
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS BETTER BENCHMARK DATASETS FOR
INDUCTIVE KNOWLEDGE GRAPH COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge Graph Completion (KGC) attempts to predict missing facts in a
Knowledge Graph (KG). Recently, there’s been an increased focus on designing
KGC methods that can excel in the inductive setting, where a portion or all of the
entities and relations seen in inference are unobserved during training. Numerous
benchmark datasets have been proposed for inductive KGC, all of which are sub-
sets of existing KGs used for transductive KGC. However, we find that the current
procedure for constructing inductive KGC datasets inadvertently creates a shortcut
that can be exploited even while disregarding the relational information. Specifi-
cally, we observe that the Personalized PageRank (PPR) score can achieve strong
or near SOTA performance on most datasets. In this paper, we study the root cause
of this problem. Using these insights, we propose an alternative strategy for con-
structing inductive KGC datasets that helps mitigate the PPR shortcut. We then
benchmark multiple popular methods using the newly constructed datasets and
analyze their performance. The new benchmark datasets help promote a better
understanding of the capabilities and challenges of inductive KGC by removing
any shortcuts that obfuscate performance.

1 INTRODUCTION

Knowledge Graph Completion (KGC) attempts to predict unseen facts given an existing knowledge
graph (KG). KGC has numerous applications including drug discovery Zeng et al. (2022), personal-
ized medicine Chandak et al. (2023), and recommendations Wang et al. (2021). Traditionally, most
research on KGC was focused on the transductive setting, where the same sets of entities and rela-
tions are seen during training and testing. Most methods Bordes et al. (2013); Trouillon et al. (2016);
Schlichtkrull et al. (2018) generally focus on learning embeddings for all entities and relations to
facilitate the prediction of new facts.

In recent years, interest in KGC has shifted towards designing methods that can generalize to new
entities or relations not seen during training. This task, known as “inductive KGC”, requires a
method to train on a graph Gtrain and perform inference on a different graph Ginf, where the inference
graph contains either new entities, relations, or both. Because of this, methods for inductive KGC
don’t rely on fixed embeddings for entities or relations, instead opting for more flexible techniques
that can inductively learn representations based on a given graph Teru et al. (2020); Zhu et al. (2021);
Lee et al. (2023). To asses the ability of methods for this task, new datasets have been constructed
that require methods to reason inductively. All inductive datasets Teru et al. (2020); Galkin et al.
(2022); Lee et al. (2023) are constructed from existing transductive KGC datasets. This is done
by sampling two graphs, one each for train and inference, which contain disjoint entities. Multiple
methods Zhu et al. (2021); Zhang & Yao (2022); Lee et al. (2023) have reported tremendous promise
on these newer benchmark datasets.

However, we find that on almost all inductive datasets, we can achieve competitive performance
by using the Personalized PageRank Page et al. (1999) (PPR) score to perform inference. We
note that PPR is a non-learnable heuristic and ignores the relational information in the graph. In
Figure 1, we compare the performance of PPR against the supervised SOTA performance on both
inductive and transductive datasets. We can see that when performing KGC on inference graphs
with either new entities (E) or new entities and relations (E, R), PPR performs only roughly 25%
worse than SOTA. However, this is generally not true for transductive datasets, where PPR usu-
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(a) (E) Inductive (b) (E, R) Inductive (c) Transductive

Figure 1: Hits@10 of PPR vs. Supervised SOTA. Results are on (a) (E) Inductive, (b) (E, R)
Inductive, and (c) Transductive datasets.

ally performs poorly. Interestingly, this observation is true for inductive datasets even when the
transductive dataset that it is created from has poor PPR performance. For example, while PPR
performs very poorly on FB15k-237, it achieves higher performance on it’s inductive derivatives
(denoted by “FB”). These findings are problematic as PPR has no basis in literature as a heuristic
for KGC, since it completely overlooks the relational aspect of KGs. Therefore, this suggests the
potential existence of a shortcut that allows a simple non-learnable method like PPR to achieve
high performance on almost all inductive datasets. This also brings into question how successful
most methods are in inductive reasoning, as a large portion of their performance may be due to this
shortcut.

This finding naturally motivates us to ask – why can PPR perform so well on existing inductive
datasets? In Section 3 we discover that the high performance of PPR is due to how the inductive
datasets are created from transductive datasets. Specifically, we observe that the current procedure
creates graphs where the shortest path distance (SPD) between entities in positive test samples is
much lower than the SPD between those in negative samples. This allows for a method like PPR,
which gives a higher weight to shorter walks, to distinguish between the positive and negative sam-
ples based solely on the distance. To account for this problem, in Section 4 we propose a new
strategy for sampling inductive datasets that uses graph partitioning to create the train and infer-
ence graphs. This allows us to sample subgraphs that retain the general properties of the original
graph. We then demonstrate that this procedure can indeed create inductive datasets that greatly
mitigates the ability of PPR. Lastly, we benchmark common inductive KGC methods on our newly
constructed datasets. Our key contributions can be summarized as follows:

• We observe that on existing inductive KGC datasets, we can achieve competitive performance
when ranking entities using only the Personalized PageRank score.

• Through empirical study, we find that the strong performance of PPR on inductive datasets is
due to the current procedure for constructing inductive datasets, which allows for a shortcut to
distinguish between positive and negative samples.

• We propose a new strategy for sampling inductive KGC datasets from their transductive coun-
terparts that uses graph partitioning. We show that our proposed method can substantially
mitigate the shortcut. We then benchmark popular methods on our newly created datasets.
Compared to the older datasets, methods tend to decrease in performance.

The remaining paper is structured as follows. In Section 2, we provide background on inductive
KGC methods and datasets and PPR. In Section 3, we study in detail when and why PPR can
perform well on inductive KGC. We then introduce our new strategy for creating inductive datasets
in Section 4 and benchmark popular methods on these newly created datasets in Section 5.

2 BACKGROUND AND RELATED WORK

Throughout this study we denote a knowledge graph as G = {V,R, E} where V are the set of
entities (i.e., nodes), R the set of relations (i.e., edge types), and E the set of edges (i.e., triples) of
the form (s, r, o) where s and o are entities and r a relation. Lastly, we note that the task of KGC is
formulated as the following where given a query (s, r, ∗), we attempt to predict the correct entity ∗.
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Inductive KGC Datasets: In inductive KGC, we are given a training graph Gtrain =
{Vtrain,Rtrain, Etrain} and an inference graph Ginf = {Vinf,Rinf, Einf}. A method is trained on Gtrain
and evaluated on Ginf. Most datasets consider the setting that is only disjoint on the entities such that
Rinf ⊆ Rtrain and Einf ∩ Etrain = ∅. This setting is referred to as the (E) setting. Another setting,
which we denote as (E, R) further allows Rinf to contain relations not in Rtrain.

All existing inductive datasets are sampled from existing transductive datasets. Furthermore, the
majority of inductive datasets Teru et al. (2020); Lee et al. (2023) are further created via the same
procedure introduced by Teru et al. (2020). We now give a brief overview of this procedure. Given a
transductive dataset, which we denote as G, k seed entities are randomly chosen from G. The 2-hop
neighborhood is then extracted around each individual seed entity. To prevent exponential growth,
the number of neighbors sampled at any hop is capped at 50 for each seed entity. The resulting
edges are then combined to create Gtrain and are subsequently removed from the original graph. The
inference graph is then sampled in a similar manner from the resulting graph G\Gtrain. One exception
to this procedure are the ILPC datasets, introduced by Galkin et al. (2022), which instead sample
p% of the nodes from G and use them to create Gtrain. The rest of the nodes are then used to construct
Ginf. In practice, we find that both methods tend to produce similar graphs.

Inductive KGC Methods: NeurlLP Yang et al. (2017) and DRUM Sadeghian et al. (2019) consider
combining the path representations of different length between both entities in a triple. However,
since they explicitly consider each path, they are often limited to only considering paths of up to
length 2 or 3. Conditional MPNNs Huang et al. (2024) are a more efficient alternative to encoding
higher-order path information. They work by conditioning the message passing mechanism on the
known entity, allowing the implicit aggregation of all paths up to a length L (which is equal to the
number of GNN layers). The value of L is typically 5/6. Prominent examples include NBFNet Zhu
et al. (2021) and RED-GNN Zhang & Yao (2022). More scalable alternatives have been proposed
that prune the propagated messages Zhu et al. (2022); Zhang et al. (2023); Shomer et al. (2023b).
NodePiece Galkin et al. (2021) is concerned with parameter efficiency, using an anchor-based ap-
proach to learn a more compact set of entity and relation representations. All previous methods
assume that a fixed set of relations exist between the train and inference graphs. To account for new
relations in inference, InGRAM Lee et al. (2023) introduces the concept of a “relation graph”, which
inductively encodes the representation of each relation. Gao et al. (2023) introduces the concept of
“double permutation- equivariant representations” as a way to model KGs that are equivariant to
permutations of both the entities and relations. They theoretically show that capturing this property
is essential for proper generalization across KGs. To this point these introduce a new methodIS-
DEA/ISDEA+ that can satisfy this property. They further introduce a variant of InGRAM Lee et al.
(2023), DEq-InGram, that endows it with the ability to compute double equivariant representations.
Note that we omit subgraph methods that have been to shown to prohibitively expensive Teru et al.
(2020); Liu et al. (2021); Mai et al. (2021); Xu et al. (2022); Geng et al. (2023) or those that require
the use of external textual information Gesese et al. (2022); Daza et al. (2021).

Personalized PageRank: PageRank Page et al. (1999) computes the probability of finishing a ran-
dom walk of arbitrary length at some node u, when there is equal probability of beginning the walk
at any node in the graph. Personalized PageRank (PPR) Page et al. (1999) is a version of PageRank
that is “personalized" to some root node s, where at each step there is a probability α of teleporting
to s. The set of PPR scores for a root node s is given by prs ∈ R|V| and can be formulated as the
weighted sum of all random walk probabilities between two nodes Chung (2007):

prs = α

∞∑
k=0

(1− α)kW kxs, (1)

where W = D−1A and xs is a one-hot vector at node s. Observe that the weight given to a walk
decays with the increase in length due to (1 − α)k. As such, the PPR score will often be higher
for those nodes of shorter distance to s. For a KG, we obtain the PPR matrix by first converting
the inference graph, Ginf, to an undirected graph. This is common practice in KGC Dettmers et al.
(2018) whereby inverse relations are added to the graph. We further assume an edge weight of 1 for
all edges. As such, the relations are completely disregarded when computing the PPR. Please see
Appendix C for a more detailed discussion of PPR and how it is used in our paper.
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(a) % Increase in PPR performance from par-
ent to inductive dataset

(b) ∆SPD vs. PPR Hits@10

Figure 2: (a) Percent increase in PPR performance on the inductive datasets as compared to their
parent transductive dataset. For datasets with multiple splits (i.e., FB and WN) we take the mean
performance across each. (b) Relationship between ∆SPD and performance. We observe a strong
relationship among both transductive and inductive datasets.

3 PRELIMINARY STUDY

In this section, we examine the performance on common inductive KGC datasets. We first show that
the Personalized PageRank (PPR) can often serve as a good baseline on most datasets. From this
observation, we attempt to answer two important questions: (1) When can the PPR scores perform
well on KGC? and (2) Why can PPR sometimes perform well for KGC?

3.1 PERSONALIZED PAGERANK (PPR) IS A STRONG BASELINE FOR INDUCTIVE KGC

We begin by obtaining the PPR matrix of the inference graph for use in evaluation. See Section 2 for
more details on how this is done. Given this new graph, for a query (s, r, ∗), we calculate the PPR
score for all possible entities o ∈ V . Using these scores, we can obtain the rank of the true entity for
our query. We emphasize that PPR is (a) a non-learnable heuristic, (b) ignores the relations in the
KG, and (c) has no basis in KG literature as a method to perform KGC.

In Figure 1, we show the performance when using the PPR versus the SOTA performance among
supervised methods. The SOTA method is dataset dependent, with the specific methods listed in
Appendix A.1. We split the datasets by transductive, (E), and (E, R) inductive. We include those
datasets most often used in each task, comprising 25 in total. Please see Appendix B.1 for more on
the datasets chosen. The full set of results can also be found in Appendix A.1.

We observe that on both types of inductive datasets, the PPR score does reasonably well, perform-
ing on average only 25-29% less than SOTA. This is surprising as PPR is both non-learnable and
ignores the relational aspect of the KG. We also find that on some datasets like the WN or ILPC
inductive splits, the performance nearly matches or exceeds the supervised performance. On the
other hand, for the transductive datasets, the performance disparity is often much larger. Interest-
ingly, we note that PPR still performs well on some transductive datasets, including the popular
WN18RR. This tells us that this phenomenon is not necessarily unique to inductive datasets, but is
most apparent there.

Furthermore, we find that for the inductive datasets, their PPR performance is much higher than
their transductive parents. We detail this in Figure 2a where for different inductive datasets we see
the percent increase in PPR performance from transductive to inductive. For example, on FB15k-
237 the PPR Hits@10 is 2.7%, however the mean performance on the four FB (E) splits is 42.7%,
representing a 1481% increase. We can see that the % increase on each inductive dataset is large,
with the smallest being 42% on WN. This suggests that there is some change in the underlying
inductive graphs that are causing the performance of PPR to increase. Lastly, we further explore
other potential shortcuts in Appendix A.3, finding that PPR is by far the most severe.
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(a) FB15k-237 (b) WN18RR

Figure 3: The mean shortest path (SP) distance between positive test samples and negative samples.
We display the results for two transductive datasets (FB15k-237 and WN18RR) and the inductive
datasets that are derived from them.

3.2 WHEN DOES PPR PERFORM WELL AND WHY?

In the previous section we detailed that PPR score performs well on the inductive setting. Further-
more, the performance of PPR on inductive datasets is much higher than their transductive counter-
parts of which they’re derived from. This raises the question – why can PPR perform well on some
datasets but not others?

We find that the answer lies in comparing the mean shortest path distance (SPD) between
positive and negative samples. For a query (s, r, ∗), let’s denote o+ as the correct answer and
o− ∈ V−(s, r) as the set of negative answers for the query. We compute the SPD on the infer-
ence graph for both the o+ and V−(s, r). This is repeated for each test sample (s, q, ∗) ∈ Einf.
We then calculate the mean SPD across all positive and negative test samples, which we de-
note as SPD+ and SPD−, respectively. The difference in mean SPD is correspondingly given by
∆SPD = SPD− − SPD+. This tells us, on average, how much shorter the distance between entities
in positive samples are relative to those in negatives.

In Figure 2b we show the relationship between ∆SPD and the Hits@10 when using PPR. The results
are across 25 different datasets, for both inductive and transductive KGC. Calculating the Pearson
correlation, we can observe it is 0.87, which indicates a strong relationship between the two metrics.
Therefore, there exists a basic pattern to distinguish positive and negative samples in many KGC
datasets. Put simply, the SPD between entities in positive test samples tend to be lower than that
in negative samples. The larger the discrepancy between the mean distances, the better PPR can
perform. This suggests that the PPR scores can exploit this pattern in the datasets, to achieve good
performance, even while completely ignoring the relational information.

But, why can PPR exploit this pattern? As shown in Eq. equation 1, the PPR score between two
nodes is the weighted sum of walks between them. Furthermore, walks of shorter length are weighed
more heavily than those of longer length. Therefore, nodes with a shorter distance between them
will be able to benefit from these highly-weighted walks, while those of larger distance will not. For
example, when α = 0.15, the highest weight for a walk when SPD = 2 is 0.72 while when SPD = 5
it is 0.44. As such, the PPR score will invariably favor those node pairs with a lower SPD.

Note that we use PPR as opposed to SPD in our experiments since all-pairs SPD is costly to calculate
and the full PPR matrix can be efficiently approximated via Andersen et al. (2006). Furthermore,
as we show in Section 3.3, even when controlling for the SPD, the PPR score can help differentiate
between positive and negative samples.

3.3 WHY IS THIS SO COMMON ON INDUCTIVE DATASETS?

In the last section, we covered when PPR can perform well on KGC and why. However, one remain-
ing question is – why is this trend so pervasive on inductive datasets but rarely on their transductive
counterparts? For example, on FB15k-237, a transductive dataset, the Hits@10 of PPR is 2.7%.
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However, across eight different inductive versions of FB15k-237, the mean PPR performance is
32%. We find that this can be explained by the following two observations.

Observation 1: The current procedure for creating inductive datasets increases the ∆SPD and
thereby the performance of PPR. As noted earlier, all common inductive datasets are created from
existing transductive datasets. See Section 2 for a detailed overview of the construction process. In
a nutshell, the training and inference graph are constructed sequentially by sampling a number of
subgraphs from a graph. In Figure 3 we show the mean SPD of both positive and negative samples
for 12 inductive datasets and their parent transductive dataset. We limit our analysis to those datasets
derived from FB15k-237 and WN18RR, as the majority of inductive datasets are derived from them.
We observe that for all inductive datasets, while the mean SPD for negative samples sharply rises,
the mean SPD for positive samples stay roughly the same. This creates the shortcut described in
Section 3.2, where the SPD can easily differentiate between positive and negative samples. Since
the gap between the distances is almost always larger than the original transductive dataset, this
shortcut becomes more pronounced, thereby leading to a better PPR performance (see Appendix A.1
for detailed results).

Table 1: % Increase in Positive vs. Negative sample
PPR, broken down by SPD.

SPD WN18RR v4 FB15k-237 v4

[1, 2) +17% +5%
[2, 3) +29% +200%
[3, 4) +82% +328%
[4,∞) +2837% +44%

But why does the mean SPD drastically change
for negative samples but not positive? We find
that entities in positive samples are more well-
connected those those in negatives. In Table 1,
we show the % difference in PPR score between
positive and negative samples when controlling
for the SPD on two inductive datasets.

We can see that the PPR score is much greater
for positive samples, even for higher values of
SPD. Therefore, the SPD of positive samples are better able to “withstand" changes in the underlying
graph better than negatives, as they typically contain additional shorter walks between samples.
However, negatives are typically much less well-connected, so they are more affected by removing
a portion of edges from the original graph.

Observation 2: Constructing a good inductive dataset is difficult. In Section 2 we discuss the
general algorithm used to create inductive datasets. Multiple parameters exist that guide the con-
struction process. It is tempting to think that by simply trying different combinations, one can
happen upon a split that doesn’t suffer from high PPR performance. However, in practice, we find
that this is difficult, as there are multiple factors to contend with.

We demonstrate this by attempting to generate inductive datasets from FB15k-237. We generate a
number of different inductive datasets by modifying the (a) # of seed entities for train and inference
and (b) the maximum neighborhood size for train and inference. For different combination of values,
we generate three different datasets using different random seeds. For each of the generated datasets,
we calculate the size of both the train and inference graphs, the ∆SPD, and the PPR performance.
These values are then averaged across seeds. A more detailed discussion is given in Appendix D.
In Figure 4a we plot the ∆SPD vs. the PPR performance. Despite searching across a wide variety
of parameters, both ∆SPD and the PPR performance remain much higher for the inductive datasets
compared to the transductive dataset. Furthermore, we show the relationship between the size of the
train and inference graphs and the PPR performance in Figures 4b and 4c. We observe that when the
performance of PPR is at its lowest, the size of the train graph is noticeably small. However, fixing
this problem, results in a sharp increase in the performance of PPR. Furthermore, there is an inverse
relationship between the size of the train and inference graph, making it hard to find a “sweet spot”
where the PPR performance is low and both graphs aren’t too small.

The studies in this section show that the current strategy for constructing inductive datasets from ex-
isting transductive datasets is liable to introduce a well-performing shortcut into the existing graph.
Currently, it almost always leads to a sharp increase in the PPR performance. Furthermore, at-
tempting to limit the severity of this issue is very difficult while also generating train and inference
graphs of reasonable sizes. This suggests that a new strategy is needed for sampling graphs for
inductive KGC from transductive datasets.
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(a) ∆SPD vs. PPR Hit@10 (b) Hits@10 vs. Train Size (c) Hits@10 vs. Inference Size

Figure 4: Experiments when generating inductive datasets from FB15k-237. (a) The generated
datasets always have a much higher ∆SPD than the transductive dataset. (b)/(c) There is a trade-off
between the size of the train and inference graph, making it difficult to obtain a good split.

4 CONSTRUCTING INDUCTIVE DATASETS THROUGH GRAPH PARTITIONING

In the previous section, we showed that the PPR score can achieve strong performance on most
inductive KGC datasets. Furthermore, we demonstrate that this is due to how inductive datasets
are sampled from existing transductive datasets. This sampling strategy engenders a shift in the
underlying properties of the graph that allows for PPR to perform well. This naturally causes us to
ask – How can we mitigate this problem when constructing newer inductive datasets? In the next
subsection, we introduce our strategy which utilizes graph partitioning to alleviate this problem.

4.1 PARTITION-BASED DATASET SAMPLING

We’ve previously covered in Section 3 that the existing procedure for creating inductive datasets
leads to suboptimal subgraphs. This is because the resulting subgraphs tend to have much different
properties than the original graph, such as the distance distribution, which can potentially lead to
shortcuts when performing KGC.

We note that the task of constructing inductive datasets from an existing graph G can be framed as
a graph partitioning problem. Formally, we want to sample two non-overlapping partitions from
the graph such that Gtrain,Ginf ⊆ G and Gtrain ∩ Ginf = ∅. Given the analysis in Section 3.2, we
hope to sample subgraphs such that ∆SPD(Gtrain) ≈ ∆SPD(Ginf) ≈ ∆SPD(G). But, how do we
find subgraphs that satisfy this property? Intuitively, we want to sample each subgraph so that it’s
removal has little effect on the initial graph’s structure. We give an example in Figure 5 where we
sample two subgraphs from an existing graph. As we can see, even though the graph is partitioned,
the relationship between entities in the same partition remain roughly the same before and after the
partition. This is because there already exists little relationship between the two partitions in the
original graph.

Figure 5: Sampling Two Subgraphs

Multiple popular approaches Shi & Malik (2000); Blon-
del et al. (2008) exist that attempt to divide the graph
into optimal partitions. The guiding principle in these ap-
proaches is that the partitions should be internally dense
but only sparsely connected to one another. Because of
this, the entities in different partitions should only be
weakly connected and have little impact on one another.
Therefore, the relationship between entities in the same
partition are minimally affected by outside entities or
edges. As such, removing this partition from the graph should then have little effect on the enti-
ties in that partition. Also, since the partitions are created at the same time, we avoid sampling the
inference graph after the training, which can be suboptimal.

In practice, we consider using Spectral Clustering Shi & Malik (2000) or the Louvain method Blon-
del et al. (2008), as dependent on the dataset. Once the original graph is partitioned into n partitions,
we sample k of those to be used. The partitions are chosen such that they display similar properties
to the original graph (see Section 4.2 for more). Of the k partitions, one is chosen as the training
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Table 2: Mean ∆SPD and PPR Hits@10 of new and old Inductive (“Ind.”) datasets vs. their Trans-
ductive (“Trans.”) parent. We highlight the value of the inductive dataset closer to the transductive
as blue. For every case, the ∆SPD and PPR Hits@10 of the new splits are more aligned with the
original transductive dataset.

Task Dataset Mean PPR Hits@10 Mean ∆SPD
Trans. Ind. Old Ind. New Trans. Ind. Old Ind. New

(E)
WN18RR 46.2 66.0 45.1 4.1 6.3 3.2
CoDEx-M 9.0 21.1 11.2 0.2 0.78 0.24
HetioNet 2.4 NA 2.7 0.55 NA 0.29

(E, R) FB15k-237 2.7 21.4 10.8 0.46 2.42 0.48
CoDEx-M 9.0 NA 13.2 0.20 NA 0.42

graph while the other k−1 are designated as separate inference graphs. This is an important advan-
tage of using partitioning to sample the graphs, as it allows us to avoid having to sample multiple
different train and inference pairs as in Teru et al. (2020); Lee et al. (2023), thereby allowing for
more efficient benchmarking. Lastly, we note that when sampling graphs for the (E) inductive task,
we further remove new relations from the inference graph. In practice, we find that we can easily
find partitions where this amounts to little or no change in the inference graph. See Section B.2 for
more details on the dataset creation process.

4.2 ANALYSIS OF NEW DATASETS

In this section we analyze the new inductive datasets created following the partition-based procedure
outlined in Section 4.1. We create (E) inductive datasets, from WN18RR Dettmers et al. (2018),
CoDEx-M Safavi & Koutra (2020), and HetioNet Himmelstein et al. (2017). For the (E, R) datasets,
we use CoDEx-M Safavi & Koutra (2020) and FB15k-237 Toutanova & Chen (2015). Note that
some datasets are only suitable for one task or another. For example, WN18RR and HetioNet have
very few relations, making it nearly impossible to sample two partitions with significantly different
relations for the (E, R) task. On the other hand, FB15k-237 contains too many relations to sample
multiple graphs for the (E) tasks without removing many edges from either graph.

In Table 2 we show the PPR Hits@10 and ∆SPD for the inductive datasets and their original trans-
ductive dataset. When multiple inference graphs exist, we take the mean across each inference
graph. When possible, we also include a comparison against those inductive datasets that already
exist. For example, for WN18RR in the (E) task, 4 datasets exist from Teru et al. (2020). Compared
to the old inductive datasets, the PPR performance for the newer datasets is much lower. Specifi-
cally, the average PPR performance is 78% lower on the new inductive datasets as compared
to the older datasets. Also, the PPR performance of the new inductive datasets is very similar to the
performance on the original transductive dataset. A similar trend can be found when comparing the
∆SPD. This analysis shows that newer sampling procedure can indeed sample inductive datasets
that are much more similar to the original transductive graph, greatly mitigating the PPR shortcut.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets: We use the new datasets created in Section 4.1. For the (E) setting, this includes
WN18RR, HetioNet, and CoDEx-M. For the (E, R) setting, it is FB15k-237 and CoDEx-M. We
sample 2 inference graphs for each dataset, except for CoDEx-M on the (E) setting where we could
only find 1 suitable graph for inference. For each inference graph, 10% of edges are randomly re-
moved for testing. For validation 10% of edges are removed from the training graph. It is necessary
that the validation samples are extracted from the train graph as the inference graphs must remain
unobserved during training. The statistics for each dataset can be found in Appendix B.2.

Baseline Methods: We consider prominent KGC methods including NBFNet Zhu et al. (2021),
RED-GNN Zhang & Yao (2022), NodePiece Galkin et al. (2021), InGram Lee et al. (2023), DEq-
InGram Gao et al. (2023), and Neural LP Yang et al. (2017). We also consider the recent foundation
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Table 3: (E) Inductive Results (Hits@10) for supervised methods.

Models CoDEx-M WN18RR HetioNet
Inference 1 Inference 1 Inference 2 Inference 1 Inference 2

PPR 11.2 66.2 24 3.2 2.2
Neural LP 13.0 ± 17.9 37.9 ± 1.4 14.8 ± 1.9 12.0 ± 16.4 10.7 ± 15.0
NodePiece 6.8 ± 0.8 29.6 ± 0.8 4.8 ± 0.6 10.2 ± 0.9 15.4 ± 0.9
InGram 20.1 ± 3.5 38.0 ± 2.4 8.0 ± 2.9 21.9 ± 1.1 22.3 ± 2.8
DEq-InGram 23.8 ± 1.6 62.5 ± 0.8 19.1 ± 3.1 26.5 ± 4.1 28.8 ± 3.5
RED-GNN 35.6 ± 2.3 72.9 ± 0.4 27.7 ± 0.3 68.3 ± 3.0 85.1 ± 2.7
NBFNet 43.6 ± 0.2 75.5 ± 0.2 29.4 ± 2.5 72.8 ± 3.8 77.2 ± 0.4

Table 4: (E, R) Inductive Results for supervised methods. The % of new relations are in parentheses.

Models FB15k-237 CoDEx-M
Inference 1 (27%) Inference 2 (63%) Inference 1 (10%) Inference 2 (57%)

PPR 9.1 12.4 10.9 15.4
Neural LP 17.5 ± 9.9 22.4 ± 12.8 16.7 ± 22.8 9.8 ± 13.7
NodePiece 3.0 ± 0.6 4.7 ± 0.5 3.1 ± 0.6 2.5 ± 1.0
InGram 23.8 ± 3.0 20.2 ± 2.0 20.4 ± 3.3 15.9 ± 10.0
DEq-InGram 35.4 ± 2.5 27.1 ± 3.5 35.2 ± 14.4 24.7 ± 0.9
RED-GNN 21.6 ± 5.8 33.3 ± 4.2 29.2 ± 2.9 26.5 ± 10.4
NBFNet 27.5 ± 1.8 26.2 ± 0.3 47.7 ± 11.8 17.6 ± 10.0

model ULTRA Galkin et al. (2023). We omit methods that have been shown to either be prohibitively
expensive (e.g., Teru et al. (2020); Liu et al. (2021); Mai et al. (2021)) or require the use of textual
information Gesese et al. (2022); Daza et al. (2021).

The full set of experimental settings can be found in Appendix F.

5.2 RESULTS

Main Results: The main results for the supervised methods can be found in Tables 3 and 4. We
observe that on nearly every dataset, NBFNet and RED-GNN are the two best models. This indi-
cates that conditional MPNNs Huang et al. (2024), the class of model in which both belong to, are
necessary for strong performance in inductive KGC. Interestingly, we observe that InGram struggles
in the (E, R) setting. This is even true when the % of new relations is high. This runs counter to
the results on older inductive datasets Lee et al. (2023) where InGram excelled over NBFNet and
RED-GNN. However, this is not true for DEq-InGram, which performs consistently well under the
(E, R) setting. Lastly, we observe that Neural LP sometimes fails to converge, resulting in a near
zero performance and thus causing the model to have a high performance variance.

Performance Comparison of PPR vs. SOTA: In our original analysis, we showed that for the
older inductive datasets, the performance gap between the SOTA method of each dataset and PPR
is quite small. Specifically, the mean % difference between the two was relatively small at 25-29%
(see Figure 1). We now perform the same analysis on the new inductive datasets. The results are
shown in Figure 6a. We observe that PPR generally performs much worse than the SOTA method
with a mean % difference of 101%. Furthermore, this is more in line with the transductive datasets
which have a mean % difference of 121%. This suggests that in addition to the decrease in raw PPR
performance, the relative performance of PPR also decreases on the newer datasets.

Performance Comparison on New and Old Inductive Datasets: In Table 2, we compared both
the PPR performance and ∆SPD on the new and older inductive datasets. We found that both
metrics tend to be much higher on the older inductive datasets, indicating that our newer splits
are effective in mitigating the shortcut. Given those results, a natural question is whether we see a
similar drop in performance for neural methods? We limit our analysis to WN18RR (E) and FB15k-
237 (E, R). This is either due to a lack of older datasets (i.e., CoDEX-M (E, R) and HetioNet (E)) or
minimal results on the older datasets, i.e., CoDEX-M (E). For each dataset, we compute the mean
performance across inference graphs. The results are shown in Table 5. We find that performance
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Table 5: Mean performance on Old vs. New inductive datasets by Method. Red indicates a decrease
in the mean performance on the newer splits.

Models WN18RR (E) FB15k-237 (E, R)
Old Ind. New Ind. % Difference Old Ind. New Ind. % Difference

PPR 66.0 45.1 -31.7% 21.4 10.8 -49.5%
Neural LP 67.6 26.4 -61.0% 16.2 20.0 +23.1%
NodePiece 29.8 17.2 -42.3% 5.0 3.9 -23.0%
InGram 49.9 23.0 -53.9% 29.6 22.0 -25.7%
RED-GNN 70.6 50.3 -28.8% 25.0 27.5 +9.8%
NBFNet 72.2 52.5 -27.4% 24.8 26.9 +8.3%

Mean - - -40.6% - - -9.5%

(a) PPR vs. SOTA Hits@10 on new datasets (b) Mean Hits@10 for ULTRA vs. SOTA

Figure 6: (a) Performance of PPR vs. SOTA on new inductive datasets. Note that we abbreviate
CoDEx-M as CM, FB15k-237 as FB, HetioNet as HN and WN18RR as WN. Furthermore, the num-
ber represents the inference graph. (b) Mean performance of the foundation model ULTRA Galkin
et al. (2023) vs. the supervised SOTA on the newer datasets.

of most methods drops significantly on both datasets, with an average drop of 40.6% and 9.5% on
WN18RR (E) and FB15k-237 (E, R), respectively. This suggests that removing the shortcut has
a large negative effect on the performance, suggesting that our new datasets are indeed harder.

Performance of ULTRA Galkin et al. (2023): We further compare against ULTRA, a recent foun-
dation model designed for fully inductive KGC. We evaluate ULTRA under the 0-shot setting. Since
the setting of ULTRA differs from that of the other methods (i.e., 0-shot), we display it separately
from the other methods in Tables 3 and 4. See Appendix H for more details on the versions of
ULTRA used. The results are in Figure 6b where for each dataset, we average the results across the
different inference graphs (full results in Appendix A.2). On the (E) task, ULTRA is comparable to
the supervised SOTA. However, on the (E, R) task, ULTRA significantly outperforms other methods.
This suggests that ULTRA contains a greater generalization ability than other methods.

6 CONCLUSION

In this paper we study the problem of constructing datasets for inductive knowledge graph comple-
tion. Upon examination, we find that we can achieve competitive performance on most inductive
datasets through the use of Personalized PageRank Page et al. (1999), which ignores the relational
structure of the graph. Through our study, we uncover that this shortcut is due to how inductive
datasets are created. To remedy this problem, we propose a new dataset construction process based
on graph partitioning that empirically mitigates the impact of the studied shortcut. We then construct
new benchmark datasets using this new procedure and benchmark various methods. Examining the
results, we observe that the relative performance decreases on most datasets and methods, indicating
that the newer benchmark datasets are harder than the previous ones. For future work, we plan to
explore creating inductive KG datasets that aren’t sampled from existing transductive datasets.
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A ADDITIONAL RESULTS

A.1 SUPERVISED SOTA VS. PPR PERFORMANCE

In this section we show the performance in terms of Hits@10 for the SOTA supervised method
vs. the Personalized PageRank (PPR) score. We further include the % difference in performance
and which method is considered SOTA. These are shown in Tables 6, 7, and 8 for the (E), (E, R),
and transductive datasets, respectively. For an overview of SOTA performance on additional KG
datasets, please see Galkin et al. (2023).

Table 6: Hits@10 for PPR vs. Supervised SOTA on the (E) Inductive Datasets

Dataset Supervised SOTA PPR % Difference SOTA Method

WN v1 82.6 77.1 7% NBFNet Zhu et al. (2021)
WN v2 79.8 74.4 12% NBFNet Zhu et al. (2021)
WN v3 56.8 45.2 26% NBFNet Zhu et al. (2021)
WN v4 74.3 67.3 10% A*Net Zhu et al. (2022)
FB v1 60.7 41.2 47% NBFNet Zhu et al. (2021)
FB v2 70.4 47.6 48% NBFNet Shomer et al. (2023b)
FB v3 66.7 43.5 53% NBFNet Zhu et al. (2021)
FB v4 66.8 38.4 74% NBFNet Zhu et al. (2021)
ILPC-S 25.1 19.8 27% NodePiece Galkin et al. (2021)
ILPC-L 14.6 22.5 -35% NodePiece Galkin et al. (2021)

Table 7: Hits@10 for PPR vs. Supervised SOTA on the (E, R) Inductive Datasets

Dataset Supervised SOTA PPR % Difference SOTA Method

FB-100 37.1 22.2 67% InGram Lee et al. (2023)
FB-75 32.5 21.9 48% InGram Lee et al. (2023)
FB-50 21.8 20.5 6% InGram Lee et al. (2023)
FB-25 27.1 20.9 30% InGram Lee et al. (2023)
WK-100 16.9 15.8 7% InGram Lee et al. (2023)
WK-75 36.2 29.5 23% InGram Lee et al. (2023)
WK-50 13.5 10.6 27% InGram Lee et al. (2023)
WK-25 30.9 23.2 33% InGram Lee et al. (2023)

Table 8: Hits@10 for PPR vs. Supervised SOTA on the Transductive Datasets

Dataset Supervised SOTA PPR % Difference SOTA Method

FB15k-237 66.6 2.7 2367% NBF+TAGNet Shomer et al. (2023b)
WN18RR 59.9 46.2 30% NBF+TAGNet Shomer et al. (2023b)
CoDEx-M 49.0 9.0 444% ComplEx RP Chen et al. (2021)
CoDEx-S 66.3 8.6 671% ComplEx RP Chen et al. (2021)
CoDEx-L 47.3 9.0 426% ComplEx RP Chen et al. (2021)
Hetionet 40.3 2.4 1579% RotatE Sun et al. (2019)
DBPedia100k 41.8 30.2 38% ComplEx-NNE+AER Ding et al. (2018)

A.2 PERFORMANCE OF ULTRA

We include the full results of ULTRA Galkin et al. (2023) on each dataset and inference graph. The
result on the (E) datasets are in Table 9 while those for the (E, R) datasets are in Table 10.

A.3 PERFORMANCE OF OTHER POTENTIAL SHORTCUTS

In our study, we show that PPR can achieve strong performance on most inductive KG datasets,
indicating a shortcut. A natural question is whether this is true for just PPR, or if other shortcuts
exist. Another bias discussed in KG literature is degree bias Shomer et al. (2023a). In their study,
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Table 9: (E) Inductive Results for ULTRA Galkin et al. (2023)

Metric CoDEx-M WN18RR HetioNet
Inference 1 Inference 1 Inference 2 Inference 1 Inference 2

MRR 30.2 64.7 21.4 57.9 72.7
Hits@10 46.6 72.7 38.5 69.1 86.3

Table 10: (E) Inductive Results for ULTRA Galkin et al. (2023)

Metric FB15k-237 CoDEx-M
Inference 1 Inference 2 Inference 1 Inference 2

MRR 45.7 38 30.4 73.7
Hits@10 69.6 64.5 45.7 91.3

they show that that KG methods tend to perform better on entities with a higher degree. Specifically,
they observe that what matters is the degree of the entity being predicted (they refer to this as the “tail
degree”). Based on this, we study whether the tail degree can is a good predictor of performance.

We show that results on a number of inductive and transductive datasets in Table 11. We report
Hits@10 for all results. We find that the tail degree often achieves a much lower performance than
PPR. Specifically, for the datasets in Table 11, while the PPR performance is on average only 31%
lower than the SOTA, the tail degree performance is 84% lower. This indicates the severity of the
PPR shortcut is much more severe as compared to other known biases like the tail degree.

Table 11: Performance of Tail Degree Shomer et al. (2023a), PPR, and SOTA method. Performance
is in terms of Hits@10. We further bold the larger of the PPR and tail degree performance.

Task Dataset Tail Degree PPR SOTA

Inductive

WN v1 10.4 77.1 82.6
WN v2 5.1 74.4 83.6
WN v3 10.1 45.2 58.2
WN v4 2.2 67.3 74.5
FB v1 20.5 41.2 60.7
FB v2 22.7 47.6 70.4
FB v3 16.8 43.5 67.7
FB v4 16.1 38.4 66.8

Transductive
WN18RR 2.0 46.2 59.9
FB15k-237 6.0 2.7 66.6
DBPedia100k 2.9 30.2 41.8

B DATASETS

B.1 EXISTING DATASETS

We detail the statistics of all existing transductive and inductive datasets in Tables 12, 13, and 14,
respectively. We further include the licenses for each in Table 15. Note that we omit YAGO3-
10 Mahdisoltani et al. (2013) as Akrami et al. (2020) show that the dataset is dominated by two
duplicate relations, making most triples trivial to classify. Also, we omit NELL-995 and any induc-
tive datasets derived from it due to findings by Safavi & Koutra (2020) that show that most triples in
the dataset are either too generic or meaningless.

B.2 NEW DATASETS

We further detail the statistics of all the new datasets in Tables 16 and 17.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 12: Statistics for Transductive Datasets.

Dataset #Entities #Relations #Train #Validation #Test
FB15k-237 Toutanova & Chen (2015) 14,541 237 272,115 17,535 20,466
WN18RR Dettmers et al. (2018) 40,943 11 86,835 3,034 3,134
CoDEx-S Safavi & Koutra (2020) 2,034 42 32,888 1,827 1,828
CoDEx-M Safavi & Koutra (2020) 17,050 51 185,584 10,310 10,311
CoDEx-L Safavi & Koutra (2020) 77,951 69 551,193 30,622 30,622
HetioNet Himmelstein et al. (2017) 45,158 24 2,025,177 112,510 112,510
DBpedia100k Ding et al. (2018) 99,604 470 597,572 50,000 50,000

Table 13: Statistics for (E) Inductive Datasets.

Dataset #Relations Train Graph Validation Graph Test Graph
#Entities #Triples #Entities #Triples #Valid #Entities #Triples #Test

FB15k-237 v1 Teru et al. (2020) 180 1,594 4,245 1,594 4,245 489 1,093 1,993 205
FB15k-237 v2 Teru et al. (2020) 200 2,608 9,739 2,608 9,739 1,166 1,660 4,145 478
FB15k-237 v3 Teru et al. (2020) 215 3,668 17,986 3,668 17,986 2,194 2,501 7,406 865
FB15k-237 v4 Teru et al. (2020) 219 4,707 27,203 4,707 27,203 3,352 3,051 11,714 1,424

WN18RR v1 Teru et al. (2020) 9 2,746 5,410 2,746 5,410 630 922 1,618 188
WN18RR v2 Teru et al. (2020) 10 6,954 15,262 6,954 15,262 1,838 2,757 4,011 441
WN18RR v3 Teru et al. (2020) 11 12,078 25,901 12,078 25,901 3,097 5,084 6,327 605
WN18RR v4 Teru et al. (2020) 9 3,861 7,940 3,861 7,940 934 7,084 12,334 1,429

ILPC-S Galkin et al. (2022) 48 10,230 78,616 6,653 20,960 2,908 6,653 20,960 2902
ILPC-L Galkin et al. (2022) 65 46,626 202,446 29,246 77,044 10,179 29,246 77,044 10,184

Table 14: Statistics for (E, R) Inductive Datasets.

Dataset Train Graph Validation Graph Test Graph
#Entities #Rels #Triples #Entities #Rels #Triples #Valid #Entities #Rels #Triples #Test

FB-25 Lee et al. (2023) 5,190 163 91,571 4,097 216 17,147 5,716 4,097 216 17,147 5,716
FB-50 Lee et al. (2023) 5,190 153 85,375 4,445 205 11,636 3,879 4,445 205 11,636 3,879
FB-75 Lee et al. (2023) 4,659 134 62,809 2,792 186 9,316 3,106 2,792 186 9,316 3,106
FB-100 Lee et al. (2023) 4,659 134 62,809 2,624 77 6,987 2,329 2,624 77 6,987 2,329
WK-25 Lee et al. (2023) 12,659 47 41,873 3,228 74 3,391 1,130 3,228 74 3,391 1,131
WK-50 Lee et al. (2023) 12,022 72 82,481 9,328 93 9,672 3,224 9,328 93 9,672 3,225
WK-75 Lee et al. (2023) 6,853 52 28,741 2,722 65 3,430 1,143 2,722 65 3,430 1,144
WK-100 Lee et al. (2023) 9,784 67 49,875 12,136 37 13,487 4,496 12,136 37 13,487 4,496

Table 15: Dataset Licenses.

Datasets License

FB15k-237 CC-BY-4.0
WN18RR MIT License

CoDEx-S/M/L MIT License
HetioNet CC0 1.0 Universal

DBpedia100k None
FB15k-237 v1/v2/v3/v4 None
WN18RR v1/v2/v3/v4 None

ILPC-S/L MIT License
FB-25/50/75/100 None
WK-25/50/75/100 None

C PERSONALIZED PAGERANK (PPR)

In this section we provide additional detail on the formulation of PageRank and Personalized PageR-
ank (PPR) Page et al. (1999). We further detail how PPR is calculated and used in our experiments.

For a graph G = (V,E), PageRank Page et al. (1999) calculates an importance score for each node.
The importance score for a node v is determined by computing the probability of a random walk of

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 16: Statistics for New (E) Inductive Datasets.

Dataset Graph # Edges # Entities # Rels # Valid/Test ∆SPD

CoDEx-M Train 76,960 8,362 47 8,552 NA
Inference 1 69,073 8,003 40 7,674 0.24

WN18RR
Train 24,584 12,142 11 2,458 NA

Inference 1 18,258 8,660 10 1,831 4.87
Inference 2 5,838 2,975 8 572 1.47

HetioNet
Train 101,667 3,971 14 11,271 NA

Inference 1 49,590 2,279 11 5,490 0.38
Inference 2 37,927 2,455 12 4,187 0.19

Table 17: Statistics for New (E, R) Inductive Datasets.

Dataset Graph # Edges # Entities # Rels # Valid/Test % New Rels ∆SPD

FB15k-237
Train 45,597 2,864 104 5,062 NA NA

Inference 1 35,937 1,835 72 3,898 62.8% 0.63
Inference 2 51,693 2,606 143 5,735 27.1% 0.34

CoDex-M
Train 29,634 4,038 36 3293 NA NA

Inference 1 70,137 7,938 39 7,794 9.9% 0.24
Inference 2 8,821 474 28 979 56.8% 0.60

any length ending in that node. The rationale is that the nodes that are most likely to be visited, are
most important to the underlying graph topology. The pagerank score for all nodes, pr ∈ R|V |, can
be computed by (1) randomly being the walk at any node with equal probability, (2) continuously
applying random walks until we reach a stationary distribution, and (3) randomly teleporting back
to the starting node with probability α. Higher values of α help discourage the importance of longer
walks. This can be computed from the following recurrence relation:

pr(t+1) = (1− α)Wpr(t) + αpr(0), (2)

where W is the random walk matrix D−1A and pr(0) = 1/|V |. The pagerank score is equivalent to
t = ∞.

Personalized PageRank (PPR) Page et al. (1999) generalizes this formulation by allowing us to
customize which nodes we begin the random walk at, i.e., pr(0). For example, we may only be
interested in the PageRank score relative to a single node s. As such, the PageRank scores are
personalized to the node s. We denote this quantity as prs. This can be computed in the same
manner as Eq. 2 by further modifying the initial probability vector pr(0) to the relevant starting
nodes:

pr(0) =
{
1 when i = s

0 else

where i denotes entry i in the vector. Note that PPR is not restricted to only one seed node, but
can be personalized to a set of nodes S. PPR can be equivalently expressed as the weighted sum of
random walks beginning from s:

prs = α

∞∑
k=0

(1− α)kW kpr(0). (3)

In practice, directly computing the recurrence relation Eq. 2 or Eq. 3 is prohibitively expensive.
Multiple approximation approaches have been proposed to more effectively compute the PPR score
such as Andersen et al. (2006), which we employ in our paper.

In our experiments, we calculate the PPR of KGs, which further include a relation. However, we
completely ignore any relational information when computing the PPR. This is done by: (1)
Removing all edge types and (2) Assigning an edge weight of 1 to all edges. We further remove any
directional information from the edges, thus transforming the graph to an undirected graph. The PPR
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is then computed on this new undirected graph. We set α = 0.15 in all our experiments. However,
despite these modification, we show in Section 3 that PPR can still achieve strong performance
during testing. This is due to a shortcut introduced during the dataset creation that allows for PPR
to discriminate between positive and negative facts.

D INDUCTIVE GENERATION EXPERIMENTS

We give more details on the experiments conducted in Section 3.3 and shown in Figures 4. Given
the transductive dataset FB15k-237 Toutanova & Chen (2015), we generate a number of different
inductive datasets using the common procedure used by Teru et al. (2020); Lee et al. (2023). We
describe this procedure in detail in Section 2. Note that for simplicity, we only created datasets for
the (E) inductive task. However, the same conclusions should hold for (E, R). Lastly, we only create
one graph for inference as is done in previous work.

We generate the inductive datasets by modifying the following set of parameters:

• # of Initial Train Entities: This is the number of entities that are first assigned to the train
graph.

• # of Initial Inference Entities: This is the number of entities that are first assigned to the
inference graph.

• Max Train Neighborhood Size: We extract the 2-hop neighborhood for each of the initial
train entities. To avoid exponential growth, we limit the number of entities selected in each
hop to 50. For example, if node 1 has 30 1-hop neighbors and 120 2-hop neighbors, then
30 + 50 = 80 entities are added through the expansion of node 1.

• Max Inference Neighborhood Size: This follows the same logic as for train but for infer-
ence.

The default neighborhood size is set to 50 for the inductive datasets created by Teru et al. (2020)
and Lee et al. (2023). For Lee et al. (2023) they consider 10 and 20, initial entities for train and
inference, respectively. This information is not reported for Teru et al. (2020).

To simulate the effect of the different parameter values, we create inductive datasets by using a
number of different combinations of parameters. For each parameter, we modify it while holding
the others constant. This allows us to explore the effect of just that variable. It allows us to avoid
running an excessive amount of experiments. The default values are those used in Lee et al. (2023)
and noted above. In total, there are 17 parameter configurations. For each parameter configuration,
we create 3 different datasets through the use of 3 different random seeds. This results in a total
of 51 inductive datasets. We then evaluate the performance of PPR on each inference graph and
calculate the ∆SPD. The results for those datasets with the same configuration are then averaged
together. All possible configurations and their resulting mean statistics can be found in Table 18.
These results are visualized in the main content in Figures 4.

Table 18: FB15k-237 - Inductive Generative Experiments Configurations. Results are over 3 Ran-
dom Seeds.

# Train Ents # Inf. Ents Max Train Max Inf. # Train Edges # Test Edges ∆SPD PPR Hits@10

10 20 10 50 7,599 72,688 1.14 0.166
10 20 15 50 18,518 49,057 1.31 0.180
10 20 25 50 43,077 36,054 1.46 0.213
10 20 50 50 91,843 18,370 1.71 0.309
10 20 100 50 129,782 15,179 1.72 0.235
10 20 50 10 91,843 4,304 2.15 0.400
10 20 50 25 91,843 13,374 1.79 0.319
10 20 50 50 91,843 18,370 1.71 0.309
10 20 50 100 91,843 21,512 1.71 0.310
10 20 50 50 91,843 18,370 1.71 0.309
20 20 50 50 149,635 8,258 2.38 0.317
40 20 50 50 210,109 973 3.89 0.408
10 10 50 50 91,843 11,177 1.6 0.325
10 20 50 50 91,843 18,370 1.71 0.309
10 40 50 50 91,843 36,353 1.81 0.266
10 80 50 50 91,843 47,419 1.83 0.254
10 160 50 50 91,843 55,233 1.93 0.259
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E GRAPH PARTITIONING

In this section we give a basic overview of the graph partitioning problem. Graph partitioning seeks
to partition a graph G = (V,E) into N subgraphs with disjoint entities Buluç et al. (2016). Formally
this is formulated as the following where Vi is the set of entities in the i-th partition.

V1 ∪ V2 ∪ · · · ∪ VN = V, (4)
V1 ∩ V2 ∩ · · · ∩ VN = ∅. (5)

However, an exact solution to above problem is infeasible in all but simple cases, as graph partition-
ing is known to be NP-Hard. Therefore, approximations are typically used to partition the graph.

Several popular approaches exist to solving this problem. The common thread between them is that
they seek to extract partitions that contain many links between nodes of the same partition, but few
between nodes of other partitions. As such, this allows us to discover distinct “communities” in the
graph, that contain nodes that more often interact with one another. Spectral clustering Shi & Malik
(2000) is a popular approach to graph partitioning that uses the Fiedler vector (i.e., the eigenvector
of the 2nd smallest eigenvalue) to partition the graph. This is due to its connection the normalized
cut of the graph. Another popular approach is the Louvain method Blondel et al. (2008). Louvain
uses a specially designed objective, referred to as modularity, to identify partitions that are internally
dense but feature few links between partitions.

F ADDITIONAL EXPERIMENTAL SETTINGS

Training Settings: Each model was trained on either a: Tesla V100 32Gb, NVIDIA RTX A6000
48Gb, NVIDIA RTX A5000 24Gb, or Quadro RTX 8000 48Gb. All models were implemented in
PyTorch Paszke et al. (2019) and Torch-Geometric Fey & Lenssen (2019).

Hyperparameters: Due to the different types and ranges of hyperparameters used for each method,
the exact hyperparameters and their ranges differ by method. For each method, we tried to follow
the recommended ranges used by the authors. For InGram Lee et al. (2023) we tuned the learn-
ing rate in {1e−3, 5e−4} and the number of entity layers in {2, 4}. For NodePiece Galkin et al.
(2021) we tuned the learning rate from {1e−3, 1e−4} and the loss margin from {15, 25}. For RED-
GNN Zhang & Yao (2022), we tuned the learning rate from {5e−3, 5e−4} and the dropout from
{0.1, 0.3}. In their experiments, NBFNet Zhu et al. (2021) uses the same hyperparameters across
all datasets. We therefore do the same. For Neural LP Yang et al. (2017) we also use the default set
of hyperparameters that is shared across datasets.

Evaluation: For a given test triple (s, r, o), we strive to predict both s and o individually. This
is framed as a ranking problem where we want the probability of the correct entity (e.g., o) to
rank higher than all possible negative entities. We can calculate the rank of the true entity over all
negatives by the following where p(·) denotes the model probability for a triple:

Rank(s, r, o) = |V| −
∑

v∈V\{o}

1 (p(s, r, o) > p(s, r, v)) . (6)

We note that a lower rank, indicates better performance. In practice, some of the negative entities
will be true triples observed during training. As such, following Bordes et al. (2013) we use the
filtered setting and remove those entities from the ranking. Once we obtain the rank of the true
entity (i.e., “how many negative entities does it have a higher probability than”) we compute the
Hits@K%. Hits@K% computes the percentage of sample where the following inequality holds
true, Rank ≤ K. We follow previous work Galkin et al. (2023); Zhang & Yao (2022); Lee et al.
(2023) and evaluate against all possible negative entities.

G ADDITIONAL EXPERIMENTAL ANALYSIS

In this section we expound on the results shown in Section 5.

(E) Results. The results under the (E) setting are shown in Table 3. We can observe that NBFNet
and RED-GNN can consistently outperform all other methods. This is consistent with theoretical

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

analysis provided by Huang et al. (2024) that show that the added expressiveness of these methods
are vital for KGC. Furthermore, we can see that Neural LP and NodePiece tend to struggle. Both are
consistent with previous results. For Neural LP, this likely stems from its limited ability to capture
longer paths, as it must explicitly materialize them. NodePiece uses CompGCN Vashishth et al.
(2019) as its backbone model. However, recent work has shown that standard GNN are ineffective
for KGC, thus contributing to its poor performance Li et al. (2023). Lastly, we can see that while
both versions of InGram struggle, DEq-InGram shows a noteworthy improvement over the original
version. This suggests that the additional expressivity brought by double equivariance is beneficial.

(E, R) Results. The results under the (E) setting are shown in Table 4. Similar to the (E) setting,
both RED-GNN and NBFNet rank highly across datasets. A similar observation can be made in
regards to the poor performance of Neural LP and NodePiece. The poor results for InGram however
are unexpected, as previous work Lee et al. (2023) shows that InGram excels in the (E, R) setting.
Multiple reasons exist for this divergence. Most prominent is that Lee et al. (2023) only report
results over 1 random seed while we report over 5. This may distort the results. It may also be
that mitigating the shortcut has a stronger impact on InGram than other methods. We leave this
exploration for future work. Interestingly however, DEq-InGram shows a large improvement over
InGram. In fact, it is the most consistent of all method on the (E, R) task, ranking in the top 2 across
all inference graphs. This again gives credence to the argument made by Gao et al. (2023) about the
importance of double permutation- equivariant representations in inductive KG reasoning.

Relative Performance on Old vs. New Datasets. In Table 5 we display the change in performance
of various methods on the old and new inductive datasets. Our analysis is limited to WN18RR (E)
and FB15k-237 (E, R). For WN18RR (E), the older datasets constitute “WN (v1-v4)” introduced
by Teru et al. (2020). For FB15k-237 (E, R) it’s comprised of “FB (25-100)” created by Lee et al.
(2023). The results are averaged across splits on the older datasets and across inference graphs for
the newer datasets. For HetioNet (E), no prior datasets exist. For both versions of CoDEX, the
older inductive datasets lack results, rendering us unable to make any comparison. For WN18RR
(E) we observe a consistently large decrease in performance across all methods. The % difference
ranges from 27-61% with a mean of 40.6%. This suggests that our new WN18RR datasets are much
harder. For FB15k-237, the performance of most methods decrease, with a mean decrease of 9.5%.
However, we do see a small increase in the performance of some methods. Nonetheless, this doesn’t
imply that these new datasets are “easier” for those methods for a few reasons. First, for the older
datasets we use the performance reported by Lee et al. (2023). The results are only reported over
1 random seed while ours is over 5. This makes them difficult to compare, as the performance
of just one random seed is unreliable. Second, the increase in performance for RED-GNN and
NBFNet is small at < 10%. Given that the older performance is only over one seed, this difference
is not statistically significant. Lastly, for Neural LP on FB15k-237 (E, R), the standard deviation in
performance is very high at 9.9 and 12.8, respectively on both inference graphs (see Table 4). As
such, since the increase in performance relative to the older splits is only 3.8, this change is also not
statistically significant.

H ULTRA SETTINGS

When evaluating ULTRA Galkin et al. (2023) we use the 0-shot setting. By default, we use the
checkpoint they provided that was trained on the transductive datasets: FB15k-237 Toutanova &
Chen (2015), WN18RR Dettmers et al. (2018), CoDEx-M Safavi & Koutra (2020), and NELL-
995 Xiong et al. (2017). However, since we create our own inductive splits from FB15k-237,
CoDEx-M, and WN18RR, there is risk of test leakage. That is, some triples that may have been
in the transductive training graph, may now be a test sample in one of our splits. This gives ULTRA
an unfair advantage as it has already seen that triple.

To combat this issue, we train three different versions of ULTRA that omits the transductive dataset
used to created that specific inductive dataset. This includes:

• w/o FB15k-237: Trained using WN18RR, CoDEx-M, and NELL-995.

• w/o WN18RR: Trained using FB15k-237, CoDEx-M, and NELL-995.

• w/o CoDEx-M: Trained using FB15k-237, WN18RR, and NELL-995.
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We follow the same settings used to train the original checkpoints provided by the authors of UL-
TRA. Lastly, since HetioNet is not one of the four datasets used, no additional model is needed.

The results are shown in Table 19, where the “W/o” column represents the results when removing the
parent transductive dataset and “With” corresponds to the original pre-trained checkpoint provided
by the authors of ULTRA Galkin et al. (2023). In practice, we observe a small but noteworthy
decrease in performance when removing the offending transductive dataset from the pre-trained
model.

Table 19: Performance (Hits@10) of ULTRA when pre-trained and w/o the parent transductive
dataset. Note that this doesn’t apply to HetioNet.

Dataset Inference Graph W/o With % Difference

CoDEx-M (E) 1 46.6 50.2 -7.2%

WN18RR (E) 1 71.9 72.7 +1.1%
2 38.8 38.5 -0.8%

FB15k-237 (E, R) 1 69.6 72.1 -4.5%
2 64.5 64.8 -0.5%

CoDEx-M (E, R) 1 45.7 50.4 -9.3%
2 91.1 91.3 -0.2%

I ANALYSIS OF THE WIKITOPICS AND PEDIATYPES DATASETS

We further include an analysis of the WikiTopics and PediaTypes inductive datasets introduced
by Gao et al. (2023). For these datasets, the train and inference graphs contain completely separate
entities and relations. For each dataset we record the (a) Neural SOTA performance (taken from Gao
et al. (2023), (b) PPR performance, (c) % difference in performance, and (d) ∆SPD. Note that in
their original study, Gao et al. (2023) use 50 random negatives during evaluation, instead of all
negative entities used in ours. To account for this, we compute the PPR performance using both
evaluation settings. The results for the PediaTypes and WikiTopics datasets are in Tables 20 and 21,
respectively.

From the results we can make multiple observations. First, PPR performs well under both settings.
Under the all negatives setting, the mean PPR performance is 32.5% and 38.3% on PediaTypes
and WikiTopics, respectively. Second, under 50 negatives, there is little difference in the PPR and
Neural performance. Specifically, the % difference in performance is 0.4% and 14.2%, respectively,
on PediaTypes and WikiTopics. This suggests that neural methods can only slightly outperform PPR
under this setting. Lastly, the ∆SPD is high on both sets of datasets. This further corroborates our
findings in Section 3.

This analysis shows that the WikiTopics and PediaTopics datasets introduced by Gao et al. (2023)
fall prey to the same shortcut found in other inductive datasets studied in Section 3.

Table 20: Performance on PediaTypes Gao et al. (2023) datasets. Note that since the original paper
used 50 random negative samples during evaluation, we thus include this results.

Dataset 50 Negatives All Negatives
Neural Hits@10 PPR Hits@10 % Difference PPR Hits@10 ∆SPD

EN-FR 95.4% 96.0% -0.6% 44.1% 2.7
FR-EN 90.6% 96.2% -5.8% 48.1% 2.3
EN-DE 97.7% 93.9% 4.0% 34.7% 2.1
DE-EN 95.0% 90.6% 4.9% 20.8% 1.6
DB-WD 86.6% 76.4% 13.4% 23.5% 0.6
WD-DB 91.5% 92.0% -0.5% 42.9% 2.5
DB-YG 71.5% 76.9% -7.0% 15.2% 2.7
YG-DB 80.5% 85.1% -5.4% 30.7% 3.5
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Table 21: Performance on WikiTopics Gao et al. (2023) datasets. Note that since the original paper
used 50 random negative samples during evaluation, we thus include this results.

Dataset 50 Negatives All Negatives
Neural Hits@10 PPR Hits@10 % Difference PPR Hits@10 ∆SPD

Art 92.3% 79.3% 16.4% 14.7% 1.1
Award 93.6% 95.8% -2.3% 24.2% 3.4
Edu 97.0% 72.4% 34.0% 20.8% 2.7
Health 98.9% 91.5% 8.1% 59.6% 3.3
Infra 97.8% 97.2% 0.6% 61.4% 5.4
Sci 96.7% 84.3% 14.7% 25.5% 4.4
Sport 81.2% 82.9% -2.1% 14.4% 0.3
Tax 93.7% 64.1% 46.1% 29.0% 0.8
Loc N/A 96.5% N/A 74.1% 1.4
Org N/A 94.0% N/A 8.9% 2.8
People N/A 94.9% N/A 64.6% 2.7

J IMPLEMENTATION

All code used for experiments in this study can be found in the following anonymized repository –
https://anonymous.4open.science/r/KG-PPR-ICLR-D0B7. Please see the README in the reposi-
tory for more information on how to run the different experiments.

K LIMITATIONS

One potential limitation of our study is that the new inductive datasets are still being created from
existing transductive datasets. While our method can help create better and more realistic inductive
scenarios, this is limiting as we are still reliant on good quality transductive datasets. Future work
can focus on creating inductive KGC datasets directly from existing large-scale knowledge graphs,
thereby bypassing the need to sample from existing transductive datasets.

L IMPACT STATEMENT

Our method contributed positively to the field of knowledge graph reasoning. By introducing newer
and better inductive datasets, we better align the task of KGC to it’s real-world applications. This is
essential, because if we want to perform inductive KGC in real-world tasks, we have to be certain
that the methods actually work well. As such, the new datasets can serve as a stronger barometer
of actual performance on inductive KGC and will help spur the development of newer and more
effective KGC techniques. Since KGC has applications in many different fields including question
answering, biology, and recommender systems, there is a strong need for methods that can perform
well. We have also carefully considered the broader impact of our work from different perspectives
and find that there is no apparent risk.
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