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ABSTRACT

Large Language Models (LLMs) can adapt to new tasks via in-context learning
(ICL). ICL is efficient as it does not require any parameter updates to the trained
LLM, but only few annotated examples as input for the LLM. In this work, we in-
vestigate an active learning approach for ICL, where there is a limited budget for
annotating examples. We propose a model-adaptive optimization-free algorithm,
termed ADAICL, which identifies examples that the model is uncertain about, and
performs semantic diversity-based example selection. Diversity-based sampling
improves overall effectiveness, while uncertainty sampling improves budget ef-
ficiency and helps the LLM learn new information. Moreover, ADAICL poses
its sampling strategy as a Maximum Coverage problem, that dynamically adapts
based on the model’s feedback and can be approximately solved via greedy al-
gorithms. Extensive experiments on nine datasets and seven LLMs show that
ADAICL improves performance by 4.4% accuracy points over SOTA (7.7% rela-
tive improvement), is up to 3× more budget-efficient than performing annotations
uniformly at random, while it outperforms SOTA with 2× fewer ICL examples.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable performance in various natural language
tasks. One of the LLMs’ advantages is their ability to perform few-shot learning (Brown et al.,
2020), where they can adapt to new tasks, e.g., topic classification or sentiment prediction, via
in-context learning (ICL). ICL uses few-shot labeled examples {(xi, yi)}ki=1, e.g., (xi, yi) =
(Amazing movie!, positive), to construct a prompt P . Prompt P is used as a new input to the
LLM, e.g., “Amazing movie!: positive \n Awful acting: negative \n Terrible
movie:”, before making predictions for the query xtest. The new input enables the LLM to in-
fer the missing label ytest by conditioning the generation on the few-shot examples. As semantically
similar demonstrations to the test query improve ICL performance (Liu et al., 2021), it is common
practice that a k-NN retriever is used to determine the k-nearest examples for each test query.

ICL is efficient as it does not require any parameter updates or fine-tuning, wherein users can lever-
age ICL to generate task-adaptive responses from black-box LLMs. However, ICL is sensitive to the
input prompt (Lu et al., 2022) (the art of constructing successful prompts is referred to as prompt en-
gineering), where acquiring ground-truth labeling of the input demonstrations is important for good
ICL performance (Yoo et al., 2022). Ground-truth labeling requires expert annotators and can be
costly, especially for tasks in which the annotators need to provide elaborate responses (Wei et al.,
2022b). Apart from lowering the labeling cost, carefully reducing the number of the ICL exam-
ples can benefit inference costs and the LLM’s input context length requirements. Consequently,
we study the following problem: Given a budget B, which examples do we select to annotate and
include in the prompt of ICL?

Given an unlabeled set (pool) where we can draw ICL examples from, the above selection problem
resembles a typical active learning setting Settles (2009); Zhang et al. (2022b). Active learning
selects informative examples, e.g., via uncertainty sampling (Lewis & Gale, 1994), which are used
to improve the model’s performance. Although traditional active learning involves model parameter
updates, uncertainty sampling has been explored in an optimization-free manner for ICL with black-
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box LLMs (Diao et al., 2023; Pitis et al., 2023). Yet, recent studies show that uncertainty sampling
yields inferior performance in comparison to other approaches (Margatina et al., 2023) and thus,
current methods rely on semantic diversity to determine which examples are the most informative.
For example, AutoCoT (Zhang et al., 2023b) performs clustering based on semantic similarity and
selects the most representative examples of each cluster. In order to adapt the selection based on
the LLM used, Votek (Su et al., 2022) selects diverse examples with respect to the LLM’s feedback,
i.e., examples that the model is both uncertain and confident about. However, these approaches do
not consider which examples help the LLM learn new information (uncertainty sampling) and may
waste resources for annotating examples whose answers are already within the model’s knowledge.

AdaICL: diversity-based uncertainty selection

effective ✅ ✅budget-efficient

Figure 1: ADAICL effectively combines diversity
and uncertainty sampling, outperforming other
strategies in the low-resource scenario, averaged
over seven datasets. Here, the budget is 20 anno-
tations for retrieval-based 5-shot ICL.

To overcome the aforementioned limitations of
active learning for ICL, we pair uncertainty-
based sampling with diversity-based sampling.
Combining uncertainty and diversity sampling
has been previously used for finetuned-based
NLP (Yu et al., 2022; 2023), but it is not
purposed for non-parametric classifiers, simi-
lar to how ICL works (Han et al., 2023; Bai
et al., 2023). To best combine the two sam-
pling strategies, we propose a model-adaptive
optimization-free method, termed ADAICL,
which is tailored to retrieval-based k-shot ICL.
ADAICL uses the LLM’s feedback (output
probabilities) to identify the examples that the
model is most uncertain about (hard examples).
The algorithm then identifies different semantic regions of hard examples, with the goal to select
the most representative examples within each region. Diversity-based sampling is posed as the well-
studied Maximum Coverage problem (MAXCOVER), which can be approximately solved via greedy
algorithms. ADAICL performs subset selection (set of hard examples) and maximizes a submodu-
lar function (MAXCOVER) to capture the effect of different examples to the non-parametric ICL;
a framework successfully employed for active learning with non-parametric kNN classifiers (Wei
et al., 2015).

By selecting representative examples of diverse hard regions, ADAICL aims for effectiveness, so that
it helps the LLM learn information that it does not already know. Moreover, ADAICL is efficient and
results in budget savings by omitting the selection of examples that the model already knows how to
tackle (easy examples). Finally, we show that ADAICL’s uncertainty sampling improves the LLM’s
calibration (Jiang et al., 2021; Zhao et al., 2021), i.e., how model’s confidence aligns with epistemic
uncertainty, which measures how well the model understands the task.

We conduct experiments on nine datasets across five NLP tasks (topic classification, sentiment anal-
ysis, natural language inference, summarization, and math reasoning) with seven LLMs of varying
sizes (1.3B to 65B parameters), including LLMs such as GPT-J (Wang & Komatsuzaki, 2021),
Mosaic (MosaicML, 2023), Falcon (Penedo et al., 2023), and LLaMa (Touvron et al., 2023). Ex-
perimental results show that (i) ADAICL is effective with an average performance improvement of
4.4% accuracy points over SOTA (Figure 1), (ii) ADAICL is robust and achieves up to 3× budget
savings over random annotation, while it needs 2× fewer ICL examples than SOTA (Section 6.2),
and (iii) ADAICL improves the calibration of the LLM’s predictions (Section 6.3).

2 RELATED WORK

Active Learning for NLP. Active learning (Settles, 2009) for NLP has been well-studied (Zhang
et al., 2022b) with applications to text classification (Schröder & Niekler, 2020), machine transla-
tion (Haffari et al., 2009), and name entity recognition Erdmann et al. (2019), among others. Ein-Dor
et al. (2020) studied the application of traditional active learning techniques (Lewis & Gale, 1994;
Sener & Savarese, 2018) for BERT pretrained models (Devlin et al., 2019), with many works follow-
ing up (Margatina et al., 2021; Schröder et al., 2022) and (Yu et al., 2022; 2023). These approaches
fine-tune the model during different active learning rounds, which allows the model to incorporate
information from the newly labeled examples into its parameters to gradually improve its predic-
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tions. However, LLMs with billions of parameters are used for ICL. In this case, computing gradient
updates is costly and requires additional fine-tuning for every new task. Furthermore, ICL acts as
a nonparametric kernel regression (Han et al., 2023; Bai et al., 2023). Designing active learning
for non-parametric classifiers has been recently highlighted to be challenging (Rittler & Chaudhuri,
2023), as the assumption that new information is incorporated into the model’s parameters does not
hold.

Active Learning for ICL. In this work, we focus on the “cold-start” problem, similar to (Su et al.,
2022), where we are given an unlabeled set to select examples from. Most of the current approaches
of active learning for ICL (Zhang et al., 2022a; Li & Qiu, 2023; Nguyen & Wong, 2023; Shum et al.,
2023; Ma et al., 2023) assume a high-resource setting, where a large set of ICL examples is already
annotated (validation set). The validation set is leveraged for measuring the informativeness of each
individual example as well as for hyperparameter tuning. For example, Zhang et al. (2022a) employs
reinforcement learning, which requires one set of labeled examples for policy training and another
set of labeled examples for reward estimation. This limits the applicability in practical low-resource
scenarios (Perez et al., 2021), where annotations are costly to obtain.

3 PROBLEM STATEMENT & MOTIVATION

Given an unlabeled set U = {xi}Ni=1 and a fixed budget B ∈ Z+, the goal is to select a subset
L ⊂ U , where L = {(xi, yi)}Bi=1 contains B selected examples that are annotated. Due to token-
length limits or inference cost considerations, we consider a k-shot ICL inference, where set L is
used to draw k-shot ICL examples from (k < B). The k-shot examples are used to construct a new
prompt P as input to the LLM by

P = π(x1, y1)⊕ π(x2, y2)⊕ · · · ⊕ π(xk, yk)⊕ π(xtest, ∗). (1)

Template π denotes a natural language verbalization for each demonstration (x, y) and it also ex-
presses how the labels y map to the target tokens. The selected B examples for set L should maxi-
mize the ICL model performance on the testing set.

To determine which ICL examples to use (and in which order), a k-NN retriever selects the top-k
examples from L, e.g., (xk, yk), for a test instance xtest based on the similarity between xi ∈ L
and xtest over a semantic space S (the order is determined by similarity scores). Employing a k-NN
retriever for ICL example selection has demonstrated superior performance over random or fixed
example selection (Su et al., 2022; Margatina et al., 2023; Liu et al., 2021). During inference, we
use third-party embedding models, such as SBERT (Reimers & Gurevych, 2019), –instead of the
LLM M itself– for retrieving k-shot ICL examples over S due to their applicability in practice. First,
small-scale embedding models, such as SBERT, are much faster during computations and inference,
compared to the LLMs with billions of parameters. Second, for many black-box LLMs, we do not
have access to their intermediate layers (or parameters) but only to their outputs (predictions and
token log probabilities). We illustrate the overall problem setting in Figure 2.

Motivation. To understand the impact of the ICL examples on model predictions, we express ICL
inference as a non-parametric kernel regression, following the theoretical works from Han et al.
(2023); Bai et al. (2023). The prediction for the test instance xtest is related to

ỹtest =

∑k
i=1 yiKD(xtest, xi)∑k
i=1 KD(xtest, xi)

, (2)

where KD(xtest, xi) is a kernel that measures the similarity between xtest with each of the k-shot
retrieved instance xi, which depends on the pretraining data distribution D for model M . The
importance of the k-NN retriever in the lens of Equation 2 becomes clear: it fetches semantically
similar examples to compute ỹtest by regressing over their labels yi. However, it does not account
for which examples help the model learn the task to a larger extent, which depends on KD and is
infeasible to determine for pre-trained LLMs as there is usually no direct access to D.

ICL acts similar to non-parametric kNN classifiers (Equation 2) and designing active learning strate-
gies for such classifiers has been recently highlighted to be challenging (Rittler & Chaudhuri, 2023).
New information cannot be directly incorporated into the model’s parameters, as it is typically as-
sumed in other works for finetuned-based NLP (Margatina et al., 2021).
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Figure 2: Our studied problem setting. Given an unlabeled set U and a fixed budget B, the goal is
to select the B most informative examples for annotation (set L), which are used to maximize ICL
performance with an LLM M . During ICL inference, a k-NN retriever based on a similarity space
S determines the k-shot demonstrations for each test instance.

4 ADAPTIVE EXAMPLE ANNOTATION FOR ICL

Can we improve example selection for ICL despite the aforementioned challenges? We answer
affirmatively by putting forth a diversity-based uncertainty sampling strategy, termed ADAICL,
which adaptively identifies semantically different examples that help the model learn new informa-
tion about the task. With diversity sampling, we seek effectiveness, i.e., good generalization dur-
ing inference. With uncertainty sampling, we seek budget-efficiency, selecting examples that the
model is truly uncertain about. Although combining diversity and uncertainty sampling has been
previously explored for finetuned NLP (Yu et al., 2022; 2023), ADAICL focuses on combining the
two strategies in the best way possible for ICL. ADAICL follows the successful framework of prior
work (Wei et al., 2015) for active learning with non-parametric classifiers (subset selection & sub-
modular function maximization) to capture the effect of different examples during retrieval-based
ICL inference, but can generalize to both classification and generation tasks.

The ADAICL algorithm works as follows (see Figure 3 for an overview). First, it uses the LLM’s
feedback to determine which examples the model is most uncertain about, which we refer to as
hard examples. Then, it builds different regions of hard examples and the goal is to select the most
representative example for each region. The regions are determined based on the semantic similarity
space S, apart from the LLM’s feedback, and denser regions are considered as more important.

4.1 ADAICL-BASE: A kMEANS APPROACH

A straightforward solution to combine uncertainty and diversity sampliing is to perform kmeans
clustering (MacQueen et al., 1967) over the identified hard examples for the model, where different
clusters represent regions of hard examples.

To determine the set Uh of hard examples, we use the LLM’s feedback as follows. We assume we are
given a small initially annotated pool L0 for k-shot ICL (if L0 = ∅, we perform zero-shot ICL) and
use the LLM M to generate a prediction for each xi ∈ U . For classification problems, we compute
the conditional probability of each class y ∈ Y , and the label ỹi with the maximum conditional
probability is returned as the prediction for xi. Similar to prior works (Min et al., 2022a), we used
the negative loglikehood of the predicted label as the model’s uncertainty score ui, where lower score
means that the model is more certain for its prediction ỹi. For generation problems, we average the
scores of the generated tokens as the model’s uncertainty score ui. We sort the examples xi ∈ U
based on their uncertainty scores ui, and select the top-Nθ out of N total examples, which are
collected to Uh. Here, Nθ = ⌊θN⌋ and θ ∈ [0, 1] is a hyperparameter with default value θ = 0.5,
which is the portion of the examples that we consider as hard ones.

Then, we can select representative examples for each region by sampling the example closest to
each of the cluster centroids. Here, the number of clusters for kmeans is B, so we sample as many
examples as the budget B allows. We refer to that approach as ADAICL-base and its algorithm is
summarized in Appendix B.1. Yet, ADAICL-base suffers from the known limitations of kmeans
clustering. It is sensitive to outlier examples, which may be selected to be annotated, under the
assumption that the B regions formed by kmeans are equally important, and it does not account for
the effect of overlapping clusters. We provide a failing case that the selected examples may not help
the model understand the task in Appendix B.1.
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Figure 3: ADAICL algorithm. ADAICL uses k-shot ICL to determine which examples the model M
is uncertain for (hard examples). Then, it performs diversity-based uncertainty sampling over S by
optimizing the MAXCOVER problem in Equation 3 via Algorithm 1 to identify the examples that
help the model learn new information. The process is repeated until the budget B is exhausted, and
when done, it returns the annotated set L.

4.2 ADAICL: SELECTION BY MAXIMUM COVERAGE

ADAICL overcomes the aforementioned limitations of ADAICL-base by quantifying whether each
each example can convey new information to the model. ADAICL constructs semantic regions Si

around every hard example xi and solves a Maximum Coverage (MAXCOVER) problem that ac-
counts for information overlaps between different regions. MAXCOVER aims to select regions that
cover the hardest examples, giving importance to denser regions and disregarding regions already
covered (see Figure 3 for an overview). In addition, MAXCOVER does not require a finite set of
label classes and can generalize to generation tasks – a limitation of (Wei et al., 2015) that studies
active learning for non-parametric classifiers.

Formally, MAXCOVER takes m sets {S1, . . . , Sm} (regions that contain semantically similar ex-
amples) and a number B as input. Each set includes some examples, e.g., Si = {x1, x2, . . . , xn}
and different sets may have common examples, while the goal is to select the B most representative
sets that include (cover) as many examples as possible. We assume that if an example is marked as
covered by another selected set, it conveys little new information to the model. In our setting, we
are interested in hard examples, which we collect in the set Uh as previously explained. First, we
discuss how we construct the regions and then we provide the MAXCOVER problem.

Set Construction. We represent the region Si around each example xi as its egonet. Initially, we
build a global graph Gm as the m-nearest neighbors graph. The nearest neighbors are determined
based on a semantic space S given by off-the-self encoders, such as SBERT (Reimers & Gurevych,
2019). We compute SBERT embeddings of each query xi and determine its neighbors based on
cosine similarity of the embeddings. Graph Gm depends on the similarity space, while deriving sets
Si from the global graph Gm depends on the LLM’s feedback as we are interested in hard examples
xi ∈ Uh for the model.

For every hard node v ∈ Uh, we construct its 1-hop egonet. We consider edges that direct towards
v from other hard nodes v′ ∈ Uh. This ensures that representative examples xi, that are likely to
be retrieved during ICL inference, have denser egonets. We experiment with both 1-hop and 2-hop
set constructions. In the latter case, each node v is represented by its egonet along with union of
the egonets of its neighbors. One hyperparameter that controls the quality of the generated egonets
is m, which is used during the construction of graph Gm. In order to determine m, we employ a
heuristic rule based on the desired maximum iterations T̂ until the budget B is exhausted, as well as
the minimum number of hard examples Nθ̂ to be covered at each iteration. Due to space limitations,
additional analysis of our approach are provided in Appendices B and F.
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Greedy Optimization. The MAXCOVER problem is expressed as

maximize
∑

xi∈Uh

ci, (3)

where cj ∈ {0, 1}, si ∈ {0, 1}, and
∑

si ≤ B,
∑

xj∈Si

si ≥ cj . (4)

Equation 3 maximizes the coverage of the hard examples Uh, indicator variable cj denotes if example
xj is covered, and si denotes if set Si is selected. The goal is to select the examples that convey
new information to the model (measured by the indicator cj). Equation 4 ensures that we select at
most B sets and covered examples belong to at least one selected set (the hard examples covered in
more sets are selected before others). To adjust the problem in our scenario, selecting set Si, i.e.,
MAXCOVER marks si = 1, means that we select example xi for the annotated set L.

The MAXCOVER problem is known to be NP-hard (Vazirani, 2001). A natural greedy solution
for the MAXCOVER chooses sets according to one rule: at each stage, choose a set that contains
the largest number of uncovered elements. This approximation algorithm is summarized below in
Algorithm 1, and is well-known to approximately solve MAXCOVER and can be further improved
due to its submodularity (Krause & Guestrin, 2005).

Algorithm 1 Greedy approximation for MAXCOVER.

1: Input: Examples Uh, Sets {S1, . . . , Sm}, Budget B.
2: while B not exhausted do
3: Pick the set that covers the most uncovered examples.
4: Mark examples of the chosen set as covered.
5: end while

Note that the greedy algorithm is
terminated when every hard ex-
ample is covered, regardless of
whether the budget B is exhausted.
In this case, the selected exam-
ples are added to the annotation set
L, and the model’s feedback is re-
evaluated to define the new hard set
U ′
h. The iterative process is terminated when the total budget B is exhausted. The overall framework

is summarized in Figure 3, and the algorithm is summarized in Appendix B.2.

4.3 ADAICL+: DYNAMICALLY RE-WEIGHTED MAXCOVER

The greedy Algorithm 1 for ADAICL may cover all hard examples if the budget allows. However,
this might include selecting sets that contain very few hard examples, e.g., outliers, or sets that
belong to isolated sparse regions. ADAICL+ tackles this pitfall by a re-weighting schema for the
MAXCOVER problem. Whenever a hard example is covered, instead of being marked as covered,
ADAICL+ reduces its weight. By having new weights, dense regions with hard examples are pre-
ferred over sparse regions if their total weight is greater. We provide such a case in Appendix B.2.

Unfortunately, dynamically updating the weights of each example does not satisfy the submodularity
property of MAXCOVER, which is satisfied for fixed weights. Nevertheless, such that we can use the
greedy algorithm to approximate the optimal solution, we propose a re-weighting trick by reusing Uh

multiple times. Specifically, we copy the set Uh multiple times, i.e., to U0
h,U1

h , etc., where different
sets have different weights for their elements. If hard example xi is covered in U0

h , then we use its
weights from the other sets. Formally, we optimize

argmax

⌊B/T⌋∑
t=0

∑
xt
i∈Ut

h

wtcti, (5)

We set the weights wt, so that wt ≈ wt+wt+1+wt+2+· · · , which can be achieved by exponentially
reducing the weights. In our case, we set wt = 10−t. In the beginning, every hard example of U0

h
has weight w0 = 1 . If one example is covered in U0

h , i.e., c0i = 1, then its new weight is obtained
from U1

h , where w1 = 0.1. We introduce a new hyperparameter T , which denotes the desired total
number of iterations until we exhaust the budget. At each iteration, we can annotate ⌊B/T ⌋ new
examples by solving Equation 5 and then, the model M re-evaluates its predictions. ADAICL+
algorithm is summarized in Appendix B.2.
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Summarization (RougeL)
Zero-shot 18.50±0.61 15.26±0.69

Votek 20.83±0.05 23.38±0.84

ADAICL 21.42±0.68 24.67±0.45

Math Reasoning (Accuracy)
Zero-shot 36.58±3.14 32.54±1.86

Votek 37.23±1.75 45.04±1.47

ADAICL 39.58±3.01 49.08±2.89

(d) Generation Tasks (XSUM, GSM8K)

Figure 4: Performance comparison across different tasks with GPT-J (6B) and GPT-Neo (1.3B).
“Best Base.” denotes the best baseline for the task. ADAICL performs the best, while for the
classification tasks ADAICL-base is the second-best (full results in Appendix E.1).

5 EXPERIMENTAL SETTING

With our experimental analysis, we address the following research questions (RQs): RQ1. How does
ADAICL compare with SOTA active learning strategies for ICL? RQ2. How efficient is ADAICL
regarding labeling and inference costs? RQ3. How robust is ADAICL under different setups of the
problem (Figure 2)? RQ4. Does ADAICL help the LLM understand the task?

Datasets. We performed empirical evaluation with nine NLP datasets that cover well-studied tasks,
such as topic classification (AGNews (Zhang et al., 2015), TREC (Hovy et al., 2001)), sentiment
analysis (SST2 (Socher et al., 2013), Amazon (McAuley & Leskovec, 2013)), natural language
inference (RTE (Bentivogli et al., 2009), MRPC (Dolan et al., 2004), MNLI (Williams et al., 2018)),
text summarization (XSUM (Narayan et al.)) and math reasoning (GSM8K (Cobbe et al., 2021)).
We provide examples of these datasets and additional details in Appendix D.

Baselines. We use the following approaches as baselines for comparison: (i) Random performs
random example selection for annotation. (ii) Pseudo-labeling uses the LLM to generate pseudo-
labels for the unlabeled instances as additional annotated data. (iii) Fast-votek (Su et al., 2022) is
a diversity-based sampling strategy that selects representative examples in the similarity space. (iv)
Votek (Su et al., 2022) additionally accounts for the model’s feedback. It sorts the examples based
on the model’s confidence scores and stratifies them into B equally-sized buckets. It selects the
top-scoring fast-votek example from each bucket. (v) Hardest resembles the uncertainty sampling
strategy of active learning. The examples that the model is the most uncertain for are selected.
(vi) Patron (Yu et al., 2023) that combines uncertainty and diversity sampling, but is designed for
finetuned-based NLP. Additionally, we include (vii) ADAICL-base method (Section 4.1) as further
ablations. All compared methods differ only on the “Selection” (Figure 2, while “Inference” is the
same for all (k-shot retrieval-based ICL).

Design Space. As summarized in Figure 2, the design space includes the unlabeled set U , the
number of ICL examples k, the similarity space S, the budget B, and the LLM M . We experiment
with seven LLMs of varying sizes (1.3B to 65B parameters), including GPT, Mosaic, Falcon, and
LLaMa model families, all of which are open-source and allow the reproducibility of our research.
Unless otherwise stated, we set k = 5, B = 20 and we obtain embeddings in the similarity space via
SBERT (Reimers & Gurevych, 2019). We experiment with inductive settings, where test instances
come from an unseen set Utest, but also for transductive settings, where test instances come from U .

ADAICL. For the default problem setup, we construct 2-hop sets with m = 5 for ADAICL, and
1-hop sets with m = 15 for ADAICL+ via Equation 6. The default number of iterations T for
ADAICL+ is T = 2, while in the additive budget scenario we have T = 1. As the threshold hyper-

7



Under review as a conference paper at ICLR 2024

Table 2: Performance comparison across different retrieval and semantic similarity configurations.
Retriever, S −→ SBERT-all-mpnet-base-v2 RoBERTa-nli-large-mean-tokens BERT-nli-large-cls-pool Avg.

TREC SST2 Amazon TREC SST2 Amazon TREC SST2 Amazon

Pseudo-labeling 48.56±6.33 69.13±3.87 70.96±3.35 33.98±3.68 74.08±4.40 81.11±4.14 41.27±4.24 77.47±1.60 81.63±2.49 64.24
Random 54.68±1.68 68.48±1.87 73.95±2.03 37.23±2.30 74.21±3.50 84.46±3.21 34.75±2.41 72.65±5.82 80.20±3.34 64.51
Votek 54.81±0.49 73.69±9.05 75.13±0.98 37.77±4.65 76.16±2.23 84.11±1.28 42.43±3.34 80.85±2.09 83.59±1.77 67.61
ADAICL-base 48.24±0.98 77.86±1.02 75.77±3.63 38.12±5.74 78.12±5.30 85.93±2.30 38.15±3.10 78.64±2.78 85.80±1.75 67.40
ADAICL 55.33±2.57 79.68±2.47 77.73±2.23 39.06±3.37 81.11±1.50 85.15±0.55 44.06±2.49 80.85±2.83 84.65±3.52 69.74

parameter θ, we have θ = 0.5, i.e., 50% of the examples are considered as hard. Hyper-parameter
sensitivity studies that show ADAICL’s robustness are presented in Appendix F.

6 RESULTS & ANALYSIS

6.1 RQ1: ADAICL IS EFFECTIVE

Figures 4a, 4b, and 4c show performance results for classification tasks with two different models
GPT-J (6B) and GPT-Neo (1.3B). ADAICL is the method that achieves the best performance, with
an improvement of up to 7.5% accuracy points over random selection. The overall improvement
over the best baseline is 1.9% points for GPT-J and 3.2% for GPT-Neo, which shows that ADAICL
is important for smaller sized LMs. The second best performing method for topic classification and
sentiment analysis is ADAICL-base, which shows the importance of diversity-based uncertainty sam-
pling for ICL. Figure 4d provides results for generation tasks. On the challenging reasoning tasks,
ADAICL outperforms Votek and zero-shot ICL by 4.04% and 16.54% in accuracy, respectively.

6.2 RQ2 & RQ3: ADAICL IS EFFICIENT AND ROBUST
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Figure 5: Multi-step results with GPT-Neo. Sweet
point: the point at which we exceed the best per-
formance achieved by random selection. Full re-
sults are in Appendix E.2.

Budget-Efficiency. We experiment with a
scenario similar to mini-batch active learning,
where the budget increases in different steps
and the retriever uses as many ICL annotated
examples as the context-length limit allows.
Figure 5 shows results when incrementing the
budget with 10 more annotations (for 4 steps).
ADAICL performs the best in all cases, where
the average accuracy improvement over the
best baseline that uses the model’s feedback is
7.09% for topic classification, 1.86% for senti-
ment analysis, and 2.36% for natural language
inference. Figure 5 also shows that for topic
classification and sentiment analysis ADAICL
exceeds the best performance achieved by random annotation with 3× less budget.

Table 1: Impact of the number of ICL examples.
GPT-J (6B) Mosaic (7B)

AGNews SST2 AGNews SST2

Votek 5-shot 53.61±7.72 72.89±11.67 71.04±8.12 80.98±5.26

Votek 10-shot 58.32±2.74 80.08±7.43 76.09±3.37 90.23±0.31

ADAICL 5-shot 67.44±4.57 83.98±1.10 77.20±3.42 89.58±1.75

B = 5 and B = 10 for 5-shot and 10-shot ICL, respectively.

Impact of ICL examples. Table 1 investigates
ADAICL’s efficiency with respect to the num-
ber of ICL examples used during inference (and
annotated). As shown, ADAICL outperforms
votek although it uses and annotates 2× fewer
ICL examples. This indicates that ADAICL
identifies examples that help the LLM learn the
task, while it can reduce the inference costs due
to shorter input prompts. We provide a visualization of ADAICL’s process in Appendix G.

Retriever Effect. Table 2 shows results when we use different off-the-shelf encoders for the simi-
larity space S, such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). As discussed in
Section 3, it is difficult to approximate the true similarity between examples based on the pretraining
distribution D, and thus different encoders lead to different results. For example, SBERT achieves a
maximum average performance of 55.33% and 77.73% for TREC and Amazon, respectively, while
BERT achieves 44.06% and 85.80%. Despite the encoder choice, ADAICL performs overall the best
as its diversity-based uncertainty sampling mitigates this effect.

8



Under review as a conference paper at ICLR 2024

5 10 15 20
50

60

70

80

Budget B

A
cc

ur
ac

y
(%

)

GPT-J (6B)

5 10 15 20
50

60

70

80

Budget B

Mosaic-7B

ADAICL+ Random Votek

5 10 15 20
50

60

70

80

Budget B

Falcon-7B

5 10 15 20
50

60

70

80

Budget B

LLaMa-7B

Figure 6: Average results over AGNews, TREC, SST2, and Amazon
datasets for four LLMs with similar size.

LLM Effect. Figure 6
shows results when using
different LLMs of simi-
lar sizes (6-7B parameters).
The best performance is
achieved for the Mosaic
and GPT-J models. LLaMa
does not display effective
ICL capabilities and Falcon
does not substantially im-
prove with more annotated
examples. For Mosaic and GPT-J models, ADAICL outperforms Votek by 4.09% accuracy points,
while the average accuracy improvement over random annotation for different budgets is 5.45%
points.

6.3 RQ4: ADAICL IMPROVES CALIBRATION

One motivation behind uncertainty sampling is that it helps the LLM understand the task. Our hy-
pothesis is that selecting examples that the LLM is over-confident for, i.e., easy examples, might
not convey new information for the LLM to truly understand the task. We test our hypothesis by
introducing a new variant of our method, termed ADAICL-easy, which constructs regions of hard
examples around easy examples for MAXCOVER. To compare ADAICL-easy with our original
ADAICL-hard, we compute the expected calibration error (ECE) (Guo et al., 2017) which quantifies
the discrepancy between a model’s predicted probabilities (how well it believes it understands the
task) and observed outcomes (how well it actually solves the task). In addition, we visualize the dis-
crepancy across probability bins by reliability plots, where any deviation from the straight diagonal
indicates miscalibration and misunderstanding of the task.

As shown in Figure 7, “phase changes” in ECE could be observed for ADAICL-hard at different
iterations and thus, improved calibration. We conjecture that the over-confident examples selected
using ADAICL-easy lead to the bias towards making over-confident ICL predictions that are not
always true. This is verified by the reliability plots for two snapshots: at iteration=7 for AGNews
and at iteration=2 for SST2, where ADAICL-hard reduces the ECE from 0.20-0.30 to approximately
0.1. ADAICL-easy tends to make over-confident predictions (heavily skewed towards the right of
the x-axis and large deviation from the diagonal), whereas ADAICL-hard produces more calibrated
predictions, with more uniform probability distributions. We provide additional calibration analysis
in Appendix E.5.

Step Step

Figure 7: Expected calibration errors (ECE – the lower the better) and reliability plots for ADAICL
when selecting easy (ADAICL-easy) and selecting hard (ADAICL-hard) examples.

7 CONCLUSIONS

In this work, we investigated budgeted example selection for annotation for ICL, a previously under-
explored area. Seeking for an effective and efficient selection, we introduce ADAICL, a diversity-
based uncertainty selection strategy. Diversity-based sampling improves effectiveness, while uncer-
tainty sampling improves budget efficiency and helps the LLM learn new information about the task.
Extensive experiments in low-resource settings show that ADAICL outperforms other approaches in
five NLP tasks using seven different LLMs. Moreover, ADAICL can result into considerable budget
savings, while it also needs fewer ICL examples during inference to achieve a given level of per-
formance, reducing inference costs. Finally, our calibration analysis showed that ADAICL selects
examples that lead to well-calibrated predictions.
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8 REPRODUCIBILITY STATEMENT

The code of our ADAICL algorithm is is submitted as supplementary material. ADAICL’s algorith-
mic steps are extensively summarized in Appendix B. For the datasets used, a complete description
of the data processing steps is given in Appendices D.1 and D.2. Details of the experimental config-
urations are given in Appendix D.3.
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Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. ICLR, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and
Dan Roth. Rethinking the role of scale for in-context learning: An interpretability-based case
study at 66 billion scale. ACL, 2023.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 2009.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. NeurIPS, 2022.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. On the relation between
sensitivity and accuracy in in-context learning. arXiv preprint arXiv:2209.07661, 2022a.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. ACL, 2022b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought
for large language models. arXiv preprint arXiv:2302.12246, 2023.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics, aug 23–aug 27 2004. URL https:
//aclanthology.org/C04-1051.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem Choshen, Marina
Danilevsky, Ranit Aharonov, Yoav Katz, and Noam Slonim. Active Learning for BERT: An
Empirical Study. In EMNLP, 2020.

10

https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051


Under review as a conference paper at ICLR 2024

Alexander Erdmann, David Joseph Wrisley, Benjamin Allen, Christopher Brown, Sophie Cohen-
Bodénès, Micha Elsner, Yukun Feng, Brian Joseph, Béatrice Joyeux-Prunel, and Marie-Catherine
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APPENDIX

A EXTENDED RELATED WORKS

ICL Mechanism. In-context learning (ICL), also referred to as few-shot learning (Brown et al.,
2020), has been shown to elicit reasoning capabilities of LLMs without any fine-tuning (Wei et al.,
2022a; Bommasani et al., 2021; Dong et al., 2022). While ICL performance correlates to the pre-
training data distribution (Xie et al., 2021; Hahn & Goyal, 2023; Shin et al., 2022; Razeghi et al.,
2022; Chan et al., 2022) and improves with larger LMs (Bansal et al., 2023; Wei et al., 2023),
recent works study how the transformer architecture (Vaswani et al., 2017) enables in-context learn-
ing (Akyürek et al., 2023; Olsson et al., 2022). Theoretical analyses and empirical studies show that
ICL is a learning algorithm that acts as a linear regression (Akyürek et al., 2023; Garg et al., 2022;
Von Oswald et al., 2023; Zhang et al., 2023a) and ridge (kernel) regression (Han et al., 2023; Bai
et al., 2023) classifier. In this work, we leverage the recent connections of ICL with kernel regression
to highlight the challenges of active learning for ICL.

Prompt Influence for ICL. Although ICL is widely used with LLMs, its success is not guaranteed
as it is sensitive to the input prompts (Lu et al., 2022; Chen et al., 2022a). ICL tuning improves
stability Min et al. (2022a); Chen et al. (2022b); Xu et al. (2023) but requires additional training data,
while other works analyze how the prompt design and the semantics of the labels Min et al. (2022b);
Yoo et al. (2022); Wang et al. (2022); Wei et al. (2023) affect ICL performance. More related to our
setting, Liu et al. (2021),Rubin et al. (2022), Margatina et al. (2023), and Su et al. (2022) illustrate
the importance of the k-NN retriever for ICL. Our work also highlights the importance of the k-NN
retriever and provides new insights for improving ICL performance.

B ADAICL DETAILS

B.1 ADAICL-BASE

Algorithm 2 presents the overall ADAICL-base algorithm. First, ADAICL-base uses the LLM’s feed-
back to identify hard examples for the model based on their uncertainty scores. Then, it performs
kmeans clustering where different clusters represent regions of hard examples and selects represen-
tative examples for each region by sampling the example closest to each of the cluster centroids.
Here, the number of clusters for kmeans is B, so that we sample as many examples as the budget B
allows.

"Awful acting"
X

negative class
positive class

"Amazing movie!"

X

Figure 8: Failing case for kmeans clustering.

ADAICL-base suffers from the known limita-
tions of kmeans clustering. It is sensitive to
outlier examples, which may be selected to be
annotated, assumes that the B formed regions
are equally important, and does not account for
the effect of overlapping clusters. We provide
such a failing case in Figure 8. Here, the anno-
tated examples (with B = 2) do not effectively
represent the semantic space and may not help the model understand the task.
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Algorithm 2 ADAICL-base Algorithm.

1: Input: Model M , Unlabeled Set U , Budget B, Similarity Space S for k-NN Retriever.
2: Optional: Initial set L0, else L0 = ∅.
3: Hyperparameters: threshold θ.
4: Output: Annotated Set L.

5: for xi ∈ U do
6: Retrieve (at most) k examples from L based on similarity S.
7: Use model M to obtain an uncertainty score ui for xi with k-shot ICL.
8: end for
9: Determine hard set Uh given scores {ui} and threshold θ.

10: Perform kmeans clustering of Uh into B clusters with centroids {µj}Bj=1.
11: for j = 1, . . . , B do
12: x∗

i = argminxi∈Uh
||µj − xi||.

13: Add the selected x∗
i to L = L ∪ {x∗

i } and remove it from Uh = Uh \ {x∗
i }.

14: end for

B.2 ADAICL ALGORITHMS

Algorithm 3 summarizes the overall ADAICL algorithm, and Algorithm 4 summarizes the overall
ADAICL+ algorithm. Their key differences are the following. First, ADAICL solves a MAXCOVER
problem (Line 14), while ADAICL solves a weighted MAXCOVER problem (Line 14). Second,
ADAICL+ performs a predefined number of iterations T (Line 7), sampling a fixed number of ex-
amples Bcur = B

T (Line 14) per iteration. ADAICL is repeated until termination (Line 7), where the
number of selected examples per iteration is determined by the MAXCOVER (Line 14) solution.

Algorithm 3 ADAICL Algorithm.

1: Input: Model M , Unlabeled Set U , Budget B, Similarity Space S for k-NN Retriever.
2: Optional: Initial set L0, else L0 = ∅.
3: Hyperparameters: threshold θ, number of neighbors m.
4: Output: Annotated Set L.

5: Bcur = 0,L = L0.
6: Create global graph Gm.
7: while Bcur < B do
8: for xi ∈ U do
9: Retrieve (at most) k examples from L based on similarity S.

10: Use model M to obtain an uncertainty score ui for xi with k-shot ICL.
11: end for
12: Determine hard set Uh given scores {ui}Ni=1 and threshold θ.
13: Create sets Si given Uh and Gm.
14: {x∗

i }B
∗

i=1 = Greedy-MAXCOVER
(
Uh, {Si}, B −Bcur

)
.

15: Add the selected {x∗
i }B

∗

i=1 to L = L ∪ {x∗
i }B

∗

i=1 and remove them from U = U \ {x∗
i }B

∗

i=1.
16: Bcur = Bcur +B∗.
17: end while
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Algorithm 4 ADAICL+ Algorithm.

1: Input: Model M , Unlabeled Set U , Budget B, Similarity Space S for k-NN Retriever.
2: Optional: Initial set L0, else L0 = ∅.
3: Hyperparameters: threshold θ, number of neighbors m, iterations T .
4: Output: Annotated Set L.

5: Bcur = B
T ,L = L0.

6: Create global graph Gm.
7: for t ∈ [1, T ] do
8: for xi ∈ U do
9: Retrieve (at most) k examples from L based on similarity S.

10: Use model M to obtain an uncertainty score ui for xi with k-shot ICL.
11: end for
12: Determine hard set Uh given scores {ui}Ni=1 and threshold θ.
13: Create sets Si given Uh and Gm.
14: {x∗

i }
Bcur
i=1 = Greedy-weighted-MAXCOVER

(
Uh, {Si}, Bcur

)
.

15: Add the selected {x∗
i }

Bcur
i=1 to L = L ∪ {x∗

i }
Bcur
i=1 and remove them from U = U \ {x∗

i }
Bcur
i=1 .

16: end for

negative
class
positive
class

"Amazing movie!"

"Awful acting"
X

X

Set B

Set A

Set C
w =1

w=0.2

w=0.2

Similarity Space

Figure 9: A beneficial case for ADAICL+.

We provide an example of ADAICL+’s advan-
tage in Figure 9. In this example, ADAICL+’s
re-weighting schema scores Sets A and B
higher than Set C, which contains only a sin-
gle hard example. On the contrary, if Set A is
selected by ADAICL, all the examples of Set B
would be marked as covered resulting in a zero
total score. The next best scoring set would be
Set C, which does not effectively represent the
hardness of the examples. In ADAICL+, Set
B is scored higher than Set C due to its new
weight w = 0.2.

B.3 SET CONSTRUCTION

In this work, we represent the region Si around
each example xi as its egonet. Initially, we build a global graph Gm as the m-nearest neighbors
graph. The nearest neighbors are obtained with similarity metrics based on the space S, i.e., via
cosine similarity. For example, we can have the following edge sets for two nodes v1 and v2 with
m = 4: {v1 −→ v2, v1 −→ v3, v1 −→ v4, v1 −→ v5}, and {v2 −→ v3, v2 −→ v6, v2 −→ v7, v2 −→ v1}.
Deriving sets Si from the global graph Gm depends on the LLM’s feedback as we are interested in
hard examples xi ∈ Uh for the model. Thus, we color each node as a hard or an easy node based on
whether they belong to Uh. For example, we can have Uh = {v1, v2, v3, v4} and {v5, v6, v7} /∈ Uh

for the case above.

For every hard node v ∈ Uh, we construct its 1-hop egonet. We consider edges that direct towards
v from other hard nodes v′ ∈ Uh. This ensures that representative examples xi, that are likely to be
retrieved during ICL inference, have denser egonets. For example, if we have v2 −→ v1, v3 −→ v1 (we
exclude links from easy nodes, e.g., v5 −→ v1), we obtain S1 = egonet(v1) = {v2, v3}. Similarly,
we obtain egonets for other nodes, e.g., S2 = egonet(v2) = {v1, v4}, while some nodes might have
empty egonets if only easy nodes directs towards them, e.g., S3 = egonet(v3) = ∅. We experiment
with both 1-hop and 2-hop set constructions. In the latter case, each node v is represented by its
egonet along with union of the egonets of its neighbors, e.g., S(2)

1 = ego(v1) ∪ {ego(v′) : v′ ∈
ego(v1)} = {v2, v3} ∪ ego(v2) ∪ ego(v3) = {v2, v3, v4}.
One hyperparameter that controls the quality of the generated egonets is m, which is used during
the construction of graph Gm. In order to determine m, we employ a heuristic rule based on the
desired maximum iterations T̂ until the budget B is exhausted, as well as the minimum number of
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hard examples Nθ̂ to be covered at each iteration, where Nθ̂ = ⌊θ̂Nθ⌋ and θ̂ ∈ [0, 1] is a hyper-
parameter with default value θ̂ = 0.5. Assuming the graph has reciprocal edges, each node has
approximately θm and θ2m2 hard examples as neighbors for 1-hop and 2-hop sets, respectively. If
at each iteration we annotate B

T̂
examples, and we wish to cover at least Nθ̂ hard examples, we need

to satisfy Nθ̂ ≤ B
T̂
θm (for 1-hop sets) and Nθ̂ ≤ B

T̂
θ2m2 (for 2-hop sets). Thus, the heuristic-based

rule is given by {
T̂Nθ̂

θB ≤ m ≤ T̂Nθ

θB for 1-hop sets,
T̂Nθ̂

θ2B ≤ m2 ≤ T̂Nθ

θ2B for 2-hop sets,
(6)

which is adjustable to the portion of the examples that we account as hard ones (the right hand side
is derived due to constraint of maximum iterations T̂ ). Moreover, instead of having a m-nn graph
Gm, we experiment with a threshold-based δ-graph Gδ , where we set the threshold accordingly.

C PIPELINE OF COMPARED METHODS

We clarify on the pipeline of all compared methods. All methods have a “Selection Phase”, which
selects which examples to annotate, and an “Inference Phase”, which is the k-shot retrieval-based
ICL and is the same for all. We use k-shot retrieval-based inference as it is shown to be more effec-
tive for ICL (Margatina et al., 2023). We provide the comparison Table 3, where compared methods
differ during the “Selection Phase”. As it is shown, all methods use the same retriever during infer-
ence and have the same computation cost. During selection, model-based methods (Votek, AdaICL)
have a higher cost, but this cost is only needed before inference/deployment. We have performed
a time analysis in Appendix E.6 for the example selection process: With the downsampled version
of data, AdaICL outperforms Random without involving many LLM queries. During inference, all
methods (Random, Votek, AdaICL) have the same cost.

Table 3: Pipeline and complexity of compared methods.

Method Selection Inference
How L is constructed, B examples Complexity Using examples from L for ICL (same for all)

Random Random Zero-cost k-shot (k ≪ B) retrieval
Kmeans Clustering Independent of the LLM k-shot (k ≪ B) retrieval
Hardest Uncertainty Depends on LLM’s complexity k-shot (k ≪ B) retrieval
Votek Votek Depends on LLM’s complexity k-shot (k ≪ B) retrieval

ADAICL ADAICL Depends on LLM’s complexity k-shot (k ≪ B) retrieval

D EXPERIMENTAL SETTING DETAILS

D.1 DATASETS

We performed empirical evaluation with nine NLP datasets that cover well-studied tasks, such as
topic classification (AGNews (Zhang et al., 2015), TREC (Hovy et al., 2001)), sentiment analysis
(SST2 (Socher et al., 2013), Amazon (McAuley & Leskovec, 2013)), natural language inference
(RTE (Bentivogli et al., 2009), MRPC (Dolan et al., 2004), MNLI (Williams et al., 2018)), text
summarization (XSUM (Narayan et al.)) and math reasoning (GSM8K (Cobbe et al., 2021)). We
provide examples of these datasets in Table 4, which we access via Hugging Face package (Lhoest
et al., 2021).

Each dataset contains official train/dev/test splits. We follow Votek and sample 256 examples ran-
domly from the test set (if it is publicly available, otherwise from the dev set) as test data. For the
train data, we remove the annotations before our active learning setup. As it is infeasible to evalu-
ate the LLM’s feedback on all instances due to computational constraints, e.g., Amazon dataset has
more than 1 million instances, we randomly subsample 3,000 instances, which we cluster into 310
groups, and we select the 310 examples closest to the centroids as candidate examples for annota-
tion. We repeat the above processes for both the train and test sets three times with different seeds
and report mean and standard deviation results. In transductive settings, we only consider the test
data for annotation. In this case, we evaluate performance on all test examples, but we also exclude
retrieving examples that lead to self-label leakage issues.
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Table 4: Dataset examples. < S1 > denotes the input sequences.

Dataset Task Example x Labels/Annotations y
AGNews Topic Classi-

fication
< S1 >: “Amazon Updates Web Services Tools,
Adds Alexa Access The Amazon Web Services
(AWS) division of online retail giant Amazon.com
yesterday released Amazon E-Commerce Service
4.0 and the beta version of Alexa Web Information
Service.”

World, Sport, Business,
Sci-Tech

TREC Answer Type
Classification

< S1 >: “What is the date of Boxing Day?” Abbreviation, Entity, De-
scription, Human, Location,
Numeric

SST2 Sentiment
Analysis

< S1 >: “covers this territory with wit and origi-
nality , suggesting that with his fourth feature”

Positive, Negative

Amazon Sentiment
Analysis

< S1a >:“Very Not Worth Your Time”, <
S1b >:“The book was written very horribly. I
would never in my life recommend such a book...”

Positive, Negative

RTE Natural
Language
Inference

< S1 >:“In a bowl, whisk together the eggs
and sugar until completely blended and frothy.”,
< S2 >:“In a bowl, whisk together the egg, sugar
and vanilla until light in color.”

Entailment, Not Entailment

MRPC Paraphrase
Detection

< S1 >:“He said the foodservice pie business
doesn’t fit the company’s long-term growth strat-
egy.”, < S2 >:“The foodservice pie business does
not fit our long-term growth strategy.”

Equivalent, Not Equivalent

MNLI Natural
Language
Inference

< S1 >:“The new rights are nice enough”, <
S2 >: “Everyone really likes the newest benefits”

Entailment, Neutral, Contra-
diction

XSUM Summarization < S1 >:“The 3kg (6.6lb) dog is set to become
part of a search-and-rescue team used for disas-
ters such as earthquakes. Its small size means
it will be able to squeeze into places too narrow
for dogs such as German Shepherds. Chihuahuas,
named after a Mexican state, are one of the the
smallest breeds of dog. ”It’s quite rare for us to
have a chihuahua work as a police dog (said a po-
lice spokeswoman in Nara, western Japan). We
would like it to work hard by taking advantage of
its small size. Momo, aged seven, will begin work
in January.”

“A chihuahua named Momo
(Peach) has passed the exam
to become a dog in the po-
lice force in western Japan,
in what seems to be a first.”

GSM8K Math Reason-
ing

< S1 >:“James writes a 3-page letter to 2 differ-
ent friends twice a week. How many pages does
he write a year?”

“He writes each friend
3*2=6 pages a week So he
writes 6*2=12 pages every
week That means he writes
12*52=624 pages a year.
Thus, the answer is 624.”

D.2 PROMPTS

As a design choice of the input prompts, we slightly modify the templates proposed by Gao et al.
(2021) to transform them as a continuation task. We find that these are more challenging prompts
for the large LMs, which we present in Table 5 (top). In Section E.4, we also experiment with
alternative prompt templates similar to Su et al. (2022), as shown in Table 5 (bottom).

D.3 CONFIGURATIONS

As summarized in Figure 2, the design space includes the unlabeled set U , the number of ICL
examples k, the similarity space S, the budget B, and the LLM M . We use the default hyper-
parameters of the Transformers library (Wolf et al., 2020) for each LLM. We obtain the initial pool of
annotated examples L0 via kmeans so that we reduce randomness. We summarize the experimental
configurations in Table 6.
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Table 5: Prompt templates for the ICL demonstrations.

Task Template Continuation (label word)
Default

AGNews Content: < S1 > \n World, Sport, Business, Sci-Tech
TREC Content: < S1 > \n Abbreviation, Entity, Description, Human, Location, Numeric
SST2 < S1 >. It was great, terrible
Amazon < S1a >< S1b >. It was great, terrible
RTE < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: No
MRPC < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: No
MNLI < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: Maybe, [MASK]: No

Alternative
AGNews Content: < S1 > Topic: World, Sport, Business, Sci-Tech
TREC Content: < S1 > Answer Type: Abbreviation, Entity, Description, Human, Location, Numeric
SST2 Content: < S1 > Sentiment: Positive, Negative
Amazon Title: < S1a > Review: < S1b > Sentiment: Positive, Negative
RTE < S1 >. Question: < S2 >. True or False? Answer: True, False
MRPC Are the following sentences equivalent or not equivalent? < S1 > \n < S2 > equivalent, not equivalent
MNLI < S1 >. Based on that information, is the claim < S2 > True, False, or Inconclusive? Answer: True, Inconclusive, False

Table 6: Experimental setting configurations.

Setting Models M Train/Test U Budget B k-shot Retriever, S Init.
Main
Figure 4 GPTJ, GPT-Neo Inductive 20 5 SBERT |L0| = 10
XSUM Falcon-40B, LLaMa-65B Transductive 10 Context-limit SBERT Zero-shot
GSM8K Falcon-40B, LLaMa-65B Transductive 20 5 BERT,SBERT Zero-shot
Table 1 GPT-J, MPT Transductive 5,10 5,10 SBERT Zero-shot
Table 2 GPT-Neo Inductive 20 5 SBERT, RoBERTa, BERT |L0| = 10
Figure 5 GPT-Neo Transductive 0-45 Context-limit SBERT Zero-shot
Figure 6 GPT-J, MPT, Falcon, LLaMa (6-7B) Transductive 0-20 Context-limit SBERT Zero-shot
Figure 7 GPT-Neo Transductive 0-45 Context-limit SBERT Zero-shot

Appendices E, F GPT-J, GPT-Neo Inductive 20 5 SBERT |L0| = 10

Context-limit means that we retrieve as many few-shot examples as the input token-length limit allows. For example, XSUM has long sequences,
where we usually have 3-shot examples, while for TREC we can use as many as 80-shot examples.

E FURTHER RESULTS

E.1 BASE RESULTS (FULL)

Tables 7 and 8 give the full results of Figure 4 for GPT-J and GPT-Neo, accordingly. ADAICL
performs the best over all tasks, while the second-best method is ADAICL-base.

Table 7: Performance comparison for GPT-J (6B).

Topic Classification Sentiment Analysis Natural Language Inference
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random 68.87±5.39 49.34±3.19 81.63±0.30 87.89±1.77 52.86±2.41 69.01±4.61 39.58±3.98

Fast-votek 73.69±2.39 49.61±4.43 78.99±4.53 89.58±0.80 53.00±0.49 68.23±2.89 39.97±3.98

Votek 72.26±1.27 45.83±1.75 80.45±1.47 85.80±3.80 54.16±2.30 68.10±2.75 39.72±2.07

Hardest 72.13±2.12 35.93±5.53 82.67±1.64 87.36±0.66 55.33±2.25 66.80±5.25 38.80±1.11

ADAICL-base 73.56±2.96 50.64±9.11 84.11±3.25 91.01±1.77 52.73±2.21 66.53±4.78 38.66±4.50

Best (Avg.) ADAICL-base (62.10) ADAICL-base (87.56) Votek (53.99)

ADAICL 76.89±3.01 51.95±8.43 82.81±1.39 90.49±1.57 56.90±1.75 70.17±1.72 40.36±1.75

ADAICL+ 77.08±1.11 53.38±5.10 84.24±1.32 92.45±1.50 55.07±0.85 68.49±0.97 36.58±1.12

Best (Avg.) ADAICL+ (65.23) ADAICL+ (88.35) ADAICL (55.81)

∆-Gain (Absolute) +3.13 +0.79 +1.82

E.2 MULTI-STEP RESULTS

Figure 10 shows the full results for multi-step active learning with different algorithms. ADAICL
outperforms all other model-based methods (ADAICL-base, Votek, Patron, Hardest) in all tasks,
almost at every step. ADAICL-base is the second-best at topic classification, while Patron is the
second-best at sentiment analysis. For natural language inference, random selection outperforms
most other methods, but although the model’s feedback does not necessarily help the taks, ADAICL
outperforms all other model-based methods.
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Table 8: Performance comparison for GPT-Neo (1.3B).

Topic Classification Sentiment Analysis Natural Language Inference
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random 59.47±8.54 54.68±1.68 68.48±1.87 73.95±2.03 48.30±1.30 64.48±7.67 40.99±0.97

Fast-votek 62.23±3.89 46.48±3.04 69.78±8.34 69.39±0.98 50.64±1.02 64.19±0.97 38.40±0.92

Votek 62.77±4.82 53.12±4.07 73.69±9.05 75.13±0.98 49.99±0.32 67.44±2.96 39.18±1.60

Hardest 65.10±2.43 49.34±2.17 71.48±5.32 75.00±2.49 52.86±0.80 61.84±4.79 37.49±1.77

ADAICL-base 70.17±1.84 48.24±0.98 77.86±1.02 75.77±3.62 53.77±0.73 64.71±7.39 39.71±1.03

Best (Avg.) ADAICL-base (59.21) ADAICL-base (76.82) Votek (52.20)

ADAICL 70.95±1.87 55.33±2.57 79.68±1.77 77.73±2.23 53.12±1.59 67.05±8.10 42.96±2.92

ADAICL+ 69.39±1.35 59.89±2.07 79.03±2.47 77.08±1.50 51.16±1.39 65.69±8.92 40.49±2.04

Best (Avg.) ADAICL+ (64.64) ADAICL (78.71) ADAICL (54.38)

∆-Gain (Absolute) +5.53 +1.99 +2.28
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Figure 10: Multi-step results with GPT-Neo.

E.3 RETRIEVER ABLATION

A benefit of the k-NN retriever is that it can determine the order of the input few-shot examples
by semantic similarity scores. In general, we place demonstrations with higher similarity closer to
the test instance. Table 9 gathers results for different retrievers as well as when we randomly re-
order the input demonstrations. ADAICL is the most robust method and outperforms other baselines
regardless of the choice of the retriever.

E.4 PROMPT TEMPLATE ABLATION

Table 10 reports results when we use alternative ICL prompt templates (Table 5) for the input exam-
ples. ADAICL is robust to the design of the prompt templates, where it outperforms other baselines
in most datasets.

Table 9: Performance comparison across different retrieval and semantic similarity configurations.

Retriever, S −→ SBERT-all-mpnet-base RoBERTa-nli-large-mean-tokens BERT-nli-large-cls-pool Avg.
TREC SST2 Amazon TREC SST2 Amazon TREC SST2 Amazon

Random 54.68±1.68 68.48±1.87 73.95±2.03 37.23±2.30 74.21±3.50 84.46±3.21 34.75±2.41 72.65±5.82 80.20±3.34 64.51
Votek 54.81±0.49 73.69±9.05 75.13±0.98 37.77±4.65 76.16±2.23 84.11±1.28 42.43±3.34 80.85±2.09 83.59±1.77 67.61
ADAICL-base 48.24±0.98 77.86±1.02 75.77±3.63 38.12±5.74 78.12±5.30 85.93±2.30 38.15±3.10 78.64±2.78 85.80±1.75 67.40
ADAICL 55.33±2.57 79.68±2.47 77.73±2.23 39.06±3.37 81.11±1.50 85.15±0.55 44.06±2.49 80.85±2.83 84.65±3.52 69.74
random reorder
Random 47.39±2.89 66.57±3.86 76.42±2.57 31.87±4.45 69.74±5.84 81.24±2.72 40.34±1.58 76.55±4.06 79.54±2.64 63.29
Votek 45.43±2.94 72.00±3.73 73.04±1.77 37.62±5.15 75.91±5.58 82.03±0.84 39.57±3.19 79.29±2.55 81.24±1.43 65.13
ADAICL-base 50.64±5.43 74.99±6.37 74.86±4.65 36.56±2.98 75.77±0.63 84.89±2.02 45.56±3.01 79.55±0.18 85.41±0.91 67.58
ADAICL 52.22±5.19 78.12±4.71 75.64±3.51 38.93±0.48 76.68±2.71 84.11±1.43 44.00±1.63 78.51±4.52 85.28±4.65 68.16
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Table 10: Prompt template ablation study.

GPT-Neo GPT-J
AGNews TREC SST2 Amazon RTE MRPC MNLI

Default Prompts
Random 59.47±8.54 54.68±1.68 68.48±1.87 73.95±2.03 52.86±2.41 69.01±4.61 39.58±3.98

Votek 62.77±4.82 53.12±4.07 73.69±9.05 75.13±0.98 54.16±2.30 68.10±2.75 39.72±2.07

ADAICL 70.95±1.87 55.33±2.57 79.68±1.77 77.73±2.23 56.90±1.75 70.17±1.72 40.36±1.75

Alternative Prompts
Random 73.69±1.21 51.76±4.55 59.89±3.98 73.82±3.35 56.41±2.13 56.37±3.72 38.93±1.18

Votek 72.78±2.12 50.38±5.90 64.84±2.92 73.43±2.23 56.38±2.70 51.95±2.53 40.49±2.05

ADAICL 76.95±1.27 54.94±1.43 65.88±4.58 75.64±1.29 56.37±1.29 59.22±2.39 35.40±1.31

Figure 11: Calibration analysis via simplicies where we compare ADAICL against the random se-
lection algorithm and the best performing baseline for each dataset.

E.5 CALIBRATION ANALYSIS VIA SIMPLICES

Calibration has recently also been studied from the perspective of simplices (Heese et al., 2023).
Abstractly, a simplex is the generalization of the notion of a triangle/ tetrahedron to arbitrary dimen-
sions. Here, we present a simplified study of calibration via the lens of simplices, where we test if
the predicted label of the test instance lies within the simplex given by the retrieved examples having
the same label. In more detail, given a prediction ytest = y for test instance xtest, we first obtain
the subset of retrieved examples for xtest, i.e. Xsubset ⊆ Xretrieved ⊂ B which share the same
label y. We then construct a simplex using the SBERT embeddings of Xsubset, run PCA to obtain
low dimensional embeddings and test to see if the low dimensional embedding of xtest lies within
the above constructed simplex.

To take into consideration the effect of overconfident but wrong predictions, for a given dataset,
we subtract the total counts of the cases when y ̸= ytrue from the cases where y = ytrue for all
xtest in the dataset. Results are presented in the plots in Figure 11 where we compare ADAICL
against random and the best performing baseline on that dataset. For AGNews, TREC, and SST2,
the label information of the retrieved examples is important and ADAICL leads to the best calibration
in these cases. For RTE, MRPC, and MNLI, retrieving examples of the same label is not crucial for
performance and thus, all methods behave similarly with respect to simplex calibration.
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E.6 SELECTION TIME COMPLEXITY

In Table 11, we compare competing approaches based on their computation time during their selec-
tion process (during downstream inference, their time complexity is the same). Random selection
has zero cost. Votek and ADAICL (T = 1) have the same cost, while the cost doubles for ADAICL
(T = 2). Nevertheless, hyper-parameter T for ADAICL can be tuned depending on the desired
runtime of the selection process.

Table 11: Time complexity analysis with 5-shot ICL for different selection processes over 300
examples on a GeForce RTX 3090 (24GB GPU).

Embedding Computation (SBERT) Model Uncertainty Estimation (GPT-Neo)

Amazon
Random 0 secs 0 secs
Votek ≈1 secs 1 min & 51 secs
ADAICL (T = 1) ≈1 secs 1 min & 51 secs
ADAICL (T = 2) ≈1 secs ≈ 3 mins & 42 secs
AGNews
Random 0 secs 0 secs
Votek ≈0.5 secs 3 mins & 48 secs
ADAICL (T = 1) ≈0.5 secs 3 mins & 48 secs
ADAICL (T = 2) ≈0.5 secs ≈ 7 mins & 36 secs

F ADAICL ABLATION STUDIES

F.1 GRAPH ABLATION STUDIES

Table 12: Graph ablation study using GPT-Neo based on hyper-parameters m, which controls the
number of graph neighbors, and l, which controls whether we consider 1-hop or 2-hop sets. The
value combinations of m and l are adjusted via Equation 6.

AGNews SST2 Amazon

Votek 62.77±4.82 73.69±9.05 75.13±0.98

ADAICL
m = 15, l = 1 68.61±1.02 79.42±1.28 77.34±2.73

m = 25, l = 1 68.74±3.59 77.60±4.20 76.95±3.86

*m = 5, l = 2 70.95±1.87 79.68±1.77 77.73±2.23

m = 7, l = 2 69.13±1.39 78.12±2.61 74.99±0.84

ADAICL+ (T = 2)
*m = 15, l = 1 69.39±1.35 79.03±2.47 77.08±1.50

m = 25, l = 1 68.87±3.26 77.73±2.22 73.17±2.59

m = 5, l = 2 70.43±1.60 77.73±1.15 76.43±2.55

m = 7, l = 2 70.60±2.89 76.95±4.69 77.21±2.12

*Denotes the default value.

Table 12 shows an ablation study on our proposed heuristic rule of Equation 6. We select m such
that it lies near the boundaries of Equation 6, depending whether we choose l = 1 hop sets or
l = 2 hop sets. As Table 12 shows, our heuristic rule is robust and achieves good results with four
different combinations. In some cases, having smaller values of m leads to slightly better results as
it excludes neighbors with less semantic similarity.

Table 13: Graph ablation study for ADAICL using GPT-J with different graph construction ap-
proaches.

AGNews TREC SST2 Amazon RTE MRPC MNLI

m-nn graph 77.08±1.11 53.38±5.10 84.24±1.32 92.45±1.50 56.90±1.75 70.17±1.72 40.36±1.75

δ-graph 76.17±3.45 50.51±4.65 81.90±2.48 88.80±1.57 56.63±3.23 68.75±1.93 40.62±2.08

Furthermore, we also experiment with using a threshold-based graph (δ-graph) instead of the m-
nn graph. To determine threshold δ, we compute the cosine similarity between all nodes and set
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δ such as each node has m neighbors on average (at the m-nn graph each nodes has exactly m
neighbors). As Table 13 shows, using the δ-graph performs slightly worse than the m-nn graph. We
hypothesize that using the δ-graph gives more importance on the semantics of the train distribution
(as δ value is computed based on the similarity scores between all train examples), which may not
always generalize well to the test distribution.

F.2 UNCERTAINTY THRESHOLD

Table 14: Ablation study using GPT-Neo based on hyper-parameter θ, which controls the number of
the examples that are considered as hard ones.

TREC SST2 Amazon

Votek 53.12±4.07 73.69±9.05 75.13±0.98

ADAICL+ (θ = 0.5) 59.89±2.07 79.03±2.47 77.08±1.50

ADAICL+ (θ = 0.33) 60.28±3.13 78.77±2.59 78.90±1.14

By default, we consider 50% (θ = 0.5) of the examples with the lowest confidence as hard examples.
Table 14 shows results when we focus on harder examples by setting θ = 0.33 for ADAICL+.
Interestingly, ADAICL+’s performance can be further boosted with careful tuning of the uncertainty
threshold. Thus, automatically determining which examples are considered as hard examples for
the models seems a promising research direction.

G VISUALIZATION

We illustrate the selection process of ADAICL in Figure 12. Initially, the LLMs perform 0-shot
ICL but do not make confident predictions (as the hue color, that represents the model’s uncertainty
for each example, indicates). Note that different LLMs may consider different examples as hard
or easy ones. Then, ADAICL selects 5 representative for 5-shot ICL, which improves the LLMs’
understanding of the task and reduces its uncertainty (we observe fewer red nodes and more nodes
with greener color).

H ADAICL LIMITATIONS

We list some of our assumptions that may limit ADAICL if they are not satisfied. First, we assume
that we can access the output logits/probabilities from the LLM in order to evaluate its uncertainty;
this might not be always be feasible. Second, ADAICL relies on embedding methods to determine
semantic diversity. While ADAICL is shown to be robust to different methods, it can still suffer if the
semantic space of the test is wildly different from the annotation pool space. Finally, the graph/set
construction is a heuristic approach and does not account for cases where adversarial examples are
injected into the pool in order to degrade performance.
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B=5, AdaICL

AGNews, Mosaic, 0-shot ICL AGNews, Mosaic, 5-shot ICL

(a) 5-shot ICL by ADAICL selection for AGNews with Mosaic.

B=5, AdaICL

AGNews, GPT-J, 0-shot ICL AGNews, GPT-J, 5-shot ICL

(b) 5-shot ICL by ADAICL selection for AGNews with GPT-J.

B=5, AdaICL

SST2, Mosaic, 0-shot ICL SST2, Mosaic, 5-shot ICL

(c) 5-shot ICL by ADAICL selection for SST2 with Mosaic.

B=5, AdaICL

SST2, GPT-J, 0-shot ICL SST2, GPT-J, 5-shot ICL

(d) 5-shot ICL by ADAICL selection for SST2 with GPT-J.

Figure 12: Visualization of the SBERT space (after PCA) and of the examples selected for anno-
tation. The two axes represent the two most important PCA components, which is performed over
the SBERT embeddings of the examples. The hue color (green to red) represents the model’s uncer-
tainty (confident to uncertain) for each example. The selected examples for annotation are marked
with the blue ‘X’ symbol (better viewed with zooming).
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