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Abstract

Outlier Features (OFs) are neurons whose activation magnitudes significantly
exceed the average over a neural network’s (NN) width. They are well known to
emerge during standard transformer training and have the undesirable effect of
hindering quantisation in afflicted models. Despite their practical importance, little
is known behind why OFs emerge during training, nor how one can minimise them.
Our work focuses on the above questions, first identifying several quantitative
metrics, such as the kurtosis over neuron activation norms, to measure OFs. With
these metrics, we study how architectural and optimisation choices influence OFs,
and provide practical insights to minimise OFs during training. As highlights, we
introduce a novel unnormalised transformer block, the Outlier Protected block, and
present a previously unknown benefit of non-diagonal preconditioning optimisers,
finding both approaches to significantly reduce OFs and improve quantisation with-
out compromising convergence speed, at scales of up to 7B parameters. Notably,
our combination of OP block and non-diagonal preconditioner (SOAP) achieves
14.87 weight-and-activation int8 perplexity (from 14.71 in standard precision), com-
pared to 63.4 int8 perplexity (from 16.00) with a default OF-prone combination of
Pre-Norm model and Adam, when quantising OPT-125m models post-training.

1 Introduction

Despite their widespread use, our understanding of deep neural networks (NNs) and their training dy-
namics is very much incomplete. This, in part, reflects the complexity of traversing high-dimensional
non-convex loss landscapes but is also symptomatic of the myriad design choices, such as NN
architecture and optimiser hyperparameters, that a practitioner must take before training. While
standard choices of architecture and optimiser exist, it is often unclear how these choices affect model
performance or the emergence of various empirically observed phenomena during NN training.

Outlier Features (OF) are one such training phenomenon. OFs are neurons whose activation magni-
tudes are significantly larger than average in the same layer, i.e. across NN width [1–3]. They have
been widely observed in the popular transformer NN architecture [4–6], as we verify in Fig 1, and
are of practical interest because their existence hinders quantisation [3, 7–12]. In particular, OFs
cause large dynamic ranges in activations across NN width, leading to high quantisation errors in low
precision matrix multiplications. As such, Outlier Feature Emergence (OFE) during training hinders
low-precision training and inference, and minimising OFE could yield significant efficiency gains.

In this paper, we tackle OFE from two related angles: by (1) proposing interventions to minimise
OFE without affecting model convergence or training stability, using insights motivated through (2)
enhancing our understanding of why OFs appear during training. We argue that it is important to first
understand why OFs appear during standard NN training dynamics in order to identify which design
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Figure 1: Outlier Features appear in open-source transformers [16] during training, as measured by
our Kurtosis metric Eq (1). Our work investigates the design choices that influence their emergence.

choices influence OFE, and how. Though progress has been made [1, 13, 14, 10, 15], the mechanisms
behind OFE remain largely unknown.

Alongside the practical motivation of model quantisation, we believe understanding OFs, and their
causes during training, to be an interesting research question for several reasons. The emergence
of Outlier Features in standard transformer training regimes raises the question if OFs are simply
an artifact of certain design choices or a fundamental property of transformer training, essential
for best performance. Understanding (the causes of) OFE better helps us to better understand NN
training dynamics in general, and the roles played by different design choices. Moreover, we shed
light on the differences between models at initialisation compared to during, or after, training. While
NN initialisation is more commonly studied owing to analytic tractability [17–30], understanding
trained NNs is arguably more important as they exhibit rich feature learning behaviour [31–34], like
OFs, that arise during training. In the case of OFs, this has potentially wide-reaching implications,
including for NN interpretability, which often focuses on the roles of individual neurons [35].

Our contributions Overall, we show that OFE can be mitigated relative to standard practices, and
highlight key design choices to do so. We start by introducing OFs, and in particular quantitative
metrics to measure OFs in Sec 2. In Sec 3, we study the role of normalisation layers for OFE, and
find that existing hypotheses do not fully capture the OF phenomenon. We proceed to show that
removing normalisation through our Outlier Protected transformer block minimises OFs, without
loss of convergence speed or training stability compared to standard transformer blocks. In Sec 4, we
consolidate our findings by identifying signal propagation as an important object that can predict OFs
during training, and that choices that improve signal propagation during training also minimise OFE.
In Sec 5, we consider optimisation hyperparameters, and highlight the importance of large diagonal
adaptive learning rates for OFE. Finally, in Sec 6 we demonstrate the performance of our proposals
to minimise OFs both at larger scales, up to 7B parameters, and in terms of improved quantisation
performance. In the interests of space, in App A.3 we discuss additional related work.

2 Problem Setting

Consider an activation matrix X ∈ Rn×d obtained from some neural network layer, where n is the
number of batch inputs/sequence positions, and d is the number of neurons across NN width. In a
typical NN layer, we matrix multiply X by a weight matrix W ∈ Rd×d to give XW ∈ Rn×d, with
(α, j)th element:

∑d
k=1 Xα,kWk,j . This fundamental operation is central to NN computation and

can be seen as a sum over d terms, one for each neuron.

Several works have established that if the magnitudes of the summands {Xα,kWk,j}dk=1 have large
variations, then it becomes difficult to compute their sum in low precision, thereby precluding potential
efficiency gains from “vector-wise” quantised training or inference (though significant progress has
been made on the latter, [8, 36, 11]). These works have shown that (pre-)trained transformer [37]
models possess such a deficiency, which is attributed to the existence of Outlier Features (OFs) whose
activations are much larger in magnitude compared to the other d− 1 neurons.
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Measuring OFs Existing works have measured OFs in architecture-specific ways [1] or using
activation scales ∥X∥2F

def
=
∑

α≤n,j≤d X
2
α,j [8]. We argue that measuring OFs should be independent

of architecture/activation scale: barring exploding/vanishing activation scales, the relative difference
in summands is what causes issues for vector-wise quantisation. We use two metrics to measure OFs:

1. Kurtosis of neuron activation RMS: Let s ∈ Rd, such that sj =
√

1
n

∑n
α=1 X

2
α,j , be the

vector of root mean-squared activations across inputs.3 Then, let Kurt(X) be the ratio of the
fourth moment m4 to the squared second moment m2 over the empirical distribution of s:

Kurt(X) =
m4(X)

m2(X)2
def
=

1
d

∑d
j=1 s

4
j(

1
d

∑d
j=1 s

2
j

)2 (1)

We see that min(Kurt(s)) = 1 when all sj are equal and no outlier features exist, and
max(Kurt(X)) = d, which is the limit when d− 1 neurons have activation magnitudes
dominated by a single outlier feature.

2. Max-Median Ratio (across neurons): A metric for OFs more aligned with the original
motivation of studying variation in summand magnitudes. Specifically, we compute:

MMR(X)
def
= Aggregateα

(
maxj |Xα,j |

medianj |Xα,j |

)
, (2)

or in words, the max neuron divided by the median absolute neuron, aggregated in some
permutation invariant way across inputs. We typically use the mean to aggregate over inputs,
but could also take e.g. median or max. MMR takes a minimum value 1 when all activations
are identical in magnitude, and is unbounded when a dominant outlier feature exists.

Variants of Kurt(X) have previously been proposed [14, 3], but our formulation in Eq (1) aggregates
activations over inputs first, which allows us to link OFs and signal propagation in Sec 4. Though
we focus our analysis on Kurt(X), Figs 11, 13 and 17 show that both our OF metrics are highly
correlated. In this work, we measure OFs on the residual stream across different layers/blocks. For
example, for Pre-Norm or Post-Norm models this is Xout in the notation of App A.1.4

Experimental Setup Throughout this work, we train transformers on the next-token language
modelling task, and study OFs, on a range of datasets, including: 1) CodeParrot,5 2) Languini Books
[39], 3) BookCorpus [40] and English Wikipedia,6 and 4) FineWeb-Edu [41]. Unless stated otherwise
our experimental results are conducted on CodeParrot, but importantly our conclusions regarding
OFs are consistent throughout across language modelling datasets. In App E.1, we also explore OFs
in image classification settings with other architectures like Vision Transformers [42] and MLPs.

In terms of architecture and optimiser, our default choices are the Pre-Norm transformer (App A.1) and
AdamW [43] respectively, which are known to be prone to OFs, e.g. Fig 1. Our default architecture
scale has width d = 768 and 6 layers, giving around 130M parameters, but we demonstrate our
findings continue to hold at larger scales (up to 7B parameters) in Secs 3 and 6. In Secs 3 and 4
we examine alternatives to the Pre-Norm architecture and their effects on OFs, keeping AdamW as
optimiser, while from Sec 5 onwards we additionally consider modifications to AdamW. Further
experimental details and results beyond the main paper can be found in Apps D and E respectively.

3 Normalisation Layers and Outlier Features
Several works have highlighted the architectural choice of Layer Normalisation (LN) [44] as a cause
of OFE [1, 7, 15]. LN belongs to a family of normalisation (Norm) layers commonly used in sequence
models, which normalise a representation vector x ∈ Rd across the width dimension independently

3We do not centre X in sj for simplicity. Fig 15 shows centring makes no qualitative difference for Kurt(X).
4As MMR(X) is invariant to normalisation layers like RMSNorm without trainable parameters [38], there is

some redundancy here in where exactly we take OF measurements.
5https://huggingface.co/datasets/transformersbook/codeparrot-train.
6https://huggingface.co/datasets/google/wiki40b, using the same setup as [15].
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for different sequence positions. In general, for a centring scalar c ∈ {0, 1}, a Norm layer maps x to:

Norm (x) =
x− cµ(x)

σ(x)
⊙ γ + β, µ(x) =

1

d

d∑
i=1

xi, σ(x)2 =
1

d

d∑
i=1

(xi − cµ(x))2 (3)

LN is when c = 1, with a trainable scale γ and bias β vectors initialised to all 1s and 0s respectively.

Previous works have attributed OFE to the γ,β parameters of LN incurring outliers during training
[1, 7]. It is therefore natural to ask if simpler Norms with different formulations of Eq (3) remove
OFE. In particular, Root Mean Square Normalisation (RMSNorm) [45] is a commonly used Norm
known to be as performant as LN in Transformer training [46, 47]. Compared to LN, RMSNorm
fixes the bias β = 0 and removes the centring by setting c = 0, which highlights that centring is not
a crucial operation in modern sequence modelling practices. One step further would be to remove
trainable parameters entirely by fixing γ = 1, thus simply projecting x to the hypersphere of norm√
d. This is dubbed Simple RMSNorm (SRMSNorm) by Qin et al. [38], who find that SRMSNorm

has minimal performance degradation but is more computationally efficient than LN and RMSNorm.
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Figure 2: Kurtosis becomes large (i.e. OFE)
when training with different Norms at 130M
scale. We plot the residual stream entering
the 2nd of 6 blocks. Other layers in Fig 14.

We compare these different Norms in Fig 2, where we see
that independent of Norm choice, all Pre-Norm transform-
ers incur OFE: the peak kurtosis during training across
Norms is over 4 orders of magnitude larger than initialisa-
tion. We also show OFE not only in Pre-Norm [48, 49] but
also Post-Norm [37] blocks (more details on transformer
blocks in App A.1), highlighting OFE occurs independent
of where Norms are placed. In this experiment, the Pre-
SRMSNorm model has highest Kurtosis, despite its lack
of trainable Norm weights.

Having established that removing trainable weights in
Norms still results in OFE, the next question we ask is:
how does removing standard Norms entirely influence Outlier Feature emergence?
Recovering training benefits in unnormalised Transformers This is a challenging question to
answer, not least because comparing OFE in architectures that converge at different speeds may not
be a fair comparison: Norms are well known to be an important component in most NN architectures,
providing various benefits for initialisation, convergence speed, and training stability. Thus, to answer
the above question, we must first review different hypotheses for the benefits of Norms in transformer
training dynamics in order to motivate a novel transformer block that matches the Pre-Norm block in
convergence speed, while eschewing standard Norm layers.
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Figure 3: The Outlier Protected
Transformer Block. We remove Pre-
Norms and replace them with an
Entropy Regulation mechanism to
prevent entropy collapse, as well as
downscaling residuals with β < 1.

Several works [50–55, 23, 27, 28, 30] have observed that the
initialisation benefits of Pre-Norm architectures can be recovered
in unnormalised residual models using downweighted residual
branches, through a theory known as Signal Propagation (Signal
Prop) [17, 18, 56]. Notably, Brock et al. [53] achieve state of the
art performance on the ImageNet benchmark using unnormalised
convolutional architectures. However, it has been observed that
fixing Signal Prop at initialisation is not sufficient to fully capture
the benefits of Norms for training dynamics in unnormalised
transformers [28, 30], which implies that Norms have training
benefits specific to the self-attention based transformer model.

At the same time, Zhai et al. [57] show Entropy Collapse, where
the Stochastic attention matrix has rows with low entropy and
each sequence position attends to only one position instead of
many, to be a key transformer training instability (see Eq (10)).
Entropy collapse occurs because large attention logits saturate the
softmax, and several Entropy Regulation (EntReg) mechanisms
have been proposed to control the attention logits and thus prevent
entropy collapse. Existing entropy regulating methods include
QK-Norm [58, 59], tanh thresholding (Grok-1), σReparam [57]
and clamping the QK logits (DBRX). In standard Pre/Post-Norm attention blocks, a Norm layer
appears before Query and Key weights and implicitly regulates attention entropy, to an extent.
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Figure 4: Our OP block mitigates OFE. We plot activation kurtosis of the residual stream across
layers. Experiments are at 1.2B scale on Languini Books using a max AdamW learning rate of 0.001
with linear warmup for the first 1.5% steps and linear decay thereafter. Notice the shared log-scaled
y-axis: activation kurtosis is consistently (up to 4 orders of magnitude) lower in OP block, particularly
in earlier layers. Also, peak kurtosis during training is always higher in Pre-LN. The OP model also
removes the final LN before unembedding; the effect of the final LN on OFE is shown in Fig 10.

Our key insight is to combine ideas from Signal Propagation and Entropy Collapse prevention to
remove Normalisation layers while keeping their training benefits. This brings us to our Outlier
Protected (OP) Block, Fig 3, which replaces the Pre-Norm block by removing its normalisation layers
in both Attention and MLP sub-blocks, and making three additional changes: 1) downweighting
residual branches with some β = O(1/

√
depth) < 1 to recover Signal Prop benefits of Pre-Norms

[51, 23, 27, 30], 2) adding an Entropy Regulation mechanism to prevent Entropy Collapse; we
mainly use QK-Norm as it is relatively simple and performed well in all of our settings, but present
experiments with tanh in App E.2, and 3) (optionally) scaling the inputs before the MLP nonlinearity
by a scalar α to ensure the nonlinearity inputs are of order 1, as derived by Brock et al. [53] using
straightforward Signal Prop arguments. App B presents a mathematical description of the OP block.

Table 1: OP matches Pre-
LN performance at scales up
to 1.2B params, on Languini
Books [39].7

Params Block Eval PPL

100M Pre-LN 19.1
OP 18.9

320M Pre-LN 16.2
OP 16.2

1.2B Pre-LN 13.9
OP 13.9

In Tab 1, we show that our Outlier Protected block matches the standard
Pre-LN block in terms of convergence speed at scales up to 1.2B pa-
rameters when trained with next token prediction on the Languini books
dataset [39] for nearly 4.5B tokens.7 In App E.2, we ablate our OP block
and show that the lack of an entropy regulation mechanism without
normalisation layers causes training instabilities. This demonstrates that
preventing entropy collapse is necessary to match training stability and
convergence speed in unnormalised Transformers.

We note that independent of OFs, the OP block is interesting in its
own right because it shows that the initialisation-time Signal Prop and
Entropy Collapse benefits of Norms in Transformers can be disentangled,
and also reveals what was missing in previous methods that used Signal
Prop arguments to correct initialisation defects in simplified unnormalised Transformers [28, 30].
However, we now focus on the benefits of the Outlier Protected block in reducing outlier features.

Removing Norms mitigates Outlier Features In Fig 2 we see that the Outlier Protected (OP)
block greatly reduces OFE compared to standard blocks. Fig 4 presents the corresponding plots in
our 1.2B parameter experiments using our kurtosis metric, for different layers. We draw several
consistent conclusions: 1) peak kurtosis across the course of training is consistently higher in Pre-LN,
sometimes by over 2 orders of magnitude, across different layers; 2) kurtosis across training is usually
higher in Pre-LN (up to 4 orders of magnitude here), especially at early training times and in earlier
layers; 3) OFE (measured via our metrics) does not need to be monotonic in training time. Together,
these findings suggest that the OP block will lead to more quantisable models compared to standard
Pre-Norm, as we will show in Sec 6. Tab 4 ablates the effect of Norm positioning on OFE.

Nevertheless, we observe in Fig 4 that kurtosis still slightly increases in our OP blocks (to relatively
modest values, maximum around 20), usually monotonically throughout training. Moreover, the
question of why normalisation layers cause outlier features is still unanswered despite the clear
evidence that removing them mitigates OF prevalence. We investigate these questions next.

7We train for 4.2B tokens at 1.2B scale as this took 24 hours on 4 A100 80GB GPUs; we were unable to train
for longer due to compute constraints. Scales under 1B were trained on a single A5000 or RTX-2080Ti GPU,
taking around 2 days for 3.3B tokens (or equivalently, 50K steps at batch size 128 and sequence length 512).
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Sec 3 key takeaways: normalisation layers and OFE.

• OFE still occurs for weight-less or uncentred Norms, & both Pre/Post-Norm (Figs 2, 14 and 17).
• The OP Block (Fig 3) matches Pre-LN training speed/stability (Tabs 1 and 3), without standard

Norms. It does so through an Entropy Regulation method to prevent attention entropy collapse.
• The OP Block greatly reduces OFE compared to standard blocks (Figs 2, 4 and 13).

4 Signal Propagation and Outlier Features

To better understand why OFs still appear (albeit greatly reduced) in the OP block, and why normali-
sation layers cause OFs, we examine Signal Propagation behaviour during training and its effect on
OFE. This will also clarify why modifications that improve Signal Propagation reduce OFE [10]. Sig-
nal Propagation [17, 18, 56, 23, 25, 27, 28] studies the input-wise Gram matrix ΣI = XX⊤ ∈ Rn×n,
and how ΣI evolves in deep NNs for different layer features X ∈ Rn×d.

On the other hand, as we will see below, our kurtosis metric is related to the feature-wise Gram
matrix ΣF

def
= X⊤X ∈ Rd×d. Recall our kurtosis is a normalised 4th moment of X ∈ R, normalised

by the square of the second moment m2(X) = 1
nd

∑
α≤n,j≤d X

2
α,j =

1
nd∥X∥

2
F . Because kurtosis is

scale-invariant we can consider the setting where m2(X) = 1 and the average squared activation is 1
without loss of generality.8 In this case, Tr(ΣI) = Tr(ΣF) = nd by the cyclic trace property.

Then, our kurtosis, Eq (1), is Kurt(X) = 1
d

∑d
j=1

(
1
n

∑n
α=1 X

2
α,j

)2
= 1

d

∑d
j=1(

1
nΣF)

2
j,j , which is

simply a second moment (or average squared value) of diagonal entries of the feature-wise Gram
matrix ΣF. At the same time, again by the cyclic property of the trace, we have:

Tr(ΣFΣF) = Tr(X⊤XX⊤X) = Tr(XX⊤XX⊤) = Tr(ΣIΣI) (4)

=⇒ n2d · Kurt(X) +
∑

i,j≤d;i ̸=j

(
ΣF
)2
i,j

=
∑

α,β≤n

(
ΣI
)2
α,β

(5)

In words, Eq (4) tells us that the sum of squared elements of ΣF is equal to the sum of squared
elements of ΣI. On the left of Eq (5) we decompose Eq (4) into our feature-wise kurtosis (Eq (1), of
interest for OFE), plus the sum of squared off-diagonal elements of ΣF, equal to the sum of squared
elements of ΣI on the right. Hence, it is clear that Signal Propagation is relevant for OFE. Contrary to
most existing works in Signal Propagaton, Eq (5) is true throughout training, not only at initialisation.

In particular, we see that the right-hand side of Eq (5) captures both the (normalised) activation
norms across inputs

∑
α≤n

(
ΣI
)2
α,α

from the diagonal terms, and inner products between inputs∑
α,β≤n;α ̸=β

(
ΣI
)2
α,β

in the off-diagonals. If X is the output of a Norm layer, then 1
dΣI becomes a

cosine similarity matrix with diagonals equal to 1. Deep NNs, and Transformers in particular, are well
known to be susceptible to a particular Signal Prop defect called rank collapse [60, 25] where this
cosine similarity matrix 1

dΣI degenerates to the all ones matrix and all inputs look identical to a deep
layer. Noci et al. [27] and He et al. [28] demonstrate that, at least at initialisation, the off-diagonals of
ΣI are positive and increase monotonically with depth in deep Transformers towards rank collapse,
even with Signal Prop inspired modifications that ensure a non-degenerate deep limit exists.

Bad Signal Prop encourages OFE For OFE, the upshot of these observations is that poor Signal
Propagation (in terms of large off-diagonal values of ΣI, close to rank collapse) will make the
right-hand side of Eq (5) large (the rank collapsed limit has RHS n2d2, compared to nd2 when the
inputs are orthogonal and ΣI is diagonal). In turn, this puts pressure on the LHS, which contains the
feature kurtosis, to be large, hence OFE. This argument is not fully rigorous because the off-diagonals∑

i,j≤d,i ̸=j

(
ΣF
)2
i,j

, which captures correlations between different neuron features, could increase
on the LHS to allow the kurtosis to remain low.9 Theoretically predicting this behaviour deep into
modern NN training is outside the scope of this work; we note that while it is possible to write down
training trajectories in feature learning regimes [33, 34], most works interpreting feature learning in

8In all experiments concerning signal propagation (i.e. input-wise correlations or equivalently, the elements
of ΣI), we first scale X down by

√
m2(X) to give m2(X) = 1 and make X scale invariant.

9Indeed, Fig 33 shows the link between OFs and signal propagation depends on the diagonality of optimiser.
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Figure 5: Adam-trained Pre-LN layers at 1.2B scale with extreme OFE (left) are those with bad Signal
Prop close to rank collapse during training (centre left). (Right vs. left two plots) Downweighting
residual branches improves signal propagation during training and results in smaller OFs, particularly
in early layers. Respective plots for OP (with & without final LN before unembedding) in Fig 10.

NNs focus only on a single gradient step [61–64]. Having said that, we formalise the intuition of bad
Signal Prop leading to larger feature kurtosis in the context of Gaussian features in Prop G.1.

In any case, we can empirically study the link between bad signal propagation and OFEs, which we
do in Figs 5 and 10 for Pre-LN & OP blocks trained with AdamW at 1.2B scale on Languini Books.
We plot both the layerwise evolution of the kurtosis on the left and the average off-diagonal entry of
1
dΣI =

1
dXX⊤ (i.e. the average input-wise correlation) on the right, normalised so that m2(X) = 1.

As suggested by Eq (5), we see a strong association between kurtosis and Signal Propagation: the
layers with larger kurtosis tend to be the ones with larger input correlations, and vice versa. In
particular, in Fig 5, we see that the Pre-LN layer (2 in this case) with the most extreme OFE (kurtosis
peaking over 1000) is precisely the one with the worst Signal Propagation closest to rank collapse
(average input correlation peaking over 0.8) during training. Moreover, the trajectory of kurtosis
closely tracks the trajectory of input correlations throughout training, with their peaks appearing at
similar training steps, across layers. Fig 12 shows that the Adam-trained Pythia models [16] are very
close to rank collapse, which partially explains their large OFs in Fig 1.

Given that Signal Propagation characteristics during training depict how a model creates structure
(through increasing or decreasing the inner product for different inputs) in its layer representations
to best learn the task at hand, our results suggest that OFs occur partly due to the inherent nature of
the task that the model is trained on, particularly in architectures that are less prone to OFs, such as
our OP block. In Transformers, this appears most apparent in the inputs to the final unembedding
layer, which are linearly projected to the predictions: they tend to have similar kurtosis levels in both
OP and Pre-Norm blocks, and the most extreme OFE rarely occurs in the final layers, (Figs 1, 4, 14
and 18). We hypothesise this is because extreme OFE in late layers would imply high kurtosis which
could imply representations close to rank collapse by Eq (5), from which it may be hard to learn
useful linear predictions with optimisers like Adam.

The correlation we identify between OFE and Signal Propagation also allows us to observe that
interventions that worsen Signal Propagation during training cause increased OFE. Likewise, methods
improving Signal Propagation throughout training help to mitigate OFE. This can be seen in Fig 5 for
downscaled residuals, h(x) = x+βf(x) with some β ≪ 1, which Wortsman et al. [10] show improve
quantisation on vision-language models. We explore this link further in terms of normalisation layers
and other architectural choices inspired by Signal Prop in App C.

5 Optimisation Choices and Outlier Features
So far, we have focused on the impact of architecture for OFE. As a result, up until now all models
have been trained with AdamW [43] optimiser, which is an adaptive diagonal preconditioner, with
default hyperparameters e.g. β1 = 0.9, β2 = 0.999, ϵ = 10−8. As OFE is a training phenomenon, it
is important to also consider the role of optimsation choices, which we now explore.

0 20K 40K 60K 80K
Training Step

10 2

10 1

100

101

102

103

Ac
tiv

at
io

n 
Ku

rto
sis

LR=1e-3
LR=3e-4
Pre-RMS
Post-LN

Pre-SRMS
Pre-LN
OP (ours)

Figure 6: Smaller LRs lead to
smaller OFs across different blocks.

Learning Rate Perhaps unsurprisingly, we find that using
smaller LRs leads to reduced OFE during training (Figs 6, 25
and 26), across different architectures. In these cases, slightly
reducing the maximum LR in our scheduler (e.g. 0.001 →
0.0003 in Fig 6) did not lead to a loss in convergence speed
(Fig 27), highlighting that one should use a smaller LR to avoid
OFs if convergence is not affected.
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Figure 7: Larger Adam ϵ reduces
OFs in 130M Pre-LN transformers.

Adaptivity Having seen the importance of LR in OFE, we
now assess the impact of adaptive LRs through the ϵ hyperpa-
rameter in Adam, where the Adam update is −ηmt/(

√
vt + ϵ),

η is global LR, and mt and vt denote first and second-moments
of each parameter’s gradient, respectively. ϵ dampens adaptive
preconditioning, with larger ϵ reducing adaptivity for param-
eters with smaller vt. In Figs 7, 29 and 9 and Tab 2 we show
that increasing ϵ also reduces OFE. Thus, one should increase
ϵ to reduce OFE, if convergence is not impacted (like Fig 28).

0 1K 2K 3K 4K
Training Step

0

20

40

60

80

Ac
tiv

at
io

n 
Ku

rto
sis

AdaFactor
AdamW
Rotated AdaFactor( Shampoo)
Rotated AdamW(=SOAP)

Figure 8: Diagonal optimisation on
rotated parameters reduces OFs.

Non-Diagonal Preconditioners To push the question of adap-
tivity further we consider the effect of diagonal adaptivity and
OFE. First-order optimisers like AdamW [43] or AdaFactor
[65] are the de-facto optimisers in deep learning, acting as
diagonal preconditioners where each parameter has its own
adaptive learning rate to scale its gradient. On the other hand,
popular second-order optimisers like K-FAC [66] or Shampoo
[67, 68] are non-diagonal preconditioners acting on the full
gradient. Second-order optimisers are known to converge faster
per-update than first-order methods, but first-order optimisers
are much more widespread due to the additional overheads of
non-diagonal preconditioning. We provide background on different NN optimisers in App A.2.

Recently, Vyas et al. [69] established a precise connection between first and second-order optimisers,
namely: Shampoo [67] can be seen as running the diagonal AdaFactor [65] method after first rotating
into the eigenbasis of Shampoo’s preconditioner, before rotating back. This insight disentangles two
effects of non-diagonal preconditioners: 1) transforming the parameter space in which one optimises
via a rotation, and 2) using a diagonal optimisation method in the rotated space. Vyas et al. [69]
use this insight to propose the SOAP optimiser, which applies AdamW in the rotated parameter
space obtained from Shampoo’s eigenbasis. SOAP is shown to converge slightly faster per step than
Shampoo, which itself converges faster per step than AdamW/AdaFactor (verified in Fig 32).

In Fig 8, we compare OFE in popular first-order optimisers, 1) AdamW and 2) AdaFactor, to rotated
non-diagonally preconditioned alternatives, 3) SOAP and 4) AdaFactor in Shampoo’s eigenbasis
(akin to Shampoo as shown by Vyas et al. [69]), trained using 130M Pre-Norm transformers on
CodeParrot. We clearly see that rotating the parameter space in which one optimises, as done in
SOAP/Shampoo, mitigates OFEs. This effect is independent of the diagonal preconditioner used and
occurs even in spite of the Pre-Norm layers, which we know are susceptible to OFs, as in Sec 3.10 To
further highlight the importance of diagonal adaptivity, in App E.1 we compare SGD to Adam on a
setting where SGD can match Adam’s convergence speed: image classification with an MLP. There,
we again see that the non-adaptive SGD suffers less from OFs compared to the diagonal Adam.

Elhage et al. [14] show a similar result as Fig 8 using random rotations, while QuaRot [11] applies
random Hadamard rotations to remove OFs for post-training quantisation (PTQ) using computational
invariance. SpinQuant [70] extends QuaRot using learnt rotations but again only considers inference
time, after OFs have emerged during training. Both QuaRot and SpinQuant incur additional overheads
to apply rotations in the forward pass at inference time. In contrast, non-diagonal preconditioners
optimise using “learnt” rotations that adapt during training, which leaves the forward pass intact
post training and enables the improvement in convergence speed per step that Shampoo/SOAP enjoy
relative to AdamW/AdaFactor (seen in Fig 32 and Tab 2). In sum, our results reveal an additional
appeal of second-order optimisers: not only are they faster to converge per step, but they also lead to
models that are not as prone to OFs and are thus easier to quantise, as we will see in Sec 6.

Breaking down kurtosis updates The findings in this section point to the importance of large
diagonal adaptive LRs for OFE. This motivates us to break down the updates to kurtosis into terms of
different powers in the learning rate η, in App F. We find that sub-leading order updates (in terms
of LR) are the key driver in increasing kurtosis, providing a consistent mechanism for OFE that
encapsulates our different observations concerning the roles of optimiser and architecture.

10This, coupled with our findings with the OP block in Sec 3, suggests that extreme OFs found in LLMs are
due to an interaction of the architectural choice of Norm layers and the optimiser choice of diagonal adaptive
preconditioners. Note we use Pre-SRMSNorm in Fig 8, which doesn’t have trainable Norm parameters.
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Sec 5 key takeaways: Optimisation Choices and OFE.

• Large diagonal adaptive LRs can lead to Outlier Features during training (Figs 6, 25, 26 and 8).
• Reducing AdamW adaptivity via increased ϵ hyperparameter reduces OFs (Figs 7, 29 and 37).
• The non-diagonal preconditioning of second-order optimisers greatly minimises OFE (Fig 8

and Tab 2), even with OF-prone architectures like Pre-Norm.

6 Additional Experiments
We conclude our study with additional experiments regarding scaling and quantisation properties of
our suggestions to minimise OFs. Further experimental details can be found in App D.
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Figure 9: Loss (left two plots) and kurtosis (right two plots) curves for different models trained with
AdamW. Our conclusions on OFs continue to hold when scaling both token count and model scale.

Scale Up until now, we have studied OFE and how we can minimise it at scales up to 1.2B
parameters and 5B tokens. We now consider scaling both model size and training length in terms of
loss performance and OFE. We compare scaling the OP and Pre-Norm blocks keeping AdamW as
optimiser; it would be interesting to considering scaling experiments using second-order optimisers
(in distributed settings e.g. [68, 71]) in future work. The dataset is FineWeb-Edu [41]. We warmup
the LR for 5% of training steps to a maximum value (0.001 and 0.0003 for 1.2B and 7B respectively),
before cosine decay. Due to computational cost, very little hyperparameter tuning was performed
with these experiments and all default hyperparameters were optimised for the Pre-Norm baseline.

So far we have studied OFE in training token counts that are relatively small compared to the
“compute-optimal” Chinchilla recipe [72]. In Fig 9 (first & third subplots), we scale the number of
training tokens at 1.2B parameter scale to around 90B, which is beyond the Chinchilla prescription.
We see that the OP block is indeed able to closely match Pre-Norm loss at longer token counts, but
still benefits from significantly reduced OFs (at least an order of magnitude lower kurtosis throughout
training) despite the aggressive AdamW LR and long training horizon.

In Fig 9 (second and fourth subplots), we additionally scale the model size to 7B parameters, a scale
that has previously been hypothesised to be a sharp cutoff above which “systematic” OFs emerge [8].
Due to cost, we only train for 6B tokens, which is more than enough for extreme OFs to emerge (over
600 kurtosis averaged across residual layers) with Pre-Norm layers. On the other hand, the OP block
has peak kurtosis under 10 and yet still matches Pre-Norm loss performance at 7B scale. Although
increasing AdamW ϵ from 10−8 to 10−5 also reduces peak kurtosis to under 10 with the OF-prone
Pre-Norm model, it leads to a significant decrease in convergence speed in this setting.

Quantisation Returning to our original motivation, we investigate the effect of our suggested
architectural and optimisation choices to minimise OFs in terms of quantisation. In Tab 2, we take the
OPT-125m [6] setting of Bondarenko et al. [15], training models using AdamW in standard mixed
FP16/FP32 precision on BookCorpus+Wikipedia for around 12B tokens. Post training, we quantise
(PTQ) to int8 weight-and-activations, using the same quantisation recipe as [15]. We report standard
deviation over 3 seeds for PTQ, as random subsets of data are used to estimate the quantiser range.

Tab 2 compares both the standard precision perplexity (FP16/32) and also 8-bit quantised perplexity
(W8A8) across architecture and optimiser choices. We additionally present our kurtosis metric, Eq (1),
calculated after training and averaged across layers. We compare 3 different transformer blocks: a)
standard Pre-LN, b) the Gated Attention block proposed by Bondarenko et al. [15] to reduce OFs,
and c) our OP block, as well 5 different optimisation setups that are added one after another: 1) the
default hyperparameters of [15], 2) removing dropout regularisation, 3) increasing the maximum
LR from 4× 10−4 → 10−3, 4) increasing AdamW ϵ from 10−8 → 10−5, and 5) changing AdamW
to SOAP optimiser (keeping ϵ = 10−8). Optimiser choices 2) and 3) were designed to improve
standard precision performance, albeit potentially at the detriment of quantisation performance due to
increased OFs. Optimiser choices 4) and 5) were chosen to reduce OFs, from our findings in Sec 5.

9



Table 2: Average kurtosis across layers, plus standard precision (FP16/32) and quantised int8 (W8A8)
perplexity of various 125m OPT models [6] trained on BookCorpus+Wikipedia [15]. Kurtosis
strongly correlates with int8 error across settings, and the best int8 setup combines our architectural
(OP) and optimiser (SOAP) suggestions, with only 1.2 kurtosis and 0.16 perplexity increase.

Architecture Optimiser Hyperparameters Kurtosis FP16/32 (↓) W8A8 (↓)

Pre-LN Default from [15] 25.6 16.00 63.4±50.1

−Dropout Regularisation 46.7 15.53 105.9±25.0

+Big LR (4× 10−4→10−3) 61.4 15.40 59.0±10.7

+Big Adam ϵ (10−8→10−5) 43.6 15.19 216.2±87.5

+Non-diag Precond (SOAP) 5.1 14.80 16.43±0.12

Gated Attention [15] Default from [15] 4.5 15.63 16.2±0.09

−Dropout Regularisation 28.8 15.08 18.7±0.09

+Big LR (4× 10−4→10−3) 28.8 14.99 17.04±0.09

+Big Adam ϵ (10−8→10−5) 16.0 14.78 15.54±0.01

+Non-diag Precond (SOAP) 16.7 14.65 15.64±0.01

OP (ours) Default from [15] 3.6 15.64 16.01±0.01

−Dropout Regularisation 7.1 15.15 15.78±0.03

+Big LR (4× 10−4→10−3) 12.0 14.96 15.60±0.01

+Big Adam ϵ (10−8→10−5) 6.0 14.89 15.62±0.02

+Non-diag Precond (SOAP) 1.2 14.71 14.87±0.01

As seen in Tab 2, our findings throughout the rest of our paper are validated. Firstly, our kurtosis
metric to measure OFs is indeed highly correlated with quantisation error, which we define as the
increase in perplexity from FP16/FP32 to W8A8. For example, the Pre-LN model without SOAP
has consistently high kurtosis (over 25), and also consistently poor performance at W8A8 (over 45
quantisation error across all AdamW optimiser settings). Secondly, our OP block has consistently low
kurtosis (below 12) compared to the other models, and this directly translates to low quantisation error
(below 0.73 across all optimiser settings). This low kurtosis/quantisation error with OP block holds
true even for aggressive optimiser choices, like large diagonal adaptive LRs, that improve standard
precision perplexity but also increase kurtosis. Moreover, the baseline Gated Attention model of [15]
struggles with OFs when dropout is removed and a large learning rate is used, leading to increased
quantisation error (2-4 perplexity increase), but increasing AdamW ϵ as suggested in Sec 5 reduces
kurtosis (29 to 16) and quantisation error to 0.76, whilst also improving FP16/32 perplexity.

Finally, changing AdamW to SOAP optimiser either dramatically reduces kurtosis (in the case of
Pre-LN and OP) or matches the kurtosis reduction of increasing Adam ϵ (for Gated Attention), while
also improving mixed precision performance for all models.11 This leads to the only non-catastrophic
W8A8 perplexity (16.43) with Pre-LN, and the best overall W8A8 model when combining SOAP
optimiser with our OP architecture (14.87 perplexity, with only 0.16 degradation from standard
precision). This result highlights the combination of our architectural and optimiser suggestions for
minimising OFs as a promising approach to training fast-converging and easily quantisable models.

7 Discussion
The goal of this work was to better understand the emergence of Outlier Features during standard
NN training, and propose architectural and optimisation interventions that minimise their prevalence.
On the architectural side, we have shown that Normalisation layers can have unwanted effects
on OFs during training. Removing standard Norms through our Outlier Protected transformer
block minimises OFs during training without loss of convergence speed or training stability. On
the optimisation side, we highlight that large diagonal adaptive learning rates are crucial for OFs,
and non-diagonal preconditioners offer an appealing combination of reduced OFs and improved
convergence speed. We demonstrate our methods to minimise OFs are effective at scales of up to 7B
parameters, and also directly translate to improved post-training quantisation performance. Overall,
our results reveal the complex interactions between architecture and optimiser that lead to the OFs
widely observed in LLMs. In future work, it would be interesting to consider applying our methods
to minimise OFs for post-training quantisation performance at larger scales, and also low-precision
training.

11We keep the batch size 196 & context length 512 same as [15] for fair comparison. It is likely the FP16/FP32
gains of non-diagonal preconditioners e.g. SOAP would increase with higher token counts per step [73].
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A Additional Background Knowledge

A.1 Mathematical Description of Transformer Blocks

A Transformer architecture [37] is formed by sequentially composing Transformer blocks. The two
most popular Transformer blocks are Pre-Norm and Post-Norm. The Pre-Norm Transformer block
[48, 49] is nowadays more widespread than the original Post-Norm block [37] due to advantageous
depth-scaling properties [74, 51].

For an input sequence representation Xin ∈ RT×d, with T tokens and dimension d, the output Xout
of a Pre-Norm Transformer block is:

Xout = X̂+ MLP(Norm2(X̂)), where X̂ = Xin + MHA(Norm1(Xin)). (6)

On the other hand, the Post-Norm Transformer block can be expressed as:

Xout = Norm2(X̂+ MLP(X̂)), where X̂ = Norm1(Xin + MHA(Xin)). (7)

Here, “MHA” stands for Multi-Head Attention (detailed below), and “Norm” denotes a normalisation
layer like LayerNorm [44] or RMSNorm [45]. In words, we see that the Pre-Norm transformer block
consists of two sequential sub-blocks (one attention and one MLP), with normalisation layers and
residual connections for both sub-blocks. Crucially the Norm layers in Pre-Norm blocks are placed
within the residual branch, whereas in Post-Norm blocks the Norm layers are placed after the residual
connection.

When we say “Pre-LN” we mean that the block is Pre-Norm and the Norm is LayerNorm [44], and
likewise “Post-RMSNorm” would mean that the block is Post-Norm and the Norm is RMSNorm, and
so on in Fig 2. There is no notion of “Pre” or “Post” with our OP block because there is no difference
between Pre-Norm and Post-Norm if one removes the Norms.

In our work, the MLP architecture is single hidden-layer with hidden dimension that is 4d (as in [37]),
and acts on each token in the sequence independently.

19



The MHA sub-block uses softmax self-attention to share information between tokens. For a given
input sequence X, the softmax self-attention mechanism computes:

Attn(X) = A(X)XWV , where A(X) = Softmax
(

1√
dk

s(X) +M

)
, (8)

where s(X) = XWQWK⊤
X⊤ are the pre-softmax attention scores/logits, and WQ,WK ∈ Rd×dk

and WV ∈ Rd×dv are trainable query, key and value parameters respectively.

The attention matrix A(X) ∈ RT×T allows different tokens to “attend” to each other, with mask
M ∈ RT×T determining which tokens any given token is allowed to “attend” to. For causal auto-
regressive transformers like GPT, Mi,j = 0 if i ≥ j and −∞ else, which prevents a token from
obtaining information from future tokens.

The Multi-Head Attention name arises due to the fact that in practice it is typical to apply self-attention
on H different “heads” with dv = dk = d

H before concatenating the heads, as follows:

MHA(X) = Concat
(
Attn1(X), . . . ,AttnH(X)

)
WP , (9)

where WP ∈ Rd×d denotes a trainable matrix that combines different attention heads via a projection.

A.2 Background on NN optimisers

In this subsection we provide additional background on different deep learning optimisers to accom-
pany Sec 5 for completeness.

Consider a weight matrix W ∈ Rl×r with scalar loss function L(W ), and corresponding gradient
G = ∇WL ∈ Rl×r. We denote η as a scalar learning rate and ϵ as a scalar “damping” hyperparameter
that prevents numerical instabilities. We outline the three families of optimisers that we explore at
various points in our work, in terms of their effect on outlier features: 1) SGD (with momentum), 2)
diagonal preconditioners, and 3) non-diagonal preconditioners.

SGD with Momentum keeps an (exponential) moving average of gradients G, M ∈ Rl×r, and
updates W as:

W ←W − ηM.

Diagonal preconditioners like Adam [75] are arguably the most popular deep learning optimiser
family due to their combination of improved convergence on modern architectures like transformers,
compared to SGD, and computational efficiency, compared to non-diagonal preconditioners.

Adam works by maintaining not only an exponential moving average of gradients M ∈ Rl×r, like
SGD, but also an element-wise second moment of gradients G⊙G, V ∈ Rl×r.

Then, the Adam update rule is:

W ←W − η
M√
V + ϵ

,

where all operations (e.g. division or square root) are element-wise. This element-wise nature leads
us to describe Adam as diagonal (as it can easily be written out with matrix multiplication using
diagonal matrices). Note that one can view the elements of η√

V+ϵ
as per parameter adaptive learning

rates, compared to SGD which just has a global shared LR η.

AdamW [43] is a popular variant of Adam that decouples weight decay. AdaFactor [65] is another
variant of Adam, which replaces V by a rank-1 approximation, V ′ ∈ Rl×r, in the interests of memory.
Despite the reduced rank of V ′, AdaFactor is similarly diagonal like Adam in the sense that there is a
unique element of V ′ for each element of W , and all operations are element-wise.

Non-diagonal preconditioners obtain their update rule by instead applying a full non-diagonal
(inverse) matrix preconditioner P ∈ Rlr×lr to the (flattened) first order moment flat(M) ∈ Rlr to
give update −ηP−1flat(M).

Due to the exorbitant cost of storing, updating, inverting, and applying lr × lr matrices, a popular
approach introduced by Martens and Grosse [66] is to use a kronecker factored preconditioner
P = L⊗R, where L ∈ Rl×l and R ∈ Rr×r to give update rule (with dampening):
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W ←W − η(L+ ϵIl)
−1M(R+ ϵIr)

−1

In Shampoo [67], L is a moving average of GG⊤ and R is a moving average of G⊤G, although
different choices of exponents (e.g. −1/4 or −1/2) are more common besides −1. For example, the
Shampoo update rule is W ←W − η(L+ ϵIl)

−1/2M(R+ ϵIr)
−1/2 for exponent −1/2.

As we discuss in Sec 5, Vyas et al. [69] identify a connection between Shampoo with exponent −1/2
and AdaFactor, and this insight gives rise to the SOAP optimiser. We refer the reader to Vyas et al.
[69] for additional background on different NN optimisers and their connections.

A.3 Additional Related Work

Understanding Outlier Features Kovaleva et al. [1], Timkey and van Schijndel [2] first identified
Outlier Features in trained Transformers and demonstrated that OFs are critical for representational
quality and performance. Puccetti et al. [13] highlight the importance of token frequency [76] for
OFs in transformers trained on language data, which is related to the representation degeneration
phenomenon of Gao et al. [77], and certain “vertical” structures appearing in attention matrices during
training. Bondarenko et al. [15] term this vertical structure “no-op” behaviour, where uninformative
tokens are given high attention weights, and show that modifying attention to encourage no-op
behaviour can mitigate OFs. Dettmers et al. [8] show that the effect of OFs is more pronounced at
larger parameter scales, and Wortsman et al. [10] suggest that OFs are related to increasing activation
scales during training, motivating their use of downweighted residuals. Kovaleva et al. [1], Wei et al.
[7] attribute OFs to the trainable parameters in Layer Normalisation. Nrusimha et al. [12] show that
OFs occur early in training, and are stronger in residual stream layers. Sun et al. [78] demonstrate
the existence of “massive activations” and show they act as bias terms in transformers. Darcet et al.
[79] show that outlier tokens with large activation norms lead to non-smooth attention maps in vision
transformers, and propose additional “register” tokens in order to concentrate the outliers and yield
smoother attention maps. Allen-Zhu and Li [80], He and Ozay [81] study a theoretical framework
where sparse activations naturally appear and grow with gradient descent, owing to certain “lucky”
neurons being correlated with useful features at initialisation, in order to study ensembling and
knowledge distillation in two-layer convolutional NNs.

Outlier Features and Quantisation Wei et al. [7], Bondarenko et al. [3] identified Outlier Features
as an issue for quantised NNs. Most work in this area has focused on (weight) quantisation of already
trained transformers [8, 36, 11], for efficiency gains at inference time. Dettmers et al. [8] keep outlier
features in full precision to avoid their quantisation errors, while Xiao et al. [36] propose to migrate
the quantisation difficulty of outlier features to their corresponding weights using some scaling
factors. Chee et al. [82] introduce the idea of “incoherence processing”, where pre-trained weights are
rotated with random orthogonal matrices to remove outliers, which is provably and empirically shown
to make quantisation easier with their method QuIP. Tseng et al. [83] extend QuIP to use random
Hadamard matrices (among other changes), which are more efficient and have better theoretical
properties than random orthogonal matrices. Ashkboos et al. [11] combine incoherence processing
with “computational invariance” to rotate the feature vectors in addition to pre-trained weights whilst
preserving the forward pass, thereby removing OFs in the rotated features and achieving state of the
art performance in weight-and-activation quantisation at inference time.

In terms of quantised training, Bondarenko et al. [15] show that encouraging “no-op” behaviour can
mitigate OFs and enable low-precision training, while Wortsman et al. [10] employ downweighted
residuals (among other techniques) for quantised CLIP training. We discuss how our findings relate
and extend these insights in the main text. Hu et al. [84] propose outlier-efficient Hopfield Layers as
an alternative to traditional attention mechanisms to improve post-training quantisation. Nrusimha
et al. [12] propose to regularise the kurtosis of the outputs of a linear layer for low-precision training,
which the authors argue prevents migrating quantisation difficulty to the weights. We employ kurtosis
to measure OFs, but focus on the kurtosis of the inputs to a linear layer.

Normalisation Layers Normalisation Layers have been near ever-present in NNs since their
introduction [85, 44], owing to their training benefits. Many works since have considered removing
Normalisation layers, by finding alternative mechanisms that keep their benefits. De and Smith [51]
identify a beneficial implicit effect of Normalisation layers in Pre-Norm Eq (6) architectures is to
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downweight residual branches, and that explicit recreating this effect enables training deep NNs
without Normalisation. Hayou et al. [23] show this theoretically using Signal Propagation theory,
and propose downweighting residuals with a scale factor O(1/

√
depth) to do so, which Noci et al.

[27] corroborate in the transformer setting. Martens et al. [25], Zhang et al. [86] demonstrate how to
remove residual connections alongside normalisation layers in convolutional NNs using “transformed”
activations, which He et al. [28] extend to the Transformer architecture by making attention more
identity-like (see also “shaped” attention, Noci et al. [29]). Brock et al. [53], Smith et al. [87] propose
NFNets, and achieve state of the art performance on the ImageNet benchmark in an unnormalised
residual convolution architecture, highlighting that Normalisation layers are not necessary for best
performance in convolutional models. NFNets employ downweighted residual branches to fix Signal
Propagation at initialisation, among other techniques including adaptive gradient clipping. However,
He et al. [28], He and Hofmann [30] find that removing Normalisation Layers, even with Signal
Propagation modifications like downweighting residuals, leads to a loss of performance in simplified
Transformer blocks, implying that transformer training has different instabilities to convolutional
models, and Normalisation layers have other training benefits in transformers.

Entropy Collapse and QK-Norm Zhai et al. [57] identify entropy collapse as a key training
instability in transformers, where attention logits grow large during training. This causes the rows of
the post-softmax attention matrix to become one-hot vectors and the attention weights are non-zero
on only a single sequence position.

Mathematically, given a stochastic attention matrix A(X) ∈ RT×T (in the notation of Eq (8)), we
can compute the entropy H(A), averaged over sequence locations, as:

H(A) = − 1

T

T∑
s,t=1

As,t · log(As,t), (10)

and define Entropy Collapse to be the situation where H(A) tends to 0 during training. This occurs
when the rows As,: become one-hot vectors and token s only attends to one other token, for all s. We
treat 0 · log(0) to be 0.

To remedy entropy collapse, it is important to control the logits entering softmax from growing too
large, and Zhai et al. [57] propose σReparam which regularises the spectrum of Query-Key weights
in order to do so.

As an alternative, Query-Key Normalisation [88], where the Queries and Keys are normalised using
e.g. LayerNorm or RMSNorm after the Query/Key weight matrix has seen growing popularity,
particularly in ViT-22B [59] where it was crucial for stable training.

Mathematically, instead of standard attention logits s(X) = XWQ(XWK)⊤ (following the notation
of Eq (8)), QK-Norm first normalises the queries and keys across the dk dimension:

s(X) = Norm(XWQ)Norm(XWK)⊤, (11)

and is most commonly used as an addition on top of the Pre-Norm block Eq (6) (without removing
other normalisation layers like in our OP block).

Other “entropy regulating” mechanisms include tanh thresholding (Grok-1) and clamping attention
logits (DBRX). The training stability benefits of controlling attention entropy through QK-Norm
were shown at smaller scales in Wortsman et al. [10], who argue that the quadratic dependence in
the attention logits (on the queries and keys), causes large attention logits to appear during training,
hence entropy collapse. This is as opposed to convolutional/MLP models which depend linearly
on their inputs. Tian et al. [89] propose joint MLP/Attention dynamics to predict attention entropy
during training. We note that the “vertical” or “no-op” attention structures discussed in previous OF
works [13, 15] have collapsed attention entropy, and can be thus be seen as undesirable from the
perspective of other existing works.

Signal Propagation Signal Propagation studies how different inputs evolve through a deep NN,
and how their feature representation magnitudes and cosine similarities evolve with depth. Our work
focuses on forward signal propagation (which studies the forward-pass activations), as opposed to
backward signal propagation (which studies the backward-pass activation derivatives), in line with
the study of Outlier Features.
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For an input activation matrix X ∈ Rn×d of n inputs and width d, mapped to an activation matrix
Xl ∈ Rn×d at layer l, signal propagation theory studies the evolution of the input-wise Gram matrix
Σl

I = XlX
⊤
l ∈ Rn×n for increasing depths l. This is a key object in an NN, as it tracks the “geometric

information” that is conveyed in a deep layer, through inner products between different inputs. The
diagonal elements of Σl

I indicate the activation norms, and the off-diagonal elements indicates how
similar a deep layer views two inputs to be.

At initialisation, Σl
I can be tracked through its large d limits [20, 19, 21]. By studying Σl

I , one can see
several issues that will afflict badly designed NNs [18, 56, 90, 60, 25], that affect either the diagonal
elements, the off-diagonal elements or both at large depths. For example, the diagonal elements of ΣI
could blow up, which indicates exploding activation norms. For transformers, a particular degeneracy,
known as rank collapse [60], can appear where the off-diagonals of Σl

I become positive and large,
and Σl

I becomes proportional to the all ones matrix if activation norms are constant. Rank collapse is
also possible in MLPs/CNNs Schoenholz et al. [18], Hayou et al. [56], Xiao et al. [91], Martens et al.
[25], and is equivalent to the over-smoothing phenomenon in graph NNs [92]. Martens et al. [25]
argue that rank collapse will lead to vanishing gradients, which Noci et al. [27] show specifically for
query and key parameters in transformers. As a result, when we refer to bad signal propagation, we
mean that the off-diagonals of ΣI are large and positive, close to rank collapse. This can be either

through the RMS of input correlations,
√

1
n(n−1)

∑n
α̸=β

(
1
dΣI
)2
α,β

, as we show in the appendix, or

the mean, 1
n(n−1)

∑n
α̸=β

(
1
dΣI
)
α,β

as we show in Figs 5 and 10.

By applying Signal Propagation theory at initialisation, it is possible to design modifications to
NN architectures and initialisations that correct potential degeneracies and/or yield simpler and/or
more scalable architectures [93, 23, 25, 86, 27, 28, 30]. But the vast majority of existing works in
the literature do not theoretically study training beyond initialisation, and those that do are usually
restricted to the NTK [94] regime [23, 25], which precludes feature learning, and OFs. Lou et al.
[95] suggest that the feature alignment [96] phenomenon during training is correlated to the rate at
which signal propagation converges to its limit in a deep NN. Even at initialization, the distribution
of the neurons becomes more heavy-tailed with depth [97], thus making outliers more likely. Noci
et al. [24] gives a precise description of the kurtosis for ReLU networks, showing that it grows
exponentially with depth. Together with the results presented in this work, there is empirical and
theoretical evidence that depth has the double effect of increasing both the correlations and making
large activations more likely, which we observe to be detrimental to outliers. However, the theoretical
treatment of the emergence of outliers during training is still an open question.

B Mathematical description of OP block

For completeness, in Eqs (12) and (13) we present a mathematical description of the OP block (Fig 3),
based on the notation in App A.1. Recall the OP block replaces the Pre-Norm block by removing its
normalisation layers in both Attention and MLP sub-blocks, and making three additional changes:
1) downweighting residual branches with some βMLP, βAttn = O(1/

√
depth) < 1 to recover Signal

Prop benefits of Pre-Norms [51, 23, 27, 30], 2) adding an Entropy Regulation mechanism to prevent
Entropy Collapse e.g. QK-Norm or tanh-softcapping, and 3) (optionally) scaling the inputs before
the MLP nonlinearity by a scalar αMLP to ensure the nonlinearity inputs are of order 1, following
Brock et al. [53].

Mathematically, this can be expressed as:

Xout = X̂+ βMLPMLP(αMLPX̂), where X̂ = Xin + βAttnMHA(Xin). (12)

With QK-Norm as entropy regulation mechanism, MHA is multihead attention using QK-Norm in
the attention heads:

Attn(X) = A(X)XWV , where A(X) = Softmax
(

1√
dk

Norm(XWQ)Norm(XWK)⊤ +M

)
,

(13)
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Figure 10: OP layers at 1.2B scale with worse Signal Propagation (i.e. higher input correlations)
during training (centre left) have higher feature kurtosis (left). (Right vs. left two plots) Introducing
a final LN before unembedding causes larger input correlations and feature kurtosis in later layers,
even with the OP block. NB: y-axes values here are significantly smaller than Fig 5 with Pre-LN.

C Modifications That Affect Signal Prop During Training Affect OFE

In this section we continue our discussion of the connection between Signal Propagation and OFE in
Sec 4, towards the practical implication that methods designed to improve Signal Propagation also
improve OFE as a result.

To the best of our knowledge, in the Signal Propagation literature, most works have focused on
characterising and improving Signal Propagation at initialisation due to analytic convenience. At
initialisation, only the architecture plays a role and not the optimiser. In particular, a practical focus of
such works is to design architectural modifications that allow non-degenerate deep limits for models
whose input cosine similarities can be well approximated by their large-width limits at initialisation
[98, 93, 23, 25, 28, 30]. Those considering training dynamics often reside in the kernel regime [94]
and are thus not compatible with feature learning [31, 33] which is necessary for OFE and Signal
Prop dynamics during training. Our results connecting Signal Prop and OFE highlight the importance
to the community of understanding Signal Prop dynamics during training in feature learning regimes,
beyond initialisation. We note Tian et al. [89] predict attention entropy dynamics through joint
MLP/Attention. In any case, we empirically study the impact of initialisation-inspired Signal Prop
architectural modifications in terms of OFE during training.

Downweighted residuals Of initialisation-inspired Signal Prop modifications, the most prevalent
is downweighting residual branches h(x) = x+ βf(x) with some β ≪ 1 [51, 23, 27].12 In Fig 5,
we see that downweighting residuals (with a trainable scalar β initialised to 0.1) improves Signal
Propagation in a 24-block 1.2B Pre-LN model, not only at initialisation but also during training,
thereby reducing OFE (peak kurtosis is an order of magnitude lower). Having said that, Pre-LN
with downscaled residuals still leads to higher kurtosis across layers than our OP block in Fig 10.
Downscaling Pre-LN residuals leads to a small loss in performance of 0.2 perplexity. We show the
corresponding results at 130M scale in Figs 19 to 21. Our results are consistent with previous work
by Wortsman et al. [10] who observe that downweighted residuals help for low precision training in
CLIP models, motivated as a way to prevent OFs arising through increasing activations scales ∥X∥F
during training. Given that standard models have Norm layers that are scale invariant (as are our OFE
and Signal Prop metrics), we complement this argument by highlighting that the feature learning
process of OFE is not only associated with increasing activation scales but also worsening Signal
Propagation during training. Figs 16 and 48 show that ∥X∥F does not always correlate with OFs.

Normalisation layers On the other hand, for Norms, the difference between OP and standard
blocks with Norms in Figs 5, 10 and 18 respectively is already clear evidence that standard Norm
placements can lead to worse Signal Propagation (and OFE) during training. To the best of our
knowledge, this observation has not been made previously. To test this further, we reintroduce the
final LN right after the final OP block (just before the unembedding layer) into an OP model, with no
Pre-Norms, in Fig 10. We see that the final LN causes some layers to see increases in both kurtosis
and input correlations, and these layers correspond precisely to the final few blocks immediately
preceding the LN. On the other hand, earlier layers further away from the final LN are largely
unchanged in terms of both Signal Propagation and OFE during training. The model with a final LN
performed slightly worse (0.1 perplexity difference).

12Typically, the theory indicates that β = O( 1√
depth

) enables a well-behaved infinite-depth limit.
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Several works have discussed the effect of Norms on Signal Propagation theory at initialisation. The
Deep Kernel Shaping [25] framework is compatible with LN (and also RMSNorm) layers, but makes
other modifications (in weight initialisation and activation functions) that mean LN has no effect at
initialisation in the wide limit. Other works show centred Norms in fact improve Signal Propagation
at initialisation in MLPs by correcting imbalances in input activation norms to improve Isometry
[99, 100] but consider non-standard architectures that are not residual and have Norm immediately
following nonlinear activations, whereas standard Norms take the residual stream as input. Our work
shows that initialisation and training can have very different Signal Prop behaviours.

Other Signal Prop modifications In Figs 22 and 24, we consider the effect of other initialisation-
inspired Signal Propagation modifications in terms of OFE. In particular, we consider “transforming”
activations to be more linear [25, 86, 26], and “shaping” attention to be more identity-like [28–30].
Although not predicted by initialisation theory, we find that these modifications mostly also reduce
OFE and improve Signal Prop during training as well as initialisation. The latter finding is related to
the work of Bondarenko et al. [15] who show that “no-op” heads that place large attention weights on
shared uninformative tokens encourage OFs: large attention weights on shared tokens also worsen
signal propagation,13 compared to identity-dominated attention, which can be seen as a “no-op” that
instead encourages a token to attend to itself.

App C key takeaways: Signal Propagation and OFE.

• Signal Propagation is fundamentally connected to OFE: worse Signal Prop generally implies
higher kurtosis and vice versa, throughout training (Eq (5), Prop G.1, and Figs 5, 10 and 18).

• The OP block’s mild OFs can be traced to increasing input correlations while training (Fig 10).
• Choices that improve Signal Prop during training (e.g. scaled residuals) also reduce OFs (Fig 5).
• Removing standard Norms can improve Signal Prop, & OFE, during training (Figs 5 and 10).

D Additional Experimental Details

CodeParrot As discussed, all of our experiments at 130M scale (6 layers, width 768 transformers)
are on next token prediction with the CodeParrot dataset, with 50K vocabulary size. We use a similar
setup to He and Hofmann [30], and have updated their codebase to include the OP block.14 We train
with AdamW optimiser [43] and weight decay 0.1, (β1, β2) = (0.9, 0.999), and ϵ = 1e− 8 unless
otherwise stated, and clip the maximum gradient norm to 1. We do not tie embeddings, and remove
the final layer norm before unembedding layer. When we plot metrics (kurtosis, signal propagation,
MMR etc) we plot the residual stream entering the attention sub-block (plots for the residual stream
before the MLP sub-block are qualitatively the same). The only exception is the last layer, which
is the input to the unembeddings. When we downweight residuals we set β = 0.3 in both attention
and MLP sub-blocks unless otherwise stated. We do not train residual scalings β. Unless otherwise
stated, we train with sequence length 128 and batch size 32 for 80K steps, with linear warmup to
maximum learning rate 1e − 3, for 5% of the steps, before linear decay. We keep the standard
parameter initialisations to N (0, std = 0.02) but upweight the input embeddings by a factor of 50
in order to make the average squared input 1 at initialisation, similar to considerations made by the
Gemma model [101]. We use ReLU activations and do not scale inputs with an α, c.f. Fig 3, because
ReLU is 1-homogeneous.

Languini For Languini [39] our 100M, 320M, and 1.2B model sizes follow the “small” (depth 12,
width 768), “medium” (depth 24, width 1024), and “XL” (depth 24, width 2048) model sizes provided
by the authors, respectively. Our setup follows the authors in terms of codebase and tokeniser. We
train with sequence length 512 and batch size 128, again with a maximum learning rate of 1e− 3
unless otherwise stated. This learning rate was the largest stable and best performing choice on a
logarithmic grid. We train with AdamW, using weight decay of 0.1 and clip the maximum gradient
norm to 0.5. We use linear warmup and linear decay after 1000 steps. We additionally use RoPE
[102], with GeLU nonlinearities in the MLPs. We use the same method as Brock et al. [53] to

13Consider the extreme case when all attention weights are placed onto a single token (say the first one): all
attention outputs will be equal to the first token’s value representation so all token-wise cosine similarities are 1.

14https://github.com/bobby-he/simplified_transformers
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calculate α to scale inputs to the GeLU. When we downweight residuals, we initialise β = 0.1 and
allow them to be trainable. When we plot layer-wise metrics like kurtosis, we plot the outputs of the
Pre-Normalisation layer (if there is one), otherwise, we treat the Normalisation layer as the identity
and plot the residual stream going into the attention sub-block. We use tied embeddings. We also
keep the standard parameter initialisations to N (0, std = 0.02) but upweight the input embeddings
by a factor of 50 in order to make the average squared input 1 at initialisation.

CIFAR-10 For our MLP experiments on CIFAR-10, we train using batch size 2048 for 200 epochs.
As described in Sec 5, the model has 6 Pre-Norm layers with width 1024, giving 15M parameters.
We zero initialise the last layer, and additionally downweight the output layer by

√
width akin to

µP [33], to encourage feature learning. We train with MSE loss and use LR 3 for SGD and 3e-3
for Adam. We use standard betas and epsilon for Adam and we do not use weight decay. We warm
up the LR for 200 steps before cosine decay. We additionally found that it was important to whiten
the inputs in order to observe OFE in the residual stream. We note that transformer embeddings
are independently initialised, which can be thought of as implicitly whitening the embeddings for
different tokens. Whitened inputs correspond to signal propagation with zero input correlations. This
again suggests that signal propagation (and properties of the data) are important for OFs, but we leave
further understanding of this to future work. We use PCA to whiten inputs.

Non-diagonal preconditioners For our non-diagonal preconditioning experiments, we take the
implementation provided by SOAP [69].15 We keep the default hyperparameters β1 = 0.95, β2 =
0.95 and preconditioning frequency to 10, as suggested by the authors. As in our other experiments,
we use weight decay 0.1. It is likely that further hyperparameter tuning would further improve our
results with non-diagonal preconditioners.

For our implementation of “AdaFactor in Shampoo’s eigenbasis” (shown by [69] to be akin to
Shampoo [67]), we do not rotate the input embedding dimension, which has (vocabulary) size 50k in
our CodeParrot setup, but continue to store rank-1 moving averages for the squared gradient in that
dimension, which are applied to the unprojected parameters in that dimension, as in AdaFactor. For
both AdaFactor and its rotated counterpart, we do not use the parameter-norm dependent learning
rate schedule proposed by [65], instead keeping the same update rule as [103, 104, 69] which keeps
AdaFactor closest to a rank-1 approximation of Adam.

For Fig 8, we set a larger batch size of 4096 in order to demonstrate more clearly the convergence
speed per step benefits of SOAP/Shampoo [73], as seen in Fig 32. We additionally use the Warmup-
Stable-Decay (WSD) scheduler [105, 106] with LR=0.001 (we found this also to be the maximal
trainable LR for SOAP/Shampoo in our setting), 5% warmup and 20% decay steps. WSD maintains
a higher LR for longer and increases kurtosis in OF-prone settings like Adam/AdaFactor as a result,
as expected from e.g. Fig 6.

FineWeb-Edu Our longer 1.2B and 7B experiments (Fig 9) using FineWed-Edu [41] were con-
ducted on a fork of nanotron.16 The model architectures are based off LLaMa [47] but we use single
hidden layer GeLU MLPs instead of SwiGLU, as SwiGLU MLPs are themselves a source of OFs
[107]. Our 7B model has hidden width 4096 and 32 layers, and our 1.2B model has hidden width
2048 and 24 layers.

For our 6B token 7B model runs, we train for 20K steps with global batch size 72 (node batch size
6 on 12 nodes of 4×GH200 GPUs, with tensor parallelism) and context length 4096. This gives
72 × 4096 × 20000 ≈ 6B tokens. For our 90B token 1B model runs, we train for 50K steps with
global batch size 440 (device batch size 5 on 22 nodes of 4×GH200 GPUs) and context length 4096
to give 440× 4096× 50000 = 90B tokens. We add LayerScale [55] to implement the downweighted
residuals in OP block, with trainable residual gain vectors initialised to 0.1 and 0.05 for our 1.2B
and 8B experiments respectively. We use RMSNorm for the QK-Norm in the OP block. Like in our
Languini experiments, we upweight the input embeddings by a factor of 50 in order to make the
average squared input 1 at initialisation.

Quantisation As discussed, our quantisation experimental setup closely follows Bondarenko et al.
[15] for fair comparison, training OPT models [6] on BookCorpus and English Wikipedia before post

15https://github.com/nikhilvyas/SOAP/tree/main
16https://github.com/huggingface/nanotron
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training quantisation. We also use their excellent codebase.17 The hyperparameters that we change
are outlined in Tab 2. Other hyperparameter are set as defaults e.g. (β1, β2) = (0.9, 0.95), 0.1 weight
decay, or ReLU activation function, as in Zhang et al. [6].

In Tab 2, as one reads down the rows for a given architecture, the optimisation hyperparameters
are changed one after another on top of each other. The only exception is SOAP, where we keep
AdamW’s ϵ = 10−8 (recall SOAP is just Adam in the eigenbasis of Shampoo’s preconditioner, so
ϵ is still used). The model architecture is OPT [6] and have 125m parameters with width 768 and
12 layers. We initialise the trainable scalar residual gains to 0.2 in the OP block and use LN for the
QK-Norm. Like [15], we use symmetric quantisation for the weights and asymmetric quantisation
for the activations to int8, but also do not quantisation the final unembedding layer. We refer the
reader to Bondarenko et al. [15] for more details on the quantisation procedure.

E Additional Experiments

In this section, we include all additional experiments not included in the main paper.
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Figure 11: Max Median Ratio metric for Pythia, equivalent to Fig 1. We take the mean to aggregate
over inputs
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Figure 12: Signal Prop for Pythia, equivalent to Fig 1.
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17https://github.com/qualcomm-ai-research/outlier-free-transformers
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Figure 15: Equivalent of Fig 14 but with centred activations (centred along the width dimension).
Notice there is no qualitative difference to kurtosis dynamics when centring activations.
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Figure 16: Equivalent of Fig 14 but for activation scale ∥X∥F trajectories through training. We see
that activation scales do not correlate as well with OFs (Fig 14) as signal propagation (Fig 18). For
example, Post-LN has smaller activation scales than the OP block in all blocks besides the first one,
but much worse kurtosis in Fig 14.
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Figure 17: Equivalent of Fig 14 but for the MMR metric (aggregated using maximum over the batch).
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Figure 18: Equivalent of Fig 14 but for Signal Propagation (in terms of RMS of input correlations).
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Figure 19: Downweighted residual scalings, h(x) = x+ βf(x) with β < 1, reduce OFs at 130M
scale on CodeParrot. All models are Pre-LN. We downweight both the MLP and Attention residuals.
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Figure 20: Residual scalings improve Signal Prop at 130M scale. Equivalent to Fig 19.
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Figure 21: Residual scalings reduce activation scales at 130M scale. Equivalent to Fig 19.
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Figure 22: Increasing LeakyReLU slope, s, so that the nonlinearity is more linear mostly improves
kurtosis during training, as one might expect from Signal Prop initialisation theory [86, 26]. Here our
notation is LeakyReLU(x) = max(x, sx) for slope s < 1. The exception is when the slope is 0, i.e.
ReLU, the kurtosis is actually better during training, but this is reflected in the signal propagation
during training too (Fig 23). We hypothesise this is because zero neurons get no gradient with ReLU,
and this behaves fundamentally differently to a non-zero LeakyReLU slope. The plots show the
average over 5 seeds, and we plot the first 20K steps (of 80K). The models are Pre-LN and we
downweight the attention residual branch with a factor β = 0.2 to reduce kurtosis contributions from
the attention sub-block, but do not downweight the MLP residual. Note we do not use a log-scaled
y-axis to make the differences between LeakyReLU slopes clearer. Experiment is at 130M scale on
CodeParrot.
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Figure 23: Effect of different LeakyReLU slopes on signal propagation during training, equivalent
to Fig 22. Surprisingly, ReLU (i.e. slope 0) has the best signal propagation (lowest input-wise
correlations) during training in this setting, even though it has the worst signal prop at initialisation in
later layers, compared to all other LeakyReLU variants. This initialisation effect was predicted by
Zhang et al. [86], but our findings regarding training were previously unknown and require further
research.
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Figure 24: Reducing β in Value-SkipInit [28], which replaces Attention matrix A← αI+ βA and
makes attention more identity-like also reduces OFs. We do not train β in Value-SkipInit and fix
α = 1. The models are Pre-LN and we downweight the MLP residual branch with a factor 0.2 to
reduce kurtosis contributions from the MLP sub-block, but do not downweight the attention residual.
Each curve is an average over 5 seeds and we plot only the first 20K steps (of 80K). Experiment is at
130M scale on CodeParrot.
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Figure 25: Smaller LR (max value from 0.001→ 0.0006) reduces OFE in a Pre-LN model at 1.2B
scale on Languini [39]. Models are slightly different from the Pre-LN model in Fig 4 as we do not
upweight the input embeddings as described in App D. Still, we do also observe large increases in
kurtosis during training, and that a smaller LR reduces this. In this experiment, reducing the max LR
to 0.0006 did not impact convergence speed.
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Figure 26: Smaller LRs means reduced OFs, for different Norms and Norm locations. Equivalent of
Fig 6, but with all layers. Experiment is on CodeParrot at 130M scale.
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Figure 27: Convergence speed for the runs in Figs 6 and 26 comparing the effect of reduced LRs.
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Figure 28: Train loss plot with different Adam epsilon, equivalent to Fig 29. There is not a noticeable
difference in convergence speed for ϵ < 3e− 4 in this experiment.
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Figure 29: Kurtosis plot with different Adam epsilons on CodeParrot at 130M scale. Each curve is an
average over 3 seeds. We see that increasing ϵ from 1e− 6 to 3e− 4 monotonically decreases OFE.
At values of ϵ smaller than 1e− 6 there is less of a difference in OFE between different ϵ values.
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Figure 30: Signal Prop plot with different Adam epsilon. Equivalent of Fig 29.

35



0 1K 2K 3K 4K
Training Step

0

20

40

60

80

Ac
tiv

at
io

n 
Ku

rto
sis

1st Block

0 1K 2K 3K 4K
Training Step

2nd Block

0 1K 2K 3K 4K
Training Step

3rd Block

0 1K 2K 3K 4K
Training Step

0

20

40

60

80

Ac
tiv

at
io

n 
Ku

rto
sis

4th Block

0 1K 2K 3K 4K
Training Step

5th Block

0 1K 2K 3K 4K
Training Step

6th Block
AdaFactor
AdamW
Rotated AdaFactor( Shampoo)
Rotated AdamW(=SOAP)

Figure 31: Kurtosis evolution in all 6 layers of a Pre-SRMSNorm transformer trained on CodeParrot
with different optimisers. Equivalent to Fig 8.
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Figure 32: CodeParrot training loss curves for experiments comparing diagonal and non-diagonal
preconditioners. Equivalent to the runs found in Fig 8.
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Figure 33: RMS of input-wise correlation (i.e. signal propagation, or equivalently the RHS of Eq (5))
trajectories in all 6 layers of a Pre-SRMSNorm transformer trained on CodeParrot with different
optimisers. These optimisers are the diagonal Adam and AdaFactor, and their non-diagonal rotated
versions (SOAP and something close to Shampoo, c.f. [69]), like in Sec 5. Notice that the connection
between signal propagation and kurtosis we identify in Sec 4 is not apparent with non-diagonal
preconditioners. In other words, the non-diagonal rotated versions of Adam/AdaFactor have higher
input-wise correlations than diagonal Adam/AdaFactor, despite having better kurtosis properties (seen
in Fig 31). This observation is explained by Fig 34, which looks at the corresponding feature-wise
correlations. These training runs are equivalent to the runs found in Fig 8.
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Figure 34: RMS of feature-wise correlation trajectories, equivalent to Fig 33. Or more explic-
itly,

∑
i,j≤d;i̸=j

(
ΣF
)2
i,j

in the notation of Eq (5). Notice that for non-diagonal preconditioners
(SOAP/Shampoo), the curves in Fig 34 closely track the signal propagation trajectories in Fig 33
(and both are relatively high), meaning that their difference (the kurtosis in Eq (5)) is small. On the
other hand, for diagonal preconditioners (Adam/AdaFactor), the trajectories in Fig 33 are noticeably
higher than in Fig 34, and this difference is precisely the increased kurtosis. As discussed in Sec 4,
theoretically predicting these feature learning behvaiours (dependent on the choices of architecture
and optimiser) during training is beyond the scope of current tools in deep learning theory.
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E.1 Image Classification Experiments

E.1.1 Adam vs. SGD

In Sec 5, we saw that the diagonality of the preconditioning in Adam and AdaFactor was important for
the emergence of outlier features. To test this further, we consider the effect of replacing Adam with
SGD on OFE. SGD does not precondition gradients or, equivalently, SGD preconditions gradient with
the identity matrix. In comparison to optimisers like SOAP or Shampoo that diagonally precondition
in a rotated parameter space, SGD can also be thought to optimise in a rotated parameter space (for
every possible rotation), precisely because it preconditions with the identity matrix.

As transformers are difficult to train (fast) with SGD, we consider OFs in a much simpler architecture
and task: an MLP on CIFAR-10 image classification. Like with Shampoo and SOAP (Fig 8), in
Fig 35 we see that SGD is not as susceptible to OFs as Adam, even with OF-prone architecture
choices, like Normalisation layers. In fact, in this experiment SGD kurtosis actually decreases during
training with Pre-Norm. Fig 36 shows that SGD matches Adam convergence speed in this setting.
The model is a 6-layer Pre-Norm residual MLP of width 1024; we remove Pre-Norms for normless
models. This also highlights that OFs are not specific to the Transformer model.
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Figure 35: OFs of SGD vs Adam in an MLP on CIFAR-10. Although normalisation layers lead to
higher kurtosis for a given optimiser, Adam always has higher OFs than SGD.

0 1K 2K 3K 4K 5K
Training Step

10

20

30

40

50

60

70

80

Tr
ai

ni
ng

 A
cc

ur
ac

y

MLP on CIFAR-10

Adam, Pre-SRMS
Adam, Normless
SGD, Pre-SRMS
SGD, Normless

Figure 36: Train accuracy plot with SGD vs Adam of MLP on CIFAR-10, corresponding to Fig 35.
Adam ϵ is the default value of 1e− 8.
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We note that the levels of kurtosis reached by AdamW in CIFAR-10 image classification MLP settings
do not reach the same heights (peaking around 40 in individual layers in Fig 35) as in our transformer
language modelling settings.18 Having said that, we also show in this subsection that many of our
findings concerning OFs (in terms of kurtosis) carry through to the image classification setting,
including: the effect of Adam ϵ (Figs 37 and 38) and the correlation between signal propagation and
kurtosis for Adam and SGD optimisers (Fig 39).

E.1.2 Vision Transformer Experiments

To assess whether the difference in architecture between our language modelling and image clas-
sification experiments explains this observed difference in peak kurtosis, we consider the Vision
Transformer (ViT) [42], which is largely the same Pre-LN transformer architecture as in our lan-
guage modelling experiments. Instead of processing sequences of tokens like its language modelling
counterpart, ViTs turn an image into a sequence of patches, and alternate self-attention and MLP
sub-blocks (as in App A.1) to process patches.

We consider the ViT-B model, which has 12 blocks and width 768 giving 86M parameters, which
is around the same parameter scale as our 130M CodeParrot experiments and also Pythia-160M in
Fig 1.19 We train on ImageNet-1K using the codebase20 and default hyperparameters of DeIT [108],
but only train for 150 epochs (instead of 300) and do not use distillation in the interests of compute
time and because in this experiment we are not interested in state of the art results but rather the OF
properties of ViTs. We use AdamW optimiser with a max LR of 3.75e-4 (maximum stable LR on a
logarithmically spaced grid) with a batch size of 384 (data parallel across 6 RTX2080-Tis), and warm
up the LR for 5 epochs before cosine decay.

We compare 3 different ViT transformer blocks: Pre-LN, Pre-LN with LayerScale [55] (LayerScale is
a variant of SkipInit [51] that downweights the residual branches with a vector of trainable gains), and
our OP block (using LayerScale to downweight residual branches). We use the default initialisation
for residual branch downweighting factors in LayerScale, of 1e− 4. QK-Norm is implemented with
LN for the OP block.

In Fig 40, we see that Pre-LN ViT-Bs do still suffer from higher peak kurtosis values (around 20
averaged across layers) compared to the OP block (around 4.5 averaged across layers), but the Pre-LN
kurtosis decreases sharply as training progresses, unlike in language modelling settings, and actually
ends up being lower than the OP block at the end of training. In addition, the kurtosis values on this
ViT image classification task are again far lower than transformer language modelling counterparts at
similar parameter scales (e.g. Fig 1 or Fig 14). Adding LayerScale [55] reduces Pre-LN kurtosis (to
even below that of the OP block in terms of peak value), as expected from our findings in Sec 4. In
Fig 41, we see that all three blocks have similar test accuracy performance, with the OP block having
a slight advantage of 0.2%.

From these preliminary experiments with ViTs we conclude that, despite similarities, there are
qualitative differences between OFs (measured via kurtosis) in image classification and language
modelling tasks that are not explained through the choice of architecture (or indeed the choice of
AdamW optimiser). We leave a more in-depth study to future work. It remains to be seen if OFs will
be a barrier to quantising ViTs at scale, as it has been the case for LLMs, though our findings showing
reduced kurtosis (both after and peak during training) suggest this may not be the case. We note
Darcet et al. [79] identify artifacts in the attention maps of ViTs, which may potentially be related to
OFs.

18This difference is not necessarily explained by scale, as our MLP residual stream width of 1024 is actually
wider than our 130M transformer width of 768, which is the scale that produced the much higher kurtosis values
in, for example, Figs 2 and 14.

19This is actually deeper than our default 6 layer transformer in our 130M CodeParrot experiments, and shares
the same width. The parameter difference with language is that a significant fraction of parameters in language
modelling are in the embedding layer.

20https://github.com/facebookresearch/deit
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Figure 37: Kurtosis plot with different Adam ϵ with an MLP on CIFAR-10. The model uses Pre-Norm
structure with SRMSNorm normalisation. Like in Fig 29, we see that larger ϵ generally leads to
smaller OFs.
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Figure 38: Train accuracy plot with different Adam ϵ of MLP on CIFAR-10, equivalent to Fig 37. In
this experiment, milder values of ϵ ∈ {1e− 5, 1e− 6} converge fastest.
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Figure 39: Effect of SGD vs Adam on Signal Prop, for models plotted in Fig 35.
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Figure 40: Average Kurtosis trajectories of ViTs trained on ImageNet-1K. Y-axis is average kurtosis
across the 12 residual stream layers.
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Figure 41: Test accuracies of ViTs trained on ImageNet-1K. The final test accuracies are 79.5% for
OP, 79.3% for Pre-LN + LayerScale, and 78.7% for Pre-LN.
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E.2 Ablating the components of the OP block

In Tabs 3 and 4 and Fig 42 we ablate the components of our OP block. Tab 3 assesses the impact of
not having an EntReg mechanism on training stability and convergence speed on the Languini dataset
[39] at 320M scale. Fig 42 confirms the loss of EntReg causes entropy collapse on CodeParrot at
130M scale, which is shown to lead to unstable training in Fig 43. In these experiments, we also try
the tanh thresholding as an alternative EntReg mechanism to QK-Norm. Tab 4 goes from Pre-LN to
OP one step at a time, assessing the impact of different norms and downweighted residuals, in terms
of OFE.

Table 3: Ablating the convergence and training benefits of the OP block. The asterisk * denotes that
training failed without Flash Attention [109], which centres pre-softmax logits based on their max
value and is therefore more stable. This highlights the training instability of not having some entropy
regulating (EntReg) mechanism, where smaller LRs are required for stability. At a smaller (but stable)
LR, the naive unnormalised model without EntReg converges much slower (17.4 vs 16.2 ppl) in
this example. Even with larger LR, the EntReg mechanism in the OP block improves convergence
(16.6 vs 16.2 ppl for QK-RMSNorm) compared to the naive unnormalised model. Tanh thresholding
(from Grok-1) also works as an example of an alternative EntReg mechanism to QK-Norm. Because
Pre-Norms appear before Query/Key weights, they already provide an implicit EntReg mechanism.
As a result, adding EntReg to Pre-Norm models results in only minor changes to convergence speed
in this experiment (though ViT-22B shows in other settings Pre-Norm alone is not enough [59]).
Models are 320M parameters, trained also for 3.3B tokens on Languini [39] as in Tab 1.

Model MLP/Attn Pre-Norm EntReg Scaled Residual LR Eval PPL

Pre-LN LN None Implicit 1e-3 16.2
Pre-RMSNorm RMS None Implicit 1e-3 16.3

Pre-LN+QK-Norm LN QK-RMS Implicit 1e-3 16.0
Pre-LN+Tanh LN Tanh Implicit 1e-3 16.2

Naive unnormalised None None Yes 3e-4 17.4
Naive unnormalised None None Yes 1e-3 16.6*

OP (QK-Norm) None QK-RMS Yes 1e-3 16.2
OP (Tanh) None Tanh Yes 1e-3 16.4
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Figure 42: No EntReg leads to entropy collapse without Pre-Norms, which means training fails (as
seen in Fig 43).

43



0 20K 40K 60K 80K
Training Step

2

4

6

8

10

12

14

Tr
ai

n 
Lo

ss

Pre-LN
Normless
OP (Tanh)
OP (QK-Norm)

Figure 43: Entropy collapse leads to failed training. Experiment is at 130M scale on CodeParrot.
OP with tanh does not fail but does converge slower in this setting; compared to Tab 3, we use
learnt positional encodings in the input embedding layer, not RoPE, which may account for this
difference. We tuned a few values of the max_attn_val hyperparameter with tanh thresholding:
f(x) = max_attn_val · tanh(x/max_attn_val), which is set by default to 30 in Grok-1, but they
did not close the convergence speed loss.
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Figure 44: OP with Tanh still has reduced peak OFs compared to Pre-LN. This plot corresponds to
the models shown in Fig 42.
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Figure 45: Signal Prop plot with OP Tanh. This plot corresponds to the models shown in Fig 43.

Table 4: Going from Pre-Norm to OP step by step. We remove or add Norms one by one, with
different Norm locations depicted in Fig 47. All models trained well (at similar speeds), as they
all have some form of entropy regulation (either explicit or implicit) and downweighted residuals.
We present the peak Kurtosis (Eq (1)), Signal Propagation (RMS of input-wise correlations), and
activation RMS (∥X∥F ) over the training run, with mean and standard deviation over three seeds. We
present results where activations X are the input to the second transformer block. We see that that
preventing attention entropy collapse through QK-Norm helps reduce OFs (which we see coincides
with improved signal propagation). On the other hand, peak activation RMS does not correlate well
as a metric with peak kurtosis, across the different models. In addition, the 2 best models in terms of
OFs (our OP and also the third last row, which has no Pre-V or Pre-MLP Norms) are 1-homogeneous
(at least at initialisation), which implies that the fact that Pre-V or Pre-MLP Norms make the residual
stream scale independent is detrimental for OFE. This is corroborated by Fig 46, which plots the
trajectories for the three models (1. Post-QK+Pre-V, 2. QK Norms only and 3. OP) that achieved
peak kurtosis lower than 10. Fig 46 shows that the non-homogeneity (due to a Pre-V Norm) leads to
a large initial increase in kurtosis and signal propagation in this setting, like we consistently see with
Pre-Norm blocks e.g. Fig 5. Models are 130M scale on CodeParrot.

Model Norm Scaled Resid Homog.? Act RMS Signal Prop Kurtosis

Post-QK Pre-QK Pre-V Pre-MLP
Pre-RMS None RMS RMS RMS Implicit No 5.45±0.13 0.72±0.03 131.8±21.2

Scaled Resids None RMS RMS RMS Yes No 3.97±0.09 0.47±0.04 46.4±14.0

All Norms RMS RMS RMS RMS Yes No 3.92±0.07 0.24±0.05 12.7±10.2

Attn Norms only RMS RMS RMS None Yes No 4.38±0.07 0.29±0.04 11.8±8.03

Post-QK+Pre-V RMS None RMS None Yes No 4.40±0.06 0.27±0.01 6.4±1.32

QK Norms only RMS RMS None None Yes Yes 4.32±0.06 0.15±0.01 2.5±0.93

Pre-QK only None RMS None None Yes Yes 4.38±0.01 0.37±0.05 64.0±49.5

OP (ours) RMS None None None Yes Yes 4.46±0.09 0.17±0.01 4.3±1.49
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Figure 46: Training trajectories of kurtosis, signal propagation and activation scales for the three best
configurations in Tab 4. The setting with Pre-V Norm (which is not 1-homogeneous) sees a large
initial increase in all metrics, with kurtosis and input correlations peaking within 10K steps before
reducing during training.

Figure 47: A transformer block with many different Norm layers depicted, to help parse the ablations
we consider in Tab 4. Note we break down the standard attention Pre-Norm into Pre-QK Norm and
Pre-V Norm because removal of Pre-V Norm makes the attention sub-block homogeneous (i.e. f(x)
is homogeneous if f(kx) = kf(x) for some scalar k > 0), hence acts differently to Pre-QK Norm,
which acts as an implicit regulator for attention entropy.
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F Orders of Activation Updates for Kurtosis

To better appreciate the effect of different optimiser hyperparameters on OFs, we now consider how
the updates that arise during training to a representation matrix X ∈ Rn×d can lead to increasing
kurtosis (and OFs). In general, a training step (e.g. with a gradient/Adam update on trainable
parameters earlier in the forward pass than X) will lead to an update X← X+∆X.

Recall that Kurt(X) is an defined through comparing the fourth m4(X) and second m2(X) moments

of neuron RMS
√

1
n

∑n
α=1 X

2
α,j for different j. As such, it is natural to ask how updating X ←

X+∆X updates these moment statistics. We first study the second moment update u2:

u2
def
= m2(X+∆X)−m2(X) =

1

d

d∑
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(
1

n

n∑
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def
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(∆X
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2. (16)

Likewise for the fourth moment update u4:

u4
def
= m4(X+∆X)−m4(X) =
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2X2
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u4,3
def
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n∑
α,β=1

4Xα,j∆
X
α,j(∆

X
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2, u4,4
def
=

d∑
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n∑
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(∆X
α,j)

2(∆X
β,j)

2. (20)

Above, we have broken down the pth moment update up into (up,l)l, where up,l denotes the contri-
bution to up that is order l in ∆X. The reason for this is that, typically, a learning rate parameter η
is used such ∆X is linear in η, and so up,l is order l in η.21 Usually, η is chosen to be small such
that ∆X is small element-wise relative to X. Note that the quadratic update terms up,2 are always
positive,22 whereas the linear terms up,1 are not necessarily positive, so we might expect quadratic
terms to drive any increase in the pth moment mp.

In Fig 48, we plot the cumulative sum of these (up,l) terms, for our OP block, a default Pre-LN block,
and also three modifications that reduce OFs in Pre-LN (increasing Adam epsilon from 1e − 8 to
1e− 4, reducing maximum LR from 1e− 3 to 3e− 4, and using a non-diagonal preconditioner e.g.
SOAP [69]) trained on CodeParrot at 130M scale. We see indeed that the cumulative u4,2 quadratic
term dominates the update to u4 and drives the increase in m4 in the default Pre-LN model. Rducing
LR, increasing Adam ϵ, and using SOAP, reduce this term, which also reduces the growth in fourth
moment and kurtosis. For the choice of LR this is intuitive: in the small LR η → 0 limit the linear
first order term u4,1 will dominate and the effect of quadratic u4,2 can be ignored. The impact of
sub-leading order terms like u4,2 in OFE is related to the discretisation drift between discrete-time
gradient descent and continuous-time gradient flow [110]. Fig 49 plots the non-cumulative version of
Fig 48.

On the other hand, in Fig 48 the OP block has a relatively large cumulative increase from u4,2 that
is matched by a decrease in u4,1 and a large increase in u2, which means the kurtosis (which is the

21For example, if we have X = HW for a previous layer H that is fixed (e.g. embedding layer in a
transformer). Then we usually update weights W +∆W linearly in η, and so ∆X = H∆W is also linear in η.
For other layers we need to consider the change in H too, but this will also be linear in η to leading order.

22This is straightforward to see for u2,2. For u4,2 the second summand can be factorised as∑
j

(∑
α Xα,j∆α,j

)2 which is positive.
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ratio m4/m
2
2) does not increase as much as Pre-LN. Fig 50 shows that u4,2 dominates the cubic u4,3

and quartic u4,4 update terms to the fourth moment, so we can focus on studying u4,2. We plot the
moment updates for the input to the second attention block (out of six).

The models presented in Figs 48 to 50 were trained using Adam or SOAP without momentum, akin
to RMSProp [111]: we set β1 = 0 and β2 = 0.95 in Adam.23 The reason for this was to separate
out the contribution of individual training steps on the kurtosis updates. If instead we re-introduce
momentum with β1 = 0.9, then the different update steps become mixed and the leading order
u4,1 dominates the updates to the kurtosis for the Pre-LN model, as seen in Fig 51. The choice of
β2 = 0.95 highlights that OFs are not specific to the standard choice of β2 = 0.999 in AdamW.

23Recall SOAP [69] is just Adam in a rotated basis (obtained via Shampoo), and still uses β1, β2 hyperparam-
eters

48



0

50

100

150

200

250

300

350
Kurtosis

Model
OP, AdamW
Pre-LN, AdamW
Pre-LN, AdamW,  small LR
Pre-LN, AdamW, eps=1e-4
Pre-LN, Rotated AdamW(=SOAP)

0.5

0.4

0.3

0.2

0.1

0.0
Cumulative u2, 1

0.0

0.1

0.2

0.3

0.4

0.5
Cumulative u2, 2

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Cumulative u2

0.030

0.025

0.020

0.015

0.010

0.005

0.000
Cumulative u4, 1

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Cumulative u4, 2

0 5K 10K 15K 20K 25K 30K 35K 40K
Training Step

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Cumulative u4

Figure 48: Cumulative metrics to track kurtosis updates. Models were trained without momentum.
We see that the quadratic u4,2 term dominates updates to the fourth moment.
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Figure 49: Non-cumulative metrics to track kurtosis updates. Models were trained without momen-
tum.
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Figure 51: Cumulative metrics to track kurtosis updates. Models trained with momentum. The
leading order u4,1 term now dominates the updates to the fourth moment.
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G Worse Signal Prop Means Higher Activation Kurtosis in Gaussian Features

Proposition G.1 (Bad Signal Propagation implies higher kurtosis for Gaussian features). Suppose
we have X ∈ Rn×d zero-mean Gaussian distributed with all inputs uniformly correlated with some
ρ > 0, and independent features (across columns). That is: E[X] = 0 and E[Xα,jXβ,k] = ρ ·1{j =
k}+ (1− ρ) · 1{j = k} · 1{α = β}.24

Then, if we consider the feature-wise Gram matrix ΣF = 1
nX

⊤X, we have that the expected squared
diagonal entry of ΣF is E[(ΣF)

2
1,1] = 1+2ρ2+ on(1) increases as ρ increases, whereas the expected

diagonal entry is E[(ΣF)1,1] = 1 is independent of ρ.

Proof. As Gaussians are determined by their first two moments, let us suppose that Xα,j =√
1− ρuα,j +

√
ρvj , where (uα,j)α,j and (vj)j are independent standard Gaussians. Then, for

two neuron indices k, l ≤ d we have:

(
XTX

)
k,l

=(1− ρ)
∑
α≤n

uα,kuα,l (21)

+ ρnvkvl (22)

+
√
ρ(1− ρ)

∑
α≤n

uα,kvk + uα,lvl. (23)

We are interested in the diagonal elements of ΣF = 1
nX

⊤X, when k = l above. In this case, we have
(u2

α,k)α and v2k are all independent chi-squared χ2 distributed with 1 degree of freedom. For Z ∼ χ2
1,

we have E[Z] = 1 and E[Z2] = 3.

For the first moment, we take the expectation above and note that the summands of Eq (23) are
products of independent zero-mean Gaussians (so zero mean). This gives E[XTXk,k] = n and hence
E[(ΣF)1,1] = 1, as required.

For the second moment, we note that all cross products in
(
XTX

)2
k,k

will disappear in expectation
when we square besides the one involving Eqs (21) and (22), as both terms will be χ2

1 distributed
(hence not zero-mean). On the other hand, all cross products involving Eq (23) will be an odd order
in at least one zero-mean independent Gaussian (hence zero-mean).

The square of Eq (21) is (1 − ρ)2n(n + 2) in expectation, which can be seen by the fact that∑
α≤n u

2
α,k is actually a χ2

n distribution, with mean n and variance 2n. Hence for Z ∼ χ2
n, we have

E[Z2] = E[Z]2 + Var(Z) = n2 + 2n.

The square of Eq (22) is 3ρ2n2 in expectation, again by properties of χ2
1 random variables.

The square of Eq (23) is O(n) (in fact 4ρ(1 − ρ)n) in expectation and will be dominated by the
O(n2) terms. To see this, we note that Eq (23) is a sum of n zero mean i.i.d. random variables, so
one can use the additive property of variances for independent random variables.

Finally, the cross term between Eqs (21) and (22) is 2ρ(1−ρ)n2 in mean. One factor of n comes from
the sum of inputs α ≤ n and the other comes from Eq (22) already. The product of two independent
χ2
1 random variables is 1 in expectation.

Putting this all together, we have

E[XTX2
k,k] =(1− ρ)2n(n+ 2) + 3ρ2n2 + 4ρ(1− ρ)n+ 2ρ(1− ρ)n2 (24)

=
(
(1− ρ)2 + 3ρ2 + 2ρ− 2ρ2

)
n2 +O(n) (25)

=(1 + 2ρ2)n2 +O(n) (26)

As ΣF = 1
nX

TX, we divide Eq (24) by n2, and obtain our desired result.
24Note this covariance gives a “uniform” correlation structure E[ 1

d
XX⊤] = (1− ρ)In + ρ1n1

⊤
n , which has

been studied before in Noci et al. [27], He et al. [28] as a way to study signal propagation in sequences. Rank
collapse [60] is when ρ = 1.
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Above, we note that E[(ΣF)
2
1,1] is equivalent to the fourth moment m4 in our feature-wise kurto-

sis definition Eq (1), while E[(ΣF)1,1] corresponds to the second moment m2. Hence, Prop G.1
demonstrates that worse signal propagation (in terms of higher ρ) leads to higher kurtosis.

We note that the result is restricted to a Gaussian setting with independent features. This is an accurate
description of large-width NN initialisation [19–21], but does not capture training dynamics as we
discuss in the main paper. Indeed, the maximum kurtosis (1 + 2ρ2) is 3 when ρ = 1, whereas in our
experiments we obtain much higher values during training (and the maximum is the width d, which
is considerably larger than 3 in practice). This represents a gap in our theoretical understanding and
practice, which we leave for future study.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way,
we acknowledge that the true answer is often more nuanced, so please just use your best judgment
and write a justification to elaborate. All supporting evidence can appear either in the main paper
or the supplemental material, provided in the appendix. If you answer [Yes] to a question, in the
justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported by our theoreti-
cal analysis and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Directions for future work are discussed in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Assumptions and proofs are provided, among others, in Sections 2 and 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided code for our main experimental setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released our code. The data is already open-source. Instructions for
reproducing results are provided in the experiments sections and appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report the training details, including hyper-parameters and optimizers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do report error bars for a subset of experiments. Other experiments were a
performed at a scale that makes it expensive to run multiple times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give precise information on the computational resources and training time
of our models.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is in line with code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a discussion of broader impacts in our introduction in terms of
improved efficiency and accessibility of AI.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: Not applicable
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use publicly available datasets and give adequate credit.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

61


	Introduction
	Problem Setting
	Normalisation Layers and Outlier Features
	Signal Propagation and Outlier Features
	Optimisation Choices and Outlier Features
	Additional Experiments
	Discussion
	Appendix
	 Appendix
	Additional Background Knowledge
	Mathematical Description of Transformer Blocks
	Background on NN optimisers
	Additional Related Work

	Mathematical description of OP block
	Modifications That Affect Signal Prop During Training Affect OFE
	Additional Experimental Details
	Additional Experiments
	Image Classification Experiments
	Adam vs. SGD
	Vision Transformer Experiments

	Ablating the components of the OP block

	Orders of Activation Updates for Kurtosis
	Worse Signal Prop Means Higher Activation Kurtosis in Gaussian Features


