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Abstract

We study learning in average-reward weakly coupled Markov decision processes
(WCMDPs) with heterogeneous arms. Naive approaches suffer exponential com-
putation and sample complexity in the number of subsystems. We study a plug-in
approach built on an efficient planning algorithm, which attains the first finite-
sample (PAC) optimality-gap guarantees with polynomial sample complexity. This
result is established under a new framework built on a Lyapunov analysis of a
reference policy combined with a Lyapunov drift transfer technique, which can be
viewed as a generalization of the classical simulation lemma.

1 Introduction

Weakly-coupled Markov decision processes (WCMDPs) [14] are a natural abstraction for large-scale
decision-making systems—from job scheduling [40] and machine maintenance [13] to healthcare [5],
surveillance [32], and online advertising [6, 44]. A WCMDP comprises N arms/subproblems, each
of which is itself an MDP. In the heterogeneous case, these MDPs may differ across arms. At each
timestep, the controller chooses an action for each arm, upon which the arms evolve independently.
The arms are coupled by a set of per-period global budget constraints on the actions: for each resource
type, the aggregate cost summed over all arms’ actions must not exceed a prescribed value.

A baseline sample complexity bound for learning WCMDPs could be derived by ignoring the weakly-
coupled structure and treating the system as a single tabular MDP. Recent work has essentially
resolved the sample complexity of tabular average-reward MDPs [18, 33, 35, 47, 46] (see Appendix
A for more details), in particular showing a Θ(|S × A|) sample size dependence, where S × A is
the state-action space of the tabular MDP. Hence this naive baseline would lead to a dependence on
the product of the sizes of the state-action spaces of each subproblem MDP, which is exponential
in the number of subsystems N . Moreover, it would anyways be computationally intractable to
solve WCMDPs via this exact tabular reduction. This motivates our central question: how can one
learn a near-optimal stationary policy in average-reward WCMDPs without incurring exponential
dependence on N? Our work answers this by exploiting weak coupling structurally, leading to
finite-sample guarantees with only polynomial dependence on N .

For average-reward WCMDP, most existing work focuses on the planning setting where the MDP
model is known. Recent work studies the learning setting with finite data, particularly for Restless
Bandits (RBs), a special case of WCMDP. The work [3] proves asymptotic convergence of Q-learning
guided by Whittle-index, and [2] proposes a Lagrange Index Policy and establishes asymptotic
optimality in largely homogeneous RBs. Most related to us is [39], which proposes an index-aware
algorithm for multi-action RBs and proves sublinear regret. The fully heterogeneous WCMDPs we
study allow for multiple per-period budget constraints and are more general then RBs. Moreover, we
consider a offline dataset/generative model rather than online trajectories, and our results establish
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finite-sample PAC optimality-gap guarantees, in contrast to the regret bounds or asymptotic guarantees
in existing literature. See Appendix A for additional discussion on related work.

Our Contribution We study average-reward WCMDPs with N fully heterogeneous arms and K
per-period budget constraints in the generative model setting. We develop a plug-in approach built on
an efficient planning algorithm—specifically the ID Policy with Reassignment (Algorithm 1)—that
handles heterogeneity. Using n samples drawn from the generative model, we estimate the MDP
model for each arm and plug the estimates into the planning algorithm. Under a unichain and mixing
assumption on each arm (Assumption 1), we show that our algorithm achieves an optimality gap

of O
(
N
√

S+log(SAN/η)
n

)
+ O

(
1√
N

)
with probability 1 − η, where SA is the size of the state-

action space per arm. This is the first finite-sample (PAC) optimality-gap guarantee for WCMDPs
whose sample and computational complexities scale polynomially in N . To establish this result, we
develop a new framework that builds on a Lyapunov analysis of a reference policy combined with
a Lyapunov drift transfer technique, generalizing the classical simulation lemma. This framework
applies whenever the reference policy admits such a Lyapunov analysis, and hence we believe it is
broadly applicable to the analysis of other stochastic systems and reinforcement learning algorithms.

2 Problem setup

A weakly coupled Markov decision process consists of N arms. Each arm i ∈ [N ] is an MDP
Mi = (S,A, pi, ri, (ck,i)k∈[K]), where S and A are finite state and action spaces with cardinalities
|S| = S, |A| = A, and pi(s

′
i | si, ai) is the transition probability from state si to s′i under action ai.

Denote the joint state and action by s = (s1, . . . , sN ) ∈ SN and a = (a1, . . . , aN ) ∈ AN . The N
arms evolve independently given the joint action. If arm i is in state si and takes action ai, it yields
reward ri(si, ai) ∈ [0, rmax] and incurs costs ck,i(si, ai) ∈ [0, cmax] for k ∈ [K]. The joint actions
a must satisfy budget constraints

∑
i∈[N ] ck,i(si, ai) ≤ αkN, ∀k ∈ [K]. We assume a dummy action

0 ∈ A exists such that ck,i(s, 0) = 0 for all k, i, s, hence the all-0 joint action is always feasible.

2.1 Policy, state and performance criterion

For a stationary policy π : SN → AN , we write Pπ(·) and Eπ[·] for probability and expectation
under the law induced by this policy. Let Si,t denote the state of arm i and St = (Si,t)i∈[N ]

the system state; the joint action is At = (Ai,t)i∈[N ]. Define the one-hot representation Xi,t =

(Xi,t(s))s∈S ∈ RS , where Xi,t(s) = 1 if Si,t = s and 0 otherwise. Also define the system
matrix Xt ∈ RN×S whose i-th row is Xi,t. We use S∞,A∞, X∞ to denote the random variables
following the stationary distributions of St,At, Xt. We only consider stationary Markov policies.
The long-run average reward a.k.a. gain of a policy π from initial state s0 is defined by ρπ(s0) ≜
limT→∞

1
T

∑T−1
t=0

1
N

∑
i∈[N ] Eπ [r(Si,t, Ai,t)] . A WCMDP is the following optimization problem:

max
π

ρπ(s0) s.t.
∑

i∈[N ] ck,i(Si,t, Ai,t) ≤ αkN, ∀k ∈ [K],∀t ≥ 0. (1)

It is a standard result [28, Theorem 9.1.8] that for finite MDPs, there always exists a stationary
Markov policy that attains the optimal average reward, denoted by ρ⋆, namely the maximum of (1).

2.2 LP relaxation and optimal single-armed policy

Below we present the linear programming (LP) relaxation of the N -armed RB problem given in [41],
which plays a central role in the analysis of RB policies:

max
(yi(s,a))i∈[N], s∈S, a∈A

1
N

∑
i∈[N ], s∈S, a∈A yi(s, a)ri(s, a) (2a)

subject to 1
N

∑
i∈[N ]

∑
s∈S, a∈A yi(s, a)ck,i(s, a) ≤ αk, ∀k ∈ [K], (2b)∑

s′∈S, a′∈A pi(s | s′, a′)yi(s′, a′) =
∑

a∈A yi(s, a), ∀s ∈ S, i ∈ [N ], (2c)∑
s′∈S, a′∈A yi(s

′, a′) = 1, yi(s, a) ≥ 0, ∀s ∈ S, a ∈ A, i ∈ [N ]. (2d)
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Letting ρrel be the optimal value of (2), {y⋆(s, a)}s∈S,a∈A is the corresponding optimal solution.
[41] have already shown that ρrel ≥ ρ⋆(s0),∀s0 ∈ SN . This relation allows us to bound the
optimality gap of any policy π using the inequality ρ⋆(s0)− ρπ(s0) ≤ ρrel − ρπ(s0),∀s0 ∈ SN .

2.3 Learning under a generative model

We assume access to a generative model (or simulator) that enables independent sampling from the
transition distribution pi(· | s, a) for any arm i and any state-action pair (s, a) ∈ S ×A. While the
transition kernel pi is not explicitly known, we can collect n independent samples S1

s,a, . . . , S
n
s,a

from pi(· | s, a) for each i ∈ {1, 2, . . . , N}, (s, a) ∈ S×A. Based on these samples, we construct an
empirical estimate of the single-arm transition kernel: p̂i(s′ | s, a) := 1

n

∑n
i=1 I{Si

s,a = s′},∀s′ ∈
S. Accordingly, we can construct a product-form empirical model (P̂ , r) for the N -armed system:

P̂ (s′ | s,a) = P̂ (s′1, . . . , s
′
N | s1, . . . , sN , a1, . . . , aN ) :=

∏N
i=1 p̂i(s

′
i | si, ai).

We define the LP relaxation of the empirical WCMDP problem similarly to the LP (2) but with true
models pi replaced by p̂i; see (8) in Appendix B. Let ρ̂rel be the optimal value of the empirical LP
(8), {ŷ⋆(s, a)}s∈S,a∈A be the corresponding optimal solution, ̂̄π⋆

i be the optimal single-armed policy.
Let ρ̂π ∈ RSN

be the gain of a policy π under the empirical MDP (P̂ , r).

3 Main result

Before stating the main result, we fix notation and the standing assumption for the single-armed
policies, and then we introduce the planning algorithm (Algorithm 1, adapted from [41]). Fixing an
arm i, for each stationary Markov policy π : S → A, the state of arm i evolves as a Markov chain
on S with transition matrix piπ = (piπ(s, s

′))s,s′∈S . We assume the chain is unichain (one recurrent
class, possibly with transient states) and denote its unique stationary distribution µi

π = (µi
π(s))s∈S .

Define the mixing time τ iπ as τ iπ := maxs∈S min
{
t ∈ N :

∥∥(piπ)t(s, ·)− µi
π(·)

∥∥
1
≤ 1

4

}
, which is

finite if the chain is aperiodic. We impose the following assumption throughout the paper:
Assumption 1 (Unichain and Uniform Mixing). We assume that for each arm i, under any policy π
in the single-armed MDP, the induced Markov chain is a unichain. Furthermore, we assume that all
such Markov chains mix uniformly, in the sense that their mixing times are uniformly bounded above
by a constant τ0, i.e ∀i ∈ [N ],∀π, τ iπ ≤ τ0. Define τ = (3 + log2 S)τ0.

We consider the optimal single-armed policy π̄⋆
i defined in [41]. With Assumption 1, the Markov

chain induced by π̄⋆
i converges to a unique stationary distribution, denoted by µ⋆

i = (µ⋆
i (s))s∈S .

Now we describe the planning algorithm we use. We begin with a one-time preprocessing step:
solve the LP in (2) to obtain the optimal state–action frequencies (y⋆i (s, a)), compute the optimal
single-armed policies π̄⋆

i , and reassign arm indices using Algorithm 2. In the online phase at time t,
for each arm i we sample an ideal action Aideal

i,t ∼ π̄⋆
i (· | Si,t). We then attempt to implement these

ideal actions in increasing order of arm IDs, setting the real action of arm 1 to Aideal
1,t , then arm 2, and

so on, as long as all per-period global budget constraints are satisfied. As soon as any resource budget
is exhausted or would be violated, we stop and assign the no-cost action 0 to all remaining arms.
Theorem 1. Consider any N -armed WCMDP with initial state s0 satisfying Assumption 1. Feed
M̂i = (S,A, p̂i, ri, (ck,i)k∈[K]) into Algorithm 1 and obtain π̂ID. For any 0 < η < 1 and sample
size n, there exist constants C ′, C ′′ independent of N such that, with probability at least 1− η,

ρ⋆(s0)− ρπ̂ID(s0) ≤ C ′N

√
S + log(SAN/η)

n
+

C ′′
√
N

To the best of our knowledge, this is the first work to provide finite-sample (PAC) guarantees for
average-reward weakly coupled MDPs (WCMDPs) whose sample complexity depends polynomi-
ally—rather than exponentially—on the system dimension (number of subsystems N ).

4 Technical Overview

Our framework builds on a Lyapunov analysis of a reference policy combined with a Lyapunov drift
transfer technique, which can be viewed as a generalization of the classical simulation lemma. Here
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we provide an overview of this framework. We remark that this framework applies whenever the
reference policy admits such a Lyapunov analysis, and is therefore more broadly applicable.

Our goal is to upper bound ρ⋆ − ρπ̂ID . For both the true MDP and the empirical MDP, one can derive
upper bounds on the gain of any policy via a linear program relaxation [41], denoted as ρrel and ρ̂rel,
respectively. Then

ρ⋆ − ρπ̂ID ≤ ρrel − ρπ̂ID = ρrel − ρ̂πID + ρ̂πID − ρπ̂ID ≤ ρrel − ρ̂πID + ρ̂rel − ρπ̂ID . (3)

We focus on bounding the term ρrel − ρ̂πID ; the term ρ̂rel − ρπ̂ID can be bounded in a similar manner.
The standard approach for analyzing the sample complexity of plug-in planning algorithms (e.g.
[4, 1, 22, 45]) is to utilize the simulation lemma, which is the identity

ρπID − ρ̂πID = ÊπID
[
(PπID − P̂πID)h

πID(X∞)
]
, (4)

where hπID is the relative value function of πID (see for instance [24, 10, 45]). Because ρrel ≥
ρπID ≥ ρrel − O(1/

√
N) [41], (4) could be used to control ρrel − ρ̂πID (and furthermore they are

equivalent up to O(1/
√
N)). The key problem with this approach is that it is unclear how to control

hπID . In the framework below, the role of hπID is replaced by the Lyapunov function V , which is
constructed explicitly by [41] and already enjoys known bounds on its size (i.e. ∥V ∥∞).

Lyapunov analysis. We take the ID policy proposed in [41], denoted by πID, as the reference
policy. The optimality gap of πID is analyzed via a Lyapunov function V , which satisfies two key
properties (for some constants βV , KV , C1 and C2):

(C1) Drift: For all states x, EπID [V (Xt+1)− V (Xt) | Xt = x] ≤ −βV V (x) +KV

√
N ;

(C2) Optimality gap dominance: ρrel − ρπID ≤ C1EπIDV (X∞)/N + C2/
√
N .

Moreover, the dominance property extends to the empirical MDP:

(C2′) Optimality gap dominance: ρrel − ρ̂πID ≤ C1ÊπIDV (X∞)/N + C2/
√
N .

Drift transfer. Let PπID
and P̂πID

be the transition probability matrices (generators) of the Markov
chains under πID in the true and empirical models, respectively. Treating V as a column vector, we
can write EπID

[
V (Xt+1) | Xt = x

]
= PπID

V (x), which is the vector PπID
V evaluated at state x.

Then the drift condition (C1) can be rewritten as

(PπID
− I)V (x) ≤ −βV V (x) +KV

√
N.

By adding and subtracting P̂πID
, this implies a drift condition in the empirical system

(P̂πID
− I)V (x) = (PπID

− I)V (x) + (P̂πID
− PπID

)V (x) ≤ −βV V (x) + ∆ (5)

where ∆ := KV

√
N + (P̂πID

− PπID
)V (x) contains an additional term capturing model inaccuracy.

Empirical performance bound Given the empirical drift condition (5), bounding ρrel − ρ̂πID

proceeds analogously to how a bound on ρrel−ρπID is derived from (C1) and (C2) [41]: Applying (5)
to the stationary random variable X∞ under the empirical distribution ÊπID and rearranging, we have

βV ÊπID [V (X∞)] ≤ ÊπID [∆(X∞)] = KV

√
N + ÊπID

[
(P̂πID

− PπID
)V (X∞)

]
. (6)

We can then combine (6) with (C2′) to obtain

ρrel − ρ̂πID ≤ C1ÊπIDV (X∞)/N + C2/
√
N

≤ C1

βV N
ÊπID

[
(P̂πID

− PπID
)V (X∞)

]
+

(
C1KV

βV
+ C2

)
1√
N

(7)

as desired. The intrinsic suboptimality of the ID policy, which is still present in the full-information
(planning) setting, is captured by the second term of (7), while the first term reflects the statistical
error which arises from transferring the drift condition for πID to the empirical system. This first term
bears a close resemblance to the simulation lemma (4), but replaces hπID with the Lyapunov function
V . Overall, we believe this approach has broad potential for analyzing the sample complexity of
planning algorithms deployed in a plug-in fashion, so long as the policy output by the planning
algorithm admits a Lyapunov-drift-based performance guarantee.
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Notation

Let R, N, and N+ denote the sets of real numbers, nonnegative integers, and positive integers,
respectively. For n ≤ n′ with n, n′ ∈ N+, define the sets [n] ≜ {1, 2, . . . , n}, [n : n′] ≜ {n, n +
1, . . . , n′} and [0, 1]n =

{
i
n | i ∈ N, 0 ≤ i

n ≤ 1
}

. For vectors u, v ∈ RS , we use the inner product
⟨u, v⟩ =

∑
s∈S u(s)v(s). For each cost type k ∈ [K], let c⋆k,i(s) =

∑
a∈A π̄⋆

i (a | s)ck,i(s, a), and
let c⋆k = (c⋆k,i)i∈[N ] denote the vector of the functions c⋆k,i’s. In addition, let r⋆i (s) =

∑
a∈A π̄⋆

i (a |
s)ri(s, a), and let r⋆ = (r⋆i )i∈[N ] denote the vector of the functions r⋆i ’s. We combine these vectors
into a set G = {c⋆1, c⋆2, . . . , c⋆K , r⋆}. For a matrix A ∈ Rm×n, the induced operator norm from ℓ∞ to
ℓ∞ is defined as ∥A∥∞→∞ = supx ̸=0

∥Ax∥∞
∥x∥∞

= max1≤i≤m

∑n
j=1 |Aij |.

Symbol Meaning
S,A State and Action space
S,A Cardinality of the state and action space, S = |S|, A = |A|
s, a one-dimension state and action
s,a N -dimension state and action
pi(· | s, a) True transition probability of arm i given (s, a)
p̂i(· | s, a) Empirical transition probability of arm i given (s, a)
P (· | s,a) True transition probability of the N -arm MDP given (s, a)

P̂ (· | s,a) Empirical transition probability of the N -arm MDP given (s, a)
µ⋆ Stationary distribution obtained by running π̄⋆ under the true MDP
µ̂⋆ Stationary distribution obtained by running π̂⋆ under the empirical MDP
µ̂πID Stationary distribution obtained by running πID under the empirical MDP
µπ̂ID Stationary distribution obtained by running π̂ID under the true MDP
Pπ One-step transition matrix induced by a policy π
P∞
π Limiting transition matrix of the Markov chain under policy π
∥ · ∥1 ℓ1 norm of a vector
∥·∥∞→∞ The induced operator norm from ℓ∞ to ℓ∞ of a matrix
1 All-ones vector
1 Indicator function
λW Maximal eigenvalue of a matrix W
Eπ Expectation under policy π and the true transition kernel P
Êπ Expectation under policy π and the empirical transition kernel P̂
ρπ average reward of policy π under true model
ρ̂π average reward of policy π under empirical model

A Related Work

We review prior work by first considering planning and then learning, and within each part we contrast
the average–reward criterion with finite–horizon or discounted objectives, moving from Restless
Bandits (RBs) to general WCMDPs as assumptions weaken, and we conclude by summarizing recent
progress on the sample complexity of tabular average–reward MDPs under the generative–model
setting.

Under planning with average–reward, the RB literature builds on the Whittle relaxation and the
Whittle index policy [37, 36]. Subsequent papers establish asymptotic or o(1) optimality gaps under
increasingly relaxed structural conditions, including unichain/aperiodicity and attractor assumptions
[17, 16, 15], and explore typed or partially heterogeneous arms [42, 43]. Moving from RBs to general
WCMDPs, scalable planning is achieved via linear relaxations, Lagrangian decomposition, and
periodic re–optimization [23, 12, 30]. Very recent analyses obtain asymptotic gaps such as O(1/

√
N)

for fully heterogeneous systems by Lyapunov–style arguments for ID–type policies [41], though
these are still performance guarantees rather than learning bounds.

Turning to planning with finite–horizon or discounted objectives, RB work develops fluid and LP
relaxations with performance guarantees and asymptotic optimality in various regimes [7–9, 17].
Analogous WCMDP schemes based on re–optimization are effective computationally [12, 23], yet
their optimality gaps often grow super–linearly with the (effective) horizon, which limits direct
transfer to average–reward analyses.
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Building on these planning foundations, the literature on learning with average–reward increasingly
leverages planning priors to structure exploration under unknown dynamics. In Restless Bandits
(RBs)—a special case of WCMDPs—index–aware algorithms for infinite–horizon, average–reward,
multi–action models achieve sublinear regret with polynomial dependence on problem size [39];
Whittle–index–guided Q–learning admits convergence in the average–reward setting [3]. Finite–time
(non–asymptotic) rates have also been established for Q–Whittle methods, quantifying how estimation
error translates into value loss [38]. Beyond indices, works exploit threshold–optimal structure to
design actor–critic / policy–gradient schemes that can serve as practical surrogates for explicit index
computation while retaining theoretical guarantees under structural assumptions [26]. Moving from
RBs to general weakly coupled systems, weak coupling has been embedded directly into the learning
architecture: the tabular WCQL counterpart of WCDQN enjoys almost–sure convergence, while the
deep variant reports strong empirical gains [11].

Turning next to finite–horizon or discounted objectives with global budgets, Lagrangian relaxation
combined with (deep) Q–learning yields regret or asymptotic guarantees in RB–type models [19, 20];
index–aware and Q–Whittle–type algorithms also remain effective in this regime, often with an
empirical emphasis [25, 29].

Finally we discuss related work on the sample complexity of tabular average-reward MDPs. For
the uniformly mixing and (more general) weakly communicating settings, [34] and [47] developed
minimax-optimal algorithms, both utilizing a discounted reduction plug-in approach. These results
match lower bounds due to [18] and [33]. [47] also developed algorithms and matching lower bounds
for the most general setting of multichain (aka general) MDPs. These results require prior knowledge
of environmental complexity parameters, a shortcoming which was addressed by [31, 27, 45, 21, 46].
In particular [45] studies a direct plug-in approach for solving average-reward MDPs, without
discounted reduction. We also refer to these works and the references therein for further background
on the history of this problem.

B LP relaxation of the empirical RB problem

Below we give the LP relaxation of the empirical N -armed RB system constructed from the data.

max
(yi(s,a))i∈[N], s∈S, a∈A

1

N

∑
i∈[N ]

∑
s∈S, a∈A

yi(s, a)ri(s, a) (8a)

subject to
1

N

∑
i∈[N ]

∑
s∈S, a∈A

yi(s, a)ck,i(s, a) ≤ αk, ∀k ∈ [K], (8b)

∑
s′∈S, a′∈A

p̂i(s | s′, a′)yi(s′, a′) =
∑
a∈A

yi(s, a), ∀s ∈ S,∀i ∈ [N ], (8c)

∑
s′∈S, a′∈A

yi(s
′, a′) = 1, yi(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A, ∀i ∈ [N ]. (8d)

C Algorithms
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Algorithm 1: ID policy with reassignment
Input :N -armed WCMDP instance (Mi = (S,A, pi, ri, (ck,i)k∈[K])i∈[N ]

1 Preprocessing:
2 Solve the LP in (2) to obtain the optimal state–action frequencies (y⋆i (s, a))i∈[N ], s∈S, a∈A.
3 Compute the optimal single-armed policies (π̄⋆

i )i∈[N ].
4 Perform ID reassignment using Algorithm 2.
5 Real-time:
6 for t = 0, 1, 2, . . . do
7 Sample ideal actions Aideal

i,t ∼ π̄⋆
i ( · | Si,t ) for all i ∈ [N ].

8 I ← 1.
9 while

∑
i∈[I] ck,i(Si,t, A

ideal
i,t ) ≤ αkN, ∀ k ∈ [K] do

10 Arm I: take action AI,t ← Aideal
I,t ; I ← I + 1.

11 foreach i ∈ {I, I + 1, . . . , N} do
12 take action Ai,t ← 0.

Algorithm 2: ID reassignment
Input :optimal state–action frequencies (y⋆i (s, a))i∈[N ], s∈S, a∈A, budgets (αk)k∈[K]

Output :new arm IDs recorded in newID(i) for each i ∈ [N ]
1 Compute (C⋆

k,i)i∈[N ], k∈[K] and the set of active constraints A using (8).
2 if A = ∅ then
3 newID(i)← i for all i ∈ [N ] ; // No need for ID reassignment
4 else
5 F ← ∅ ; // Arms that have been assigned new IDs

6 αmin ← mink∈[K] αk; δ ← αmin/4; d←
⌈
(cmax − δ)K

αmin/2− δ

⌉
.

7 For each k ∈ A, set Dk ← { i ∈ [N ] : C⋆
k,i ≥ δ }.

8 for ℓ = 0, 1, . . . , ⌊N/d⌋ − 1 do
9 I(ℓ)← [ ℓd+ 1 : (ℓ+ 1)d ]; j ← ℓd+ 1.

10 for k ∈ A do
11 if

∑
i∈F C⋆

k,i 1{newID(i) ∈ I(ℓ)} < δ then
12 pick any i ∈ Dk and set newID(i)← j;
13 remove i from every Dk′ (k′ ∈ A); F ← F ∪ {i}; j ← j + 1.

14 For all i ∈ [N ] \ F , assign newID(i) randomly from [N ] \ {newID(i′) : i′ ∈ F}.
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