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Abstract

Deep learning models are capable of complex au-
ditory processing tasks such as keyword spotting,
genre classification, and audio captioning, yet re-
main opaque. While several works have explored
interpretability of neural networks for computer
vision and natural language processing, the audio
modality has been largely ignored. In this paper,
we study the behavior of the audio CNN encoder
used in the contrastively trained language-audio
model, CLAP. In the domain of music and human
speech sounds, we localize and identify the layers
of the network that perform well on tasks of vary-
ing complexity, sometimes even outperforming
the model’s final outputs. Digging deeper, we also
localize specific dataset classes to neuron clusters
within a layer and analyze a cluster’s contribution
to the model’s discriminability for that class. To
perform these analyses, we propose an automated
framework that can leverage a small dataset of a
few thousand samples to evaluate and score neu-
ron clusters for their role in classification. Our
findings provide insights into the hierarchical na-
ture of representations in audio CNNs, paving the
way for improved interpretability of audio mod-
els.

1. Introduction
Interpretability in machine learning models is crucial for im-
proving their trustworthiness (Adamson, 2023; Ribeiro et al.,
2016) and enabling researchers to refine and enhance model
architectures (Hanif et al., 2021; Molnar, 2020). This is
particularly important as models are increasingly deployed
in critical applications where their decisions have significant
real-world implications (Haleem et al., 2019; Kaur et al.,
2020; Thadeshwar et al., 2020; Nowotko, 2021). In natural
language processing (NLP) and computer vision (CV), sub-
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stantial progress has been made in interpreting how models
process and understand data (Clark et al., 2019; Ribeiro
et al., 2016; Zhou et al., 2015; Bau et al., 2017). However,
interpretability in the audio modality lags behind from NLP
and CV models, despite some recent efforts towards creat-
ing listenable interpretations (Parekh et al., 2022; Paissan
et al., 2024; Choi et al., 2016).

Hierarchical encoding in deep networks refers to how rep-
resentations at varying stages of the network capture differ-
ent levels of abstraction of the input. Particularly, in vision
models, early layers have been found to capture basic edges
and textures, while deeper layers recognize more complex
patterns like shapes and objects (Zhou et al., 2015). Simi-
larly, NLP models process text in layers, with initial layers
focusing on syntactic features and later layers understand-
ing semantic content and contextual relationships (Tenney
et al., 2019). While there have been notable advancements,
such as listenable model-wise interpretations in the audio
domain (Parekh et al., 2022; Paissan et al., 2024), which
outline different approaches to identifying and presenting
salient parts of the audio, these efforts are still in their early
stages compared to the robust methodologies developed for
NLP and CV models. Moreover, unlike our work, these
studies do not identify where in the network are auditory
concepts at varying levels of abstraction are encoded.

The expectation of hierarchical encoding of sound in neural
networks, particularly in models designed for audio process-
ing, can be thought of as being analogous to auditory pro-
cessing in the brain. Starting with spectral decomposition
in the ear, auditory information is then passed through suc-
cessive stages of the auditory pathway, where progressively
more complex analysis and integration over time results
in the perception and interpretation of sounds (Leaver &
Rauschecker, 2010; Giordano et al., 2013; Santoro et al.,
2014; Alluri & Kadiri, 2019; Kell et al., 2018; Caucheteux
et al., 2022; O’Sullivan et al., 2019). One might surmise
that neural networks designed for audio processing may
mimic this structure to effectively capture the various levels
of acoustic information.

Localizing within a network: From Layers to Neurons
Localizing specific parts of the network responsible for its
performance on different tasks is crucial for improving trans-
fer learning, debugging and interpretability, optimization,
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Figure 1: Brief overview of CLAP’s audio encoder archi-
tecture. Our work analyzes the activations/outputs of every
convolutional block (conv1-5), the last convolutional layer
before global pool (conv6) and after the fully-connected
layer (fc1). See Figure 6 in the appendix for a more de-
tailed diagram of the audio encoder.

and even regulatory compliance. “Localizing within a net-
work” can be performed at varying levels of granularity, e.g.
layers, neuron clusters, channels, and to single neurons. Re-
cent advancements in deep learning have demonstrated that
it is indeed possible to pinpoint certain layers and neurons
within an NLP model that are crucial for specific tasks (Ten-
ney et al., 2019). Identifying neurons important for perform-
ing particular functions within a model, that is, neuron inter-
pretability, has been successfully applied to NLP models to
discover neurons that encode specific linguistic properties
or concepts, such as syntax, semantics, or part-of-speech
tags (Sajjad et al., 2022). Similar techniques have been
employed in CV to identify neurons that detect particular
objects or features within an image (Bau et al., 2017; Zhou
et al., 2015). However, this concept has not been applied
to audio models. In fact, to our best knowledge, only one
study has attempted to examine neuron-level interpretabil-
ity for OpenAI’s Whisper (automatic speech recognition)
model (Radford et al., 2022; Reid, 2023). While this is
performed at the level of individual neurons, we posit that
examining clusters of neurons can reveal how groups of
neurons collectively contribute to certain tasks or function-
alities.

In our study, we first illustrate how different layers of an au-
dio encoder are responsible for classification tasks that rely
on extracting information at various levels of abstraction.
Subsequently, within layers, we isolate the behavior of neu-
ron clusters that exhibit class-wise specialization. We show
how clusters specialize towards the semantic classes across
the layers and note their contribution towards classification
accuracy through an experiment that selectively blocks out
their activations. For our analysis, we adopt the audio en-
coder of CLAP (Elizalde et al., 2023) that is pretrained on
Audio Set (Gemmeke et al., 2017), and then further trained
with a contrastive-learning objective on audio captioning
datasets. CLAP is among the state-of-the-art audio CNN

models, and also enables zero-shot classification on unseen
datasets through the text encoder, without the need to update
any parameters.

In summary, our key contributions are: (i) we localize the
information needed for different tasks in two audio domains
(speech and music) to specific layers in the CNN audio
encoder. (ii) we demonstrate how to further localize the
information associated with specific classes to neuron clus-
ters within a layer. (iii) finally, we propose an automated
framework to examine neuronal clusters and measure their
involvement in the discrimination of a specific class and
apply it to the ESC-50 dataset.

2. Localizing to a Layer: Do Audio CNNs
Encode Hierarchy?

Similar to hierarchies exhibited by visual models (edges,
object parts, objects) (Zhou et al., 2015; Bau et al., 2017)
or language models (syntax to semantics) (Tenney et al.,
2019), we explore if such properties can be observed in
audio CNN models. Specifically, are lower layers in the
network better at distinguishing simpler acoustic (low-level)
properties, while the higher layers encode semantic (high-
level) attributes? We answer this by localizing (identifying
the layer) the representation in the network that results in
best performance.

2.1. Tasks and Datasets

We consider two domains: music (É) and human speech
(⌣) to evaluate if the audio CNN encodes a hierarchy. Note,
the CLAP’s audio encoder is pretrained on Audio Set and
then fine-tuned on several audio-language paired datasets:
FSD50k (Fonseca et al., 2022) a sound event classifica-
tion dataset, and ClothoV2 (Drossos et al., 2020), Audio-
Caps (Kim et al., 2019), and MACS (Martin-Morato &
Mesaros, 2021), audio captioning datasets. While we ex-
pect the higher layers to encode semantic audio classes, it
is interesting to see if the model learns to encode low-level
properties of sounds.

Within speech and music both, we consider three tasks based
on the complexity of the task, defined as how much infor-
mation needs to be aggregated (over time and frequency)
to identify the classes accurately. Table 1 summarizes the
tasks and datasets, number of classes, instances, and average
audio duration.

Tasks in music. (i) We consider note name classification1

as the low-level task that requires identifying one of the 12
notes in music, while being agnostic to the octave. Specif-
ically, we adopt a part of the NSynth dataset (Engel et al.,

1Also referred to as “chroma classification” by HEAR, A Holis-
tic Evaluation of Audio Representations (Turian et al., 2022).
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2017) for this work. (ii) Single instrument classification
on the Medley-solos-DB dataset (Lostanlen et al., 2019) is
considered as a mid-to-high level task that requires under-
standing timbre. Understanding timbre requires analyzing
more than one note and is often characterized by harmonic
content or attack and decay patterns. (iii) Finally, we use
genre classification on the GTZAN dataset (Turian et al.,
2022) as the high-level task that requires understanding how
various aspects of the music interact to form a recognizable
genre.

Note, the CNN model pretrained on Audio Set is aware of
musical instruments and genre classes as they are part of
the ontology; however, the model is never trained explicitly
for note name classification. Based on studies that support
hierarchical encoding of music (Alluri & Kadiri, 2019; Gior-
dano et al., 2013; Leaver & Rauschecker, 2010), we expect
the early layers of the CNN to better encode note name,
middle to higher layers to better encode instrument while
the last layers best encode the higher order percept of genre.

Tasks in speech. (i) We start with the simple task of conso-
nant classification in speech. Specifically, we adopt the Per-
sian Consonant Vowel Combination (PCVC) (Malekzadeh
et al., 2020) dataset which includes phonemic combinations
of consonants and vowels. (ii) We move on to keyword
recognition as the mid-level task that requires models to
string together multiple syllables. Here, we use the Speech
Commands (Warden, 2018) dataset that consists of simple
single words. (iii) Finally, similar to genre classification
that requires parsing a mixture of instruments, we consider
speaker count estimation that requires isolating and count-
ing different voices in an audio from the LibriCount (Stöter
et al., 2018) dataset as our high-level task.

Note, the CNN model is trained for distinguishing human
sounds such as speech, shout, scream, etc.2, but not explic-
itly for speech recognition. Based on studies that support
hierarchical encoding of speech (Caucheteux et al., 2022;
O’Sullivan et al., 2019) we expect early layers to better rep-
resent consonants, while middle layers would better encode
keywords and higher layers would be responsible for inte-
grating linguistic and paralinguistic information resulting in
encoding of speaker count.

2.2. Methodology

Preprocessing. We standardize audio samples across
datasets to a duration of 5 s and sampling rate of 44.1 kHz.
Short audio files are padded with silence (on the right).
From long audio files, we select the middle 5 s. Similar
to CLAP (Elizalde et al., 2023), we compute the log-mel
spectrogram as the model input.

2Audio Set human sounds ontology https://research.google.

com/audioset/ontology/human sounds 1.html

Layerwise representations. We extract and store interme-
diate representations from all samples across all datasets
through CLAP’s audio encoder. We obtain outputs of six
convolutional layers (conv1-5 after average-pooling, conv6
before global pooling) and the first fully-connected layer
(fc1, after ReLU). See Figure 1 for a brief overview of
CLAP’s audio encoder.

Given an audio x ∈ Rsr with duration s and sampling
rate r, we first compute the time-frequency log-mel spec-
trogram, s ∈ RF×T , where F=64 Mel-scale bands and
T=690 time steps corresponding to 5 s. We denote the con-
volutional output at layer l from a partial encoder Φl as
h̃l ∈ Rcl×wl×hl , a feature map of cl channels and wl×hl

width (time) and height (frequency) activations. We flat-
ten h̃l to obtain hl ∈ Rdl , dl = clwlhl. Note, the output
of fc1 is already a single dimension vector. In summary,
hl = Φl(x) is the feature extraction process for each layer.

k-Nearest Neighbor evaluation. Two common ways to
probe the quality of any representation are nearest neighbor
or linear probing (training a linear classifier) (Chen et al.,
2020). We adopt the former approach as it allows us to work
with relatively small datasets (around 1000-2000 instances).

We perform k-Nearest Neighbor classification using a five-
fold stratified cross-validation setup, with Euclidean dis-
tance as the distance metric. Note that the model parameters
are not updated in any way in this procedure. We repeat this
for a range of values of k and observe that the trends are typ-
ically unchanging (see Appendix C for the complete result).
Thus, as we mainly interested in the trends of how perfor-
mance changes across the layers, we select the best value
of k for each task. Since k-Nearest Neighbor is susceptible
to class imbalance, we consider class-balanced subsets for
most of the datasets (Table 1).

Zero-shot classification. Following CLAP (Elizalde et al.,
2023), we also conduct zero-shot classification by creating
language prompts and using the aligned representations
obtained after the projection head. Prompts used for each
task are given in Appendix A.

2.3. Results

Figure 2 shows how classification accuracy varies across
layers. We observe strong performance variation across the
layers.

Low-level tasks. Tasks hypothesized to be low-level peak
earlier in the model: note name classification at conv1,
consonant classification at conv3, and in fact are close to
random chance in later layers. As language-audio pretrain-
ing often focuses on semantic properties, we observe that
zero-shot classification performs on par with random chance
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Table 1: Datasets used in our work from music (É) and human speech (⌣) domains. Note, the datasets are class-balanced
when possible (* represents balancing was performed). Details in Appendix A.

Dataset Task Type #Instances #Classes Duration (s)

NSynth (Engel et al., 2017) Note Name Classification É 1800* 12 4
Medley-solos-DB (Lostanlen et al., 2019) Instrument Classification É 965* 7* 3
GTZAN (Turian et al., 2022) Genre Classification É 1000 10 30

PCVC (Malekzadeh et al., 2020) Consonant Classification ⌣ 1794 23 2
Speech Commands (Warden, 2018) Keyword Recognition ⌣ 1750* 35 1
LibriCount (Stöter et al., 2018) Speaker Count Estimation ⌣ 1100* 11 5
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Figure 2: Classification performance using k-Nearest Neighbor with representations extracted at different layers. Results are
averaged over a five-fold cross-validation. We observe that low-level tasks (note name and consonant classification) perform
better in early layers while high-level tasks (genre classification, speaker count estimation) perform best in later layers.

for these low-level tasks3.

Intermediate tasks. As per expected behavior, keyword
recognition peaks at conv4 and performs poorly in early
and later layers. On the other hand, instrument classification
peaks strongly at fc1, achieving close to perfect results. We
suspect this is primarily due to the Audio Set pretraining
which includes instrument classes. This is further evidenced
by a high zero-shot accuracy of 85.2%. Nevertheless, given
that it is a mid- to high-level task, we do see that it performs
poorly in the early layers; mid-layers, starting from conv4,
show performance significantly above random chance.

High-level tasks. Finally, we see that speaker count estima-

3Note, the zero-shot classification performance is also depen-
dent on the text encoder’s ability to discriminate well between
e.g. the notes ‘C’ and ‘D’ in note name classification, which we do
not expect it to do.

tion and genre classification both peak at the last layer: fc1.
Furthermore, in the early layers conv1-3, performance is
close to random chance or the zero-shot accuracy. While
CLAP’s audio encoder is pretrained for genre classification
(Audio Set), it is not familiar with complex tasks such as
speaker count estimation.

We see that intermediate representations at different layers
perform well above chance at corresponding auditory tasks –
early layers at low-level tasks, and later layers at high-level
tasks – as compared to other layers in the model. Notably,
this happens even in the case of tasks that the model was not
explicitly trained for, such as keyword recognition. Unless
the model was incentivized to maintain this information
through explicit training on the task (as in the case of genre
classification), this discriminative ability degrades in later
layers.
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We also see that k-Nearest Neighbor classification on the
later layers of the audio encoder often outperforms the zero-
shot classification accuracy by a great margin. This suggests
that either the text encoder or the projection matrices bottle-
neck CLAP’s ability to perform these tasks in the zero-shot
setting.

3. Localizing Within a Layer: Spotting Neuron
Clusters

In the previous section, we attribute task accuracy to repre-
sentations of specific layers in the audio encoder. We now
explore whether we can further localize model performance
by identifying groups of neurons that encode information
relevant to specific audio classes.

Dataset. In this section, we focus our analysis to the Envi-
ronmental Sounds Classification (ESC-50) dataset (Piczak,
2015). ESC-50 is chosen as it is a single dataset that consists
of 50 classes that can be broadly grouped into 5: animals,
natural soundscapes, human non-speech sounds, indoor do-
mestic sounds, and outdoor urban sounds. Apart from Audio
Set (which we avoid due to CLAP’s pre-training), this is
also a popular classification benchmark for evaluating audio
representations4. Additionally, ESC-50 is a high-level task
and accuracy peaks in the later layers as can be observed
from the k-Nearest Neighbor plots (Appendix D).

3.1. Creating and Representing Neuron Clusters

From the previous section, we see that early layers tend
to encode basic acoustic features, higher-levels are able
to segregate them into distinct semantic categories. For
instance, the sounds of a clock alarm may share similar
spectrotemporal modulations of a siren, however, is clearly
distinct semantically (all classes in ESC-50).

Hence, we can expect clusters of neurons from lower layers
to activate in a similar fashion to these sounds, while higher
layers might have separate clusters for these such categories.

Clustering neurons. Recall, hl ∈ Rdl represents the fea-
ture map at layer l for a single audio x, where dl = clwlhl.
For a dataset D = {(xi, yi)}Ni=1 of N samples, we compute
and stack all features:

Hl = [Φl(x1), . . . ,Φl(xN )], and Hl ∈ RN×dl . (1)

Each row of this matrix is a representation of a sample xi.
We now refer to the activations of instances in the dataset as
a representation of a neuron. Instead of rows, by indexing
the columns of Hl, we can refer to neuron j’s representation:
hj
l ∈ RN ,∀j ∈ [1, . . . , dl].

Using these representations, we cluster all neurons within

4See https://paperswithcode.com/sota/
audio-classification-on-esc-50

a layer with FINCH (Sarfraz et al., 2019), an algorithm
that uses the first nearest neighbors in terms of Euclidean
distance. FINCH is a hierarchical method and produces
a handful of clustering partitions. We select partitions at
each layer such that the number of clusters across layers is
similar. 5

Cumulative Class-wise Activation Vectors (CCAV). Let
us denote the partition with P clusters as: {C1, C2, . . . , CP }.
Then, the average neuronal representation of the cluster p is

cp,l =
1

|Cp|
∑
j∈Cp

hj
l

. For brevity, we drop the index l and use cp ∈ RN . How-
ever, clustering is only performed within a layer.

Next, we compute the cumulative class-wise activation vec-
tor for each cluster. This is a K dimensional vector corre-
sponding to the number of classes in the dataset (K=50 for
ESC-50) that accumulates the activations across samples of
the same category. More formally,

ap[k] =

N∑
i=1

1[yi = k] cp[i] , (2)

where yi ∈ {1, . . . ,K} is the class label for audio sample
xi. The CCAV, or ap ∈ RK , captures the affinity of neu-
rons in a cluster to each class in the dataset. Note, all the
activations in our work are analyzed post the ReLU layer.
Thus, we do not need to worry about negative activations
from different instances eroding the scores, both in cp or
ap.

3.2. Cluster Entropy

We consider three entropy measures to characterize a cluster
Cp: semantic, positional, and channel.

Semantic entropy (SEnt). To compute this score (per
cluster), we first normalize the CCAV to sum to one:
âp = ap/

∑
k ap. We treat the resulting vector as a pseudo-

probability (how likely are neurons of this cluster to activate
for a class) and compute entropy as esp = −âp · log(âp).

A low SEnt implies that the neuron cluster activates primar-
ily for instances from one (or few) class(es), and is a likely
candidate for carrying salient information to identify those
classes. A high SEnt implies that the neurons in the cluster
activate for instances more uniformly across classes. Note, a
higher SEnt does not necessarily mean that the cluster does
not have a well-defined and interpretable behavior, it only

5We define the count distance between two partitions as
|na−nb|

max(na,nb)
, where na and nb are cluster counts. We select one

partition from each layer, such that the count distance is pairwise
minimized for the selected partitions.

5
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highlights that the behavior does not align well to one/few
dataset classes.

Positional entropy (PEnt) is related to the time-frequency
(spatial) occurrence map of a cluster. For each neuron in
the cluster Cp, we identify its time-frequency location in the
original non-flattened activation of size cl × wl × hl. Next,
we construct a position map, Mp ∈ Nwl×hl that simply
counts the distribution of neurons in the cluster across wl ×
hl.

We normalize the position map to obtain M̂p = Mp/|Cp|
and refer to it as a pseudo-probability, the likelihood of
neurons of a cluster occupying a certain time and frequency
region. We compute entropy as epos

p = −M̂p · log(M̂p).
Clusters with low PEnt occupy specific regions in the acti-
vation map (e.g. higher frequencies) and are indicative of
the model dedicating neurons to selective regions of the
spectrogram. High PEnt clusters typically span the entire
spectrogram.

Channel entropy (CEnt) is similar to PEnt and measures
the flatness of neuron distribution across the channel dimen-
sion cl. A low CEnt means the cluster has neurons activated
by the same filter.

3.3. Cluster Interventions

We now study the impact that a cluster, especially one with
a high affinity to a specific class (or a few set of classes)
has on the model’s performance. We corrupt the informa-
tion passed up by the neurons in a chosen cluster Cp, and
observe the effect on the model’s zero-shot classification
performance.

We intervene using resampling ablations (Chan et al., 2022),
i.e. by replacing the activations hj

l , ∀j ∈ Cp for input x
with activations picked from some other random input x′.
As a control experiment, we also intervene on a random set
of neurons C′

p of equal count as Cp. To mitigate the effect of
randomness, we repeat and present results averaged across
10 runs of the experiment.

3.4. Results

Entropy analysis. Figure 3 presents the distributions (box-
plots) for how entropy ratios of neuron clusters change
across the layers of a network. Entropy ratio is defined as
the actual entropy of a cluster divided by the maximum
entropy based on a uniform distribution across K classes
for SEnt, wl × hl for PEnt, and cl channels for CEnt.

Clusters in early layers have a high SEnt ratio indicating
that they do not specialize to classes in the ESC-50 dataset
(which may be considered as a high-level task). However,
later layers, especially conv6, show a notable drop in SEnt,
e.g. indicative of their effictiveness for k-NN classification.
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Figure 3: Trends in cluster entropy ratio across the con-
volutional block layers. Top: Semantic entropy (SEnt),
Middle: Positional entropy (PEnt), Bottom: Channel en-
tropy (CEnt).

Position entropy trends are opposite. Early layers have a
low PEnt ratio, indicative of them being localized to cer-
tain time-frequency regions while later layers show high
PEnt suggesting that they encode and aggregate information
across larger portions of the spectrogram.

Channel entropy trends are interesting. First, the distribution
often spans the entire range (0-1). Next, the middle layers
show low CEnt indicative of them learning filters with mid-
sized receptive fields that resulting in tight clusters. We
leave an in-depth exploration for future work.

CCAV distributions can also be analyzed across the lay-
ers by finding the cluster that peaks in one of the classes.
An example for the class ”clock alarm” shown in Figure 4
highlights how ap reduces in semantic entropy, i.e. becomes
peakier across the layers. As the early layers (conv2, top)
have a small receptive field, the clock alarm sound may
be confused with a bunch of similar sounds such as siren,
church bells, or a vacuum cleaner, rough timbral textures6.
that are still harmonic sounds with clear fundamental fre-
quencies (albeit with minor fluctuations).

As we go to higher layers, e.g. at conv4, the model gains
higher discriminative power. Interestingly, for a similar clus-
ter here, crickets are now the second most activating class
in the cluster. Since the higher layers integrate information

6Timbral texture (e.g. rough/harsh) has been considered a mid-
level sound attribute (Alluri & Kadiri, 2019; Saitis & Weinzierl,
2019)
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Figure 4: CCAVs for neuron clusters corresponding to
“clock alarm” at different layers. Color groups are the 5
super-categories mentioned earlier in ESC-50. Left: conv2,
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in fc1. Note, we find such trends even when clustering is
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over larger spectrotemporal fields, this finding can be at-
tributed to the periodicity of the aforementioned harmonic
yet rough timbral textures. Finally, at the last layer (fc1)
of the encoder, we see that the neuron cluster specializes
completely to the “clock alarm” class. A part of this may
also be attributed to the CNN being pretrained on Audio Set
which contains the class “alarm clock”.

Cluster interventions are performed at scale on a subset
of all clusters from across all layers. We compute the mean
neuronal SEnt across the model, and then pick the largest
100 clusters that have SEnt below this threshold. Both a
smaller SEnt (the cluster carries a clear concept with respect
to the datset), and a larger neuron count (the cluster can
have substantial effect on the model’s performance when
intervened with) are preferred.

Fig. 5 shows three examples of intervening on a cluster.
Intervention on the cluster’s activations often results in a
performance drop for the most activating class. On Fig. 5
(top subfigure), we see that the accuracy for the cat drops
by 44.3% while other classes are basically unaffected. This
number is also reflected in Table 2 row 1. We observe that
while the secondary (2.3%) and other classes (0.4%) are
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Figure 5: Each subfigure shows the first 10 maximally acti-
vating classes in the CCAV (above) for the labeled cluster,
and how the class-wise accuracy is affected (below) when
we intervene on (i) none of the clusters, (ii) a specifically
selected cluster, and (iii) a random set of neurons of equal
count as the cluster. Error bars represent 95% confidence
intervals. Top: fc1, partition 1, cluster 7. Middle: conv6,
partition 4, cluster 0. Bottom: conv6, partition 4, cluster 9.
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Table 2: Impact of interventions on neuron clusters. The table shows neuron cluster metadata: layer, partition (P), cluster
index (C), number of neurons (#N), and semantic entropy ratio (SEntR). Next, we present the first (①) and second (②) most
activating class of the cluster based on the CCAV. Finally, we present the accuracy drop (in %) for the ①, ②, and other
classes (Oth) when selectively replacing neuron activations of the cluster (selective: Sel) or for random neurons, control
experiment (Ctrl). We represent the mean scores separately for early layers: conv1-3, later layers: conv4-6 and fc1, and
all layers. We observe significant drops in performance for the primary class, while the secondary is typically unchanged.
When a large cluster is intervened, it may affect other classes.

Neuron Cluster Metadata Most Activating Class Acc Drop: Sel Acc Drop: Ctrl
Layer P C #N SEntR ① ② ① ② Oth ① ② Oth

Clusters in Figure 5
fc1 1 7 20 0.81 cat dog 44.3 2.3 0.4 0.0 0.0 -0.1
conv6 4 0 2943 0.87 clapping toilet flush 42.0 0.0 0.6 2.0 0.0 1.4
conv6 4 9 9166 0.90 hand saw brushing teeth 31.8 17.3 4.1 1.3 5.5 6.1

Layerwise mean (later layers)
fc1 100 clusters 25.2 0.77 - - 3.0 0.6 0.1 0.2 0.1 0.2
conv6 100 clusters 1824.9 0.85 - - 7.3 2.6 0.3 0.5 1.1 0.9
conv5 100 clusters 379.8 0.89 - - 0.9 0.6 0.1 0.0 0.1 0.1
conv4 75 clusters 235.1 0.90 - - 0.5 0.7 0.0 0.0 0.1 0.0

Mean across multiple layers
Early 128 clusters 1033.6 0.89 - - 0.2 0.2 0.1 0.0 0.0 0.0
Later 375 clusters 641.7 0.85 - - 3.1 1.1 0.1 0.2 0.4 0.3
All 503 clusters 741.4 0.86 - - 2.3 0.9 0.1 0.1 0.3 0.2

mostly unchanged, the intervening on the control group of
neurons leaves model performance unaffected.

However, the effects are not always disentangled. A large
cluster of over 9000 neurons (about 10.7% of conv6) is
shown on Fig. 5 (bottom subfigure). First, we note that
it activates for multiple classes. Next, intervening on the
scores of this neuron affects performance across multiple
classes: hand saw and brushing teeth, roughly proportional
to how much they activate; but also dog, despite the milder
activations. Table 2 row 3 shows that it also results in a
mean accuracy drop of 4.1% on other labels, perhaps due to
its large size.

There are also several clusters with relatively milder activa-
tions where interventions result in no change. Thus, beyond
the individual cluster examples, Table 2 also reports the
mean accuracy drop due to interventions on many clusters
of each layer. As expected, selective intervention on seman-
tic clusters of layers conv6 and fc1 affects performance
the most (3.0% and 7.3% respectively). Layers conv5 and
below show lesser influence, perhaps owing to other neuron
clusters that step in and restore model performance. This
can also be observed in the difference between the means of
the early (0.2%) and later (3.1%) layers.

4. Conclusion
While CNNs mimic vision processing in the brain by inte-
grating information based on spatial proximity, this is not
the case for auditory processing. Auditory analysis relies on

a distributed spectro-temporal integrative process wherein
integration occurs at multiple timescales and across the fre-
quency spectrum that aids in giving rise to auditory concepts
at varying levels of abstraction.

Towards better interpretability of audio models, we demon-
strated layer-wise trends indicative of hierarchical encoding
in audio CNNs, specifically for music and speech. We
showed, for the first time, that clusters of neurons within
layers encode auditory concepts. Especially in the higher
layers, we observed clusters adhering to specific dataset
classes and observed that corrupting their activations can
affect the model’s performance on those classes. Finally,
we introduced an automated entropy-based framework to
examine the degree of involvement of neuron clusters in
specific classes of sounds.

5. Limitations
We see two limitations of the current work: (i) Our cur-
rent analysis is limited to the behavior of the CNN audio
encoders, specifically the one used in CLAP. Transformer
encoders such as AST (Gong et al., 2021) or BEATs (Chen
et al., 2022) may require different interpretability studies.
However, our methodology of neuron representations, en-
tropy calculations, CCAV, and interventions are generic and
may be applied to any neural network. (ii) Pretraining strate-
gies with different datasets may modify the behavior of the
model resulting in expected mid-level tasks also perform-
ing well in later layers (e.g. as is the case with instrument
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classification).
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Figure 6: Architecture of the Contrastive Language-Audio Pretraining (CLAP) encoder (Elizalde et al., 2023). We focus on
the CNN audio encoder in this work. Top: An audio is converted into a log-mel spectrogram and fed to the CNN audio
encoder (shown in dashed border). Two linear projection layers are used to obtain the audio representation (CLAP vector)
that is aligned with the language representation (encoded using the BERT model (Devlin et al., 2018), not shown for brevity)
through the constrastive loss. Bottom: Shows the CNN14 audio encoder in greater detail. The CNN is pretrained on Audio
Set (Gemmeke et al., 2017) and the classifier layer (fc2 not shown here) is discarded.

A. Evaluation Tasks
In Table 3, we show the best k-Nearest Neighbor and zero-shot performance obtained on each task. We also show the
prompts in the table.

For our k-Nearest Neighbor evaluation setup, we use class-balanced datasets. GTZAN and PCVC are already class-balanced,
but for the other datasets, we take appropriate subsets of data such that the resulting set is class-balanced. Additionally, we
stratify our dataset folds in five-fold validation such that they are class-balanced as well.

The Medley-solos-DB dataset takes short excerpts of solo instrumental from a set of songs, with multiple dataset instances
belonging to the same song, and different excerpts can have very similar melodies. In order to prevent this from contributing
to instrument classification performance, we also account for the song from which the dataset instance is taken from when
constructing the dataset folds, such that no two folds contain excerpts from the same song. Due to a further lack of samples
from the class ‘tenor saxophone’ compared to the other classes, we remove the class, leaving a total of 7 classes.

B. Compute Requirements
All experiments are conducted on RTX 2080 GPUs with 12GB memory. The computational bottleneck in our work is
clustering millions of neurons for neuronal cluster analysis; however, this is resolved by using FINCH which is efficient and
uses approximate nearest neighbors.
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Table 3: Best performance of the k-NN and zero-shot (ZS) classification on each dataset. Random chance (R) accuracy is
shown in the last column.

Dataset Best Performing Accuracy (%)
k Layer Prompt k-NN ZS R

NSynth (Engel et al., 2017) 1 conv1 “This is a note” 46.9 7.1 8.3
Medley-solos-DB (Lostanlen et al., 2019) 1 fc1 “This is a sound of ” 98.2 80.7 12.5
GTZAN (Turian et al., 2022) 1 fc1 “This is a song” 75.4 30.7 10.0

PCVC (Malekzadeh et al., 2020) 7 conv3 “ ” 30.8 4.5 4.3
Speech Commands (Warden, 2018) 1 conv4 “ ” 40.0 2.9 2.9
LibriCount (Stöter et al., 2018) 20 fc1 “ people speaking” 52.5 20.2 9.1
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Figure 7: Layer-wise classification accuracy on different datasets with k-Nearest Neighbor classifier using different values
of k. Best value of k indicated with star (★) in the legend. Only some values of k plotted for sake of clarity.

C. Effect of k in k-nearest neighbors classification
For the layer-wise classification we use values of k varying from 1 through 9, and also 20, 50, and 100. We then use the value
of k which produces the best peak accuracy as the k-value for analysis. In Figure 7, we plot the layer-wise classification
accuracy on the three music (NSynth, Medley-Solos-DB, GTZAN) and three speech (PCVC, Speech Commands, LibriCount)
datasets used in our layer-wise analysis. In most cases, the effect of k is not very noticeable. For some tasks, such as
instrument classification as speaker count estimation, larger values of k perform better. For note name classification, the best
value of k is 1; the difference in performance from the next k value is noteworthy.

D. ESC-50 Layer-wise results
k-Nearest Neighbor classification accuracy in Figure 8 shows that ESC-50 peaks at the later layers, indicative of it being a
high-level task focused primarily on the semantic classes. For this specific task, the value of k does not have a large effect.
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Figure 8: Layer-wise classification accuracy on the ESC-50 dataset with k-Nearest Neighbor classifier using different values
of k. Best value of k indicated with star (★) in the legend.

E. Clusters Become Specific Across the Layers
Three additional figures similar to Figure 4 of the main paper are included in the supplementary. They all show similar
trends for: (i) siren in Figure 9; (ii) church bells in Figure 10, and (iii) frog in Figure 11.
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Figure 9: Clusters across layers which activate maximally for ‘siren’. Top: conv2, partition 5, cluster 13, Middle: conv3,
partition 4, cluster 16, Bottom: fc1, partition 1, cluster 25.
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Figure 10: Clusters across layers which activate maximally for ‘church bells’. Top: conv2, partition 5, cluster 3, Middle:
conv3, partition 4, cluster 29, Bottom: fc1, partition 0, cluster 81.
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Figure 11: Clusters across layers which activate maximally for ‘frog’. Top: conv1, partition 5, cluster 18, Middle: conv4,
partition 4, cluster 5, Bottom: conv6, partition 4, cluster 15.
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