 2: (a) 3-node line graph example. (b) Ideal solution M to SDP primal (8) as adjacency matrix. (c)
Solution H to SDP dual (12) as Laplacian matrix. (d) Solution H̄ to modified SDP dual (20) as Laplacian matrix.
Positive / negative edges are colored in blue / red. Self-loop weight u4 in (c) for node 4 is u4 = y4 + z1 + z2.

Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [32], where a is the number of non-117

zero entries in Lt and b is the iteration number till convergence3. Define scalars sti = 1/vti ,∀i. Then118

for iteration t+ 1, solve the following optimization:119

min
L
Q(L), s.t. Li,i −

∑
j 6=i

|stiLi,j/s
t
j | ≥ 0, ∀i ∈ {1, . . . , N}. (5)

Linear constraints in (5) ensure that the similarity transform L̃ = SLS−1 is PSD by GCT, and hence120

solution L is PSD. Since scalars {sti} are computed from first eigenvector vt of Lt � 0, by GDPA121

SLtS−1 has all its disc left-ends aligned exactly at λmin(Lt) ≥ 0, and hence Lt remains feasible at122

iteration t + 1. Thus, objective Q(Lt) is monotonically non-increasing with t, and the algorithm123

converges to a local minimum. We invoke this iteration to solve our posed SDP dual as well.124

4 Formulation of Graph-based Classifier Learning125

We first formulate the graph-based classifier learning problem and relax it to an SDP problem in126

Section 4.1. We then present its SDP dual with dual variable matrix H in Section 4.2. Finally, we127

interpret H as a graph Laplacian, and augment its corresponding graph G to a balanced graph Ḡ for128

GDPA linearization in Section 4.3.129

4.1 SDP Primal130

Given a PSD graph Laplacian matrix L ∈ RN×N of a positive similarity graph Go (i.e., all edge131

weights wi,j ≥ 0), one can formulate a graph-based binary classification problem as follows:132

min
x

x>Lx, s.t.
{
x2
i = 1, ∀i ∈ {1, . . . , N}
xi = x̂i, ∀i ∈ {1, . . . ,M}

. (6)

where {x̂i}Mi=1 are the M known labels. The objective in (6) dictates that signal x is smooth133

w.r.t. graph Go specified by L. Because L is PSD [16], the objective is lower-bounded by 0, i.e.,134

x>Lx ≥ 0,∀x ∈ RN . The first binary constraint ensures xi ∈ {−1, 1}. The second constraint135

ensures that entries xi in signal x agrees with known labels {x̂i}Mi=1.136

As an example, consider a 3-node line graph shown in Fig. 2(a), where edges (1, 2) and (2, 3) have137

weights w1,2 and w2,3, respectively. The adjacency matrix W and graph Laplacian matrix L are:138

W =

[
0 w1,2 0
w1,2 0 w2,3

0 w2,3 0

]
, L =

[
d1 −w1,2 0
−w1,2 d2 −w2,3

0 −w2,3 d3

]
(7)

where di =
∑

j|(i,j)∈E wi,j is the degree of node i. Suppose known labels are x̂1 = 1 and x̂2 = −1.139

Due to the binary constraint on xi’s, (6) is NP-hard [5]. One can define an SDP relaxation [5] as140

follows. Define first X = xx> and M = [X x; x> 1]. M is PSD because: i) block [1] is PSD,141

and ii) the Schur complement of block [1] of M is X− xx> = 0, which is also PSD. Thus, the two142

3Warm start [11] can be employed to reduce b in subsequent iterations given vt is computed repeatedly for
gradually changing Lt’s. See Section 5 for details.
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constraints M � 0 and rank(X) = 1 is equivalent to X = xx>, which together with Xii = 1,∀i143

implies x2
i = 1,∀i. To convexify the problem, we drop the non-convex rank constraint and write the144

SDP relaxation for optimization variable M as145

min
x,X

Tr(LX) s.t.


Xii = 1, i ∈ {1, . . . , N}

M ,

[
X x
x> 1

]
� 0

xi = x̂i, i ∈ {1, . . . ,M}

(8)

where Tr(x>Lx) = Tr(Lxx>) = Tr(LX). Because (8) has linear objective and constraints with an146

additional PSD cone constraint, M � 0, it is an SDP problem. We call (8) the SDP primal.147

Continuing our example, consider ground-truth labels x = [1 − 1 1]> for the 3-node graph in148

Fig. 2(a). The corresponding solution matrix M = [xx> x; x> 1] is149

M =

 1 −1 1 1
−1 1 −1 −1
1 −1 1 1
1 −1 1 1

 . (9)

Observe that M can be interpreted as an adjacency matrix to a balanced signed graph; nodes 1, 3150

and 4 can be colored blue, and node 2 can be colored red, so that positive (negative) edges connect151

only nodes of the same (different) colors. See Fig. 2(b) for an illustration of the corresponding signed152

graph when interpreting M as an adjacency matrix (self-loops are not shown). However, while the153

solution space for the SDP primal (8) exhibits desirable graph balance, GDPA requires instead a154

graph Laplacian matrix to a balanced graph, which has opposite signs in the off-diagonal terms as the155

adjacency matrix. This motivates us to investigate the corresponding SDP dual problem instead.156

4.2 SDP Dual157

We derive the dual problem based on SDP duality theory [13]. We first define158

Ai = diag(eN+1(i)), Bi =

[
0N×N eN (i)
e>N (i) 0

]
. (10)

where eN (i) ∈ {0, 1}N is a length-N binary canonical vector with a single non-zero entry equals159

to 1 at the i-th entry, 0N×N is a N -by-N matrix of zeros, and diag(v) is a diagonal matrix with160

diagonal entries equal to v. Note that Ai and Bi are symmetric. Next, we collect M known labels161

{x̂i}Mi=1 into a vector b ∈ RM of length M , i.e.,162

bi = 2x̂i, ∀i ∈ {1, . . . ,M}. (11)

We now define the SDP dual of (8) as163

min
y,z

1>N+1y + b>z, s.t. H ,
N+1∑
i=1

yiAi +

M∑
i=1

ziBi − L � 0 (12)

where 1N is a length-N vector of ones, and dual variables are y ∈ RN+1 and z ∈ RM . Because164

the objective is a minimization, when bi < 0 (i.e., x̂i < 0), the corresponding zi ≥ 0. Similarly, for165

bi > 0, zi ≤ 0. Thus, the signs of variables zi’s are known a priori. Without loss of generality, we166

assume zi ≤ 0,∀i ∈ {1, . . . ,M1} and zi ≥ 0,∀i ∈ {M1 + 1, . . . ,M} in the sequel.167

4.3 Reformulating the SDP Dual168

We interpret H ∈ R(N+1)×(N+1) in (12) as a graph Laplacian corresponding to a graph G. However,169

G is not a balanced signed graph, because of the last row / column in H. To see this, we write170

H =

[
Ly g
g> yN+1

]
(13)

where g = [z1 . . . zM 0>N−M ]>. Matrix Ly ∈ RN×N , which equals to Ly = diag(y1, . . . , yN ) + L,171

is a generalized Laplacian to a N -node positive graph G+. However, node N + 1 has both positive172
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and negative edges to G+ stemming from negative zi’s and positive zi’s, respectively. As a result, H173

is not a Laplacian corresponding to a balanced signed graph.174

Continuing our 3-node line graph example with Laplacian L, the corresponding Ly and H are175

Ly =

[
y1 + d1 −w1,2 0
−w1,2 y2 + d2 −w2,3

0 −w2,3 y3 + d3

]
, H =

 y1 + d1 −w1,2 0 z1

−w1,2 y2 + d2 −w2,3 z2

0 −w2,3 y3 + d3 0
z1 z2 0 y4

 . (14)

Interpreting H as a graph Laplacian, node 4 has degree d4 = −z1 − z2. Thus, y4 = u4 + d4, and176

self-loop weight for node 4 iss u4 = y4 + z1 + z2. See Fig. 2(c) for an illustration of this graph G.177

In graph terminology, node (N+1) has positive and negative edges, with respective weights {−zi}M1
i=1178

and {−zi}Mi=M1+1, to G+, and a self-loop with weight uN+1 = yN+1 +
∑M

i=1 zi. We construct an179

augmented graph Ḡ with N + 2 nodes from G by splitting node N + 1 in G into two in Ḡ, dividing180

positive and negative edges between them. The specific graph construction for Ḡ procedure is181

1. Construct first N nodes with the same inter-connections as sub-graph G+.182

2. Construct node N + 1 with positive edges {−zi}M1
i=1 and node N + 2 with negative edges183

{−zi}Mi=M1+1 to the first N nodes in sub-graph G+.184

3. Add self-loops for nodeN+1 andN+2 with respective weights uN+1/2−ε and uN+1/2+ε,185

where ε ∈ R is a parameter to be discussed.186

Denote by H̄ ∈ R(N+2)×(N+2) the graph Laplacian matrix corresponding to Ḡ. Continuing our187

3-node graph example, Fig. 2(d) shows the augmented graph Ḡ, and the corresponding H̄ is188

H̄ =


y1 + d1 −w1,2 0 z1 0
−w1,2 y2 + d2 −w2,3 0 z2

0 −w2,3 y3 + d3 0 0
z1 0 0 1

2 (y4 − z1 + z2)− ε 0
0 z2 0 0 1

2 (y4 + z1 − z2) + ε

 . (15)

Spectrally, H̄ and H are related; we prove that λmin(H̄) is a lower bound for λmin(H).189

Lemma 1. The smallest eigenvalue λmin(H̄) of graph Laplacian H̄ to augmented graph Ḡ is a lower190

bound for λmin(H) of Laplacian H to G, i.e.,191

λmin(H̄) ≤ λmin(H). (16)

192

Proof. Denote by G the graph represented by generalized graph Laplacian H, with inter-node193

edge weights {wij} and self-loop weights {ui}. Denote by v ∈ RN+1 the first eigenvector of H194

corresponding to the smallest eigenvalue λmin(H). From (3), GLR of H computed using v is195

v>Hv =
∑

(i,j)∈E | 1≤i,j≤N

wi,j(vi − vj)2 −
M∑
i=1

zi(vN+1 − vi)2 +

N∑
i=1

yiv
2
i + uN+1v

2
N+1. (17)

Now construct α ∈ RN+2, where α = [v1 . . . vN vN+1 vN+1]>. GLR of H̄ computed using α is196

α>H̄α =
∑

(i,j)∈E | 1≤i,j≤N

wi,j(vi − vj)2 −
M1∑
i=1

zi(vN+1 − vi)2 −
M∑

i=M1+1

zi(vN+1 − vi)2

+

N∑
i=1

yiv
2
i +

(uN+1

2
− ε
)
v2
N+1 +

(uN+1

2
+ ε
)
v2
N+1. (18)

Thus, v>Hv = α>H̄α. Since first eigenvector v minimizes the Rayleigh quotient of H,197

λmin(H) =
v>Hv

v>v

(a)

≥ α>H̄α

α>α

(b)

≥ λmin(H̄). (19)

(a) holds since v>v ≤ α>α by construction, and (b) holds since λmin(H̄) = minx
x>H̄x
x>x

.198
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From the proof above, the usefulness of parameter ε becomes clear: the bound λmin(H̄) ≤ λmin(H)199

becomes tight when the last two entries in the first eigenvector of H̄ are similar. To promote this, we200

set ε to an appropriate large value, so that the first eigenvector minimizing the Rayleigh quotient of201

H̄ would choose similar small values for the last two entries.202

Given Lemma 1, we now reformulate the SDP dual (12) by keeping the same objective but imposing203

PSD cone constraint on H̄ instead of H. Define A′i, B
′
i and B′′i similarly to (10) but for a larger204

(N + 2)-by-(N + 2) matrix; i.e., A′i = diag(eN+2(i)), B′i = [Bi 0N+1;0>N+1 0], and B′′i =205

[0(N+1)×(N+1) eN+1(i); e>N+1(i) 0]. The reformulated SDP dual is206

min
y,z

1>N+1y + b>z, (20)

s.t. H̄ ,
N∑
i=1

yiA
′
i + κN+1A

′
N+1 + κN+2A

′
N+2 +

M1∑
i=1

ziB
′
i +

M∑
i=M1+1

ziB
′′
i − L � 0

where κN+1 = uN+1

2 −
∑M1

i=1 zi − ε and κN+2 = uN+1

2 −
∑M

i=M1+1 zi + ε. Given H̄ is now a207

Laplacian to a balanced graph, we discuss the application of GDPA linearization to solve (20) next.208

5 Algorithm Implementation209

5.1 GDPA Linearization210

We replace the PSD cone constraint on H̄ in (20) with N + 2 linear constraints via GDPA [11].211

Specifically, at iteration t, we compute first eigenvector vt of solution H̄t using LOBPCG [32]. We212

define scalars si = 1/vti ,∀i ∈ {1, . . . , N + 2}. Finally, we write N + 2 constraints corresponding to213

λ−min(SH̄S−1) ≥ 0, where S = diag(s1, . . . , sN+2), i.e.,214

yi + di −
∑

j 6=i |siwi,j/sj | − |sizi/sN+1| ≥ 0, ∀i ∈ {1, . . . ,M1}
yi + di −

∑
j 6=i |siwi,j/sj | − |sizi/sN+2| ≥ 0, ∀i ∈ {M1 + 1, . . . ,M}
yi + di −

∑
j 6=i |siwi,j/sj | ≥ 0, ∀i ∈ {M + 1, . . . , N}

uN+1/2− ε−
∑M1

j=1 |sN+1zj/sj | ≥ 0

uN+1/2 + ε−
∑M

j=M1+1 |sN+2zj/sj | ≥ 0

(21)

where the indices for summation
∑

j 6=i are {1, . . . , N} \ i. Note that the absolute value operation215

can be appropriately removed for each term siwi,j/sj and sizi/sj , since the signs for si, wi,j and216

zi are known. Together with linear objective in (20), this constitutes an LP for variables y and z,217

solvable using any available fast LP solvers [14]. Compared to SDP primal (8) with a large matrix218

variable M ∈ R(N+1)×(N+1), our LP variables, y ∈ RN+1 and z ∈ RM , are much smaller.219

A sequence of LPs are solved, each time with scalars si’s updated from computed solution H̄t, until220

convergence. The bulk of the complexity resides in the computation of the first eigenvector vt for221

each LP solution H̄t. LOBPCG is an iterative algorithm that can benefit from warm start [11]: with222

a good initial guess for vt, the algorithm converges faster. Since H̄t changes gradually through223

our iterations, we use previously computed eigenvector vt−1 of H̄t−1 as initial guess for vt of H̄t.224

Experiments show that warm start reduces the iteration number till convergence significantly.225

5.2 Initialization & Prediction Label Extraction226

Our LP in Section 5.1 requires an initial H̄0 to compute first eigenvector v0, so that scalars {si}N+2
i=1227

can be defined for N + 2 linear constraints in (21). To initialize H̄0, we set y0 = [1>M 0>N−M M ]>228

and z0 = [−x̂1 . . . − x̂M ]. Parameter ε is set to εt = 1>N+1y
t−1 + 1>Mzt−1 at iteration t. H̄0 can229

then be computed using definition of H̄ in (20).230

As similarly done in [5], we extract prediction labels x∗ = [x1 . . . xN ]> from converged LP solution231

y∗ and z∗ as follows. We first construct H∗ using y∗ and z∗ using definition of H in (12). We then232

compute x∗ = sign(x̂1v1v), where v1 is the first entry of the first eigenvector v of H∗. See [5] for233

details of recovering SDP primal variables from dual variables in BQP.234
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6 Experiments235

6.1 Experimental Setup236

We implemented our GDPA-graph-based classifier learning scheme in Matlab4, and evaluated it in237

terms of average classification error rate and running time. We compared our algorithm against the238

following schemes that solve the SDP primal problem (8) directly: i) two primal-dual interior-point239

solvers for SDP, SeDuMi and MOSEK, both of which are available in CVX with a CVX Professional240

license [33], ii) an ADMM first-order operator-splitting solver CDCS [26, 27] with an LGPL-3.0241

License [34], iii) a spectrahedron-based relaxation solver SDCut [22, 23, 35] that involves L-BFGS-B242

[36], and iv) a biconvex relaxation solver BCR [24, 37], all of which are implemented in Matlab. In243

addition, we employed CDCS again to solve our modified SDP dual problem (20).244

We set the convergence threshold of the first eigenvector solver LOBPCG to be 10−4, with maximum245

number of iterations 200. We set the convergence threshold of our LP solver to be 10−4 also,246

with maximum number of iterations 100, since first-order methods, i.e., CDCS and SDCut, aim at247

computing a solution of moderate accuracy [26]. Accordingly, we set the convergence threshold of248

SeDuMi and MOSEK to be ‘low’, which is approximately equal to 10−4 and the lowest precision249

setting in CVX. We set the convergence thresholds of CDCS and SDCut to be 10−3, the maximum250

number of ADMM iterations in CDCS to be 1000, the maximum number of iterations for L-BFGS-B251

in SDCut and the main loop in BCR to be 100, and the Frobenius norm weight in SDCut to be 100.252

We chose these settings since smaller convergence thresholds and larger number of iterations would253

cause CDCS, SDCut and BCR to be significantly slower to converge. We used default settings for254

all remaining solvers. All computations were carried out on a Windows 10 64bit PC with AMD255

RyzenThreadripper 3960X 24-core processor 3.80 GHz and 128GB of RAM.256

We adopted 17 binary datasets that are freely available in UCI [38] and LibSVM [39]. For exper-257

imental efficiency, we first performed a K-fold (K ≤ 5) split for each dataset with random seed258

0, and then created 10 instances of 50% training-50% test split for each fold, with random seeds259

1-10 [40]. The above setup resulted in problem sizes from 29 to 400. We applied the following two260

data normalization schemes for the training/test data: i) a standardization scheme in [41] that first261

subtracts the mean and divides by the feature-wise standard deviation, and then normalizes to unit262

length sample-wise, and ii) a min-max scheme [40] that rescales each feature to within 0 and 1. We263

added 10−12 noise to the dataset to avoid NaN’s due to data normalization on small samples.264

6.2 Experimental Results265

Fig. 3 and the first two plots of Fig. 4 show classification error rates and runtime (in log scale) using266

min-max and standardization data re-scaling strategies for 17 different datasets, respectively. The267

x-axis of each plot denotes the datasets in ascending order of problem sizes. Each point in the plots268

denotes the average of 10K runs. Fig. 4 (right) shows runtime versus problem size (4 to 24428) using269

the same dataset cod-rna (freely avaiable in LibSVM [39]). We did not execute SeDuMi, MOSEK,270

CDCS (8), BCR, SDcut, or CDCS (20) when the problem size was larger than 976.271

In terms of classification error rate for min-max re-scaling, MOSEK, CDCS (8) and SeDuMi had272

slightly larger error rates: 32.52%, 32.38% and 29.92%, respectively. GDPA had 29.11%, which273

was very close to CDCS (20) at 29.24% and SDCut at 28.76%. This shows that our proposed GDPA274

linearization (21) closely approximated the modified SDP dual (20) in performance. BCR at 26.82%275

was roughly 2% smaller. In the standardization re-scaling case, CDCS (8), MOSEK, and SeDuMi had276

the largest error rates: 32.75%, 32.5% and 31.0%, respectively. GDPA had 26.88%, close to CDCS277

(20) at 26.9% and SDCut with 26.82%. BCR at 24.8% was again roughly 2% smaller. By factorizing278

a PSD matrix M = XX>, BCR avoided any SDP relaxation, which may explain its slightly better279

performance here. However, BCR solved a non-convex optimization problem converging to a local280

minimum, and thus occasionally the performance was quite poor (e.g., see sonar in Fig. 3(left)).281

Overall, all solvers performed similarly given constructed similarity graphs in the two cases.282

In terms of runtime, BCR was competitive with GDPA when the problem size was small, but GDPA283

significantly outperformed all competing solvers when the problem size was large. Specifically, the284

speed gain increased as problem size increased; for madelon with problem size 400, the speedup of285

4results reproducible via code in https://anonymous.4open.science/r/GDPA_matlab-EF4D/
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GDPA over the next fastest scheme BCR was 346×. Fig. 4 (right) also shows that the computation286

time for GDPA increased gracefully as the problem size increased to very large sizes. The reason for287

our dramatic speed gain is the fast computation of first eigenvectors using LOBPCG, which benefited288

from warm start during the LP iterations. In general, GDPA performed fewer than 10 LP’s until289

convergence. In contrast, both CDCS and SDCut required eigen-decomposition of a matrix of size290

N ×N per iteration. Because L described a dense graph in our experiments, the speedup of replacing291

the full eigen-decomposition with simpler first eigenvector computation per iteration was significant.292

For BCR, each iteration required either N -dimensional matrix inversion for a least-squares problem293

or iterative gradient descent, which was computationally expensive as the problem size increased. On294

average, GDPA enjoyed a 40.9× speedup over the next fastest solver BCR.295
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Figure 3: Error rates (%) for min-max (left) and standardization (right) data re-scaling.
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7 Conclusion296

We propose a fast projection-free algorithm for the graph-based classifier learning problem. The297

key idea is to replace the difficult-to-compute positive semi-definite (PSD) cone constraint with298

linear constraints derived from the recent Gershgorin disc perfect alignment (GDPA) theory, so that299

the optimization can be solved as a sequence of linear programs (LP). Experiments show that our300

algorithm enjoyed a considerable speedup while retaining comparable label prediction performance.301

A graph classifier scalable to very large sizes encourages ubiquitous deployment for wide-ranging302

applications. Negative social impact can result if the tool is misused by enabling classification for303

discriminatory purposes. As an optimization problem, graph-based binary classification is rather304

narrowly defined (though multi-class classification can be implemented as a tree of binary classifiers).305

Furthermore, good performance depends heavily on the construction of a good similarity graph,306

which is outside the scope of this paper. However, we conjecture that the general methodology of307

GDPA linearization can be similarly tailored to other SDP problems with PSD cone constraints. We308

anticipate that speedups in other SDP problems will also be significant.309
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s410

contributions and scope? [Yes] . The paper proposes a new fast algorithm for the411

precisely defined graph-based classifier learning problem.412

(b) Did you describe the limitations of your work? [Yes] . In the conclusion, we discussed413

the limitation of our work: graph-based binary classification is somewhat narrowly414

defined, compared to the more general semi-definite programming (SDP) problem.415

However, we conjecture that similar optimization strategies can be customized for other416

SDP problems, which is left for future work. Moreover, the performance of a graph417

classifier depends heavily on the construction of a similarity graph, which is outside418

the scope of this paper.419

(c) Did you discuss any potential negative societal impacts of your work? [Yes] . In420

the conclusion, we discussed potential misuse of graph classifiers that may result in421

discriminatory classification.422

(d) Have you read the ethics review guidelines and ensured that your paper conforms to423

them? [Yes]424

2. If you are including theoretical results...425

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions426

for the original SDP primal problem (8) are stated in Section 4.1. Assumptions for427

Lemma 1 are stated in Section 4.3.428

(b) Did you include complete proofs of all theoretical results? [Yes] Proof of Lemma 1 is429

provided in Section 4.3.430

3. If you ran experiments...431

(a) Did you include the code, data, and instructions needed to reproduce the main experi-432

mental results (either in the supplemental material or as a URL)? [Yes] Code, data,433

and instructions needed to reproduce the main experimental results are available at the434

link provided in footnote 4 of Section 6.1.435

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they436

were chosen)? [Yes] The convergence thresholds and maximum number of iterations437

of the core algorithms (if any) in each evaluated method were described in paragraph 2438

of Section 6.1.439

(c) Did you report error bars (e.g., with respect to the random seed after running experi-440

ments multiple times)? [No]441

(d) Did you include the total amount of compute and the type of resources used (e.g., type442

of GPUs, internal cluster, or cloud provider)? [Yes] We reported the average runtime443

of each problem for each evaluated method in Fig. 4 of Section 6. We reported the type444

of resources used in paragraph 2 of Section 6.1.445

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...446

(a) If your work uses existing assets, did you cite the creators? [Yes] We included the447

original papers and URL’s that produced the code packages in paragraph 1 of Section448

6.1. We included the URL’s where the datasets are freely available in paragraph 3 of449

Section 6.1.450

(b) Did you mention the license of the assets? [Yes] We included the license of the code451

packages used in our experiments in paragraph 1 of Section 6.1.452

(c) Did you include any new assets either in the supplemental material or as a URL? [No]453

We included all experimented assets in the main body of our paper.454

(d) Did you discuss whether and how consent was obtained from people whose data you’re455

using/curating? [Yes] We described the datasets used in the experiments, which are456

freely available in the URL’s we provided in [38] and [39] of Section 6.1.457

(e) Did you discuss whether the data you are using/curating contains personally identifiable458

information or offensive content? [N/A]459

5. If you used crowdsourcing or conducted research with human subjects...460

(a) Did you include the full text of instructions given to participants and screenshots, if461

applicable? [N/A]462

(b) Did you describe any potential participant risks, with links to Institutional Review463

Board (IRB) approvals, if applicable? [N/A]464
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