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Abstract
For a natural language understanding bench-001
mark to be useful in research, it has to con-002
sist of examples that are diverse and diffi-003
cult enough to discriminate among current and004
near-future state-of-the-art systems. However,005
we do not yet know how best to select pas-006
sages to collect a variety of challenging exam-007
ples. In this study, we crowdsource multiple-008
choice reading comprehension questions for009
passages taken from seven qualitatively dis-010
tinct sources, analyzing what attributes of pas-011
sages contribute to the difficulty and question012
types of the collected examples. To our sur-013
prise, we find that passage source, length, and014
readability measures do not significantly affect015
question difficulty. Through our manual anno-016
tation of seven reasoning types, we observe017
several trends between passage sources and018
reasoning types, e.g., logical reasoning is more019
often required in questions written for techni-020
cal passages. These results suggest that when021
creating a new benchmark dataset, selecting a022
diverse set of passages can help ensure a di-023
verse range of question types, but that passage024
difficulty need not be a priority.025

1 Introduction026

State-of-the-art systems have shown performance027

comparable with humans on many recent natural028

language understanding (NLU) datasets (Devlin029

et al., 2019; Sun et al., 2021), suggesting that these030

benchmarks will no longer be able to measure fu-031

ture progress. To move beyond this, we will need032

to find better ways of building difficult datasets,033

ideally without sacrificing diversity or coverage034

(Bowman and Dahl, 2021). To obtain such human-035

written examples at scale, there are active lines036

of crowdsourcing research on protocols of worker037

handling and feedback (Nangia et al., 2021) and038

the design of the collection task (Ning et al., 2020;039

Rogers et al., 2020). However, we do not have clear040

information on what aspects of text sources affect041

the difficulty and diversity of examples.042

MCTest: Tony walked home from school on his birthday.
He was surprised to see a lot of cars in front of his house.
When he opened the door and entered the house, he heard
a lot of people yell, “Surprise!” It was a surprise party for
his birthday. His parents called all his friends’ parents and
invited them to come to a party for Tony. [...]
Q: Who were invited to the party and by who?
� Tony’s parents invited only his friends
� Tony invited his friends and their parents
� Tony’s parents invited his friends’ parents
X� Tony’s parents invited his friends and their parents

ReClor: Humanitarian considerations aside, sheer eco-
nomics dictates that country X should institute, as country
Y has done, a nationwide system of air and ground trans-
portation for conveying seriously injured persons to special-
ized trauma centers. Timely access to the kind of medical
care that only specialized centers can provide could save
the lives of many people. [...]
Q: What is the economic argument supporting the idea of

a transportation system across the nation of Country X?
� Building the transportation system creates a substantial

increase of jobs for the locals
X� Increasing access to specialized medical centers can

lower the chance of the workforce population dying
� Transportation ticket prices directly contribute to the

government’s revenue
� Country Y was successful with their attempts to poten-

tially save lives so Country X should try it as well

Figure 1: Example questions for passages from simple
narratives (MCTest) and technical arguments (ReClor).

Crowdsourced datasets in reading comprehen- 043

sion use passages taken from a variety of sources, 044

such as news articles, exams, and blogs, about 045

which questions are written (Lai et al., 2017; 046

Trischler et al., 2017; Rogers et al., 2020). The 047

first example in Figure 1 is from MCTest (Richard- 048

son et al., 2013), the passages of which are written 049

in grade-school-level English. The second example 050

is from ReClor (Yu et al., 2020), which consists of 051

passages and questions written for graduate and law 052

school admission examinations. We hypothesize 053

that difficult passages, such as those in the second 054

example, are more suitable for crowdsourcing chal- 055

lenging questions. Passages that are linguistically 056

complex and have dense information could help 057

facilitate the writing of questions that require un- 058
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derstanding a wide range of linguistic and world059

knowledge, following intricate events, and com-060

prehending logical arguments. In contrast, easy061

passages, as in children’s stories, likely talk about062

common situations and simple facts, which might063

prevent workers from writing difficult questions.064

In this work, we crowdsource multiple-choice065

reading comprehension questions to analyze how066

question difficulty and type are affected by the067

choice of source passage. Using passages extracted068

from seven different sources, we ask crowdwork-069

ers to write questions about the given passages.070

We compute the difference between human and071

machine accuracy, using it as a measure of the072

question difficulty, to investigate whether there is a073

correlation between the question difficulty and lin-074

guistic aspects of the passage, such as their source,075

length, and readability.076

In addition to a standard setting where we di-077

rectly accept crowdworkers’ submissions, we use078

an adversarial setting in which they have to write079

questions that fool a strong reading comprehen-080

sion model (Bartolo et al., 2020; Kiela et al., 2021).081

Previous work finds that questions that require nu-082

merical reasoning frequently appear in the adver-083

sarial data collection of the extractive QA task on084

Wikipedia articles (Kaushik et al., 2021), but our085

aim is to see whether we observe a similar trend in086

multiple-choice questions written for different pas-087

sage sources or if the adversarial setting is useful088

for collecting especially diverse questions.089

To our surprise, we find that the difficulty of col-090

lected questions does not depend on the differences091

of passages in linguistic aspects such as passage092

source, passage length, Flesch–Kincaid grade level093

(Kincaid et al., 1975), syntactic and lexical sur-094

prisal, elapsed time for answering, and the average095

word frequency in a passage. Our main positive096

finding comes through our manual annotation of the097

types of reasoning that each question targets, where098

we observe that questions that require numerical099

reasoning and logical reasoning are relatively dif-100

ficult. In addition, we find several trends between101

the passage sources and reasoning types. For ex-102

ample, logical reasoning is more often required in103

questions written for technical passages, whereas104

understanding of a given passage’s gestalt and the105

author’s attitude toward it are more frequently re-106

quired for argumentative and subjective passages107

than expository passages.108

These results suggest that when creating a new109

benchmark dataset or choosing one for evaluat- 110

ing NLU systems, selecting a diverse set of pas- 111

sages can help ensure a diverse range of question 112

types, but that passage difficulty need not be a pri- 113

ority. Our collected datasets could be useful for 114

training reading comprehension models and for fur- 115

ther analysis of requisite knowledge and compre- 116

hension types in answering challenging multiple- 117

choice questions.1 118

2 Related Work 119

Crowdsourcing NLU Datasets Crowdsourcing 120

has been widely used to collect human-written ex- 121

amples at scale (Rajpurkar et al., 2016; Trischler 122

et al., 2017). Crowdworkers are usually asked to 123

write questions about a given text, sometimes with 124

constraints imposed to obtain questions that require 125

specific reasoning skills such as multi-hop reason- 126

ing (Yang et al., 2018) or understanding of tempo- 127

ral order, coreference, or causality (Rogers et al., 128

2020). In this study, to analyze naturally written 129

examples, we do not consider specific constraints 130

on questions or answer options. 131

Current benchmark datasets constructed by 132

crowdsourcing may not be of sufficient quality 133

to precisely evaluate human-level NLU. For ex- 134

ample, Ribeiro et al. (2020) reveal that state-of- 135

the-art models in traditional NLP benchmarks fail 136

simple behavioral tests of linguistic capabilities 137

(checklists). Chen and Durrett (2019) and Min et al. 138

(2019) show that questions in multi-hop reasoning 139

datasets such as HotpotQA by Yang et al. (2018) do 140

not necessarily require multi-hop reasoning across 141

multiple paragraphs. Kaushik and Lipton (2018) 142

find that baseline models with question-only and 143

passage-only input often perform comparably well 144

to full-input models in widely-used datasets. 145

To investigate how to collect high-quality, chal- 146

lenging questions through crowdsourcing, Nangia 147

et al. (2021) compare different sourcing protocols 148

and find that training workers and providing feed- 149

back about their submissions improve the difficulty 150

and quality of their reading comprehension ques- 151

tions. To encourage workers to write difficult exam- 152

ples, Bartolo et al. (2020) propose to collect ques- 153

tions using a model-in-the-loop setting. Although 154

this adversarial approach enables us to collect chal- 155

lenging questions efficiently, Gardner et al. (2020) 156

point out that the collected examples might be bi- 157

1We will make our datasets, annotation instructions and
results, and crowdsourcing scripts publicly available.

2



ased towards the quirks of the adversary models.158

Bowman and Dahl (2021) extend this argument,159

and point out that adversarial methods can system-160

atically eliminate coverage of some phenomena.161

This is also supported by Kaushik et al. (2021),162

but their findings are limited to extractive QA for163

Wikipedia articles. Our motivation is to see if this164

argument is applicable to the multiple-choice for-165

mat with a wide range of passage sources for which166

we expect crowdworkers to write linguistically di-167

verse questions and answer options.168

Sources of NLU Datasets Reading comprehen-169

sion datasets are often constructed with a lim-170

ited number of passage sources. Rajpurkar et al.171

(2016) sample about five hundred articles from172

the top 10,000 articles in PageRank of Wikipedia.173

Similarly, Dua et al. (2019) curate passages from174

Wikipedia articles containing numeric values to col-175

lect questions for mathematical and symbolic rea-176

soning. Khashabi et al. (2018) construct a dataset177

in which questions are written for various passage178

sources such as news articles, science textbooks,179

and narratives. However, we cannot use their ques-180

tions for our analysis of the variation of naturally181

written questions because they are designed to re-182

quire local multi-sentence reasoning (such as coref-183

erence resolution and paraphrasing) by filtering out184

questions answerable only with a single sentence.185

Similarly to our work, Sugawara et al. (2017)186

find that readability metrics and question difficulty187

do not correlate in reading comprehension datasets.188

Our study differs in the following two points, which189

could cause different findings: First, their obser-190

vational study of existing datasets has fundamen-191

tal confounding factors because the questions they192

examine are constructed using different sourcing193

methods (e.g., automatic generation, expert writing,194

and crowdsourcing), which could have an impact195

on the question difficulty. We aim to investigate196

uniformly crowdsourced examples across seven dif-197

ferent sources to obtain insights for future data con-198

struction research using crowdsourcing. Second,199

they define question difficulty using human anno-200

tations alone, but this does not necessarily reflect201

the difficulty for current state-of-the-art models.202

In this study, we define the question difficulty as203

the human–machine performance gap using eight204

recent strong models, which enables a more fine-205

grained analysis of the collected questions for a206

better benchmark of current models. We adopt the207

multiple-choice format because, as discussed by208

Huang et al. (2019), it allows us to evaluate both 209

human and machine performance easily. 210

3 Crowdsourcing Tasks 211

This study aims to analyze what kinds of passages 212

make crowdsourced reading comprehension ques- 213

tions difficult. We use Amazon Mechanical Turk. 214

To collect difficult and high-quality examples, we 215

require workers to take a qualification test before 216

accepting our question writing and validation tasks. 217

3.1 Worker Qualification 218

The qualification test has two parts, which we run 219

in separate tasks: question answering and writing. 220

To take the qualification test, workers have to meet 221

the following minimum qualifications: based in the 222

United States, Canada, or United Kingdom, have 223

an approval rate of at least 98%, and have at least 224

1,000 approved tasks. 225

The question answering task is used to identify 226

workers who answer reading comprehension ques- 227

tions carefully. A single question answering task 228

has five questions that are randomly sampled from 229

the validation set of ReClor in which most ques- 230

tions are taken from actual exams. Those who cor- 231

rectly answer at least four out of the five questions 232

proceed to the next qualification phase. 233

The question writing task is used to familiarize 234

workers with the writing of multiple-choice read- 235

ing comprehension questions and select those who 236

can carefully write examples. We ask workers to 237

write two questions given two different passages 238

randomly sampled from the validation set of RACE 239

(Lai et al., 2017). This dataset consists of self- 240

contained passages written for middle- and high- 241

school exams in various subjects, which we expect 242

the workers to be able to write questions for eas- 243

ily. Following Nangia et al. (2021), we then review 244

the workers’ submissions and grade them using a 245

rubric with four criteria: the question (1) is answer- 246

able without ambiguity (yes or no); (2) requires 247

reading the whole passage (five-point scale); (3) 248

is creative and non-obvious (five-point scale); and 249

(4) has distractor answers that could look correct 250

to someone who has not read the passage carefully 251

(more than one, one, or no). We rank workers using 252

this rubric and allow approximately the top 50% of 253

workers to proceed to the main writing task. We 254

make sure that these workers write two unambigu- 255

ous and answerable questions. 256
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3.2 Writing Task257

In the main writing task, a worker is shown a sin-258

gle passage and asked to write a question about259

it along with four answer options. We provide in-260

structions where we describe that questions have261

to be challenging but still answerable and unam-262

biguous for humans, and we include good and bad263

examples to illustrate what kinds of questions we264

aim to collect. For example, good examples require265

reading the whole passage and ask about characters’266

motivations or consequences of described events,267

while bad examples only ask about a simple fact268

or are answerable without reading the passage (see269

Appendix P for details).270

Each worker who passes the qualification round271

is randomly assigned to either standard or adversar-272

ial data collection. In the standard collection, we ac-273

cept workers’ submissions without any filtering. In274

the adversarial collection, a written question is sent275

to a reading comprehension model immediately. If276

the model cannot answer that question correctly,277

we accept it. We allow workers to submit ques-278

tions (i.e., get paid) after three attempts even if they279

keep failing to fool the model. We use UnifiedQA280

3B v2 (Khashabi et al., 2020) for the adversary281

model, which is trained on a wide variety of ques-282

tion answering datasets such as MCTest, RACE,283

NarrativeQA (Kočiský et al., 2018), and SQuAD.284

While the source of training data that we use in285

our models will inevitably influence our findings,286

focusing on a model with very diverse pretraining287

and fine-tuning will minimize this effect.288

Passage Sources We use passages from the fol-289

lowing seven sources: (1) MCTest children’s nar-290

ratives, (2) Project Gutenberg narratives, (3) Slate291

online magazine articles from the 1990s sourced292

from the Open American National Corpus (Ide and293

Suderman, 2006), (4) middle- and high-school ex-294

ams from RACE, (5) graduate-level exams from295

ReClor, and (6) science and (7) arts articles from296

Wikipedia. We use the passages from the training297

sets of MCTest, RACE, and ReClor. For Gutenberg,298

Slate, and Wikipedia, we split available books and299

articles into passages. Details are in Appendix A.300

In the writing task, a passage is randomly taken301

from a passage pool in which there are the same302

number of passages extracted from each source.303

3.3 Validation Task304

We collect the votes of five workers for each of the305

collected questions. Those workers who passed306

the question answering task of the qualification 307

round can accept the validation tasks. To incen- 308

tivize workers, we use preexisting gold-labeled ex- 309

amples (from Nangia et al., 2021) as catch trials, 310

representing about 10% of the tasks, and pay a 311

bonus of $0.50 USD if a worker can answer those 312

questions correctly at least 80% of the time. If a 313

worker fails to answer them at least 60% of the 314

time, we disqualify the worker from future rounds 315

of data collection. 316

Worker Pay and Logistics For the writing tasks, 317

the base pay is $2.00 per question, which we esti- 318

mate to be approximately $15.00 per hour based on 319

measurements from our pilot runs. If a worker suc- 320

ceeds in fooling the model in adversarial data col- 321

lection, they receive an additional bonus of $1.00. 322

For validation, a single task consisting of five ques- 323

tions pays $2.00, which we estimate to be approxi- 324

mately $15.00 per hour as well. 325

4 Crowdsourcing Results 326

4.1 Dataset Construction 327

We collect a total of 4,340 questions, with 620 328

in each of the seven sources, further divided into 329

310 each for the standard and adversarial methods. 330

Each passage is paired with only one question. We 331

randomly sample two out of five validation votes to 332

validate the collected examples and use the remain- 333

ing three votes for measuring human performance. 334

In the validation, we regard a question as valid if 335

at least one of the two votes is the same as the 336

writer’s gold answer. If both votes are the same 337

as the gold answer, the question is regarded as a 338

high-agreement example. We find that 90.3% of the 339

collected questions are valid (92.0% for standard 340

collection and 88.7% for adversarial collection). 341

In addition, 65.7% of the collected questions are 342

classified as high-agreement (68.7% and 62.7% for 343

standard and adversarial collection, respectively). 344

We present the dataset and worker statistics in Ap- 345

pendices B and C. 346

4.2 Human Performance 347

Table 1 displays human and model performance. 348

We use the questions that are validated using two 349

out of five human votes in the validation step above 350

and take the majority vote of the remaining three 351

votes to measure human performance on them. We 352

observe 3.3% and 2.0% gaps between the standard 353

and adversarial collection in the valid and high- 354

agreement questions, respectively. 355
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All valid examples High-agreement portion

Source Method Human UniQA DeBERTa M-Avg. ∆ Human UniQA DeBERTa M-Avg. ∆

MCTest Dir. 89.1 68.3 84.5 78.1 11.0 95.0 71.5 88.2 81.5 13.5
Adv. 93.6 26.5 75.3 66.6 27.1 96.5 27.9 78.6 68.2 28.3
Total 91.4 47.4 79.9 72.3 19.0 95.8 49.3 83.3 74.7 21.1

Gutenberg Dir. 85.2 70.7 84.5 79.9 5.3 92.8 75.0 88.5 83.4 9.4
Adv. 83.0 26.4 80.1 69.7 13.3 87.5 28.3 82.6 72.9 14.6
Total 84.1 48.8 82.3 74.8 9.3 90.3 53.1 85.7 78.4 11.9

Slate Dir. 84.9 72.4 88.9 84.1 0.8 90.7 74.6 91.7 87.0 3.8
Adv. 82.6 26.0 71.7 69.4 13.2 92.9 27.9 76.0 73.8 19.1
Total 83.8 49.8 80.5 77.0 6.8 91.8 52.6 84.3 80.8 11.0

RACE Dir. 91.2 70.4 85.0 80.8 10.3 95.4 74.8 90.4 84.6 10.8
Adv. 89.4 28.9 69.4 65.0 24.4 94.3 31.0 73.8 67.3 27.0
Total 90.3 50.0 77.3 73.1 17.3 94.9 53.3 82.2 76.1 18.8

ReClor Dir. 94.1 72.6 88.5 80.6 13.5 96.9 79.6 91.1 84.4 12.5
Adv. 83.9 29.2 71.5 66.3 17.6 88.8 32.4 74.5 71.3 17.5
Total 89.2 51.7 80.4 73.7 15.5 93.2 58.1 83.5 78.5 14.8

Wiki. Sci. Dir. 90.6 75.9 90.6 83.2 7.3 95.8 79.0 94.9 87.3 8.5
Adv. 84.3 27.4 75.2 65.6 18.8 92.8 29.4 77.2 68.3 24.5
Total 87.5 52.1 83.0 74.6 12.9 94.4 56.3 86.8 78.6 15.8

Wiki. Arts Dir. 88.3 76.2 88.7 84.2 4.1 91.5 77.0 92.5 88.1 3.4
Adv. 83.3 25.5 73.8 69.4 13.9 91.4 25.8 75.8 71.7 19.7
Total 85.8 51.2 81.3 76.9 8.9 91.5 52.3 84.5 80.2 11.2

All sources Dir. 89.0 72.4 87.2 81.6 7.5 94.0 75.9 91.0 85.2 8.8
Adv. 85.7 27.1 73.8 67.4 18.3 92.0 29.0 76.9 70.5 21.5
Total 87.4 50.2 80.7 74.6 12.8 93.1 53.6 84.3 78.2 14.9

Table 1: Accuracy of humans and models and the difference (∆) between human accuracy and the average zero-
shot performance of eight different models (M-avg.) for all valid questions and the high-agreement portion of them.
The highest and lowest gaps are highlighted in bold and underlined. The questions are crowdsourced with (Adv.)
and without (Dir.) adversarial feedback. UniQA is the zero-shot performance by the UnifiedQA 3B model used in
the adversarial data collection. DeBERTa is the performance by the xlarge model fine-tuned on RACE.

4.3 Machine Performance356

To establish the model performance that is not bi-357

ased towards a single model, we compute the av-358

erage accuracy (M-avg.) of eight different models359

from the following two classes: RoBERTa large360

(four models with different random seeds; Liu et al.,361

2019) and DeBERTa large and xlarge (v2; He et al.,362

2020) either fine-tuned on MNLI (Williams et al.,363

2018) first or not.364

The RoBERTa and DeBERTa models are all fine-365

tuned on RACE. Among these models, DeBERTa366

xlarge (MNLI-fine-tuned) performs best on RACE,367

achieving 86.8% accuracy. Because UnifiedQA368

3B (72.3% on RACE) is used in the adversarial369

data collection, it shows lower accuracy on the370

adversarial questions (not included in the average).371

The performance of these two models is shown for372

comparison in Table 1. Except where noted, we do373

not train the models on any collected questions.374

Supervised Performance For each dataset, we375

evaluate the performance of DeBERTa large trained376

on the datasets other than the target dataset in a377

leave-one-out manner. Our motivation is to see378

whether the accuracy values significantly improve379

by training (i.e., the human–model gaps decrease). 380

If there is a large gain, it would imply that the 381

datasets have simple patterns among examples that 382

the models can exploit. The results show no sig- 383

nificant gains in the adversarial datasets, but the 384

standard datasets show some small gains (see Ap- 385

pendix D). 386

Partial-Input Performance As Kaushik and 387

Lipton (2018) point out, reading comprehension 388

datasets might have annotation artifacts that en- 389

able models to answer questions without passages 390

or question sentences. To investigate such arti- 391

facts in our collected examples, we evaluate the 392

performance of two DeBERTa models, which are 393

stronger than the others, with the ablation of ques- 394

tions (P+A), passages (Q+A), and both questions 395

and passages (A only). We see large drops in the 396

zero-shot performance of DeBERTa xlarge. In ad- 397

dition, we do not observe a significant performance 398

improvement in the supervised performance by De- 399

BERTa large (MNLI-fine-tuned). These results 400

demonstrate that the collected questions and an- 401

swer options do not have severe annotation artifacts 402

for any passage source (see Appendix E). 403
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Figure 2: Passage length, Flesch–Kincaid grade level, syntactic and lexical surprisal, elapsed time for question
answering and writing, and average word frequency of passages in the easy and hard examples.

4.4 Human–Model Performance Gap404

Following Nangia et al. (2021), we compute the405

human–model performance gap (∆) between the406

human and the average model accuracies to esti-407

mate the difficulty of questions for models. We408

observe a small variation in the gap for different409

passage sources in the high-agreement questions410

(∆ = 14.9 ± 3.6). We find the highest human411

performance for MCTest questions in the high-412

agreement portion and the lowest for Gutenberg,413

whereas the model’s highest performance is for414

Slate and the lowest for MCTest. Surprisingly, the415

questions sourced from MCTest, which consists416

of simple narrative passages, show the largest gap417

out of all sources for the high-agreement questions.418

Although ReClor consists of passages for graduate-419

level exams, it produces smaller gaps than RACE,420

which consists of passages for middle- and high-421

school exams. Gutenberg passages are written for422

adults, but the examples written for those passages423

do not show larger gaps than those for MCTest. We424

find a trend in the human performance: the ques-425

tions of easy-to-read sources (e.g., MCTest and426

RACE) show higher accuracy and those of difficult-427

to-read sources (e.g., Gutenberg and Slate) show428

lower, but this trend is not observed either in the429

machine performance or human–machine perfor-430

mance gap. These observations are inconsistent431

with our initial expectations.432

5 Linguistic Analysis433

We analyze how the linguistic aspects of the col-434

lected examples correlate with the human–model435

performance gap computed in the experiments.436

To get a better estimate of human performance,437

we use the high-agreement examples (Nie et al.,438

2020). For ease of comparison, we split these ex- 439

amples into two subsets: easy (∆ ≤ 20%) and 440

hard (∆ ≥ 40%). These subsets have 1,970 and 441

547 examples, respectively. Appendix F provides 442

the frequency of easy and hard examples across the 443

passage sources and collection methods. 444

5.1 Readability Measures 445

We compute the correlation between the human– 446

model performance gap and readability measures 447

across all valid examples (Pearson’s r and p-value) 448

and independence between the distributions of the 449

easy and hard subsets about the measures (p-value 450

in Welch’s t-test). Figure 2 shows the density distri- 451

butions of the easy and hard subsets, while Appen- 452

dices G to L provide the plots of all valid examples. 453

Passage Length We use the number of words 454

(except for punctuation) as the passage length (top 455

left in Figure 2).2Across all examples, we observe 456

r = 0.01 (p = 0.47) (the full plot is in Ap- 457

pendix G). The t-test shows p = 0.51. We ob- 458

serve no relationship between the passage length 459

and question difficulty. 460

Flesch–Kincaid Grade Level We use the 461

Flesch–Kincaid grade level (Kincaid et al., 1975) as 462

a basic metric of text readability (top center in Fig- 463

ure 2). This metric defines readability based on an 464

approximate US grade level with no upper bound 465

(higher is more difficult to read). It is computed for 466

a passage using the average number of words that 467

appear in a sentence and the average number of syl- 468

lables in a word (see Appendix I for details). The 469

correlation between the grade and human–model 470

performance gap is r = −0.08 (p < 0.001) and the 471

2We analyze question and option length in Appendix H.
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t-test shows p < 0.001. This result demonstrates472

that passage readability has a small negative effect473

on the question difficulty, perhaps pointing to an474

interfering effect whereby our pre-qualified human475

annotators are more likely to make mistakes on476

more complex passages.477

Syntactic and Lexical Surprisal The Flesch–478

Kincaid grade level only considers sentence length479

and the number of syllables. To better estimate the480

passage difficulty in terms of the psycholinguistic481

modeling of human text processing, we use syn-482

tactic and lexical surprisal measures (Roark et al.,483

2009). These measures are computed using incre-484

mental parsing and proved to be useful for predict-485

ing human reading time. We observe r = 0.000486

(p = 0.99) for syntactic surprisal and r = −0.007487

(p = 0.66) for lexical surprisal across all exam-488

ples. We do not observe any statistically significant489

difference between the easy and hard subsets (syn-490

tactic p = 0.52 and lexical p = 0.57 in the t-test;491

see top right in Figure 2). Appendix J describes492

details of the calculation.493

Annotation Speed Inspired by the psycholin-494

guistic study of text complexity (Gibson, 1998;495

Lapata, 2006), we measure the average time crowd-496

workers spent answering questions in the valida-497

tion tasks (see bottom left in Figure 2). This mea-498

sures the elapsed time of both reading a given pas-499

sage and thinking about its question, which is used500

as an approximation of reading time (as a proxy501

of text readability). The correlation coefficient502

(r = −0.06 with p < 0.001) and t-test (p = 0.88)503

show that there is only a small negative correla-504

tion with question difficulty. We also measure the505

elapsed time for writing questions as a reference506

(bottom center in Figure 2 and Appendix K), ob-507

serving that there is no strong correlation (r = 0.02508

with p = 0.27).509

Word Frequencies Following Chen and Meur-510

ers (2016), we analyze the effect of word frequen-511

cies on text readability. Using word frequencies per512

one million words in SUBTLEXus (Brysbaert and513

New, 2009), we calculate the average frequency514

of words appearing in a passage as a measure of515

passage difficulty in terms of vocabulary (a lower516

average frequency implies greater difficult). We do517

not observe any statistically significant difference518

by the t-test p = 0.14 (bottom right in Figure 2) or519

Pearson’s r = 0.02 with p = 0.27 (Appendix L).520

We observe similar trends even when using the521
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Figure 3: Question words and their two subsequent
words in the (a) easy and (b) hard examples.

human performance as the difficulty measure (Ap- 522

pendix N). 523

5.2 Question Types 524

We analyze how passage sources and collection 525

methods affect question types in this section. 526

Question Words We automatically extract the 527

first wh-words that appear in each valid question; if 528

no wh-word is extracted, we count the question as 529

polar. Figure 3 plots the question words and their 530

two subsequent words (except articles) in the easy 531

and hard questions. From this we observe that the 532

hard questions are generic, not specific to given 533

passages (e.g., which of the following is correct?) 534

more often than the easy questions. This probably 535

results from the difference between the standard 536

and adversarial data collection. The workers in the 537

adversarial collection tend to write generic ques- 538

tions, while those in the standard collection write 539

questions that are more balanced (e.g., there are 540

more easy why and how questions). We also notice 541

that the hard subset has more how many questions. 542

This is likely due to the fact that it is easy for an- 543

notators to learn that numeric questions often fool 544

the adversary model. These observations imply 545

that adversarial data collection tends to concentrate 546

the distribution of questions towards a few specific 547

question types (e.g., generic and numeric). This is 548

consistent with the observations in Kaushik et al. 549

(2021). See Appendix M for details. 550

Comprehension Types Following Bartolo et al. 551

(2020) and Williams et al. (2020), we analyze what 552

kind of comprehension is required to answer the 553

collected questions. We sample a total of 980 high- 554

agreement questions, 70 from each passage source 555

and collection method, and then manually anno- 556

tate them with one or more labels of seven com- 557

prehension types. The definitions of these types, 558
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Figure 5: Frequency of comprehension types across
passage sources and collection methods. Because a
question can have multiple labels, the sum of the fre-
quencies may exceed 100%.

examples, and detailed results are presented in Ap-559

pendix M. Figure 4 shows the frequency of com-560

prehension types for different question difficulties561

(676 easy, 172 hard) and the collection methods.562

We can see that numeric, spatial/temporal, and log-563

ical questions appear more often in the hard subset564

in both collection methods.3 Looking at the fre-565

quency across the passage sources in Figure 5, we566

find that there are some trends between the sources567

and comprehension types as follows:568

• Technical documents, such as those used in569

graduate-school-level reading comprehension570

exams, tend to yield logical reasoning questions571

(e.g., ReClor and Slate).572

3In contrast, when we use the average human performance
as the question difficulty measure, no comprehension type is
significantly harder than the others (Appendix N).

• Child-level texts tend to yield numerical rea- 573

soning questions in the standard setting (e.g., 574

MCTest and RACE). In the adversarial set- 575

ting, passages containing many numerical values 576

tend to yield such questions (e.g., MCTest and 577

Wikipedia arts). 578

• To collect gestalt questions or those considering 579

the author’s attitude in a given passage, passages 580

covering subjective or argumentative topics (e.g., 581

Gutenberg, Slate, and ReClor) are suitable. In 582

contrast, expository passages such as Wikipedia 583

articles are not. 584

• Narratives and related texts (e.g., MCTest, 585

Gutenberg, and part of RACE) involve events 586

with characters, which tend to yield spa- 587

tial/temporal reasoning questions. 588

Although the definitions of our comprehension 589

types are coarse and these trends do not ensure that 590

specific kinds of passages always yield the target 591

comprehension type, considering passage sources 592

might be an effective strategy for collecting ques- 593

tions of an intended comprehension type. 594

6 Conclusion 595

To make an NLU benchmark useful, it has to con- 596

sist of examples that are linguistically diverse and 597

difficult enough to discriminate among state-of- 598

the-art models. We crowdsource multiple-choice 599

reading comprehension questions for passages ex- 600

tracted from seven different sources and analyze 601

the effects of passage source on question difficulty 602

and diversity. 603

Although we expect that the difficulty of a pas- 604

sage affects the difficulty of questions about that 605

passage, the collected questions do not show any 606

strong correlation between the human–machine per- 607

formance gap and passage source, length, or read- 608

ability measures. Our manual annotation of com- 609

prehension types reveals that questions requiring 610

numerical or logical reasoning are relatively diffi- 611

cult. We also find several trends between passage 612

sources and comprehension types. 613

These results suggest that when creating a new 614

benchmark dataset, we need to select passage 615

sources carefully, so that the resulting dataset con- 616

tains questions that require an understanding of 617

the linguistic phenomena that we are interested in. 618

This is especially important in the adversarial set- 619

ting because it could concentrate the distribution of 620

questions towards a few specific question types. 621
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Source Method Valid High

MCTest Dir. 91.6 71.3
Adv. 91.3 73.9
Total 91.5 72.6

Gutenberg Dir. 91.3 67.1
Adv. 89.0 59.4
Total 90.2 63.2

Slate Dir. 90.0 66.1
Adv. 85.5 59.0
Total 87.7 62.6

RACE Dir. 94.8 70.3
Adv. 91.6 67.7
Total 93.2 69.0

ReClor Dir. 92.9 72.6
Adv. 86.1 60.6
Total 89.5 66.6

Wiki. Sci. Dir. 92.3 69.0
Adv. 88.4 58.1
Total 90.3 63.5

Wiki. Arts Dir. 91.0 64.5
Adv. 88.7 60.0
Total 89.8 62.3

All sources Dir. 92.0 68.7
Adv. 88.7 62.7
Total 90.3 65.7

Table 2: Frequency of valid and high-agreement exam-
ples for different passage sources and collection meth-
ods.

C Worker Statistics952

Of the 1,050 workers who joined the question-953

answering phase of the qualification round, 259954

workers (24.7%) passed it. From them, 157 work-955

ers submitted the question writing task, and 72956

workers (36 each for the standard and adversar-957

ial collection) qualified for the main writing task,958

from which 49 workers joined. The workers were959

allowed to write up to 250 questions. A total of960

167 workers participated in the validation task. No961

worker answered more than 730 questions. Data962

collection took approximately a month including963

the qualification round and the validation task.964

D Supervised Model Performance965

Table 3 shows the supervised performance of the966

DeBERTa large model.967

E Partial-Input Model Performance968

Tables 4 and 5 report the zero-shot performance of969

DeBERTa xlarge and the supervised performance970

of DeBERTa large (MNLI).971

F Easy and Hard Subsets972

Table 6 presents the frequency of easy and hard973

examples across passage sources and collection974

Source Method Valid High

MCTest Dir. 70.7+6.9 72.2+6.6

Adv. 65.6+1.8 68.0+2.5

Gutenberg Dir. 79.2+5.6 82.1+5.5

Adv. 76.0+2.4 79.6+3.0

Slate Dir. 77.1+3.8 79.1+3.1

Adv. 74.2+0.8 77.0+1.0

RACE Dir. 78.2+8.6 79.6+9.3

Adv. 71.8+2.3 72.6+2.2

ReClor Dir. 74.6+1.6 76.1+1.0

Adv. 72.6−0.4 74.6−0.5

Wiki. Sci. Dir. 78.5+7.7 79.4+8.5

Adv. 74.8+4.1 74.9+4.0

Wiki. Arts Dir. 80.7+6.6 79.7+5.4

Adv. 75.3+1.2 75.2+1.0

Table 3: Supervised performance of DeBERTa large.
The accuracy of each row is given by the model trained
on the questions of the other rows (leave-one-out train-
ing). Subscript values show the difference from its zero-
shot accuracy.
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Figure 6: Passage length (number of words) and
human–model performance gap. Pearson’s r = 0.01
with p = 0.54.

methods. 975

G Passage Length 976

Figure 6 shows the relationship between the pas- 977

sage length and the human–model performance 978

gap. 979

H Question and Option Length 980

We plot the average question and option length (the 981

number of words except for punctuation) in the 982

high-agreement examples in Figure 7 across the 983

collection methods and in Figure 8 across the easy 984

and hard subsets. The distributions of question and 985

option length have slightly higher variances in the 986

standard data collection than in the adversarial data 987

collection. This result is consistent with Nangia 988
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Source Meth. P+A Q+A A only

MCTest Dir. 73.3−14.9 39.8−48.4 29.4−58.8

Adv. 55.5−23.1 41.5−37.1 34.5−44.1

Total 64.2−19.1 40.7−42.7 32.0−51.3

Gutenberg Dir. 75.5−13.0 40.9−47.6 31.7−56.7

Adv. 55.4−27.2 42.4−40.2 34.2−48.4

Total 66.1−19.6 41.6−44.1 32.9−52.8

Slate Dir. 72.7−19.0 45.9−45.9 32.7−59.0

Adv. 54.1−21.9 44.3−31.7 33.9−42.1

Total 63.9−20.4 45.1−39.2 33.2−51.0

RACE Dir. 75.7−14.7 49.5−40.8 36.2−54.1

Adv. 49.0−24.8 43.3−30.5 31.9−41.9

Total 62.6−19.6 46.5−35.7 34.1−48.1

ReClor Dir. 78.7−12.4 44.4−46.7 35.1−56.0

Adv. 55.9−18.6 41.5−33.0 26.6−47.9

Total 68.3−15.3 43.1−40.4 31.2−52.3

Wiki. Sci. Dir. 76.2−18.7 45.8−49.1 33.2−61.7

Adv. 54.4−22.8 35.6−41.7 26.7−50.6

Total 66.2−20.6 41.1−45.7 30.2−56.6

Wiki. Arts Dir. 70.0−22.5 49.0−43.5 44.5−48.0

Adv. 53.8−22.0 44.6−31.2 26.3−49.5

Total 62.2−22.3 46.9−37.6 35.8−48.7

All src. Dir. 74.6−16.5 45.0−46.0 34.7−56.3

Adv. 54.0−22.9 41.9−35.0 30.6−46.3

Total 64.8−19.5 43.6−40.8 32.8−51.6

Table 4: Zero-shot performance of DeBERTa xlarge
trained on RACE with ablation settings. We ablate
questions (P+A), passages (Q+A), or both questions
and passages (A only) from the input. Subscripts show
the difference from the full-input accuracy.

Method P+A Q+A A only

Dir. 71.6 ±0.8
+0.6 46.0 ±2.2

+4.7 38.6 ±1.5
+5.4

Adv. 51.9 ±1.3
+1.2 41.5 ±2.2

+1.5 32.7 ±0.6
+3.3

Table 5: Supervised performance (three-fold cross val-
idation) of DeBERTa large on the partial inputs. Su-
perscripts show standard deviation and subscripts show
gains over the zero-shot performance.

et al. (2021).989

I Readability Level990

Figure 9 shows the plot between Flesch–Kincaid991

grade level (Kincaid et al., 1975) and the human–992

model performance gap. We compute the grade993

level (L) of a passage using the following formula:994

L = 0.39 ∗m + 11.8 ∗ n− 15.59 (1)995

where m is the average length of the sentences and996

n is the average number of syllables of the words in997

the passage. To estimate the number of syllables in998

a word, we use the implementation of the sonority999

sequencing principle (Bartlett et al., 2009) in NLTK1000

Source Method Easy Hard

MCTest Dir. 8.1 6.4
Adv. 6.5 13.2
Total 14.7 19.6

Gutenberg Dir. 8.1 4.6
Adv. 6.2 7.3
Total 14.3 11.9

Slate Dir. 8.4 2.9
Adv. 5.8 7.7
Total 14.2 10.6

RACE Dir. 8.7 5.7
Adv. 6.2 12.1
Total 14.9 17.7

ReClor Dir. 8.6 5.5
Adv. 5.5 8.0
Total 14.2 13.5

Wiki. Sci. Dir. 8.7 4.4
Adv. 5.1 10.2
Total 13.8 14.6

Wiki. Arts Dir. 8.3 3.1
Adv. 5.7 9.0
Total 14.0 12.1

# Questions 1,970 547

Table 6: Distribution (%) of easy and hard questions
from each passage source and collection method.
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Figure 7: Question and option lengths (number of
words) of examples collected in the standard and ad-
versarial methods.

(Bird et al., 2009).6 1001

J Syntactic and Lexical Surprisal 1002

Figures 10 and 11 show syntactic and lexical sur- 1003

prisal measures, respectively, for all examples. Fol- 1004

lowing Roark et al. (2009), we compute a surprisal 1005

value for each word, then take the average for 1006

each sentence, and finally take the average over 1007

the whole passage. We use an incremental parser 1008

with a lexicalized probabilistic context-free gram- 1009

mar.7 1010

6https://www.nltk.org/_modules/nltk/
tokenize/sonority_sequencing.html

7https://github.com/roarkbr/
incremental-top-down-parser
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words) of easy and hard examples.
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Figure 9: Flesch–Kincaid grade level and human–
model performance gap. Pearson’s r = −0.08 with
p < 0.001.

K Elapsed Time for Answering1011

Questions1012

Figure 12 shows the plot of time elapsed by hu-1013

mans while answering questions in the validation1014

task. We measure the elapsed time from when a1015

worker opens a task to when they submit their an-1016

swer. In addition, we measure the elapsed time for1017

writing questions as a reference (Figure 13). We1018

observe that workers take slightly longer to write1019

hard examples than easy examples.1020

L Average Word Frequencies1021

Figure 14 plots the average word frequencies of1022

all examples. We refer to SUBTLEXus (Brysbaert1023

and New, 2009) for the word frequencies per one1024

million words in a corpus of American English1025

subtitles.1026

M Question and Comprehension Types1027

Figure 15 shows the frequency of the question1028

words and the two subsequent words for each col-1029

lection method. Figures 16 and 17 show the box1030
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Figure 10: Syntactic surprisal for all valid examples.
Pearson’s r = −0.003 with p = 0.86.
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Figure 11: Lexical surprisal for all valid examples.
Pearson’s r = −0.002 with p = 0.90.

plots between human–model performance gap and 1031

questions words or comprehension types, respec- 1032

tively. Figures 18 and 5 show the frequency of 1033

question words and comprehension types, respec- 1034

tively, across the passage sources and collection 1035

methods. In the comprehension types annotation, a 1036

question can have multiple labels. Therefore, the 1037

sum of the frequencies may exceed 100%. 1038

The definitions of the comprehension types are 1039

as follows: 1040

1. Factuality (true/false/likely) is reasoning of 1041

which answer option most (or least) describes 1042

facts or events in a given passage. 1043

2. Factoid simply asks about described events or 1044

entities, typically with typical what questions. 1045

3. Non-factoid is related to why and how ques- 1046

tions, such as ones asking about causality, 1047
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Figure 12: Elapsed time (s) for answering all examples.
Pearson’s r = −0.08 with p < 0.001.
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Figure 13: Elapsed time (s) for writing all examples.
Pearson’s r = 0.03 with p = 0.03.

a character’s attitude, or the process of de-1048

scribed events.1049

4. Gestalt/Attitude asks about the summary,1050

theme, or conclusion of the content of a given1051

passage or the author’s attitude towards it.1052

5. Numeric indicates questions that require1053

arithmetic reasoning.1054

6. Spatial/Temporal is related to the under-1055

standing of places and locations (spatial) or1056

the temporal order or duration (temporal) of1057

described events.1058

7. Logical is pertinent to logical reasoning and1059

arguments described in a passage.1060

N Human Accuracy as Question1061

Difficulty1062

We compute a similar linguistic analysis using the1063

average human accuracy as the difficulty of the1064
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Figure 14: Average word frequencies using SUB-
TLEXus values. Pearson’s r = 0.02 with p = 0.23.
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(b) Adversarial collection

Figure 15: Question words and their two subsequent
words in the (a) standard and (b) adversarial collection
methods.

questions. Table 7 shows Pearson’s correlation r 1065

and its p-value between the human accuracy (as 1066

the question difficulty) and textual aspects. Just as 1067

when using the human–model gap, we do not ob- 1068

serve any strong correlations except for the elapsed 1069

time for answering that shows a weak negative 1070

correlation, which means difficult-for-human ques- 1071

tions take slightly longer for answering. Figure 19 1072

shows the frequency of comprehension types in 1073

easy and hard examples with regard to the question 1074

difficulty for humans. 1075

O Examples of Collected Questions 1076

Table 8 shows examples of questions and options 1077

for each comprehension type. After extracting the 1078

question words, we review about 100 questions 1079

to collect keywords that determine comprehension 1080

type (e.g., “reason” for non-factoid,“best summa- 1081

rize” for gestalt/attitude and “if” for logical). We 1082

then write simple rules that highlight these key- 1083

words, which help us manually annotate the remain- 1084

ing questions within approximately five hours. 1085
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Figure 16: Question words and human–model perfor-
mance gap. The triangle markers indicate mean values
and the black bars indicate medians.

all factuality factoid non-
factoid

gestalt/
attitude

numeric spatial/
temporal

logical

Comprehension types

60

40

20

0

20

40

60

80

100

Hu
m

an
-m

od
el

 p
er

fo
rm

an
ce

 g
ap

 (%
)

All
Dir.
Adv.

Figure 17: Comprehension types and human–model
performance gap. The triangle markers indicate mean
values and the black bars indicate medians.

P Writing Instructions and Examples1086

Figures 20, 21, and 22 show the instructions, good1087

and bad examples, and task interface provided to1088

the crowdworkers in our data collection.1089

Aspects r p

Passage length 0.009 0.59
Flesch–Kincaid grade -0.06 <0.001
Elapsed time for answering -0.16 <0.001
Elapsed time for writing -0.04 0.007
Syntactic surprisal -0.01 0.53
Semantic surprisal -0.001 0.93
Average word frequency 0.004 0.82

Table 7: Pearson’s correlation r and its p-value between
the human accuracy and textual aspects.
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Figure 18: Frequencies of question words (wh-words) across passage sources and collection methods.
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Comprehension Type
(source, difficulty)

Example

Factuality
(Gutenberg, easy)

Q: Which of the following is not mentioned in the passage?
A: � An Earl lived in a house that had a relatively low profile. / � There
were some other buildings near the Manor. / � Scroope is a village that is
closely linked to an Earl’s home. / X� Scroope Manor was sold to the village
by the Earl.

Factoid
(Wiki. science, easy)

Q: What helps many fish keep their buoyancy in water?
A: � muscles on either side of the backbone / � fins / X� a swim bladder /
� a streamlined body

Non-factoid
(Wiki. arts, hard)

Q: How did a major portion of English words enter the English language?
A: � French speakers can understand many English words without having
to undergo any orthographical change. / � Many words in Old English
are from Old Norse. / X� About one-third of words in English entered the
language from the long contact between French and English. / � Romance
languages have "Latinate" roots.

Gestalt/Attitude
(Slate, easy)

Q: Which of the following is a criticism the author has about Dick Riordan?
A:�He’s not transparent about his typical lunch looks like, which highlights
his lack of wisdom. / X� He’s okay syphoning resources from elsewhere to
himself for personal gain. / �Much like Hillary Clinton, he lacks any sort
of coherent persona. / � He is responsible for the vast swaths of one-story
buildings that cover the entire landscape of L.A.

Numeric
(RACE, hard)

Q: How old was Mary Shelley when she died?
A: �Mary Shelley was in her thirties when she died. / �Mary Shelley died
when she was forty four years old. /X�Mary Shelley died when she was in
her fifties. / �Mary Shelley lived well into her eighties before she died.

Spatial/Temporal
(MCTest, easy)

Q: When did it start to rain?
A: X� It started to rain after Will ate his biscuit and jam. / � It started to rain
after Will heard the thunder. / � It started to rain while Will was at the store.
/ � It started to rain on Will’s walk home from the store.

Logical
(ReClor, hard)

Q: Which statement, if true, would weaken the conclusion of the passage?
A: � Archaeologists have found remains of shipwrecks from 2000 BC
between Crete and southern Greece. /X� The earliest bronze artifacts found
in southern Greece date to 3000 BC. / � The Minoans were far more
accomplished in producing bronzeware than any other civilization in the area
at the time. / � The capacity of Minoan bronze furnaces was extraordinarily
large compared to other societies in 2000 BC.

Table 8: Examples of each comprehension type taken from our collected data.
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Figure 20: Instructions of the writing task.
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Figure 21: Good and bad examples included in the instructions of the writing task.
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Figure 22: Interface of the writing task.
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