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Abstract001

As large language models are increasingly uti-002
lized in real-world applications, guarantees003
of task-specific performance are essential for004
their reliable deployment. Recent studies have005
introduced various conformal uncertainty cri-006
teria grounded in split conformal prediction,007
which offer user-specified correctness cover-008
age. However, existing frameworks often fail009
to identify uncertainty data outliers that vio-010
late the exchangeability assumption, leading011
to unbounded miscoverage rates and unaction-012
able prediction sets. In this paper, we propose013
a novel approach termed Selective Conformal014
Uncertainty (SConU), which, for the first time,015
implements significance tests, by developing016
two conformal p-values that are instrumental in017
determining whether a given sample deviates018
from the uncertainty distribution of the calibra-019
tion set at a specific manageable risk level. Our020
approach not only facilitates rigorous manage-021
ment of miscoverage rates across both single-022
domain and interdisciplinary contexts, but also023
enhances the efficiency of predictions. Further-024
more, we comprehensively analyze the compo-025
nents of the conformal procedures, aiming to026
approximate conditional coverage, particularly027
in high-stakes question-answering tasks.028

1 Introduction029

Large language models (LLMs) have been increas-030

ingly deployed in real-world natural language gen-031

eration (NLG) tasks, including question-answering032

(QA) (Duan et al., 2024; Wang et al., 2025). How-033

ever, their generations often reveal deficiencies in034

trustworthiness and robustness (Yona et al., 2024;035

Farquhar et al., 2024; Kaur et al., 2024). These is-036

sues have sparked significant interest in developing037

guarantees for task-specific performance metrics,038

such as correctness miscoverage rate (Wang et al.,039

2024d; Quach et al., 2024), factuality (Mohri and040

Hashimoto, 2024; Cherian et al., 2024), and dis-041

parities in generation quality across diverse user042

populations (Deng et al., 2023; Zollo et al., 2024).043
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Figure 1: Pipeline of the SConU framework. We achieve
rigorous coverage of correct generations on test samples
at various user-specified risk levels based on the calibra-
tion set after automatic outliers detection.

Split conformal prediction (SCP) (Papadopoulos 044

et al., 2002; Bates et al., 2021; Angelopoulos and 045

Bates, 2021) can offer distribution-free and model- 046

agnostic coverage guarantees to new samples based 047

on a calibration set. Recent studies have introduced 048

various criteria of conformal uncertainty (ConU), 049

which allow user-specified risk levels (e.g., α) for 050

the coverage of acceptable responses in practical 051

NLG tasks, by correlating the nonconformity score 052

(NS) with the uncertainty state of ground-truth an- 053

swers (Quach et al., 2024; Su et al., 2024; Wang 054

et al., 2024d,b; Kaur et al., 2024). However, these 055

frameworks are vulnerable to uncertainty data out- 056

liers and sensitive to internal units, such as the un- 057

certainty notion and split ratio, compromising their 058

statistical rigor and operational efficiency (Cress- 059

well et al., 2024b; Plassier et al., 2024). 060

To conduct comprehensive research, we first re- 061

visit a crucial precondition for prior frameworks: 062

the combined sequence of the given test QA sam- 063

ple and all calibration data points should be ex- 064
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changeable (Kumar et al., 2023). In practical QA065

tasks, however, this condition is hard to character-066

ize and verify specifically, often being violated due067

to the conditional nature of language generation068

approaches (Ulmer et al., 2024). More concerning,069

we observe significant coverage anomalies within070

single-domain contexts, as illustrated in Figure 2a,071

which contradict the assumptions made in previous072

studies (Ye et al., 2024; Quach et al., 2024; Su et al.,073

2024; Wang et al., 2024d; Kaur et al., 2024; Wang074

et al., 2024b). Furthermore, miscalibration issues075

become even more pronounced in interdisciplinary076

scenarios (Kumar et al., 2023), as demonstrated in077

Figure 2b. The conceptual and fragile nature of ex-078

changeability renders the prediction sets produced079

by existing ConU frameworks unreliable and less080

actionable (Cresswell et al., 2024a).081

Within prior ConU frameworks, the NSs are de-082

rived from various uncertainty notions linked with083

reliable generations and then utilized to select re-084

sponses by a user-specified quantile. As supported085

by Figure 2, our key insight is that employing dif-086

ferent models will affect how well the uncertainty087

distribution of the calibration set covers test QA088

samples at a specific risk level (Lin et al., 2024; Ye089

et al., 2024), thus determining the exchangeabil-090

ity among the NSs. For instance, if the deployed091

model excels in health but struggles with math, the092

NSs from the health dataset will significantly differ093

from (lower than) those from the math dataset, thus094

leading to miscalibration, while a powerful propri-095

etary model with comprehensive knowledge across096

both domains can yield an approximate uncertainty097

distribution. Furthermore, ConU methods manu-098

ally remove calibration samples that fail to contain099

acceptable answers within the sampling space (Su100

et al., 2024; Kaur et al., 2024; Wang et al., 2024d,b),101

which constrains the quantity of test QA samples102

that the calibration set can handle, as demonstrated103

in Section 3.2. At this point, our goal is to derive104

the minimum risk level manageable by the origi-105

nal calibration set, and then eliminate uncertainty106

data outliers undermining exchangeability. Subse-107

quently, the remaining test samples are expected to108

allow for user-specified marginal coverage.109

Inspired by prior work on outlier detection (OD)110

and permutation test (Vovk et al., 2003; Angelopou-111

los and Bates, 2021; Guan and Tibshirani, 2022;112

Bates et al., 2023), we propose selective conformal113

uncertainty (SConU), which gathers statistical evi-114

dence for nonexchangeable data sequences via hy-115

pothesis testing. Specifically, we construct a con-116

formal p-value (Jin and Candès, 2023; Angelopou- 117

los et al., 2024a; Gui et al., 2024) for each test 118

data to identify whether its uncertainty state sig- 119

nificantly deviates from the calibration data distri- 120

bution, using it as a baseline for exchangeability 121

assessment. Furthermore, recognizing that uncer- 122

tainty data anomalies in the calibration set compro- 123

mise their reference value and statistical rigor, we 124

provide an optimized version by incorporating the 125

prediction status of each calibration data point at a 126

specific risk level into the counting criterion of the 127

conformal p-value. After filtering out uncertainty 128

data outliers within the test set, we achieve rigor- 129

ous management of the miscoverage rates in both 130

single-domain and cross-domain QA datasets. 131

Additionally, practical NLG applications focus 132

on conditional coverage for a particular input. 133

However, this property is infeasible in most NLG 134

cases (Angelopoulos and Bates, 2021; Plassier 135

et al., 2024; Angelopoulos et al., 2024a). In this pa- 136

per, we investigate the impact of the exchangeabil- 137

ity condition, split ratio, and uncertainty measure- 138

ments on conditional performance, aiming to ap- 139

proximate conditional coverage in high-stakes QA 140

scenarios. Finally, we disclose significant semantic 141

redundancy within prediction sets in human-in-the- 142

loop QA applications (Cresswell et al., 2024b). 143

Our contributions can be summarized as follows: 144

• We propose selective conformal uncertainty 145

(SConU), which for the first time implements 146

significance tests to filter out uncertainty data 147

outliers that violate the exchangeability pre- 148

condition at a specific risk level. 149

• We maintain the calibration set and derive the 150

minimum manageable risk level after deploy- 151

ing the language model. 152

• We explore internal components of SConU to 153

enhance conditional performance and opera- 154

tional efficiency of the prediction sets. 155

2 Related Work 156

Split Conformal Prediction. SCP guarantees 157

ground-truth coverage on fresh test samples based 158

on a calibration set (Papadopoulos et al., 2002; An- 159

gelopoulos and Bates, 2021; Angelopoulos et al., 160

2024b,a). We briefly outline the conformal proce- 161

dures of the SCP framework in Appendix A. De- 162

spite the statistical rigor, SCP assumes the NSs 163

of all the N calibration data points and the given 164

test sample to be exchangeable (Tibshirani et al., 165
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2019; Bates et al., 2021; Barber et al., 2023; Far-166

inhas et al., 2024). Formally, the sequence of data167

points Z1, Z2, · · · , ZN , ZN+1 is considered ex-168

changeable if, for any permutation π, the sequence169 (
Zπ(1), Zπ(2), . . . , Zπ(N), Zπ(N+1)

)
has the same170

joint distribution as (Z1, Z2, . . . , ZN , ZN+1). Intu-171

itively, this condition is hard to represent and verify172

concretely in NLG tasks (Campos et al., 2024).173

Conformal Uncertainty in QA Tasks. Recently,174

researchers have attempted to apply SCP to LLMs175

for reliable language generation. In white-box set-176

tings, several studies (Kumar et al., 2023; Ye et al.,177

2024; Kostumov et al., 2024; Kaur et al., 2024;178

Quach et al., 2024; Angelopoulos et al., 2024b) de-179

velop ConU frameworks for multiple-choice query-180

answering (MCQA) and open-ended QA tasks by181

correlating the NS with a certain uncertainty no-182

tion of reliable responses (e.g., normalized logit-183

based probability of each option). Meanwhile, re-184

searchers also establish criteria in black-box sce-185

narios (Wang et al., 2024d; Su et al., 2024; Wang186

et al., 2024b) based on self-consistency. Our work187

SConU applies to both settings and retains existing188

frameworks: We do not process calibration samples189

manually but instead derive the minimum risk level,190

which allows for handling more QA samples from191

diverse subjects. Then, we perform the conformal192

p-value to eliminate uncertainty data outliers vio-193

lating the exchangeability precondition, and apply194

ConU frameworks based on the type of problems.195

Additionally, real-world QA applications often196

focus on conditional coverage over a particular in-197

put (Gibbs et al., 2023; Ding et al., 2023; Kim et al.,198

2024; Cresswell et al., 2024a), while in the most199

practical NLG case, this property is impossible to200

achieve (Vovk, 2012; Plassier et al., 2024). This201

paper examines internal factors of SConU, such as202

the reliability measurements in the formulation of203

the NS, seeking to approximate conditional cover-204

age across various set sizes (Angelopoulos et al.,205

2024a; Su et al., 2024; Wang et al., 2024b).206

3 Method207

3.1 Preliminaries208

Formally, we have a held-out set of N calibration209

data points, Dcal = {(xi, y∗i )}
N
i=1, where xi and y∗i210

denote the i-th question and ground-truth answer,211

respectively. For each data point, we sample mul-212

tiple (e.g., M ) responses from the output space of213

the language model to construct a candidate set for214

the corresponding question, denoted as
{
y
(i)
j

}M

j=1
. 215

We can calculate the reliability score of each gen- 216

eration or semantic cluster utilizing various uncer- 217

tainty measurements within the candidate set (Su 218

et al., 2024; Wang et al., 2024d; Kaur et al., 2024). 219

For instance, we can express the confidence score 220

of each option in MCQA task as wl · Fl

(
y
(i)
j

)
+ 221

wf ·Ff

(
y
(i)
j

)
, where Fl

(
y
(i)
j

)
represents the prob- 222

ability derived from model logit, Ff

(
y
(i)
j

)
denotes 223

the frequency score of y(i)j within the candidate set, 224

and wl and wf are the respective weights assigned 225

to each score. Then, the NS of each MCQA sample 226

is 1− wl · Fl (y
∗
i )− wf · Ff (y

∗
i ) (wl + wf = 1). 227

Due to the randomness of sampling and potential 228

limitations in model capability, we may not always 229

obtain an acceptable response that aligns with the 230

ground-truth answer by sampling M times for each 231

QA sample. Unlike prior work (Wang et al., 2024d; 232

Kaur et al., 2024; Wang et al., 2024b), we do not 233

demand that samples employed as the calibration 234

data must encompass acceptable responses within 235

their candidate sets. On one hand, given that SCP 236

is model-agnostic, we cannot guarantee that all em- 237

ployed language models in practical applications 238

will be capable of addressing the same questions. 239

Furthermore, we aim for the calibration set to cover 240

data distributions across various domains compre- 241

hensively. While the lower bound of the error rate 242

that the calibration set can control is constrained at 243

this point, we can accommodate a greater volume 244

of test QA samples by easing the risk level of α. 245

3.2 Selective Conformal Uncertainty 246

Inspired by prior research (Pitman, 1937; Jin and 247

Candès, 2023; Bates et al., 2023; Gui et al., 2024; 248

Angelopoulos et al., 2024a), we collect statistical 249

evidence for nonexchangeable sequences of NSs 250

arising from uncertainty data outliers via hypoth- 251

esis testing. Specifically, we define the null hy- 252

pothesis H0 for the test data point xN+1 with the 253

significance level of δ as follows: {(xi, y∗i )}
N
i=1 254

can serve as the calibration set for xN+1 with cov- 255

erage guarantees. Rejecting H0 indicates sufficient 256

evidence of the prediction set with an unbounded 257

miscoverage rate when tackling xN+1 based on 258

{(xi, y∗i )}
N
i=1. To this end, we construct a finite- 259

sample valid conformal p-value associating H0 as 260

pN+1 =
1 +

∑N
i=1 1 {ui ≥ uN+1}

N + 1
(1) 261
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In the formulation, ui indicates the uncertainty262

of the language model addressing the i-th question263

xi, measured by an uncertainty notion U , and we264

utilize the predictive entropy (PE) (Kadavath et al.,265

2022; Duan et al., 2024; Wang et al., 2025). Note266

that the uncertainty corresponds to the output dis-267

tribution of a particular QA sample, while the NS268

reflects the model’s uncertainty regarding a specific269

generation, representing the disagreement between270

the current response and the query.271

As mentioned, we consider that uncertainty data272

anomalies may present in the calibration set and273

compromise statistical rigor. To examine the ref-274

erence quality of each calibration data point at a275

specific risk level, we refine the conformal p-value:276

p
′
N+1 =

1 +
∑N

i=1 1 {ui ≥ uN+1, y
∗
i ∈ E (xi,Dcal, α)}

N + 1
,

(2)

277

where y∗i ∈ E (xi,Dcal, α) determines whether the278

prediction set established for xi, calibrated by all279

data points in Dcal except for xi, contains y∗i at a280

risk level of α. If not, we intuitively consider that281

the model may encounter hallucination issues when282

processing xi (Kuhn et al., 2023; Farquhar et al.,283

2024), or that the uncertainty of its output distribu-284

tion is abnormally high, which results in high NSs285

of its reliable generations and miscoverage. At this286

point, ui ≥ uN+1 lacks statistical validity at the287

risk level of α, and 1 {·} does not count.288

For simplicity, we refer to the conformal proce-289

dure employing two conformal p-values as SConU290

and SConU-Pro in the following text. We demon-291

strate that the two conformal p-values adhere to the292

statistical definition of p-values in Appendix C, and293

present a more rigorous framework to detect when294

test points do not come from the same distribution.295

Maintenance of the calibration set. As men-296

tioned, we do not remove calibration data that fail297

to cover acceptable responses within their candi-298

date sets. In this section, we demonstrate the practi-299

cal significance by defining the minimum sampling300

size of each calibration QA sample as301

mi = inf

{
Mi : ∀M

′
i ≥ Mi, y

∗
i ∈

{
y
(i)
j

}Mi

j=1

}
,

(3)302

which ensures that there is at least one correct an-303

swer in the i-th candidate set of size mi. Then, we304

sort the N minimum sampling sizes and calculate305

their ⌈(1−β)(1+N)⌉
N quantile: m̂ = m⌈(1−β)(1+N)⌉, 306

where β represents the error rate (similar to α). If 307

the test sample is exchangeable with N calibration 308

data points, we have P (mN+1 ≤ mi) =
i

N+1 . We 309

then set the sampling size of the test QA sample to 310

m̂ and obtain 311

P
(
y∗N+1 ∈

{
y
(N+1)
j

}m̂

j=1

)
= P (mN+1 ≤ m̂)

= ⌈(1− β) (1 +N)⌉ / (N + 1) ≥ 1− β

.

(4)

312

Following the requirement of previous research, 313

where at least one correct answer exists in the can- 314

didate set of fixed size M for each calibration data, 315

we have M ≥ max {mi}Ni=1 and β → 0. At this 316

point, y∗N+1 ∈
{
y
(N+1)
j

}M

j=1
is a certain event, 317

which is infeasible in practical NLG tasks. Addi- 318

tionally, removing calibration samples will narrow 319

the uncertainty distribution of the calibration set, 320

which diminishes its adaptability to new test QA 321

samples. Therefore, we explore the minimum risk 322

level controlled by the original calibration set. 323

Minimum risk level. Building on prior research 324

(Angelopoulos et al., 2024b; Farinhas et al., 2024), 325

we post-process the candidate set of each cali- 326

bration data point into a set of reliable responses 327

with sufficiently high confidence scores, Cλ (xi) = 328{
y
(i)
j : F

(
y
(i)
j

)
≥ 1− λ

}
(λ ∈ [0, 1]), where 329

F (·) can be any measurement that reflect the trust- 330

worthiness of each sampled response. Then, we 331

calculate the loss of miscoverage, l (Cλ (xi) , y∗i ) = 332

1 {y∗i /∈ Cλ (xi)}, abbreviated as li (λ), and set 333

LN (λ) = 1
N

N∑
i=1

li (λ). Suppose lN+1 (λ) follows 334

Uniform ({l1 (λ) , · · · , lN+1 (λ)}) by exchange- 335

ability, we have E [lN+1 (λ)] =
1

N+1

N+1∑
i=1

li (λ) = 336

NLN (λ) + lN+1 (λ)

N + 1
. Obviously, LN (λ) is non- 337

increasing in λ. Then, we set λ to its upper bound 338

(i.e., 1) and obtain the minimum value, LN (1). 339

When λ is set to 1, Cλ (xi) =
{
y
(i)
j

}M

j=1
, and 340

at this point, the problem simplifies to calculat- 341

ing the proportion of candidate sets in the cali- 342

bration set that do not contain an acceptable re- 343

sponse: LN (1) = 1
N

N∑
i=1

1

{
y∗i /∈

{
y
(i)
j

}M

j=1

}
. 344

Since E [lN+1 (λ)] should be controlled by a user- 345
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(a) Single-domain Miscalibration.
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(b) Cross-domain Miscalibration.

Figure 2: (a) Empirical miscoverage rate (EMR) at various risk levels on the MMLU-Pro dataset utilizing 8 LLMs.
Results on the left are from the Health discipline, while results on the right are from the Economics discipline. Solid
lines give the mean over 100 trials and shaded regions show +/− the standard deviation (std). We set the split ratio
between the calibration and test set to 0.5 for all trials. The ⋆ indicates that even the mean miscoverage rate at
the corresponding risk level is higher than the upper bound, and the shaded regions exceeding the upper bound
reflect significant data point anomalies. (b) Significant violation in the management of EMR when we use data
points from different disciplines for the calibration set and the test set within the MMLU-Pro dataset employing the
LLaMA-3.1-8B-Instruct model at the risk level of 0.28. Note that we calculate the minimum reliable risk level on
each subject based on Eq. (5) and set α to the maximum. All data on the diagonal is manually set to equal α.

specified risk level of α (i.e., E [lN+1 (λ)] ≤ α),346

and lN+1 (λ) ∈ {0, 1}, we obtain E [lN+1 (λ)] ≥347
NLN (1)
N+1 , and at this point,348

αl = NLN (1) / (N + 1) (5)349

Finally, for any risk level of α ≥ αl, we can rig-350

orously manage the correctness miscoverage rate351

leveraging the given calibration set.352

Workflow of SConU. As illustrated in Figure 1,353

after deploying the LLM, we first calculate the min-354

imum risk level if we utilize the candidate set when355

formulating NS. Then we conduct significance tests356

to identify whether the given test QA sample aligns357

with the uncertainty distribution of the calibration358

set at a user-specified risk level. A low conformal359

p-value suggests a violation of the exchangeability360

precondition, and we decline to respond.361

4 Experiments362

4.1 Experimental Settings363

Datasets. We utilize 3 closed-ended QA datasets:364

MMLU (Hendrycks et al., 2021) for multitask lan-365

guage understanding, more challenging MMLU-366

Pro (Wang et al., 2024c), and MedMCQA (Pal367

et al., 2022) for real-world medical entrance exam,368

and 2 open-domain datasets: TriviaQA (Joshi et al.,369

2017) for closed-book QA and CoQA (Reddy et al.,370

2019) for open-book conversational QA. More de- 371

tails are presented in Appendix B.2. 372

Metrics. We utilize the Empirical Miscoverage 373

Rate (EMR) to assess whether conformal methods 374

produce prediction sets that meet statistical guar- 375

antees (Wang et al., 2024b; Quach et al., 2024) 376

after outlier elimination. For conditional cover- 377

age, we apply the Size-stratified Miscoverage Rate 378

(SMR) that evaluates error rates across various set 379

sizes (Angelopoulos and Bates, 2021; Kumar et al., 380

2023; Su et al., 2024). We also explore the opera- 381

tional efficiency through the Average Prediction Set 382

Size (APSS) on the test set (Wang et al., 2024d,b; 383

Su et al., 2024; Angelopoulos et al., 2024a). 384

Our utilized LLMs and additional experimental 385

settings are presented in Appendix B. 386

4.2 Empirical Results 387

Marginal Coverage. As illustrated in Figure 2a, 388

we apply ConU to single-domain datasets and ob- 389

serve that the mean EMR results exceed the user- 390

specified risk levels for some LLMs (e.g., Qwen- 391

2-7B-Instruct). Moreover, the shaded area signifi- 392

cantly surpassing the dashed line indicates substan- 393

tial issues unbounded EMR in 100 trials. Note that 394

we employ the typical conformal framework (Ku- 395

mar et al., 2023; Ye et al., 2024; Kostumov et al., 396

2024; Campos et al., 2024) for MCQA tasks, de- 397
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Table 1: The mean, std, and median of EMR results obtained from 100 trials on the MMLU-Pro dataset. Note that
the mean and median metrics only need to be below the corresponding risk level, and they are not required to be as
low as possible.  indicates the employment of the basic ConU framework for MCQA, and  represents utilizing
our SConU criterion, eliminating uncertainty data outliers within the test set. Red indicates out of risk level.

Disciplinary Metric OD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Qwen-2-7B-Instruct Model.

Health

Mean
 0.1019 0.1977 0.3001 0.4035 0.5004 0.5964 0.6888 0.7938 0.8788
 0.0938 0.1943 0.2972 0.3957 0.4937 0.5915 0.6819 0.7876 0.8754

Std ↓  0.0285 0.0372 0.0420 0.0434 0.0424 0.0441 0.0420 0.0323 0.0232
 0.0283 0.0362 0.0423 0.0425 0.0358 0.0429 0.0384 0.0323 0.0227

Median
 0.1080 0.1960 0.2960 0.4120 0.5080 0.5960 0.6760 0.7880 0.8760
 0.0960 0.1920 0.2920 0.3960 0.4920 0.5920 0.6800 0.7960 0.8800

Economics

Mean
 0.1001 0.2032 0.2951 0.3928 0.4916 0.5871 0.6838 0.7658 0.8783
 0.0965 0.1951 0.2950 0.3928 0.4877 0.5853 0.6820 0.7630 0.8767

Std ↓  0.0279 0.0338 0.0367 0.0408 0.0384 0.0366 0.0347 0.0352 0.0161
 0.0210 0.0281 0.0275 0.0395 0.0294 0.0253 0.0294 0.0272 0.0226

Median
 0.1040 0.2080 0.2880 0.3920 0.4960 0.5920 0.6880 0.7640 0.8760
 0.0960 0.1960 0.2920 0.3960 0.4880 0.5880 0.6840 0.7680 0.8720

LLaMA-3.1-8B-Instruct Model.

Health

Mean
 0.0961 0.1933 0.2922 0.3912 0.4957 0.5988 0.6936 0.8028 0.9015
 0.0975 0.1925 0.2926 0.3935 0.4978 0.5966 0.6883 0.7913 0.8941

Std ↓  0.0273 0.0364 0.0459 0.0447 0.0481 0.0459 0.0404 0.0362 0.0257
 0.0214 0.0300 0.0412 0.0431 0.0457 0.0420 0.0426 0.0357 0.0241

Median
 0.0960 0.1920 0.2960 0.3920 0.4960 0.5880 0.6920 0.7960 0.9040
 0.0960 0.1960 0.3000 0.3880 0.4840 0.5920 0.6960 0.7960 0.8920

Economics

Mean
 0.0947 0.1952 0.2997 0.4018 0.4985 0.5932 0.6936 0.7889 0.8867
 0.0916 0.1902 0.2913 0.3875 0.4855 0.5879 0.6855 0.7897 0.8863

Std ↓  0.0363 0.0373 0.0424 0.0443 0.0458 0.0447 0.0385 0.0326 0.0279
 0.0242 0.0368 0.0415 0.0427 0.0455 0.0388 0.0294 0.0285 0.0250

Median
 0.1000 0.1880 0.2920 0.4080 0.4880 0.5840 0.6800 0.7880 0.8840
 0.0920 0.1920 0.2920 0.3960 0.4880 0.5960 0.6920 0.7920 0.8880

tailed in Appendix D. We implement our SConU398

framework under the same settings using the Qwen-399

2-7B-Instruct and LLaMa-3.1-8B-Instruct models400

as examples. We also consider the median metric401

as mentioned in several studies (Deng et al., 2023;402

Snell et al., 2023; Zollo et al., 2024). As shown403

in Table 1, both the mean and median of the EMR404

results obtained from SConU are rigorously con-405

fined within the risk level, and the variance metric406

is significantly lower than that of the basic ConU407

framework on the Health and Economics subsets,408

highlighting the effectiveness of our approach.409

In real-world QA tasks, LLMs often face queries410

from diverse disciplines (Kumar et al., 2023). How-411

ever, as shown in Figure 2b, considerable issues412

of unbounded EMR emerge when the uncertainty413

distribution of test samples deviates from that of414

the provided calibration set, compromising the reli-415

ability of their prediction sets. For instance, when416

utilizing calibration data from the Psychology do-417

main to address test samples from 13 other subsets,418

EMR values typically exceed the risk level of 0.28,419

peaking at 0.83 in the Math subject. Moreover, we 420

may have no access to model logit. At this point, 421

we incorporate the frequency score into the NS for- 422

mulation and set wl = 0, wf = 1 following the 423

study (Wang et al., 2024b). Then, we employ our 424

SConU framework, which filters out uncertainty 425

data outliers within each test subset. As illustrated 426

in Figure 3a, the EMR metric for the Math disci- 427

pline decreases to 0.15, while the results for other 428

subjects remain confined by the minimum risk level 429

of 0.28. When subsets from other disciplines are 430

utilized as the calibration set, EMR results gener- 431

ally meet the guarantee of marginal coverage. 432

Despite the theoretical guarantee of SCP being 433

rigorous, there can be minor fluctuations in practice 434

due to finite-sample variability (Angelopoulos and 435

Bates, 2021; Ye et al., 2024; Angelopoulos et al., 436

2024a). We notice EMR deviations in the results 437

of SConU. To address this, we apply SConU-Pro 438

by incorporating the prediction status of each cali- 439

bration data point into the counting criteria of the 440

conformal p-value, which evaluates the reference 441
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(a) EMR results of SConU.
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(b) EMR results of SConU-Pro.

Figure 3: Results of EMR after applying our two frameworks utilizing the LLaMA-3.1-8B-Instruct model on the
MMLU-Pro dataset. Note that all data on the diagonal is manually set to equal α (αl = 0.2723).
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(a) Original APSS results.
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(b) APSS results of SConU-Pro.

Figure 4: Results of APSS before and after performing SConU-Pro, utilizing the LLaMA-3.1-8B-Instruct model on
the MMLU-Pro dataset. Note that all data on the diagonal is manually set to 1.

values of the calibration samples across various risk442

levels. As demonstrated in Figure 3b, we achieve443

rigorous management of the EMR metric (i.e., ≤ α)444

in cross-domain scenarios. Furthermore, we com-445

pare the APSS metric before and after implement-446

ing SConU-Pro. As illustrated in Figure 4, when447

employing the Psychology or Biology subset as the448

calibration set, we observe APSS being less than 1449

in the test sets of other disciplines, indicating that450

many test QA samples have empty prediction sets.451

Following the application of SConU-Pro, we attain452

an APSS metric of 1 for all selected test samples453

with the majority of EMR metrics equal to 0, sug-454

gesting that we accurately identify the correct an-455

swer for each test QA sample. In other calibration456

settings, the APSS results also exhibit a significant457

decline, thereby enhancing prediction efficiency.458

More details of our performed conformal proce-459

dures can be found in Appendix D, and additional460

experimental results are presented in Appendix E.461

Conditional Coverage. Given the critical impor- 462

tance of correctness coverage for individual sam- 463

ples in high-stakes QA tasks, we explore four key 464

factors: exchangeability, the reliability of the NS in 465

representing disagreements between query-answer 466

pairs, split ratio, and model performance, and ex- 467

amine EMR across various set sizes. Our analysis 468

focuses on the MedMCQA task and the Clinical 469

Knowledge subset of the MMLU dataset. As pre- 470

sented in Table 2, when employing logit-based NSs, 471

EMR values exceed the risk threshold at set sizes of 472

1 and 3. By incorporating the frequency score into 473

the NS formulation and appropriately increasing 474

the sample size, we observe a reduction in the SSM 475

metric. Moreover, while more calibration samples 476

enhance conditional performance, the SSM metric 477

remains above the acceptable risk level. To address 478

this, we utilize the conformal p-value to eliminate 479

outliers, achieving approximate conditional cover- 480

age, with the SSM metric falling below the risk 481
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Table 2: Results of the SSM metric obtained from 100 trials, under different settings on the MedMCQA dataset,
utilizing the Qwen-2.5-14B-Instruct model (Mean ± Std). Red indicates out of risk level.

wl (Logit) wf (Frequency) M (Sampling) OD Size = 1 Size = 2 Size = 3 SSM ↓

Split ratio is fix at 0.5 and α is set to 0.34 (αl = 0.3342).
1 0 10  0.3428 ± 0.0151 0.2800 ± 0.0277 0.1056 ± 0.1860 0.3579
1 0 10  0.3060 ± 0.0054 0.0348 ± 0.0047 0 0.3114

0.5 0.5 10  0.3428 ± 0.0144 0.2971 ± 0.0240 0.1487 ± 0.1594 0.3572
0 1 10  0.3391 ± 0.0149 0.2874 ± 0.0251 0.2177 ± 0.1027 0.3540
0 1 10  0.3025 ± 0.0067 0.2795 ± 0.0766 0 0.3092

Split ratio is fix at 0.7 and α is set to 0.34 (αl=0.3294).
1 0 10  0.3404 ± 0.0168 0.2764 ± 0.0395 0.1212 ± 0.2499 0.3711

0.5 0.5 10  0.3407 ± 0.0157 0.2955 ± 0.0378 0.1350 ± 0.2069 0.3564
0.5 0.5 20  0.3402 ± 0.0102 0.2916 ± 0.0337 0.1160 ± 0.1713 0.3504
0.5 0.5 20  0.3023 ± 0.0112 0.2665 ± 0.0293 0 0.3135
0 1 20  0.3382 ± 0.0154 0.2927 ± 0.0353 0.1287 ± 0.1156 0.3536
0 1 20  0.3006 ± 0.0121 0.2539 ± 0.0109 0 0.3127

Table 3: Mean of SSM results obtained from 100 trials
at the risk level of 0.3 on the Clinical Knowledge subject
of MMLU dataset. Note that we fix the split ratio to 0.5
and set wl = wf = 0.5 in the formulation of NS.

LLMs OD Size = 1 Size = 2 Size = 3

Vicuna-7B-v1.5  0.3233 0.3811 0.2113
(al = 0.2857)  0.3229 0.2971 0.0733

Vicuna-13B-v1.5  0.3045 0.2769 0.2811
(al = 0.2556)  0.2973 0.1813 0

threshold at both split ratios. For instance, with a482

split ratio of 0.5, we attain an SSM value of 0.3092483

using the frequency score derived from the candi-484

date set of size 10. As shown in Table 3, model485

performance also plays a significant role in influ-486

encing conditional coverage, and our SConU-Pro487

framework consistently enhances the SSM metric.488

We conclude that we can design NS using more489

reliable uncertainty measures based on the internal490

model information and the true sampling distribu-491

tion. Additionally, we can appropriately increase492

the scale of the calibration data, although this will493

increase computational costs. Most importantly, it494

is essential to ensure exchangeability among QA495

samples. Finally, deploying task-specific models496

can further improve conditional performance.497

Prediction Efficiency. In open-domain QA tasks,498

we observe significant semantic redundancy in the499

prediction sets generated by previous ConU frame-500

works (Wang et al., 2024d; Su et al., 2024). As501

shown in Table 4, the mean APSS from 100 trials502

decreases markedly before and after semantic dedu-503

plication, suggesting that there is considerable po-504

tential for improving the action efficiency of these505

Table 4: Results of mean APSS before and after seman-
tic deduplication (SD) within prediction sets.

Dataset LLMs SD Mean APSS

TriviaQA

Qwen2.5-3B-Instruct
○ 8.07
○ 1.08

Qwen2.5-7B-Instruct
○ 8.77
○ 1.05

Qwen2.5-14B-Instruct
○ 9.18
○ 1.03

CoQA

Qwen2.5-3B-Instruct
○ 8.65
○ 1.12

Qwen2.5-7B-Instruct
○ 8.80
○ 1.04

Qwen2.5-14B-Instruct
○ 8.84
○ 1.03

prediction sets while maintaining the guarantee. 506

5 Conclusion 507

In this paper, we introduce SConU, a modular and 508

principled framework aimed at eliminating uncer- 509

tainty data outliers that violate the exchangeabil- 510

ity precondition inherent in existing conformal ap- 511

proaches. We develop two conformal p-values to 512

identify whether the given test QA sample signif- 513

icantly deviates from the uncertainty distribution 514

of the calibration set as a user-specified risk level. 515

Experimental results demonstrate the rigorous guar- 516

antees of marginal coverage and efficient prediction 517

of SConU. Additionally, we derive the minimum 518

risk level manageable by the calibration set with- 519

out manually handling calibration data points post- 520

deployment of the language model. Furthermore, 521

we approximate conditional coverage across vari- 522

ous sizes of the prediction set by analyzing several 523

internal components of the conformal procedures. 524
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Limitations525

Our SConU framework excludes test QA samples526

that significantly deviate from the uncertainty distri-527

bution of the calibration set. In future work, we will528

investigate strategies to address nonexchangeable529

data sequences by analyzing the degree of uncer-530

tainty distribution shift between the given test sam-531

ple and the calibration set. Moreover, we achieve532

approximate conditional coverage at various predic-533

tion set sizes in high-stakes QA tasks, prompting534

us to conduct more comprehensive studies on the535

mechanisms influencing conditional performance536

on particular data points in subsequent research.537
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A An illustration of the SCP framework824

SCP can transform any heuristic notion of uncer-825

tainty from any model into a rigorous one (An-826

gelopoulos and Bates, 2021). Let’s illustrate the ba-827

sic SCP framework by classification problems (An-828

gelopoulos et al., 2021): Given the calibration set829

of size N , we define the NS of each sample as one830

minus the softmax output for the true class. Then831

we calculate the ⌈(N+1)(1−α)⌉
N quantile of the N832

sorted (ascending) NSs and employ it as the thresh-833

old to select possible classes for a new test sample.834

If the softmax output of a certain class falls below835

the threshold, by the exchangeability condition, we836

consider it to have an approximate probability of837

1−α to be the true label and add it to the prediction838

set. Finally, we achieve marginal correctness cov-839

erage on the finite-sample test set. The complete840

framework is presented as follows:841

1. Given the calibration data set {(Xi, Y
∗
i )}

n
i=1842

(i.i.d.) and pretrained model f̂ (·) (f̂ (Xi) ∈843

[0, 1](K)). The probability of each true class844

(label) is denoted as f̂ (Xi)Y ∗
i

.845

2. Define and sort the nonconformity scores (un-846

certainty state associated with the true class of847

each calibration sample): si = s (Xi, Y
∗
i ) =848

1− f̂ (Xi)Y ∗
i

({s1 ≤ · · · ≤ sn}).849

3. Obtain the ⌈(n+1)(1−α)⌉
n quantile of {si}ni=1:850

q̂ = inf
{
q : |{i:si≤q}|

n ≥ ⌈(n+1)(1−α)⌉
n

}
=851

s⌈(n+1)(1−α)⌉.852

4. Create the prediction set for Xtest following:853

C (Xtest) = {y ∈ [K] : s (Xtest, y) ≤ q̂}854

5. The event Y ∗
test ∈ C (Xtest) is equiva-855

lent to s (Xtest, Y
∗
test) ≤ q̂. As long as856

s (Xtest, Y
∗
test) ≤ q̂ is satisfied, Y ∗

test is en-857

compassed by C (Xtest), and then we obtain858

the prediction set that contains the true label.859

6. By the exchangeability of N + 1 data points,860

we have P (stest ≤ si) =
i

n+1 .861

7. Then we conclude: P (Y ∗
test ∈ C (Xtest)) =862

P (stest ≤ q̂) = ⌈(n+1)(1−α)⌉
n+1 ≥ 1− α.863

B Additional Experimental Settings864

B.1 Base LLMs865

We conduct experiments utilizing 4 popular se-866

ries of “off-the-shelf” LLMs: OpenChat (Wang867

et al., 2024a), LLaMA (Touvron et al., 2023; 868

AI@Meta, 2024), Vicuna (Zheng et al., 2023), 869

and Qwen (Yang et al., 2024), divided by model 870

size into: ① 3B: LLaMA-3.2-3B-Instruct and 871

Qwen-2.5-3B-Instruct. ② 7B: Qwen-2-7B-Instruct, 872

Qwen-2.5-7B-Instruct, and OpenChat-3.5. ③ 873

8B: LLaMA-3-8B-Instruct and LLaMA-3.1-8B- 874

Instruct. ④ 13B: LLaMA-2-13B-Chat and Vicuna- 875

13B-v1.5. ⑤ 14B: Qwen-2.5-14B-Instruct. ⑥ 32B: 876

Qwen-2.5-32B-Instruct. 877

B.2 Details of Datasets 878

MMLU1 is a massive multi-task test consisting of 879

multiple-choice questions from 57 subjects such 880

as anatomy, astronomy, and business ethics. Fol- 881

lowing prior studies (Kumar et al., 2023; Su et al., 882

2024), we consider a subset of 16 subjects: com- 883

puter security, high school computer science, col- 884

lege computer science, machine learning, formal 885

logic, high school biology, anatomy, clinical knowl- 886

edge, college medicine, professional medicine, col- 887

lege chemistry, marketing, public relations, man- 888

agement, business ethics, and professional account- 889

ing. Table 5 presents the number of samples em- 890

ployed for each subject from the MMLU dataset. 891

Note that there is a slight deviation in the actual 892

number of samples utilized for each model due to 893

a few individual samples that do not comply with 894

user instructions in all sampled responses (i.e., each 895

response is not among A, B, C, or D). 896

Table 5: The number of samples employed for each
subject from the MMLU dataset.

Subjects Number of Samples

computer security 100
high school computer science 100
college computer science 100
machine learning 112
formal logic 126

high school biology 310
anatomy 135
clinical knowledge 265
college medicine 173
professional medicine 272
college chemistry 100

marketing 234
public relations 110
management 103
business ethics 100
professional accounting 282

1https://huggingface.co/datasets/cais/mmlu
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MMLU-Pro2 is a more robust and challenging897

multi-task understanding dataset. It expands sam-898

ples from MMLU by increasing the 4 options for899

each question to 10, and the subjects are enhanced900

with questions from STEM Website, TheoremQA,901

and SciBench. This dataset totally contains 12,000902

complex questions across various disciplines. qIn903

order for a balanced distribution of sample quan-904

tities across different subjects, we employ a maxi-905

mum of 500 samples for each subject. The detailed906

sample quantities are shown in Table 6. Note that907

the number of samples applied for each model may908

have slight deviations (i.e., each response is not909

among A, B, C, D, E, F, G, H, I, or J).910

Table 6: The number of samples employed for each
subject from the MMLU-Pro dataset.

Subjects Number of Samples

computer science 410
math 500
chemistry 500
engineering 500
law 500
biology 500
health 500
physics 500
business 500
philosophy 499
economics 500
other 500
psychology 500
history 381

For both MMLU and MMLU-Pro datasets, we911

utilize the test set of each subject, sourced from the912

test-00000-of-00001.parquet file.913

MedMCQA3 is designed to address real-world914

medical entrance exam questions. We consider the915

full validation set, 4,180 MCQA samples, sourced916

from the validation-00000-of-00001.parquet917

file. Note that several MCQA samples cannot be918

correctly encoded by the tokenizer, specifically919

non-ASCII characters. We exclude these samples,920

remaining 3,967 samples.921

TriviaQA4 is a reading comprehension dataset922

containing over 650,000 high-quality query-answer923

pairs. We utilize the validation set sourced from the924

validation-00000-of-00001.parquet file and925

randomly select 4,000 QA samples.926

2https://huggingface.co/datasets/TIGER-Lab/MMLU-
Pro

3https://huggingface.co/datasets/openlifescienceai/medmcqa
4https://huggingface.co/datasets/mandarjoshi/triviaqa

CoQA5 is a large-scale conversational QA task, 927

including 127,000 query-answer samples with their 928

corresponding evidence highlighted in the provided 929

context. We also utilize the validation set sourced 930

from the validation-00000-of-00001.parquet 931

file and randomly select 4,000 QA samples. 932

B.3 Prompt Engineering 933

For both the MMLU and MMLU-Pro tasks, we ran- 934

domly select 3 QA examples from the validation set 935

of each subject, to construct a 3-shot prompt, which 936

guides the language model in answering the cur- 937

rent question using the specified response format 938

(i.e., providing options like A, B, or C). Notably, all 939

questions within the same subject share the same 940

examples in the 3-shot prompt. For the MedMCQA 941

task, we randomly selected 3 samples from the val- 942

idation set as few-shot examples and exclude these 943

three samples from subsequent experiments. We 944

apply similar system prompts across the 3 MCQA 945

datasets. Note that each question in the MMLU-Pro 946

dataset generally includes 10 multiple-choice op- 947

tions, though some QA samples have fewer options 948

following a manual review process to eliminate 949

unreasonable choices. In the TriviaQA and CoQA 950

tasks, we develop few-shot prompts following prior 951

work (Duan et al., 2024; Wang et al., 2025). We 952

provide complete prompt examples for 5 datasets, 953

as presented in Figures 10−14. 954

B.4 Hyperparameters 955

Following prior studies (Duan et al., 2024; Wang 956

et al., 2024d,b), We employ multinominal sam- 957

pling to generate M candidate responses for each 958

data point. For both the MMLU and MedMCQA 959

datasets with 4 options for each question, we set the 960

number of candidate responses, M , to 20, maintain- 961

ing consistency with previous research (Kuhn et al., 962

2023; Lin et al., 2024; Quach et al., 2024). Since 963

each sample in the MMLU-Pro dataset includes 10 964

multiple-choice options, we increase M to 50 to 965

better approximate the distribution of model out- 966

puts. For the TriviaQA and CoQA tasks, we gen- 967

erate 10 responses for each question (Wang et al., 968

2024d). Considering that we develop prompts to 969

guide the language model in responding with the 970

most probable option letters (e.g., A, B, or C), as 971

detailed in Appendix B.3, we set the maximum 972

generation length to 1 to accelerate sampling in 3 973

MCQA tasks. For open-domain QA, we examine 974

5https://huggingface.co/datasets/stanfordnlp/coqa
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Hyperparameter Value

do_sample True
num_beams 1
top_p 0.9
temperature 1.0
max_length input_length + 1/36

Table 7: Hyperparameters for the generate function.
input_length is the embedding length of the input
prompt after being encoded by the tokenizer of the cur-
rent language model.

the maximum length of answers for all randomly975

selected samples, and set the maximum generation976

length for 2 tasks to 36. In the generate function,977

we configure the hyperparameters as presented in978

Table 7. Moreover, since the conformal p-value de-979

tects when test points do not come from the same980

distribution of the calibration set, we guarantee that981

it does not return too many false positives and set982

δ equal to the user-specified risk level, following983

prior work (Angelopoulos and Bates, 2021; Jin and984

Candès, 2023; Gui et al., 2024; Huang et al., 2024).985

C Conformal p-value986

In this section, we first demonstrate that the con-987

formal p-value formulated in Eq. (1) adheres to the988

statistical definition of p-values. As mentioned, ui989

represents the uncertainty of the LLM addressing990

the i-th question. At this point, we can denotes991

pN+1 as992

pN+1 =

1 +

N∑
i=1

1 {ui ≥ uN+1}

N + 1

=
k

N + 1

, (6)993

where k is the position of uN+1 in the sorted (i.e.,994

ascending) sequence of N + 1 uncertainty scores,995

and we have996

P (pN+1 ≤ δ) = P
(

k

N + 1
≤ δ

)
= P (k ≤ ⌊(N + 1) δ⌋)

. (7)997

Since we apply the consistent uncertainty measure998

for each QA sample, the N + 1 uncertainty scores999

are exchangeable. Then, we obtain 1000

P (pN+1 ≤ δ) =
⌊(N + 1) δ⌋

N + 1

≤ (N + 1) δ

N + 1

≤ δ

. (8) 1001

As mentioned in section 4.2, we observe minor 1002

fluctuations in the results of SConU under cross- 1003

domain scenarios. This arises from the hallucina- 1004

tion issues of LLMs. For example, consider two 1005

questions with similar sampling distribution. How- 1006

ever, in one question’s candidate set, nearly all the 1007

answers are incorrect, while in the other question’s 1008

sampling set, most answers are correct. In this case, 1009

the scores obtained from the uncertainty measure 1010

for the two samples may be the same, but in fact, 1011

the answering situations of the two QA samples are 1012

opposite, which can affect the exchangeability of 1013

the uncertainty scores, leading to slight variations 1014

in the performance of outlier detection. 1015

To check whether the uncertainty score of each 1016

calibration data point is referenceable at different 1017

risk levels, we incorporate their prediction status 1018

into the counting criterion. At this point, we denote 1019

the count of calibration samples that satisfy both 1020

ui ≥ uN+1 and y∗i ∈ E (xi,Dcal, α). Thus the 1021

conformal p-value can be expressed as p
′
N+1 = 1022

1+k
N+1 . Here, k can take values from 0 to N , so the 1023

range of p
′
N+1 is

[
1

N+1 , 1
]
. Similar to Eq. (7), we 1024

have 1025

P
(

1 + k

N + 1
≤ δ

)
= P (k ≤ (N + 1) δ − 1) . (9) 1026

Let m = ⌊(N + 1) δ − 1⌋. Since k can be at most 1027

N , if M < 0, then pN+1 will always be greater 1028

than any negative value, so P
(
p
′
N+1 ≤ δ

)
= 0 ≤ 1029

δ. If 0 ≤ m ≤ N , we have 1030

P (k ≤ m) ≤ m+ 1

N + 1
. (10) 1031

Therefore, 1032

P
(
p
′
N+1 ≤ δ

)
≤ m+ 1

N + 1

≤ δ
. (11) 1033

In summary, we have demonstrated that our devel- 1034

oped two conformal p-values satisfy the statistical 1035

definition of p-values. 1036
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Table 8: The minimum risk level manageable by each subject of the calibration set in the MMLU dataset utilizing
the Qwen2.5-32B-Instruct model.

Subjects (Computer Science) al Subjects (Medicine) al Subjects (Business) al

computer security 0 high school biology 0.007 marketing 0
high school computer science 0 anatomy 0.009 public relations 0
college computer science 0 clinical knowledge 0.004 management 0
machine learning 0 college medicine 0.014 business ethics 0.011
formal logic 0.019 professional medicine 0.008 professional accounting 0.018

college chemistry 0.051

computer_security

high_school_computer_science

college_computer_science

machine_learning
formal_logic

high_school_biology
anatomy

clinical_knowledge

college_medicine

professional_medicine

college_chemistry
marketing

public_relations
management

business_ethics

professional_accounting

computer_se
curity

high_school_computer_science

college_computer_science

machine_learning

formal_logic

high_school_biology

anatomy

clinical_knowledge

college_medicine

professional_medicine

college_chemistry

marketing

public_relations

management

business_e
thics

professional_accounting

0.10 0.08 0.06 0.03 0.05 0.08 0.08 0.08 0.07 0.08 0.01 0.08 0.06 0.08 0.06 0.07

0.07 0.10 0.05 0.03 0.03 0.07 0.07 0.07 0.05 0.07 0.00 0.07 0.05 0.07 0.05 0.05

0.10 0.12 0.10 0.06 0.06 0.12 0.12 0.12 0.08 0.12 0.01 0.12 0.06 0.12 0.06 0.08

0.17 0.18 0.11 0.10 0.10 0.18 0.18 0.18 0.12 0.18 0.00 0.18 0.11 0.18 0.11 0.11

0.13 0.14 0.10 0.07 0.10 0.14 0.14 0.14 0.13 0.14 0.03 0.14 0.10 0.14 0.10 0.11

0.03 0.04 0.02 0.02 0.02 0.10 0.04 0.04 0.03 0.04 0.01 0.04 0.02 0.04 0.02 0.02

0.07 0.07 0.06 0.02 0.02 0.07 0.10 0.07 0.06 0.07 0.01 0.07 0.06 0.07 0.06 0.06
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(a) EMR results of the basic ConU framework.
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(b) APSS results of the basic ConU framework.

Figure 5: Results of the EMR and APSS metrics obtained from the basic ConU framework on the MMLU dataset
utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.1.
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(a) EMR results of our SConU framework.

computer_security

high_school_computer_science

college_computer_science

machine_learning
formal_logic

high_school_biology
anatomy

clinical_knowledge

college_medicine

professional_medicine

college_chemistry
marketing

public_relations
management

business_ethics

professional_accounting

computer_se
curity

high_school_computer_science

college_computer_science

machine_learning

formal_logic

high_school_biology

anatomy

clinical_knowledge

college_medicine

professional_medicine

college_chemistry

marketing

public_relations

management

business_e
thics

professional_accounting

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.07 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.12 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00
1.00

1.02

1.04

1.06

1.08

1.10

(b) APSS results of our SConU framework.

Figure 6: Results of the EMR and APSS metrics obtained from our SConU framework on the MMLU dataset
utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.1.

Considering that a single uncertainty notion can-1037

not fully represent the exchangeability among QA1038

samples, we can perform multiple hypothesis test-1039

ing to identify uncertainty data outliers in practical1040

high-stakes QA applications. As mentioned in Sec-1041

tion 3.2, we utilize PE as the uncertainty measure,1042

formulated as ui = PE (xi) =
∑Oi

o=1−po log po,1043

where po denotes the logit-based confidence score1044

of the o-th option and Oi denotes the number of1045

options for the i-th question (e.g., 4 or 10). Here,1046

for each QA sample, we define B notions of uncer- 1047

tainty:
{
u
(i)
b

}B

b=1
, such as the number of seman- 1048

tics within the candidate set (Lin et al., 2024) and 1049

the frequency-based PE. At this point, we check 1050

whether its B types of uncertainty significantly de- 1051

viate from the calibration set for each test data point. 1052

If any one of them does not meet the criterion, we 1053

consider that the exchangeability condition is vio- 1054

lated and decline to provide a prediction set. 1055

We determine the significance level for the p- 1056

15



value associated with each uncertainty notion by1057

the Benjamini-Hochberg (BH) procedure (Ben-1058

jamini and Hochberg, 1995; Benjamini and Yeku-1059

tieli, 2001). More details can be referred to the1060

study (Jin and Candès, 2023). Finally, for each test1061

QA sample, if a certain conformal p-value associ-1062

ated with one uncertainty notion is lower than the1063

significance level calculated by the BH procedure,1064

we reject the null hypothesis and decline to provide1065

an answer. Conversely, when multiple hypothesis1066

testing indicates that the N +1 QA samples are ex-1067

changeable, we select task-specific ConU methods.1068

Next, we present several typical frameworks.1069

D Details of Conformal Procedures1070

Similar to Prompt Risk Control (PRC) (Zollo et al.,1071

2024), our approach is orthogonal to some existing1072

conformal frameworks. For MCQA tasks within1073

the same discipline or dataset, we apply the basic1074

procedures in prior studies (Kumar et al., 2023; Ye1075

et al., 2024; Kostumov et al., 2024) and evaluate1076

the EMR metric before and after implementing our1077

developed conformal p-value. In formulation, the1078

NS of each option can be expressed as 1 − wl ·1079

Fl (y
∗
i ) − wf · Ff (y

∗
i ) as defined in Section 3.1.1080

Here, we only utilize the confidence score obtained1081

from the model logit and set wl = 1 and wf = 0.1082

At this point, we calculate the uncertainty score1083

based on the logit-based PE method.1084

In more practical cross-domain settings, we in-1085

vestigate employing the black-box frequency score1086

to formulate the NS following the research (Wang1087

et al., 2024b), assuming no access to model internal1088

information, and set wl = 0 and wf = 1. We use1089

the frequency score of each option obtained from1090

the candidate set of size 20 (or 50) to characterize1091

the probability of po and calculate frequency-based1092

PE to implement uncertainty data outlier detection.1093

Note that the performance of uncertainty quantifi-1094

cation methods to differentiate between correct and1095

incorrect answers affects the effectiveness of con-1096

formal p-values in identifying outliers. This is be-1097

cause a single notion of uncertainty cannot fully1098

characterize the exchangeability among data points.1099

Therefore, by applying more efficient uncertainty1100

measures (Lin et al., 2024; Duan et al., 2024; Wang1101

et al., 2025), we can enhance the capability of the1102

NS to represent the disagreement between the cur-1103

rent question and response while also improving1104

the statistical rigor of significance tests.1105

In open-domain QA tasks, we employ the similar1106

Table 9: The minimum risk level manageable by each
subject of the calibration set in the MMLU-Pro dataset
utilizing the Qwen2.5-32B-Instruct model.

Subjects al

computer science 0.075
math 0.123
chemistry 0.164
engineering 0.126
law 0.109
biology 0.032
health 0.047
physics 0.161
business 0.112
philosophy 0.045
economics 0.030
other 0.092
psychology 0.015
history 0.031

ConU framework applicable to black-box settings 1107

introduced in the study (Wang et al., 2024d). The 1108

NS of each calibration data is formulated as 1−0.5· 1109

F
(
y
(i)
ref

)
−0.5 · 1

M

∑M
j=1 S

(
y
(i)
ref , y

(i)
j

)
F
(
y
(i)
j

)
, 1110

where y
(i)
ref represent the response in the candidate 1111

set that have equivalent semantics to the ground- 1112

truth y∗i , F
(
y
(i)
ref

)
measures the number of gen- 1113

erations that is semantically equivalent to y
(i)
ref 1114

(i.e., the frequency score of correct semantic), and 1115

S
(
y
(i)
ref , y

(i)
j

)
measures the semantic similarity 1116

score between y
(i)
ref and y

(i)
j in the candidate set. 1117

Refer to the studies (Wang et al., 2024d,b; Su et al., 1118

2024) for more details. We also link the NS with 1119

the uncertainty state of acceptable semantics. 1120

E Additional Experimental Results 1121

Note that in all experimental results within the in- 1122

terdisciplinary scenarios, the discipline from the 1123

horizontal axis represents the calibration set, while 1124

the discipline from the vertical axis represents the 1125

test set. When the calibration set and test set belong 1126

to the same discipline along the diagonal, all EMR 1127

results are directly set equal to the corresponding 1128

risk level of α, and the APSS results are set to 1. 1129

In this section, we also evaluate our SConU 1130

framework in cross-domain settings utilizing the 1131

MMLU dataset with the Qwen2.5-32B-Instruct 1132

model employed as the generator. Firstly, we cal- 1133

culate the minimum risk level manageable by each 1134

subject of the calibration set based on Eq. (5), as 1135
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(a) EMR results of the basic ConU framework.
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(b) APSS results of the basic ConU framework.

Figure 7: Results of the EMR and APSS metrics obtained from the basic ConU framework on the MMLU-Pro
dataset utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.2.
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(a) EMR results of our SConU framework.
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(b) APSS results of our SConU framework.

Figure 8: Results of the EMR and APSS metrics obtained from our SConU framework on the MMLU-Pro dataset
utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.2.
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(a) EMR results of our SConU-Pro framework.

business law
psychology

biology
chemistry history other

health
economics math

physics

computer science
philosophy

engineering

business

law

psychology

biology

chemistry

history

other

health

economics

math

physics

computer science

philosophy

engineering

1.00 1.00 1.00 1.00 1.13 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.03

1.00 1.00 1.00 1.00 1.15 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.07

1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.02

1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.02

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.05

1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.03

1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.05

1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.02

1.00 1.00 1.00 1.00 1.15 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.14 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.03

1.00 1.00 1.00 1.00 1.16 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

(b) APSS results of our SConU-Pro framework.

Figure 9: Results of the EMR and APSS metrics obtained from our SConU-Pro framework on the MMLU-Pro
dataset utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.2.

presented in Table 8. Then, we specify the risk1136

level to 0.1 (α = δ = 0.1) and evaluate the results1137

of the EMR metric on each subject of the test set1138

before and after performing our SConU framework.1139

As shown in Figures 5 and 6, before conducting out- 1140

liers detection and elimination within the test set, 1141

significant issues arise: the EMR exceeds the risk 1142

level (i.e., ≥ 0.1) in testing datasets such as college 1143
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chemistry, and many datasets report an APSS met-1144

ric below 1, indicating that a substantial number of1145

QA samples resulted in empty predictions. After1146

filtering out test samples that significantly deviate1147

from the calibration set, our foundational SConU1148

framework achieves strict EMR control, with the1149

APSS metrics of the test set nearly all at 1, high-1150

lighting that our method accurately identifies the1151

correct answers.1152

On the more robust and challenging MMLU-Pro1153

task with 10 options for each query, the minimum1154

manageable risk level of each calibration set signifi-1155

cantly increases, as presented in Table 9. We set the1156

risk level of α to 0.2 and present the results of the1157

EMR metric utilizing the basic ConU framework in1158

Figure 7. The phenomenon of EMR surpassing the1159

risk level is both frequent and severe. For example,1160

when utilizing the Biology subset as the calibra-1161

tion to address queries from the Chemistry subject,1162

the EMR metric is 0.56, significantly exceeding1163

0.2. Similarly, there are numerous QA samples1164

where the prediction sets are empty, resulting in1165

several subjects of the test sets having APSS scores1166

below 1. Our SConU framework consistently main-1167

tains strict control over the EMR metric across1168

all calibration-test set pairs, while also achieving1169

higher prediction efficiency, as shown in Figure 8.1170

Furthermore, as demonstrated in Figure 9, SConU-1171

Pro achieves lower EMR and APSS metrics across1172

all calibration and test sets by assessing the relia-1173

bility of the uncertainty scores of each calibration1174

sample at a specific risk level.1175
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MMLU

### System:
Answer the following multiple-choice question by giving the most appropriate response. Answer
should be one among [A, B, C, D].

### User:
What is penetration testing?
A: A procedure for testing libraries or other program components for vulnerabilities; B:
Whole-system testing for security flaws and bugs; C: A security-minded form of unit testing that
applies early in the development process; D: All of the above
### Assistant:
B

### User:
Suppose a user has an iPhone (running iOS) and downloads an app called Innocent from the Apple
App Store and installs it. The user unlocks the phone and runs Innocent. Innocent exploits a bug in
the iOS kernel which allows Innocent to redirect execution inside the kernel to code that Innocent
controls. Now Innocent can execute any instructions it likes inside the iOS kernel. Innocent is
not able to exploit any bugs in the phone’s secure enclave. Can Innocent read the user’s private
information stored in the phone’s flash (e.g. Contacts and messages), or will the security measures
described in the paper keep the data private? If Innocent is only able to see encrypted data, then
the phone has successfully kept the data private. Circle the security features of the phone (if any)
that will prevent Innocent from reading information from the flash on the phone.
A: Secure boot chain; B: System software authorization; C: The secure enclave’s ephemeral key;
D: None of the above
### Assistant:
D

### User:
Why is it that anti-virus scanners would not have found an exploitation of Heartbleed?
A: It’s a vacuous question: Heartbleed only reads outside a buffer, so there is no possible exploit;
B: Anti-virus scanners tend to look for viruses and other malicious; C: Heartbleed attacks the
anti-virus scanner itself; D: Anti-virus scanners tend to look for viruses and other malicious code,
but Heartbleed exploits steal secrets without injecting any code
### Assistant:
D

### User:
Which of the following styles of fuzzer is more likely to explore paths covering every line of code
in the following program?
A: Generational; B: Blackbox; C: Whitebox; D: Mutation-based
### Assistant:

Figure 10: An example of the prompt in the MMLU task.
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MMLU-Pro

### System:
Answer the following multiple-choice question by giving the most appropriate response. Answer
should be one among [A, B, C, D, E, F, G, H, I, J].

### User:
In contrast to , aim to reward favourable behaviour by companies. The success of such
campaigns have been heightened through the use of , which allow campaigns to facilitate the
company in achieving .
A: Boycotts, Buyalls, Blockchain technology, Increased Sales; B: Buycotts, Boycotts, Digital
technology, Decreased Sales; C: Boycotts, Buycotts, Digital technology, Decreased Sales;
D: Buycotts, Boycotts, Blockchain technology, Charitable donations; E: Boycotts, Buyalls,
Blockchain technology, Charitable donations; F: Boycotts, Buycotts, Digital technology, Increased
Sales; G: Buycotts, Boycotts, Digital technology, Increased Sales; H: Boycotts, Buycotts, Physical
technology, Increased Sales; I: Buycotts, Buyalls, Blockchain technology, Charitable donations; J:
Boycotts, Buycotts, Blockchain technology, Decreased Sales
### Assistant:
F

### User:
is the direct attempt to formally or informally manage ethical issues or problems, through

specific policies, practices and programmes.
A: Operational management; B: Corporate governance; C: Environmental management; D:
Business ethics management; E: Sustainability; F: Stakeholder management; G: Social marketing;
H: Human resource management; I: N/A; J: N/A
### Assistant:
D

### User:
How can organisational structures that are characterised by democratic and inclusive styles of
management be described?
A: Flat; B: Bureaucratic; C: Autocratic; D: Hierarchical; E: Functional; F: Decentralized; G:
Matrix; H: Network; I: Divisional; J: Centralized
### Assistant:
A

### User:
Typical advertising regulatory bodies suggest, for example that adverts must not: encourage ,
cause unnecessary or , and must not cause offence.
A: Safe practices, Fear, Jealousy, Trivial; B: Unsafe practices, Distress, Joy, Trivial; C: Safe
practices, Wants, Jealousy, Trivial; D: Safe practices, Distress, Fear, Trivial; E: Unsafe practices,
Wants, Jealousy, Serious; F: Safe practices, Distress, Jealousy, Serious; G: Safe practices, Wants,
Fear, Serious; H: Unsafe practices, Wants, Fear, Trivial; I: Unsafe practices, Distress, Fear, Serious
### Assistant:

Figure 11: An example of the prompt in the MMLU-Pro task. Note that the current question has 9 options.
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MedMCQA

### System:
Answer the following multiple-choice question by giving the most appropriate response. Answer
should be one among [A, B, C, D].

### User:
Kamlesh, a 2 year old girl, has Down’s syndrome. Her karyotype is 21/21 translocation. What is
the risk ofrecurrence in subsequent pregnancies if the father is a balanced translocation carrier :
A: 100%; B: 50%; C: 25%; D: 0%
### Assistant:
A

### User:
Not a part of ethmoid bone is
A: Inferior turbinate; B: Agar nasi cells; C: Uncinate process; D: Crista galli
### Assistant:
A

### User:
Haddon matrix is related to:
A: Injury prevention; B: Communicable diseases; C: Maternal and child moality; D: Hypeensive
disorders
### Assistant:
B

### User:
Which of the following is not true for myelinated nerve fibers:
A: Impulse through myelinated fibers is slower than non-myelinated fibers; B: Membrane currents
are generated at nodes of Ranvier; C: Saltatory conduction of impulses is seen; D: Local anesthesia
is effective only when the nerve is not covered by myelin sheath
### Assistant:

Figure 12: An example of the prompt in the MedMCQA task.

21



TriviaQA

### System:
This is a bot that correctly answers questions.

### User:
In 1968, who did radical feminist Valerie Solanas shoot and wound as he entered his New York
studio?
### Assistant:
Andy Warhol

### User:
What lake can be found on the border of Vermont and New York?
### Assistant:
Lake Champlain

### User:
Which competition was won by Nadiya Hussain in 2015?
### Assistant:
The Great British Bake-Off

### User:
Who was the man behind The Chipmunks?
### Assistant:

Figure 13: An example of the prompt in the TriviaQA task.
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CoQA

### System: This is a bot that correctly answers questions.
Once upon a time, in a barn near a farm house, there lived a little white kitten named Cotton.
Cotton lived high up in a nice warm place above the barn where all of the farmer’s horses slept.
But Cotton wasn’t alone in her little home above the barn, oh no. She shared her hay bed with
her mommy and 5 other sisters. All of her sisters were cute and fluffy, like Cotton. But she was
the only white one in the bunch. The rest of her sisters were all orange with beautiful white
tiger stripes like Cotton’s mommy. Being different made Cotton quite sad. She often wished she
looked like the rest of her family. So one day, when Cotton found a can of the old farmer’s orange
paint, she used it to paint herself like them. When her mommy and sisters found her they started
laughing. “What are you doing, Cotton?!” “I only wanted to be more like you”. Cotton’s mommy
rubbed her face on Cotton’s and said “Oh Cotton, but your fur is so pretty and special, like you.
We would never want you to be any other way”. And with that, Cotton’s mommy picked her up
and dropped her into a big bucket of water. When Cotton came out she was herself again. Her
sisters licked her face until Cotton’s fur was all all dry. “Don’t ever do that again, Cotton!” they all
cried. “Next time you might mess up that pretty white fur of yours and we wouldn’t want that!”
Then Cotton thought, “I change my mind. I like being special”.

### User:
What color was Cotton?
### Assistant:
white

### User:
Where did she live?
### Assistant:
in a barn

### User:
Did she live alone?
### Assistant:
no

### User:
Who did she live with?
### Assistant:

Figure 14: An example of the prompt in the CoQA task.
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