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Abstract

Metaphors are a common communication tool001
used in our day-to-day life. The detection002
and generation of metaphors in textual form003
have been studied extensively but metaphors in004
other forms have been under-explored. Recent005
studies have shown that Vision-Language (VL)006
models cannot understand visual metaphors007
in memes and adverts. As of now, no prob-008
ing studies have been done that involve com-009
plex language phenomena like metaphors with010
videos. Hence, we introduce a new VL task011
of describing the metaphors present in the012
videos in our work. To facilitate this novel013
task, we construct and release a manually cre-014
ated dataset with 705 videos and 2115 human-015
written captions, along with a new metric called016
Average Concept Distance (ACD), to automat-017
ically evaluate the creativity of the metaphors018
generated. We also propose a novel low-019
resource video metaphor captioning system:020
GIT-LLaVA, which obtains comparable perfor-021
mance to SoTA video language models on the022
proposed task. We perform a comprehensive023
analysis of existing video language models on024
this task and publish our dataset, models, and025
benchmark results to enable further research.026

1 Introduction027

Metaphors are the most commonly used form of fig-028

urative language in literature (Kreuz and Roberts,029

1993). Metaphors are a tool to colour the imagina-030

tion of the reader by introducing unknown concepts031

in comparison to familiar concepts, thereby allow-032

ing them to be understood easily and powerfully.033

This trope is used in various creative fields like034

advertisements (Hussain et al., 2017) to convey035

information more effectively and includes modal-036

ities like text, images, and audio. Figure 1 shows037

an example of using an image to creatively con-038

vey an idea. Metaphors are also used in video039

advertisements. Figure 2 shows a few examples of040

how metaphors are used in video advertisements to041

Figure 1: An example of a creative advertisement that
shows the speed of the broadband by depicting a scene
from the iconic movie ‘Titanic’.

bring emphasis to the product being advertised. 042

Motivation: Figurative languages in textual form 043

have been well-studied in literature (Abulaish et al., 044

2020). With the advent of powerful AI assistants 045

like ChatGPT and BARD and tools that are built 046

on top of them, it is possible to interact with these 047

AI systems through images and audio. Hence it 048

becomes important to build models that can handle 049

complex language phenomena, such as metaphors, 050

across multiple modalities. Recent works on Visual 051

metaphors (Yosef et al. 2023, Chakrabarty et al. 052

2023) focus on understanding metaphors present in 053

images and generating images from prompts with 054

metaphors. They show that it is challenging to deal 055

with metaphors presented visually. 056

Recently, chat assistants that can answer ques- 057

tions related to videos have shown good promise on 058

standard video datasets (Zhang et al. 2023; Li et al. 059

2023b; Maaz et al. 2023). However, they struggle 060

to understand videos that contain metaphors. To 061

this effect, we introduce a novel task of ‘Video 062

Metaphor Captioning’ (VMC) that involves de- 063

scribing the metaphors present in the video with a 064
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Video Explanation: The egg is so strong that is unbreakable with a hammer. The reason is that it was laid by a hen that was fed food from a Fevicol (a glue) box.

Video Metaphor Caption: The adhesion of glue is as strong as an unbreakable egg

Video Explanation: The advertisement happens in a world where humans are used as light towers. The chewing gum makes teeth so white that humans can be used as a light source.

Video Metaphor Caption: The teeth is as white as a light source

Figure 2: Examples of metaphors used in videos to convey ideas creatively along with their explanation

single-line caption. We manually annotate a dataset065

of videos with metaphor information. We build066

and release a novel low-resource video metaphor067

captioning model that achives comparable perfor-068

mance to SOTA video language models on video069

metaphor captioning task despite being trained on070

limited pretraining data.071

Our contributions are072

1. A novel Vision Language (VL) task- Video073

Metaphor Captioning, hitherto unattempted,074

with a manually annotated dataset of 705 videos075

comprising 2115 captions (Section 3)076

2. A novel low-resource Vision-Language model077

(GIT video model followed by Vicuna LLM)078

pretrained and fine-tuned for video metaphor079

captioning (Section 4).080

3. Strong baselines which are the SoTA bench-081

marks for the task of “Video metaphor caption-082

ing” (Table 1).083

4. A new metric- Average Concept Distance (ACD)084

for automatically evaluating the creativity of085

metaphors generated by the model (Section 6).086

5. Experimental results and analysis that show087

that existing video language models lack deeper088

understanding of videos to understand video089

metaphors (Section 7).090

1.1 Problem Statement091

Input: Video092

Output: Caption describing the metaphor.093

Video metaphor captioning is the task of describ-094

ing the metaphor in the video. Given a video, the095

model generates a single-line description of the fol- 096

lowing format: ‘Primary concept’ is as ‘property’ 097

as ‘secondary concept’. The model should hence 098

identify the object being compared, the object it is 099

being compared to, and the property that links both 100

from the video and include them in the caption. 101

1.2 Background 102

Lakoff (1993) describes metaphor as a mapping 103

between a source and target domain through shared 104

properties. For example, in the sentence ‘The de- 105

velopment has hit a wall’, hitting a wall denotes 106

that the development has been halted. The target 107

domain is halting and the source domain is wall 108

and the property of wall is used to describe halting. 109

Metaphors and similes can be simplified to a syn- 110

tax of A is B, where A is being compared to B. We 111

use this simple syntax inspired from Akula et al. 112

(2022). A is denoted as the primary concept and 113

B is referred to as the secondary concept. For ex- 114

ample, in the sentence “The blanket is as white as 115

snow”, the primary concept is the ‘blanket’ and it 116

is compared to the secondary concept ‘snow’. The 117

property that links them is their ‘colour’. Following 118

prior work (Akula et al., 2022), we use the follow- 119

ing template to describe the metaphors present in 120

the videos: Primary Concept is as property a Sec- 121

ondary Concept 122

2 Related Work 123

Recently, significant efforts have been made to un- 124

derstand metaphors to detect and generate them. 125
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Many sentence-level and token-level datasets have126

been released to facilitate the same (Birke and127

Sarkar 2006; Steen et al. 2010; Tsvetkov et al.128

2014; Mohammad et al. 2016; Mohler et al. 2016).129

Metaphor Detection is the task of classifying130

if the given sentence/token contains a metaphor or131

not. In recent years, metaphor detection has been132

explored with the aid of large language models.133

Choi et al. (2021) used the contextual embeddings134

from BERT (Devlin et al., 2018) and RoBERTa135

(Liu et al., 2019) with a late interaction mechanism136

to make use of linguistic metaphor identification137

theories. Aghazadeh et al. (2022) probed and an-138

alyzed the metaphorical language encoded in the139

large language models. Su et al. (2020) used both140

global sentence features and POS information to141

perform token-level metaphor detection. Badathala142

et al. (2023) used a multitasking approach to detect143

hyperbole and metaphors together.144

Metaphor generation is the task of generat-145

ing metaphorical sentences given a literal sen-146

tence (Abe et al. 2006, Terai and Nakagawa 2010).147

Metaphor generation was initially modelled as148

a template-filling task. Veale (2016) used tem-149

plates to generate metaphoric tweets. Stowe et al.150

(2020) used masked language modelling by mask-151

ing the verbs in the literal sentence and training the152

model to replace it with its metaphoric counterparts.153

Stowe et al. (2021) used FrameNet embeddings to154

generate metaphoric sentences by replacing verbs155

with metaphoric verbs in literal sentences.156

Visual Metaphors: The detection and gener-157

ation of metaphors in textual form have been ex-158

plored extensively but the use of metaphors in other159

modalities like images is not explored until very re-160

cently. Akula et al. (2022) introduced a set of tasks161

related to understanding visual metaphors. They162

showed that existing Vision-Language models are163

not good at understanding visual metaphors. Yosef164

et al. (2023) introduced a multimodal dataset that165

contains metaphors, similes, and idioms with cor-166

responding images for them. Zhang et al. 2021,167

Hwang and Shwartz 2023, and Xu et al. 2022 ex-168

plored the uses of metaphors in memes and released169

datasets for understanding metaphors in memes.170

Chakrabarty et al. (2023) explored generating vi-171

sual metaphors from metaphorical input sentences.172

They release a dataset called HAIVMet which con-173

tains 6476 images of visual metaphors generated174

with DALL-E 2 (Ramesh et al., 2022). Achlioptas175

et al. (2021) and Achlioptas et al. (2022) explore176

emotions invoked by images.177

Video Captioning: Video captioning is the task 178

of generating a single-line natural language descrip- 179

tion of the video. Video-Text models are trained 180

on large-scale paired video and language datasets 181

to align frames to text in the captions. Sun et al. 182

(2019) built on BERT (Devlin et al., 2019) model 183

by learning a joint representation for visual and text 184

tokens for video-text tasks. Lei et al. (2021) pro- 185

posed CLIPBERT that uses sparse sampling to sam- 186

ple short clips from videos to learn visual represen- 187

tation instead of using the whole video and showed 188

remarkable performance. Luo et al. (2020) is a 189

Unified Video and Language pre-training model 190

for both multimodal understanding and generation 191

built by pretraining the model on 5 diverse objec- 192

tives. Zellers et al. (2021) uses spatial and tempo- 193

ral objectives during pretraining on a large-scale 194

dataset of videos with transcriptions to align videos 195

to text. The GIT model (Wang et al., 2022) is 196

trained on a large corpus of parallel image-text 197

data. It used a single image encoder and single text 198

decoder and modeled multiple vision-text tasks as 199

a language modeling task. These models however 200

cannot follow instructions which makes it difficult 201

to adapt to newer tasks. 202

Video Assistants: Recent success in using 203

frozen LLMs with vision encoders for instruction 204

fine-tuning for Image-Text tasks (Li et al. 2023a; 205

Liu et al. 2023) has inspired the use of instruc- 206

tion fine-tuning for videos. Video-LLaMA (Zhang 207

et al., 2023) use frozen visual and audio encoders 208

and projects them to the embedding space of LLMs 209

using Q-formers as in BLIP-2 (Li et al., 2023a). Li 210

et al. (2023b) use information from image, video, 211

and ASR tools along with video embedding to align 212

video frames to text. Video-ChatGPT (Maaz et al., 213

2023) use CLIP (Radford et al., 2021) as the vi- 214

sual encoder and Vicuna (Zheng et al., 2023) as 215

the LLM and train the model on 100,000 video 216

and instruction pairs. Video-LLaVa (Munasinghe 217

et al., 2023) uses a unified representation space for 218

both images and videos. They use LanguageBind 219

(Zhu et al., 2023) to map raw features to LLM’s 220

text feature space. They obtain SOTA results on 221

multiple vision-language tasks. 222

All these models are trained on large-scale video 223

and text data. We propose a new model GIT-LLaVA 224

that uses a frozen video foundation model with an 225

LLM that can be fine-tuned with a few hundred 226

videos to perform video metaphor captioning. Also, 227

our work focuses on visual metaphors in videos 228

which has not been explored before. 229
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3 Dataset230

No existing datasets have metaphor details avail-231

able for videos. As advertisements have metaphori-232

cal representations in them to convey additional233

messages to viewers, we choose the Pitt’s Ads234

dataset (Hussain et al., 2017) for constructing our235

dataset. The Pitt’s Ads dataset consists of adver-236

tisement images and videos on a wide range of237

topics. The released dataset contained URLs to238

3, 477 videos out of which only 2063 videos are239

currently accessible. We annotate these videos with240

metaphor information for our experiments. Addi-241

tionally, we also query YouTube with keywords242

like advertisements, creative advertisements, funny243

advertisements, etc. using the YouTube Search244

tool1. We filter videos that are less than 2 minutes245

and add them to our Video Metaphor Captioning246

Dataset (VMCD) if they have metaphors in them.247

3.1 Annotation Details248

We employed three annotators to annotate data for249

our novel task- video metaphor captioning. The250

annotators were given detailed explanations about251

metaphors and visual metaphors with examples.252

They were given two tests with examples consist-253

ing of metaphoric and non-metaphoric videos and254

asked to classify them. The annotators were short-255

listed based on their ability to identify metaphors256

present in the videos. In our final batch of anno-257

tators, all three annotators were in the age bracket258

of 24-30 years. All three annotators are proficient259

in English with Masters degrees. Each video is260

annotated by all the three annotators. More details261

are discussed in Appendix A.1262

3.2 Dataset Statistics263

Interpretation of metaphors present in videos is264

very subjective and each annotator can understand265

it differently. We observed that the captions for266

each video were diverse. We only include videos in267

our final dataset that are classified as metaphors268

by all three annotators. This ensures that the269

VMC dataset has videos that are unambiguously270

metaphoric.271

We employed an additional expert annotator272

who is a Masters student in English literature and273

proficient in understanding metaphors to validate274

the captions written by the three annotators. We275

also used the GPT-3.5-turbo model (Ouyang et al.,276

1https://pypi.org/project/
youtube-search-python/

2022) to check for grammar and typos in the cap- 277

tions written by our annotators. The annotators 278

were asked to rewrite the captions if any flaw 279

was identified in terms of spelling or grammar. 280

These quality checks ensured the quality of cap- 281

tions present in the dataset. 282

All videos are accompanied by three cap- 283

tions. Our Video Metaphor Captioning Dataset 284

(VMCD) consists of 705 metaphoric videos with 285

2115 captions. The train, validation, and test split 286

contain 400, 55, and 250 videos each with 1200, 287

165, and 750 captions respectively. 288

3.3 Pretraining Dataset 289

The manually annotated VMC dataset is small and 290

is not sufficient to pretrain and finetune a model 291

from scratch. Hence we initially pretrain our model 292

on a larger dataset of visual metaphor images and 293

then finetune it on the VMCD to report results. 294

The existing image metaphor datasets- Zhang et al. 295

(2021) and Akula et al. (2022) are not publicly 296

available and therefore cannot be used in our ex- 297

periments. Hence we use the HAIVMet dataset 298

(Chakrabarty et al., 2023) that contains DALLE- 299

2 generated images for metaphor prompts as our 300

pretraining dataset. 301

Our pretraining dataset contains images from 302

the HAIVMet and MSCOCO (Lin et al., 2014) 303

datasets, consisting of metaphoric and non- 304

metaphoric images in equal parts. For the 305

HAIVMet dataset, the prompts to generate images 306

are used as the caption. We use all 6476 images and 307

their prompts as metaphor image caption pairs from 308

the HAIVMet dataset. We use an equivalent 6476 309

image-captain pairs from the MSCOCO dataset as 310

the non-metaphor part of the pretraining dataset. 311

4 Our Model 312

Existing video-language models are trained on 313

video-text parallel data that do not contain much 314

metaphor content. Hence, in addition to analyz- 315

ing their performance on our dataset, we introduce 316

new models that are introduced to metaphors in the 317

pretraining stage itself. In our model, the video rep- 318

resentation is obtained through a pretrained video 319

captioning model and prefixed with an instruction 320

sequence to a Large Language Model (LLM). The 321

LLM generates the caption as a sequence of tokens 322

conditioned on the video input and the instruction. 323

Figure 3 illustrates the model architecture. 324

We sample ‘k’ frames from the input video ‘V ’, 325
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Figure 3: An overview of our Video Metaphor Captioning system, GIT-LLaVA. The text decoder representation of
GIT is mapped to the embedding space of Vicuna to generate metaphor captions.

where k depends on the input restrictions of the326

video captioning model.327

Vinput = [f1, f2, ..., fk] (1)328

where f denotes each frame sampled from the329

video. The sampled frames are fed to the video cap-330

tioning model (C) whose decoder output is used as331

the representation for the video (HV ). We train a332

simple Multilayer Perceptron (MLP) network with333

parameters ‘W ’ to map the video representation334

HV to the embedding space of the LLM (HR), sim-335

ilar to the LLaVA model (Liu et al., 2023). The336

hypothesis is that, since the model C is already337

trained to decode videos to captions, a simple map-338

ping network can learn the mapping parameters339

‘W ’ with a smaller sample of data. We use task-340

specific instruction (Xinst) as input and the model341

is trained to reduce the cross entropy loss. The342

output is generated autoregressively.343

HV = C(Vinput) (2)344
345

HR = W.HV (3)346
347

L =
n∑

i=1

logPθ(Xi|Xinst, HR) (4)348

where θ represents the parameters of the LLM,349

Xi denotes the current token being predicted. The350

LLM is trained with this language modeling objec-351

tive. We refer to this model as ‘GIT-LLaVA’. We352

also explore a variation of GIT-LLaVA called GIT- 353

LLaVA-X where we split the video into multiple 354

equal-sized clips and obtain full video representa- 355

tion by summing up the video representation of 356

each clip. 357

We use the LLaVA-13B-V1.5 (Liu et al., 2023) 358

model architecture for our experiments inspired by 359

its success on many Vision Language tasks. We 360

use the Generative Image Text Transformer model 361

(GIT) (Wang et al., 2022) as the video captioning 362

model (C) for obtaining the video representation 363

and Vicuna (Zheng et al., 2023) as the LLM. In all 364

our experiments we freeze the weights of the GIT 365

model and only finetune the mapping network and 366

the LLM. Since we train the mapping network to 367

learn the mapping between the GIT decoder state to 368

the embedding space of the LLM, the mapping net- 369

work maps GIT’s understanding of the video in the 370

form of its representation to the LLM’s embedding 371

space, allowing the LLM to directly generate out- 372

put from the video. This also reduces the need to 373

pretrain the model on a huge corpus of Video-Text 374

parallel data which is resource intesive. 375

5 Experiments 376

Our experiments follow a two-step process. The 377

models are first pretrained on the pretraining data 378

built from MSCOCO and HAIVMet datasets and 379

then finetuned on the VMC dataset. We discuss the 380

experiment settings for both as follows. 381
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5.1 Pretraining382

Our video metaphor captioning system uses a pre-383

trained video captioning model to obtain video rep-384

resentation. The video representation needs to be385

mapped to the embedding space of the LLM for it386

to generate fluent captions. Our VMC dataset is387

small and may not be sufficient to learn this map-388

ping. Hence, we initially pretrain the model on a389

pretraining dataset of metaphor and normal images,390

since no existing dataset has videos with metaphor391

information.392

The images from the pretraining dataset are con-393

verted to video by repeating the images to form394

frames of the video. As the video model is frozen,395

it does not affect the video understanding abilities396

of our system. This synthetic video is then fed as397

input to the video captioning model from which398

the video representations are obtained. The map-399

ping network trained on this dataset is used in the400

finetuning stage where video data is used.401

We use the Generative Image-to-Text (GIT)402

model (Wang et al., 2022) as our video captioning403

model for obtaining video representation. We use404

the GIT-large model that is fine-tuned for video cap-405

tioning on the VaTeX dataset (Wang et al., 2019).406

We use the Vicuna-13B model (Zheng et al., 2023)407

as our LLM. We pretrain the model by creating408

synthetic videos consisting of 6 frames of the same409

image with a batch size of 4. We pretrain the model410

for 2 epochs. In the pretraining stage, both GIT and411

Vicuna models are frozen and only the parameters412

of the mapping network are updated.413

5.2 Video Metaphor Captioning414

The model is fine-tuned for video metaphor cap-415

tioning on the VMC dataset after pretraining. The416

model is fine-tuned for 5 epochs with early stop-417

ping on the validation set. We explore two frame418

selection strategies for our models. The GIT-419

Large model only supports video captioning with420

6 frames as input. We sample 2 frames in tem-421

poral order across the three different parts of the422

video- start, middle, and end. This ensures that the423

6 frames cover the entire span of the video.424

We also perform additional experiments where425

6 frames are sampled from multiple parts of the426

video, which we call GIT-LLaVA-X. The video427

is split into 4 video clips with equal duration and428

video representation is obtained for each video clip429

using the GIT model. The final representation is ob-430

tained by summing up the representations for each431

video clip. Table 2 compares the performances of 432

models with different numbers of video clip splits. 433

We use a batch size of 4 with an initial learning 434

rate of 2e− 6 with a warmup ratio of 0.03. Cosine 435

Annealing is used as the learning rate scheduler. 436

BFloat16 precision is used while training the model 437

on 4 A100 GPUs. 438

Baselines: We use the GIT (Wang et al., 2022), 439

Valley (Luo et al., 2023), Video-ChatGPT (Maaz 440

et al., 2023), and Video-LLaVa (Munasinghe et al., 441

2023) as baselines in our experiments. GIT is cho- 442

sen as the baseline as it is used as our video encoder. 443

Video-ChatGPT and Valley have shown promising 444

performance in following instructions in the video 445

setting. Video-LLaVA has achieved SOTA perfor- 446

mance on many Video-Language tasks. They also 447

have diverse vision and language backbones and 448

thus would make for a fair comparison. More de- 449

tails on baselines are discussed in Appendix A.2 450

6 Evaluation Metrics 451

We evaluate the performance of our model using 452

a set of automated metrics and human evaluation. 453

The n-gram overlap-based metrics- BLEU (Pap- 454

ineni et al., 2002), ROUGE (Lin, 2004), and CIDEr 455

(Vedantam et al., 2014) are commonly used to com- 456

pare the performance of the model in captioning 457

tasks. As discussed in previous works on metaphor 458

generation, the n-gram overlap based metrics can- 459

not capture the quality of generated metaphors. 460

This is because the same information can be con- 461

veyed through different comparisons. Hence, we 462

also report BERTScore (Zhang et al., 2019) that 463

compares the semantic similarity of the generated 464

caption and the reference caption. 465

In the task of video metaphor captioning, the 466

model is trained to generate creative metaphors as 467

output. Previous works rely on manual evaluation 468

to quantify the creativity and metaphoricity of the 469

generated captions. As no existing metric can be 470

used to evaluate the creativity of metaphors, we in- 471

troduce a new and intuitive metric called- “Average 472

Concept Distance” (ACD). It is calculated as: 473

CS = Cosine(PC, SC) (5) 474

ACD =

∑n
i BERTScore(hyp, pred) ∗ (1− CS)

n
(6)

475

where PC and SC denote the primary and sec- 476

ondary concepts in the predicted caption respec- 477

tively and Cosine denotes the cosine similarity be- 478
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Model BLEU-4 ↑ Rouge-L ↑ CIDEr ↑ BERT-F1 ↑ ACS↓ ACD↑
Video-ChatGPT 0.38 3.23 0.03 0.12 1.00 0.00
Valley 1.00 14.40 1.25 0.50 0.77 0.15
GIT 5.85 42.40 7.49 0.68 0.40 0.41
Video-LLaVA 16.88 49.56 37.61 0.71 0.37 0.45
GIT-LLaVA (Ours) 14.08 50.62 24.26 0.73 0.29 0.52
GIT-LLaVA-X (Ours) 14.51 50.59 22.67 0.74 0.29 0.53

Table 1: Experimental results on our VMC dataset in comparison to other models. ACS and ACD denote the
Average Concept Similarity and Average Concept Distance metric weighted by BERTScore respectively. Cosine
similarity and distance is computed between the concepts compared in the metaphor caption. The best model is in
bold and the next-best model is underlined. All reported scores are the mean scores of three runs.
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Figure 4: Results of human evaluation of the captions
generated by our models.

tween them. The primary and secondary concepts479

denote the object of comparison and the object it is480

being compared to respectively. Average Concept481

Distance (ACD) is obtained by weighing the cosine482

distance between the concepts with the BERTScore483

of the predicted caption. The caption ‘The car is as484

fast as a jeep’ is less creative as it makes an obvious485

comparison while the caption ‘The car is as fast as486

a cheetah’ is more creative. This can be captured487

by the CS metric but a disfluent caption like ‘The488

adsfd is as fast as a cdsak’ will also score low on489

CS and this can be captured by the ACD metric.490

S-BERT (Reimers and Gurevych, 2019) (all-491

mpnet-base-v2) is used to obtain representations492

for PC and SC. For captions that do not contain493

either PC or SC, the similarity score is set as 1 to494

penalize the model. Thus the model is evaluated495

based on how diverse comparison it can make for496

the object in question. We also discuss the correla-497

tion between the proposed ACD metric and human498

evaluation of metaphor creativity in Section A.6. In499

addition to these automated metrics, we also man-500

ually evaluate models on four metrics- Fluency,501

Primary Concept Consistency, Consistency, and502

Creativity.503

7 Results and Analysis 504

7.1 Automatic Metrics 505

Table 1 compares the performance of our models 506

with other baselines. Our models- GIT-LLaVA 507

and GIT-LLava-X perform comparable to or bet- 508

ter than other traditional video captioning models 509

despite the smaller scale of pretraining data. It 510

can be seen that both GIT-LLaVA and GIT-LLava- 511

X perform well on n-gram overlap-based metrics 512

like BLEU-1, ROUGE-L, and CIDEr and also the 513

BERTScore metric. This shows that it generates 514

captions that are relatively more semantically simi- 515

lar to the ground truth captions than other models. 516

Figure 5 shows some examples of metaphors 517

generated by our models. Our models achieve the 518

best score (lowest) on the Average Concept Similar- 519

ity (ACS) metric. It compares the semantic similar- 520

ity of the primary and secondary concepts used in 521

the metaphor generated. The lower scores confirm 522

that the generated captions are creative with novel 523

comparisons. The ACS values can also be low if 524

the generated captions are not fluent and unrelated 525

words are present in the caption. The Average Con- 526

cept Distance (ACD) is used to capture such cases. 527

Our models also obtain the highest scores on the 528

ACD metric, indicating that the models generate 529

consistent and creative captions. The best score on 530

ACD is only 0.53, which indicates that our system 531

is not perfect as shown by the manual evaluation of 532

generated captions in Figure 4. 533

The Video-LLaVA model performs compara- 534

ble to our models despite not being trained on 535

metaphor data in the pretraining stage. It is a strong 536

baseline as it also indirectly captures audio fea- 537

tures from the video. Video-ChatGPT and Valley 538

does not follow the template or generate creative 539

captions as indicated by poor scores on all met- 540

rics. GIT generated less consistent and repeated 541

7



Figure 5: Examples of metaphor captions generated by GIT-LLaVA and GIT-LLaVA-X models.

captions. The poor performance of most baseline542

models is due to the low-resource nature and the543

inherent complexity of the task.544

7.2 Human Evaluation545

In addition to automated metrics, we also perform546

human evaluation (Figure 4) on 100 videos from547

the test set with outputs generated by all models.548

Three annotators in the age group of 25-30 were549

used to annotate these videos. Each annotator an-550

notated 50 videos. 25 videos were common among551

the annotators. The annotation was done on four552

metrics- Fluency, Primary Concept Consistency,553

Consistency, and Creativity. These metrics are dis-554

cussed in detail along with Inter Annotator Agree-555

ment (IAA) in Appendix A.7.556

Our models generated mostly fluent captions but557

were not always consistent with the primary con-558

cept of the video. Video-LLaVA generated more559

consistent captions that better captured the primary560

concept in the video. This is primarily because561

of the generalizability of the model due to large562

pretraining data and yet it was consistent to the563

video less than 50% of the time. Our GIT-LLaVA-564

X model was the most creative of all models. GIT565

generated less consistent captions. Video-ChatGPT566

struggled to generate anything useful. Valley gen-567

erated captions that were not always following the568

template. Both set of evaluations indicate that our569

models perform comparable to Video-LLaVA de-570

spite being trained with smaller datasets.571

7.3 Error Analysis572

The most common case of error is the misprediction573

of the primary concept in the video as can be seen574

in Figure 4. Figure 7 illustrates a few examples of575

misprediction. In the first example, the GIT-LLaVA 576

models generate a metaphor about cars when the ac- 577

tual metaphor was about getting a car loan. It was 578

also observed that videos related to shoe brands 579

typically present more about the game and the ath- 580

letes than about the shoes themselves. This leads 581

to models generating metaphors about people and 582

the game than about the shoes. It was also ob- 583

served that videos that contain animated objects 584

are confused for advertisements about video games 585

resulting in metaphors being generated about video 586

games. In general, all the models don’t seem to 587

have the ability to deeply reason about the video 588

to generate accurate metaphors as shown by the 589

performances on the VMC dataset. 590

8 Conclusion and Future work 591

In this work, we proposed a novel Vision-Language 592

(VL) task called video metaphor captioning that 593

probes the language reasoning abilities of the video 594

language models. We constructed and released a 595

manually annotated dataset for the proposed task. 596

We also released a new metric to automatically 597

evaluate the creativity of the generated metaphor 598

captions. Our low-resource VL model that used a 599

frozen video captioning model (GIT) with an LLM 600

decoder (Vicuna) to generate metaphor captions 601

showed comparable performance to SOTA video 602

language models on the video metaphor captioning 603

task. It was observed that all the video language 604

models studied in the work lack a deeper under- 605

standing of video and language for a complex task 606

like video metaphor captioning. We believe that 607

our work will enable future research in this direc- 608

tion with our dataset and models being a strong 609

benchmark for progress. 610
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9 Limitations611

We briefly describe the identified limitations in our612

work.613

• No Audio Support: The scope of our work is614

only limited to understanding visual metaphors615

in videos. The models introduced in our work-616

GIT-LLaVA and GIT-LLaVA-X do not have sup-617

port for audio and cannot understand metaphors618

introduced through audio. The audio signals like619

music and dialogues can be used to better un-620

derstand metaphor information in videos and we621

intend to do this in the future.622

• Template Captions: The captions in our VMC623

dataset follow a fixed template inspired from624

MetaCLUE dataset (Akula et al., 2022). This is625

consistent with earlier works on textual metaphor626

generation (Abe et al. 2006; Terai and Nakagawa627

2010).628

• ACD metric for general captions: The ACD629

metric involves identifying primary and sec-630

ondary concepts in the caption to score the nov-631

elty of comparison. In our work, it is easy to632

identify the concepts due to the nature of the tem-633

plate. In free-form text generation tasks, it will634

involve an additional step of identifying primary635

and secondary concepts from the text. This can636

be done by training LLMs to identify primary and637

secondary concepts from the input but is beyond638

the scope of this work.639

10 Ethical Considerations640

We build our Video Metaphor Captioning (VMC)641

dataset based on the Pitt’s Ads dataset. The origi-642

nal dataset has links to YouTube videos and may643

contain some videos that propagate biases seen in644

advertisements. We ensure that no personal infor-645

mation is included in the captions written by our646

annotators. We also ensure that brand names are647

replaced with common nouns such that no identi-648

fiable information is present in our dataset. Our649

model uses Vicuna as the decoder and may prop-650

agate the biases held by the LLM. We urge the651

research community to use our models and datasets652

with necessary caution in downstream tasks for the653

same reason and use them responsibly.654
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ten captions for each video. The annotators were 918

asked the following questions for each video: 919

a) Does this video contain a visual metaphor? 920

b) Is audio of the video required to understand the 921

metaphor? 922

c) What part of the video contains the metaphor? 923

d) What is the primary concept in this video? 924

e) What is the secondary concept in this video? 925

f) What is the common property of both concepts? 926

g) Give a one-line description of the form 927

“primary_concept” is as “property” as “sec- 928

ondary_concept”. 929

h) A free-form description of the video. 930

Questions a and b are Yes/No questions. The 931

annotators write the time of occurrence of the 932

metaphor in the video for question c. Question 933
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g follows the format used for annotation in the934

MetaCLUE dataset (Akula et al., 2022) for visual935

metaphor in images. The VMC dataset consists of936

videos that were marked as metaphors (Quesetion:937

a) by all three annotators. We instruct annotators938

to ensure that no identification information is in-939

cluded in the primary and secondary concepts and940

to use common words in their place. For example,941

instead of ‘The coke is as cool as Messi in the fi-942

nals’, the caption is written as ‘The drink is as cool943

as the football player in the finals’.944

A.2 Baselines945

We use the GIT (Wang et al., 2022), Valley (Luo946

et al., 2023), Video-ChatGPT (Maaz et al., 2023),947

and Video-LLaVa (Munasinghe et al., 2023) as our948

baseline models.949

GIT: We finetune the GIT model that is already950

fine-tuned for video captioning on VaTEx dataset951

on our VMC dataset. The model is fine-tuned with952

a batch size of 4.953

Video-ChatGPT: We use the 7B model of954

Video-ChatGPT that is trained on 100, 000 videos.955

We finetune this model on our VMC dataset. The956

spatio-temporal features of the video are precom-957

puted with CLIP and used during training. We use958

a batch size of 4 and train it for 50 epochs with959

learning rate 2e− 5.960

Valley: Valley is a video-assistant build on top961

of the LLaVA model. We use the Valley-2 7B962

model that is finetuned on video instruction data.963

We finetune this model on the VMC dataset with 4964

as the batch size.965

Video-LLaVA: We use the 7B model of Video-966

LLaVA that is trained on image and video data. We967

use a batch size of 4 and train it for 20 epochs with968

a learning rate 2e−5 with default settings for other969

parameters.970

A.3 Prompts for Training971

As discussed in Section 4, the input to LLM con-972

sists of of prompt and video representation. The973

synthetic videos generated from MSCOCO dataset974

are accompanied by the prompt ‘What caption can975

best describe the video?’. In all our experiments,976

the synthetic videos generated from the HAIVMet977

dataset and the videos from VMCD are accompa-978

nied by the same prompt, ‘What caption can best979

describe the metaphor in the video?’, during both980

the pretraining and finetuning stages.981

A.4 Dataset Statistics 982

VMC dataset consists of 705 videos with 2115 cap- 983

tions. The average duration of the video is 54 sec- 984

onds, and the average length of the caption is 8.9 985

words. Figure 6 shows histograms for the distribu- 986

tion of video duration and caption lengths. 987

A.5 Ablation Study 988

We perform different ablation studies to test the 989

difficulty of dataset and the alternate architecture 990

choices for our models. 991

A.5.1 Image Models 992

We perform experiments with LLaVA model (Liu 993

et al., 2023) on the VMC dataset. The LLaVA 994

7B and 13B models are finetuned with a randomly 995

sampled image as input to the model. The scores 996

are reported in rows 1 and 2 of Table 2. The scores 997

indicate that the metaphor present in the video can- 998

not be understood by looking at only a single frame. 999

This shows that the dataset is challenging and the 1000

captions makes use of the entire video. 1001

A.5.2 Synthetic Dataset 1002

Our pretraining dataset is composed of images from 1003

MSCOCO and HAIVMet. We also explored if a 1004

larger sample of synthetically generated data will 1005

help in pretraining the model better. 1006

We use images and captions from the MSCOCO 1007

dataset (Lin et al., 2014). We prompt GPT-3.5- 1008

turbo model with the following prompt: “Convert 1009

the following image caption to a metaphoric image 1010

caption in the following format <primary concept> 1011

is as <property> as <secondary concept>. Input: 1012

mscoco_caption”. For example, we convert the 1013

image caption ‘A bicycle replica with a clock as 1014

the front wheel’ to ‘A timepiece is as cyclical as a 1015

bicycle’s revolution’. The generated captions were 1016

then cleaned to remove captions that did not follow 1017

the template in the prompt. The final pretraining 1018

dataset consists of 90886 images and correspond- 1019

ing synthetically generated metaphoric captions. 1020

We further evaluate the quality of the generation by 1021

manual evaluation. We employed two annotators to 1022

annotate the fluency, creativity and consistency of a 1023

randomly sampled 500 generated captions. The an- 1024

notators provided binary classification labels. The 1025

captions were 98.7% fluent, 97.8% creative, and 1026

96.4% consistent. This confirms the quality of the 1027

synthetic data generated by the model. 1028

Rows 3 and 4 in Table 2 show results of the GIT- 1029

LLaVA and the GIT-LLaVA-X models trained on 1030
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Model # of VC BLEU-4 Rouge-L CIDEr BERT-F1 ACS ACD
1) LLaVA 7B 1 10.27 46.21 18.93 0.69 0.39 0.43
2) LLaVA 13B 1 12.18 47.88 22.44 0.70 0.42 0.41
3) GIT-LLaVA-Syn 1 12.39 49.92 21.65 0.73 0.32 0.49
4) GIT-LLaVA-X-Syn 1 9.32 48.31 11.45 0.71 0.35 0.46
5) GIT-LLaVA-NP 1 0.72 20.21 1.87 0.42 0.99 0.00
6) GIT-LLaVA-X 2 11.22 49.21 16.60 0.72 0.32 0.48
7) GIT-LLaVA-X 4 9.32 48.31 11.45 0.71 0.35 0.46
8) GIT-LLaVA-X 6 7.29 47.74 8.25 0.70 0.33 0.47

Table 2: Ablation study results with different number of video clip segmentations. # of VC denotes the number of
video clips. GIT-LLaVA-NP denotes the model that was not pretrained on synthetic data

this synthetic data. The results are comparable to1031

the models trained on the previously discussed pre-1032

training data. No improvement in the performance1033

was observed.1034

A.5.3 No Pretraining1035

We study the impact of the pretraining stage by1036

directly finetuning the GIT-LLaVA model on the1037

VMC dataset. Rows 5 of Table 2 reports the re-1038

sults of model finetuned without pretraining exper-1039

iment. The poor performance shows that imparting1040

metaphor knowledge in the pretraining stage is es-1041

sential for model performance as the training data1042

is smaller.1043

A.5.4 Additional Video Components1044

We perform an ablation study on the number of1045

video clip segments that can be fed as input to the1046

video captioning model. We split the video into 1,1047

2, 4, and 6 parts and fed the video clips to the GIT1048

model. The final video representation is obtained1049

by summing up the individual clip representations.1050

The models were trained as discussed in Section1051

5.2. Table 2 shows the results of the ablation study.1052

On comparing the performance of these models1053

with GIT-LLaVA, it can be seen that adding more1054

video clips did not improve the model performance.1055

A.6 Average Concept Distance Metric1056

We compute the correlation of the Average Concept1057

Distance (ACD) metric with the human evaluation1058

of captions. The manual evaluation in Section 7.21059

was done for 100 videos with 5 captions for each1060

video. We used the ACD metric evaluator to com-1061

pare the ACD scores with binary labels provided by1062

the annotators. The ACD scores and binary labels1063

had a Pearson correlation coefficient of 0.403 with1064

p-value << 0.0001. As creativity is a subjective1065

metric, the moderate correlation is very significant.1066

Cohen’s Kappa (κ) A B
B 0.639
C 0.637 0.685
Fleiss’ Kappa (K) 0.653

Table 3: IAA calculations with Fleiss’ Kappa and pair-
wise Cohen’s Kappa among the annotators

A.7 Manul Evaluation Results 1067

The manual evaluation was done on four metrics- 1068

Fluency, Creativity, Primary Concept Consistency, 1069

and Consistency by three annotators on 100 videos. 1070

Each annotator gave binary labels for each gener- 1071

ated caption on all 4 metrics. 1072

• Fluency: It denotes the naturalness and gram- 1073

matical correctness of the generated sentence. In 1074

addition to grammatical correctness, the annota- 1075

tors are asked to verify if it follows the proposed 1076

template for the task. 1077

• Creativity: It denotes how creative the 1078

metaphor used in the generated caption is. 1079

• Primary Concept Consistency: It denotes if 1080

the generated caption correctly predicted the pri- 1081

mary concept in the video. 1082

• Consistency: It denotes if the generated caption 1083

is consistent to the full video. This checks if the 1084

primary and secondary concepts along with their 1085

relationship is captured in the caption. 1086

The manual evaluation scores further comple- 1087

ment the results obtained with automatic met- 1088

rics. Table 3 shows the Inter-Annotator Agreement 1089

(IAA) between the three annotators for manual eval- 1090

uation of captions generated by all 6 models. The 1091

scores indicate substantial agreement between the 1092

reviewers. Both set of annotators used for anno- 1093

tating VMCD and the manual evaluations received 1094

fair and competitive stipends. 1095
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Figure 6: The distribution of video clip duration and caption length in the VMC dataset

Figure 7: Examples of prediction mistakes done by the models on video metaphor captioning
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