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Abstract

Stochastic coordinate descent algorithms are efficient methods in which each iterate is ob-
tained by fixing most coordinates at their values from the current iteration, and approxi-
mately minimizing the objective with respect to the remaining coordinates. However, this
approach is usually restricted to canonical basis vectors of Rd. In this paper, we develop
a new class of stochastic gradient descent algorithms with random search directions which
uses the directional derivative of the gradient estimate following more general random vec-
tors. We establish the almost sure convergence of these algorithms with decreasing step.
We further investigate their central limit theorem and pay particular attention to analyze
the impact of the search distributions on the asymptotic covariance matrix. We also provide
non-asymptotic Lp rates of convergence.

1 Introduction

Consider the unconstrained optimization problem in Rd which can be written as

min
x∈Rd

f(x), (P)

where f is the average of many functions,

f(x) = 1
N

N∑
k=1

fk(x). (1)

Many computational problems in various disciplines can be formulated as above and the stochastic algorithms
are now a common approach to solve (P) since the seminal works of Robbins & Monro (1951) and Kiefer &
Wolfowitz (1952). The most famous of them is the standard Stochastic Gradient Descent (SGD) algorithm
given, for all n ⩾ 1, by

Xn+1 = Xn − γn∇fUn+1(Xn), (SGD)

where the initial state X1 is a squared integrable random vector of Rd which can be arbitrarily chosen,
∇f(Xn) is the gradient of the function f calculated at the value Xn, (Un) is a sequence of independent and
identically distributed random variables with uniform distribution on {1, 2, . . . , N}, which is also independent
from the sequence (Xn). Moreover, (γn) is a positive deterministic sequence decreasing towards zero and
satisfying the standard conditions

∞∑
n=1

γn = +∞ and
∞∑

n=1
γ2

n < +∞. (2)

Despite its computational efficiency provided by using a random gradient estimate, the SGD algorithm still
requires the computation of a vector of size d at each iteration. However, in large-scale machine learning
problems, the reduction of the calculation cost remains one of the main challenges. Moreover, the vast
majority of SGD algorithms update all coordinates in the same way (Robbins & Monro, 1951; Gower et al.,
2021; Leluc & Portier, 2022).
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These issues led to the development of Stochastic Coordinate Gradient Descent (SCGD) algorithms which
are very easy to implement and have become unavoidable in high-dimensional framework (Nesterov, 2012;
Shalev-Shwartz & Zhang, 2013; Wright, 2015). This new class of methods have received a great deal of
attention in recent years due to their potential for solving large-scale optimization problems (Lin et al.,
2014; Leluc & Portier, 2022).

The SCGD algorithm modifies the SGD algorithm in the sense that its update rule is given, for all n ⩾ 1, by X
(j)
n+1 = X

(j)
n if j ̸= ξn+1,

X
(j)
n+1 = X

(j)
n − γng

(j)
n+1 if j = ξn+1,

(3)

where X
(j)
n stands for the j-th component of a vector Xn, gn+1 = ∇fUn+1(Xn) and (ξn) is a sequence of

random variables with values in {1, 2, . . . , d} used to select a coordinate of the gradient estimate and follows
distribution called the coordinate sampling policy.

Hence, the SCGD algorithm selects and updates one coordinate at each iteration in order to sufficiently
reduce the objective value while keeping other coordinates fixed. In fact, this approach can also be seen as
the SGD algorithm applied just on one random coordinate. There are many strategies for the choice of the
coordinate sampling policy. Our goal is to go further in the analysis of the SCGD algorithms with decreasing
step. Firstly, we develop the class of stochastic gradient descent algorithms with random search directions
which includes the SCGD algorithms and uses the directional derivative of the gradient estimate following
more general random vectors. Thus, beyond the SCGD algorithms, we consider the random directions
sampled from gaussian and spherical distributions (see Section 3). Based on weak hypotheses associated to
the objective function, we establish the almost sure convergence of these algorithms with decreasing step
(see Section 4.1). Secondly, we investigate their central limit theorem and we obtain that the asymptotic
covariance matrix depends on the choice of the search direction distributions (see Section 4.2). Therefore, we
provide an introductory analysis on the asymptotic performances for different choices of random directions.
Lastly, we provide non-asymptotic Lp rates of convergence for the SGD algorithms with random search
directions (see Section 4.3).

Organization of the paper.

The rest of the paper is organized as follows. Section 2 summarizes the state of art on the SCGD algorithms.
In Section 3, we introduce the theoretical framework of our paper. Section 4 is devoted to our main results.
Finally, in Section 5 we illustrate the good performances of the algorithms with decreasing step through
numerical experiments on simulated data. All technical proofs are postponed in appendices.

2 Related work

Several stochastic coordinate descent algorithms and their variants were proposed and analyzed over years
in (Shalev-Shwartz & Tewari, 2009; Nesterov, 2012; Richtárik & Takáč, 2016; Gorbunov et al., 2020; Leluc
& Portier, 2022). They are recursive stochastic algorithms in which each iterate is obtained by fixing
most coordinates at their values from the current iteration, and approximately minimizing the objective
with respect to the remaining coordinates (Wright, 2015). For Nesterov (2012), the main advantage of the
coordinate descent methods is the simplicity of each iteration, both in generating the descent direction and in
updating of the variables. Hence, many questions have been addressed in the literature on these algorithms
due to their considerable interest.

On the one hand, the choice of the coordinate sampling policy is clearly a major issue. From that, we can
distinguish two main classes of coordinate selection rules: deterministic and stochastic. However, Sun et al.
(2017) considered that the stochastic block rule is easier to analyze because taking expectation will yield
a good approximation to the full gradient and ensures that every coordinate is updated at the specified
frequency. Richtárik & Takáč (2016) also obtained that the scheme of updating a single randomly selected
coordinate per iteration with optimal probabilities may require less iterations to converge, than all coordi-
nates updating rule at every iteration. For its part, Needell et al. (2014) suggested a non-uniform sampling
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for the stochastic gradient descent. Moreover, (Chang et al., 2008; Shalev-Shwartz & Zhang, 2013) proved
that the randomized strategies are more efficient than the simple rule of cycling through the coordinates
(Luo & Tseng, 1992; Beck & Tetruashvili, 2013; Saha & Tewari, 2013). Nevertheless, Nutini et al. (2015)
compared and showed that the deterministic Gauss-Southwell rule is faster than the random coordinate
selection rule in some empirical cases. However, Saha & Tewari (2013) remember us that Gauss–Southwell
rule typically takes O(d) time to implement instead of just O(1) for the uniform randomized rule. This was
the main motivation for the choice of uniform probabilities in (Shalev-Shwartz & Tewari, 2009) which can
also justify a good performance of the SCGD algorithms.

On the other hand, Tao et al. (2012) proposed and showed the convergence rates of stochastic coordinate
descent methods adapted for the regularized smooth and non-smooth losses. Likewise, Beck & Tetruashvili
(2013) established a global sublinear rate of convergence of the block coordinate gradient projection method
with constant stepsize which depends on the Lipschitz parameters. Later, Lin et al. (2014) developed an
accelerated randomized proximal coordinate gradient method which achieves faster linear convergence rates
for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods.
Moreover, Konečnỳ et al. (2017) introduced the semi-stochastic coordinate descent algorithm with constant
stepsize which picks a random function and a random coordinate both using non-uniform distributions at
each step. They proved the convergence of f(Xn) towards the minimum of f in L1 under the strong convexity
assumption on f . There exist many others contributions on the stochastic coordinate descent variants. For
instance, Richtárik & Takáč (2016) investigated the parallel coordinate descent method in which a random
subset of coordinates is chosen and updated at each iteration. Allen-Zhu et al. (2016) also studied the
accelerated coordinate descent algorithm using non-uniform sampling.

More recently, Leluc & Portier (2022) provided the almost sure convergence as well as non-asymptotic bounds
of the SCGD algorithm with decreasing step in a non-convex setting and including zeroth-order gradient
estimate. They proved the convergence of the SCGD iterates towards stationary points in the sense that
∇f(Xn) converges to 0 almost surely. They also proposed non-asymptotic bounds on the optimality gap
E[f(Xn) − f∗] where f∗ is a lower bound of f . These results have been established by assuming that f is
L-smooth and under the growth condition (Leluc & Portier, 2022; Gower et al., 2021). The non-asymptotic
bounds required the additional Polyak–Lojasiewicz (PL) condition (Polyak, 1963).

Although the assumptions used in (Leluc & Portier, 2022) are relatively weak, one can still try to relax
them and provide the algorithm convergence directly on the sequence (Xn). Furthermore, one can also be
interested by non-asymptotic Lp rates of convergence for any integer p. To our best knowledge, the central
limit theorem for the SCGD algorithm was not previously established.

3 Preliminaries

In this section, we present the mathematical background of the paper. Firstly, we introduce some notations.
Secondly, we shall formulate our new class of SGD algorithms with random search directions which includes
the SCGD algorithm. Finally, we will spell out some regularity assumptions.

The SCGD algorithm as given in (3), represents the practical definition by considering the vectors in the
canonical basis of Rd. However, we can extend this coordinate selecting rule by using more general random
vectors with a possible adaptive sampling policy. Therefore, we introduce the Stochastic Coordinate Gradient
Descent algorithm with Random Search Direction (SCORS) defined for all n ⩾ 1, by

Xn+1 = Xn − γnD(Vn+1)∇fUn+1(Xn), (SCORS)

where the initial state X1 is a squared integrable random vector of Rd which can be arbitrarily chosen,
D(v) = vvT for any vector v ∈ Rd, the sequence (Un) is independent from (Xn) where (Un) is independent
and identically distributed with U ([[1, N ]]) distribution and Vn is a random vector of Rd sampled from
an underlying distribution Pn satisfying certain conditions (see Assumption 1 below). Furthermore, we
assume that Vn+1 is independent from Un+1 conditionally on Fn, where Fn = σ(X1, . . . , Xn) is the σ-field
associated to the sequence of iterates (Xn). In the same way as before, (γn) is a positive deterministic
sequence decreasing towards zero and satisfying the standard conditions (2).
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Moreover, we will consider the random direction Vn+1 that satisfies the distributional constraint
E[D(Vn+1)|Fn] = Id in order to reduce the bias in the SCORS gradient estimate.
Assumption 1. For all n ⩾ 1, we assume that the random direction vector Vn is sampled from an indepen-
dent and possibly adaptive distribution Pn such that

E[D(Vn+1)|Fn] = Id a.s. (4)

In addition, we suppose that the 4-th conditional moment of Vn is bounded for all n ⩾ 1.

Choices of the direction distribution. We conduct here a comprehensive analysis on different choices
of distributions Pn satisfying Assumption 1. Several popular choices were proposed in (Chen et al., 2024)
and are listed as follows.

(U) Uniform in the canonical basis: Vn is sampled from {
√

de1, . . . ,
√

ded} with equal probability 1/d,
where (e1, . . . , ed) is the canonical basis of Rd.

(NU) Non-uniform in the canonical basis with probabilities (pn,1, . . . , pn,d): Vn is sampled such that for
all n ⩾ 1 and j ∈ [[1, d]],

Vn =
√

1
pn,ξn

eξn , (5)

where (ξn) is a sequence of independent random variables defined on [[1, d]] such that

P[ξn = j|Fn−1] = pn,j , (6)

with pn,j > 0 for all j ∈ [[1, d]] and
∑d

j=1 pn,j = 1.

(G) Gaussian: (Vn) is sampled from the normal distribution N (0, Id).

(S) Spherical: we sample (Vn) from the uniform distribution on the sphere with Euclidean norm ∥Vn∥2 =
d.

It is easy to see that in all above choices, the search distribution Pn satisfies the equality (4). Moreover, in
the particular uniform sampling case, the random coordinate is uniformly chosen at each iteration. In others
words, the coordinate along which the descent shall proceed, is selected in [[1, d]] with the same probability
equal to 1/d. Furthermore, we can consider many procedures to compute the probabilities (pn,1, . . . , pn,d)
in the non-uniform case. We will spell out different strategies in the numerical experiments.

However, one can remark that the (U) and (NU) direction distribution choices correspond to the standard
SCGD algorithms (3). Thus, the most interesting contribution here lies in the cases (G) and (S) by taking
into account random directions of descent other than those of the canonical basis vectors of Rd. The SCORS
algorithm can also be interpreted as the use of the directional derivative of the gradient estimate following
given random vectors.

In the sequel, we state the others general assumptions required for our analysis and used throughout the
paper.
Assumption 2. Assume that the function f is continuously differentiable with a unique equilibrium point
x∗ in Rd such that ∇f(x∗) = 0.
Assumption 3. Suppose that for all x ∈ Rd with x ̸= x∗,

⟨x − x∗, ∇f(x)⟩ > 0.

Assumption 4. Assume there exists a positive constant L such that, for all x ∈ Rd,

1
N

N∑
k=1

∥∇fk(x) − ∇fk(x∗)∥2 ⩽ L∥x − x∗∥2.
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Assumption 2 is a standard hypothesis for the study of SGD algorithms. Furthermore, Assumption 3 does
not impose a restrictive strong convexity hypothesis on f . We need to note though that this condition is
much weaker than saying that f is strictly convex. Moreover, our Assumption 4 is of key importance and
essential in general non-convex setting. This condition states that at the optimal point, the gradient of all
functions fk for any 1 ⩽ k ⩽ N , does not change arbitrarily with respect to the vector x ∈ Rd. Let us link
our assumption with a Lipschitz condition for the gradient of the objective function. It is obvious that if
each function fk has Lipschitz continuous gradient with constant

√
Lk, then Assumption 4 is satisfied by

taking L as the average value of all Lk. Assumption 4 is also less restrictive than the growth conditions
with the

√
L-smoothness of f , which are classical assumptions among the literature. We point out that both

Assumptions 3 and 4 are enough suitable to obtain the almost sure convergence of the SCORS algorithm.

4 Main results

We first present the almost sure convergence of the SCORS algorithm. Then, we focus on the central limit
theorem for the SCORS algorithm, and finally we propose non-asymptotic Lp rates of convergence.

4.1 Almost sure convergence

Theorem 1. Consider that (Xn) is the sequence generated by the SCORS algorithm with decreasing step
sequence (γn) satisfying (2). In addition, suppose that Assumptions 1, 2, 3 and 4 are satisfied. Then, we
have

lim
n→+∞

Xn = x∗ a.s., (7)

and
lim

n→+∞
f(Xn) = f(x∗) a.s. (8)

Proof. Recall that for all n ⩾ 1,

Xn+1 = Xn − γnD(Vn+1)∇fUn+1(Xn). (9)

Let us consider the Lyapunov function Tn defined for all n ⩾ 1, by

Tn = ∥Xn − x∗∥2.

Hence, it follows that almost surely,

Tn+1 = ∥Xn+1 − x∗∥2

= ∥Xn − x∗ − γnD(Vn+1)∇fUn+1(Xn)∥2

= Tn − 2γn⟨Xn − x∗, D(Vn+1)∇fUn+1(Xn)⟩ + γ2
n∥D(Vn+1)∇fUn+1(Xn)∥2. (10)

However, we have from Assumption 1 that almost surely

E[D(Vn+1)|Fn] = Id. (11)

Moreover, we obtain from (1) and the fact that Un+1 is uniformly distributed on [[1, N ]] that

E[∇fUn+1(Xn)|Fn] = ∇f(Xn) a.s. (12)

By putting together (11), (12) and the conditional independence of Vn+1 and Un+1, it immediately follows
that

E[D(Vn+1)∇fUn+1(Xn)|Fn] = ∇f(Xn) a.s. (13)

Furthermore, we recall by definition that,

D(Vn+1) = Vn+1V T
n+1, (14)
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which implies that

∥D(Vn+1)∇fUn+1(Xn)∥2 = ∥Vn+1V T
n+1∇fUn+1(Xn)∥2

=
(
⟨Vn+1, ∇fUn+1(Xn)⟩

)2 ∥Vn+1∥2. (15)

By using the Cauchy-Schwarz inequality, we deduce from (15) that

∥D(Vn+1)∇fUn+1(Xn)∥2 ⩽ ∥Vn+1∥4∥∇fUn+1(Xn)∥2. (16)

Once again, from the conditional independence of Vn+1 and Un+1 combined with the inequality (16), we
obtain that almost surely

E[∥D(Vn+1)∇fUn+1(Xn)∥2|Fn] ⩽ E[∥Vn+1∥4|Fn]E[∥∇fUn+1(Xn)∥2|Fn]. (17)

It implies via Assumption 1 that there exists a positive constant m4 such that

E[∥D(Vn+1)∇fUn+1(Xn)∥2|Fn] ⩽ m4E[∥∇fUn+1(Xn)∥2|Fn]. (18)

However, we have that almost surely

∥∇fUn+1(Xn)∥2 ⩽ 2
(

∥∇fUn+1(Xn) − ∇fUn+1(x∗)∥2 + ∥∇fUn+1(x∗)∥2
)

. (19)

Define for all x ∈ Rd,

τ2(x) = 1
N

N∑
k=1

∥∇fk(x) − ∇fk(x∗)∥2.

As Un+1 is uniformly distributed on [[1, N ]], we clearly have

E[∥∇fUn+1(Xn) − ∇fUn+1(x∗)∥2|Fn] = τ2(Xn) a.s., (20)

and

E[∥∇fUn+1(x∗)∥2|Fn] = 1
N

N∑
k=1

∥∇fk(x∗)∥2 a.s. (21)

Then, by using the four inequalities (18), (19), (20) and (21), we obtain that

E[∥D(Vn+1)∇fUn+1(Xn)∥2|Fn] ⩽ 2m4(τ2(Xn) + θ∗) a.s., (22)

where

θ∗ = 1
N

N∑
k=1

∥∇fk(x∗)∥2.

Furthermore, from the three contributions (10), (13) and (22), one deduces that

E[Tn+1|Fn] ⩽ Tn − 2γn⟨Xn − x∗, ∇f(Xn)⟩ + 2m4γ2
n(τ2(Xn) + θ∗) a.s. (23)

However, Assumption 4 implies that τ2(Xn) ⩽ LTn almost surely. Consequently, we obtain from (23) that

E[Tn+1|Fn] ⩽
(
1 + 2Lm4γ2

n

)
Tn − 2γn⟨Xn − x∗, ∇f(Xn)⟩ + 2m4θ∗γ2

n a.s., (24)

which can be rewritten as
E[Tn+1|Fn] ⩽ (1 + an)Tn + An − Bn a.s.

where an = 2Lm4γ2
n, An = 2m4θ∗γ2

n and Bn = 2γn⟨Xn − x∗, ∇f(Xn)⟩. The four sequences (Tn), (an), (An)
and (Bn) are positive sequences of random variables adapted to (Fn). We clearly have from (2) that

∞∑
n=1

an < +∞ and
∞∑

n=1
An < +∞.

The proof of theorem is completed by proceeding as in the proof of Theorem 1 in (Bercu et al., 2024).
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4.2 Central Limit Theorem

We carry on with the central limit theorem for the SCORS algorithm. In this subsection, we assume that f
is twice differentiable. Then, we denote by H = ∇2f(x∗) the Hessian matrix of f at x∗.
Assumption 5. Suppose that f is twice differentiable with a unique equilibrium point x∗ in Rd such that
∇f(x∗) = 0. Denote by ρ = λmin(H) the minimum eigenvalue of H. We assume that ρ > 1/2.

The central limit theorem for the SCORS algorithm is as follows.
Theorem 2. Consider that (Xn) is the sequence generated by the SCORS algorithm with decreasing step
γn = 1/n and i.i.d. random direction vectors (Vn) sharing the same distribution P satisfying Assumption 1.
Moreover, suppose that Assumption 5 is satisfied and

lim
n→+∞

Xn = x∗ a.s. (25)

Then, we have the asymptotic normality
√

n(Xn − x∗) L−→
n→+∞

Nd(0, Σ) (26)

where the asymptotic covariance matrix is given by

Σ =
∫ ∞

0
(e−(H−Id/2)u)T Γe−(H−Id/2)udu,

with
Γ = E[V V T QV V T ], (27)

and

Q = 1
N

N∑
k=1

∇fk(x∗) (∇fk(x∗))T
. (28)

Proof. The proof of Theorem 2 can be found in Appendix A.

We provide below the expressions of Γ according to the direction distribution choice P. The following result
can be found in (Chen et al., 2024, p. 6).
Proposition 3. Considering the matrix Q defined in (28) and under the direction distribution P listed in
Section 3, we have the following results,

(U) Uniform in the canonical basis: Γ(U) = d (diag(Q)).

(NU) Non-uniform in the canonical basis: Γ(NU) = diag (Q11/p1, . . . , Qdd/pd).

(G) Gaussian: Γ(G) = (2Q + tr(Q)Id).

(S) Spherical: Γ(S) = d

d + 2(2Q + tr(Q)Id).

The central limit theorem is very useful and provides the theoretical guarantees necessary for building
asymptotic confidence intervals based on the normal distribution. This result therefore makes it possible
to address questions related to statistical inference such as the hypothesis testing while controlling the
variability of algorithms. The point that seems difficult to us here lies on the computation of the asymptotic
covariance matrix Σ in a high-dimensional context. However, the standard Monte Carlo methods can be
useful to obtain an estimation.

Furthermore, from Proposition 3, we can draw other interesting conclusions. In fact, one observes that
the spherical random directions are always more efficient than the gaussian one. However, Chen et al.
(2024) remark that there is no general domination relationship among the other choices. Nevertheless, in
the particular case where Q = Id, we have Γ(S) = Γ(U) = d Id which means that the spherical and the
uniform choices achieve the same asymptotic performances for the central limit theorem. Thus, one can
obtain different optimal choices of P according to the experimental design and the data used.
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4.3 Non-asymptotic Lp rates of convergence

In this subsection, we are interesting by the non-asymptotic Lp rates of convergence of the SCORS algorithm.
Hence, our goal is to investigate, for all integer p ⩾ 1, the convergence rate of E[∥Xn −x∗∥2p] for the SCORS
algorithm where the decreasing step is defined, for all n ⩾ 1 by,

γn = c

nα
, (29)

for some positive constant c and 1/2 < α ⩽ 1.
Assumption 6. Assume there exists a positive constant µ such that for all x ∈ Rd with x ̸= x∗,

⟨x − x∗, ∇f(x)⟩ ⩾ µ∥x − x∗∥2.

First of all, we focus on the case p = 1 in Theorem 4 before extending this result for any integer p ⩾ 1 in
Theorem 5.
Theorem 4. Consider that (Xn) is the sequence generated by the SCORS algorithm with decreasing step
sequence (γn) defined by (29). Suppose that Assumptions 1, 2, 4 and 6 are satisfied with cµ ⩽ 2α−1 and
2cµ > 1 if α = 1. Then, there exists a positive constant K such that for all n ⩾ 1,

E
[
∥Xn − x∗∥2] ⩽ K

nα
. (30)

Proof. The proof of Theorem 4 can be found in Appendix B.

Assumption 7. Assume that for some integer p ⩾ 1, there exists a positive constant Lp such that for all
x ∈ Rd,

1
N

N∑
k=1

∥∇fk(x) − ∇fk(x∗)∥2p ⩽ Lp∥x − x∗∥2p.

Moreover, suppose that there exists a positive constant m4p such that for all n ⩾ 1,

E[∥Vn+1∥4p|Fn] ⩽ m4p. (31)

Theorem 5. Consider that (Xn) is the sequence generated by the SCORS algorithm with decreasing step
sequence (γn) defined by (29) and such that the initial state X1 belongs to L2p. Suppose that Assumptions 1,
2, 6 and 7 are satisfied with pcµ ⩽ 2α and cµ > 1 if α = 1. Then, there exists a positive constant Kp such
that for all n ⩾ 1,

E
[
∥Xn − x∗∥2p

]
⩽

Kp

npα
. (32)

The proof of Theorem 5 is left to the reader as it follows the same lines as the proof of Theorem 4 in Bercu
et al. (2024).

5 Numerical Experiments

The purpose of this section is to show the behavior of the SCORS algorithm on simulated data. For that
goal, we consider the logistic regression model (Bach, 2014; Bercu et al., 2020) associated with the classical
minimization problem (P) of the convex function f given, for all x ∈ Rd, by

f(x) = 1
N

N∑
k=1

fk(x) = 1
N

N∑
k=1

(log(1 + exp(⟨x, wk⟩)) − yk⟨x, wk⟩) ,

where x ∈ Rd is a vector of unknown parameters, wk ∈ Rd is a vector of features and the binary output
yk ∈ {0, 1}. One can easily see that the gradient of f is given by

∇f(x) = 1
N

N∑
k=1

∇fk(x) = 1
N

N∑
k=1

(
1

1 + exp(−⟨x, wk⟩) − yk

)
wk. (33)
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In the same way as Chen et al. (2024), we carry out the experiments on simulated data in order to illustrate
the almost sure convergence (Theorem 1), the central limit theorem (Theorem 2) and the non-asymptotic
L2 rate of convergence (Theorem 4). Therefore, we consider an independent and identically distributed
collection {(w1, y1), . . . , (wN , yN )} where the covariate w ∼ Nd(0, Id) and the response y ∈ {0, 1} is sampled
such that

P(y = 1|w) = 1
1 + e−⟨w,x∗⟩ . (34)

The true model parameter x∗ ∈ Rd is selected uniformly from the unit sphere. Furthermore, we set the
sample size N = 50000 and the parameter dimension d = 50. The stepsize γn = 1/n is used where n ⩾ 1
stands for the iterations.
Here, we will compare the four methods (U), (NU), (G) and (S) described in Section 3. Let us define the
initial value g1,k given, for any k = 1, . . . , N , by g1,k = ∇fk(X1). Moreover, the sequence (gn,k) is updated,
for all n ⩾ 1 and 1 ⩽ k ⩽ N , as

gn+1,k =
{

∇fk(Xn) if Un+1 = k,

gn,k otherwise.
(35)

For the non-uniform search distribution (NU), the probabilities pn,j are computed for all n ⩾ 2 and j ∈
[[1, d]], as follows

pn,j =


|g(j∗)

1 |∑d
i=1|g(i)

1 |
if j = j∗,

1 − pn,j∗

d − 1 otherwise,

(36)

where j∗ = argmax
j=1,...,d

|g(j)
1 | and g1 =

∑N
k=1 g1,k.

The idea behind this choice is to select with the highest probability, the coordinate of a recursive estimate of
the gradient which has the highest norm, since the goal is to reduce the gradient at each iteration in order
to make it converge towards 0.

Figure 1 illustrates the almost sure convergence of the algorithms. This graph represents the relative opti-
mality gap function t 7→ ∥Xt −x∗∥×∥X1 −x∗∥−1, where t stands for the number of the gradient coordinates
computed. This criterion is chosen in order to make an honest comparison of the algorithms in competition.
For instance, the SGD algorithm computes all d coordinates of the gradient at each iteration, while the
SCORS algorithm with uniform search distribution (U) uses just a single coordinate. Thus, we made this
choice to better take this principle into account.

(a) All methods (b) (U), (S) and SGD

Figure 1: Almost sure convergence of the algorithms with γn = 1/n.
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As shown from the previous graph, the SCORS algorithm with uniform search distribution (U) is the best
for this decreasing step. It is therefore interesting to see that the SCORS algorithm can achieve better
performance than the SGD algorithm in terms of almost sure convergence. Moreover, we observe that the
spherical distribution choice and the SGD algorithm are close. However, the gaussian choice is clearly the
worst among all the methods in competition. Furthermore, the results concerning the central limit theorem
of the (U), (NU), (G) and (S) algorithms are illustrated by Figure 2. We consider the same distributional
convergence as Bercu et al. (2024) and use the standard Monte Carlo method to estimate the asymptotic
standard deviation of each algorithm. We therefore observe that these simulations confirm the asymptotic
normal distribution of the SCORS algorithms with all the search distribution choices considered. Note also
that the (U) method has the smallest asymptotic standard deviation for the large dimension d = 50.

(a) (U), where σ̂n ≈ 41.792 (b) (NU), where σ̂n ≈ 43.325

(c) (G), where σ̂n ≈ 43.193 (d) (S), where σ̂n ≈ 43.054

Figure 2: We used 1000 samples, where each one was obtained by running the associated algorithm for
n = 500000 iterations.

In Table 1, we report a comparison of the algorithm performances based on the computational cost. This
criterion is estimated here by the average CPU time per iteration after running 5000000 iterations.

10
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Table 1: CPU time per iteration (s).

Algorithms SGD (U) (NU) (G) (S)
CPU time 5.05 × 10−6 4.98 × 10−6 12.01 × 10−6 6.48 × 10−6 8.92 × 10−6

As expected, the SCORS algorithm with uniform search distribution (U) is the fastest in terms of computa-
tional time per iteration. Next come respectively the SGD, (G), (S) and (NU) methods. Nevertheless, the
difference between the CPU times per iteration of the SGD and (U) algorithms is not very significant here,
which is explained by the particular form of the gradient in this specific case of the logistic regression (33).

Lastly, Figure 3 provides approximate results on the non-asymptotic L2 rate of convergence. This graph
just gives an idea on how the mean squared error of the algorithms decreases when n goes to infinity. Each
epoch consists of running 1000 iterations.

Figure 3: Mean squared error with respect to epochs. We confirm the decreasing order of the mean squared
error of Xn − x∗ with respect to n.
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A Proof of Theorem 2

Proof. Let us reformulate the SCORS iterates for all n ⩾ 1, as follows

Xn+1 = Xn − 1
n

(∇f(Xn) + εn+1) , (37)

with
εn+1 = Yn+1 − ∇f(Xn), (38)

and
Yn+1 = D(Vn+1)∇fUn+1(Xn). (39)

Moreover, we recall from (13) in the proof of Theorem 1 that

E[Yn+1|Fn] = ∇f(Xn) a.s. (40)

Then, it follows from (38) and (40) that

E[εn+1|Fn] = 0 a.s., (41)

which means that (εn) is a martingale difference sequence adapted to the filtration (Fn).
Therefore, we can also deduce that almost surely

E[εn+1εT
n+1|Fn] = E[Yn+1YT

n+1|Fn] − ∇f(Xn) (∇f(Xn))T
. (42)

Since Xn converges towards x∗ almost surely, we obtain from Assumption 5 that

lim
n→+∞

∇f(Xn) = 0 a.s., (43)

which implies that
lim

n→+∞
E[εn+1εT

n+1|Fn] = lim
n→+∞

E[Yn+1YT
n+1|Fn] a.s. (44)

However, we recall by definition (39) that

E[Yn+1YT
n+1|Fn] = E[D(Vn+1)∇fUn+1(Xn)

(
D(Vn+1)∇fUn+1(Xn)

)T |Fn]

= E[Vn+1V T
n+1∇fUn+1(Xn)

(
∇fUn+1(Xn)

)T
Vn+1V T

n+1|Fn]. (45)

Hereafter, we define Gn+1 = σ(X1, . . . , Xn, Vn+1). It is obvious that Fn ⊂ Gn+1. Therefore, by the tower
property of the conditional expectation and since Vn+1 is Gn+1-measurable, we obtain from (45) that

E[Yn+1YT
n+1|Fn] = E

[
Vn+1V T

n+1E
[
∇fUn+1(Xn)

(
∇fUn+1(Xn)

)T |Gn+1

]
Vn+1V T

n+1

∣∣∣Fn

]
. (46)

Furthermore, we have that

E
[
∇fUn+1(Xn)

(
∇fUn+1(Xn)

)T |Gn+1

]
= 1

N

N∑
k=1

∇fk(Xn) (∇fk(Xn))T
. (47)

Thus, it follows from (46) and (47) that

E[Yn+1YT
n+1|Fn] = E

[
Vn+1V T

n+1QnVn+1V T
n+1|Fn

]
. (48)

where

Qn = 1
N

N∑
k=1

∇fk(Xn) (∇fk(Xn))T
. (49)
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Let us consider the symmetric matrix Q defined by

Q = 1
N

N∑
k=1

∇fk(x∗) (∇fk(x∗))T
. (50)

In fact, we have from the Jensen inequality that∥∥∥E [Vn+1V T
n+1QnVn+1V T

n+1|Fn

]
− E

[
Vn+1V T

n+1QVn+1V T
n+1
] ∥∥∥

=
∥∥∥E [Vn+1V T

n+1QnVn+1V T
n+1|Fn

]
− E

[
Vn+1V T

n+1QVn+1V T
n+1|Fn

] ∥∥∥
=
∥∥∥E [Vn+1V T

n+1(Qn − Q)Vn+1V T
n+1|Fn

] ∥∥∥
⩽ E

[
∥Vn+1V T

n+1(Qn − Q)Vn+1V T
n+1∥|Fn

]
⩽ E

[
∥Vn+1∥4∥Qn − Q∥|Fn

]
. (51)

However, Qn is Fn-measurable and Vn+1 is independent from Fn. Therefore, Assumption 1 with the in-
equality (51), imply that there exists a positive constant m4 such that almost surely∥∥∥E [Vn+1V T

n+1QnVn+1V T
n+1|Fn

]
− E

[
Vn+1V T

n+1QVn+1V T
n+1
] ∥∥∥ ⩽ m4∥Qn − Q∥. (52)

Once again from the almost sure convergence of Xn towards x∗ and Assumption 5, we obtain that

lim
n→+∞

∥Qn − Q∥ = 0 a.s. (53)

Hence, we deduce from (52) and (53) that

lim
n→+∞

∥∥∥E [Vn+1V T
n+1QnVn+1V T

n+1|Fn

]
− E

[
Vn+1V T

n+1QVn+1V T
n+1
] ∥∥∥ = 0 a.s. (54)

which leads to
lim

n→+∞
E
[
Vn+1V T

n+1QnVn+1V T
n+1|Fn

]
= Γ a.s., (55)

where
Γ = E

[
V V T QV V T

]
. (56)

Thus, combining the three contributions (44), (48) and (55), it follows that

lim
n→+∞

E[εn+1εT
n+1|Fn] = Γ a.s. (57)

Therefore, we deduce from Toeplitz’s lemma that

lim
n→+∞

1
n

n∑
k=1

E[εkεT
k |Fk−1] = Γ a.s. (58)

Furthermore, we have for all n ⩾ 1

∥εn+1∥2 ⩽ 2
(
1 + ∥Vn+1∥4)Cn, (59)

where
Cn = max

j=1,...,N
∥∇fj(Xn)∥2. (60)

Therefore, we define for all ϵ > 0 and some positive constant M,

An = 1
n

n∑
k=1

E
[
∥εk∥21{∥εk∥⩾ϵ

√
n}1{∥Vk∥⩽M}|Fk−1

]
, (61)
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and

Bn = 1
n

n∑
k=1

E
[
∥εk∥21{∥εk∥⩾ϵ

√
n}1{∥Vk∥>M}|Fk−1

]
. (62)

We obtain from (59) that

An = 1
n

n∑
k=1

E

[
∥εk∥4

∥εk∥21{∥εk∥⩾ϵ
√

n}1{∥Vk∥⩽M}|Fk−1

]

⩽
1

ϵ2n2

n∑
k=1

E
[
∥εk∥41{∥Vk∥⩽M}|Fk−1

]
⩽

4(1 + M4)2

ϵ2n2

n∑
k=1

E
[
C2

k−1|Fk−1
]

⩽
4(1 + M4)2

ϵ2n
sup
n⩾1

{
C2

n

}
. (63)

Since Xn converges towards x∗, it follows with Assumption 5 that

lim
n→+∞

Cn = max
j=1,...,N

∥∇fj(x∗)∥2 < +∞ a.s. (64)

Then, we have that almost surely
sup
n⩾1

{
C2

n

}
< +∞, (65)

which immediately implies with (63) that

lim
n→+∞

An = 0 a.s. (66)

Moreover, we obtain with the same inequality (59) that almost surely

Bn ⩽
1
n

n∑
k=1

E
[
∥εk∥21{∥Vk∥>M}|Fk−1

]
⩽

2
n

n∑
k=1

E
[(

1 + ∥Vk∥4)Ck−11{∥Vk∥>M}|Fk−1
]

⩽
2
n

n∑
k=1

E
[(

1 + ∥Vk∥4)1{∥Vk∥>M}|Fk−1
]

Ck−1

⩽

(
2
n

n∑
k=1

Ck−1

)
E
[(

1 + ∥V ∥4)1{∥V ∥>M}
]

. (67)

By using Toeplitz’s lemma and the contribution (64), we deduce that

lim
n→+∞

(
1
n

n∑
k=1

Ck−1

)
= max

j=1,...,N
∥∇fj(x∗)∥2 < +∞ a.s. (68)

It follows from (67) and (68) that for any positive constant M,

lim sup
n→+∞

Bn ⩽ 2
(

max
j=1,...,N

∥∇fj(x∗)∥2
)
E
[(

1 + ∥V ∥4)1{∥V ∥>M}
]

a.s. (69)

Nevertheless, we obtain from the Lebesgue dominated convergence theorem that

lim
M→+∞

E
[(

1 + ∥V ∥4)1{∥V ∥>M}
]

= 0. (70)
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Hence, it implies with (69) that
lim

n→+∞
Bn = 0 a.s. (71)

Consequently, by putting together the contributions (66) and (71), we immediately deduce that for all ϵ > 0,

lim
n→+∞

1
n

n∑
k=1

E
[
∥εk∥21{∥εk∥⩾ϵ

√
n}|Fk−1

]
= 0 a.s.

Finally, it follows from the central limit theorem for stochastic algorithms given by Theorem 2.3 in (Zhang,
2016) that

√
n(Xn − x∗) L−→

n→+∞
Nd(0, Σ),

where
Σ =

∫ ∞

0
(e−(H−Id/2)u)T Γe−(H−Id/2)udu,

which completes the proof of Theorem 2.

B Proof of Theorem 4

Proof. We already proved in (23) that for all n ≥ 1,

E[Tn+1|Fn] ⩽ Tn − 2γn⟨Xn − x∗, ∇f(Xn)⟩ + 2m4γ2
n(τ2(Xn) + θ∗) a.s. (72)

Therefore, it follows from Assumption 6 that ⟨Xn − x∗, ∇f(Xn)⟩ ⩾ µTn, which leads to

E[Tn+1|Fn] ⩽ (1 − 2µγn)Tn + 2m4γ2
n(τ2(Xn) + θ∗) a.s. (73)

By taking the expectation on both side of this inequality, we obtain that for all n ≥ 1,

E[Tn+1] ⩽ (1 − 2µγn)E[Tn] + 2m4γ2
n

(
E[τ2(Xn)] + θ∗). (74)

Hence, we deduce from Corollary 7 in Appendix C below that there exists a positive constant b1 such that,
for all n ⩾ 1, E[τ2(Xn)] ⩽ b1. Consequently, the inequality (74) immediately implies, for all n ⩾ 1, that

E[Tn+1] ⩽
(

1 − a

(n + 1)α

)
E[Tn] + b

(n + 1)2α
(75)

where a = 2µc and b = c222α+1m4(b1 + θ∗). Finally, we can conclude from Lemma A.3 in (Bercu & Bigot,
2021) that there exists a positive constant K such that for any n ⩾ 1,

E[∥Xn − x∗∥2] ⩽ K

nα
,

which achieves the proof of Theorem 4.

C Additional asymptotic result on the convergence in L2p

The purpose of this appendix is to provide additional asymptotic properties of the SCORS algorithm that will
be useful in the proofs of our main results. First of all, we recall for some integer p ⩾ 1 that T p

n = ∥Xn−x∗∥2p.
Theorem 6. Consider that (Xn) is the sequence generated by the SCORS algorithm with decreasing step γn

satisfying (2). Suppose that Assumptions 1, 2, 6 and 7 are satisfied. Then, we have that
∞∑

n=1
γnT p

n < +∞ a.s., (76)

and
∞∑

n=1
γnE[T p

n ] < +∞. (77)
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The proof of Theorem 6 is very analogous to that of Theorem 8 in (Bercu et al., 2024). A direct consequence
of Theorem 6, using the left-hand side of (2), is as follows.
Corollary 7. Assume that the conditions of Theorem 6 hold. Then, for all p ⩾ 1, we have

lim
n→+∞

T p
n = 0 a.s.,

and
lim

n→+∞
E[T p

n ] = 0.
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