
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC CONTRASTIVE LEARNING
FOR TIME SERIES REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding events in time series is an important task in a variety of contexts.
However, human analysis and labeling are expensive and time-consuming. There-
fore, it is advantageous to learn embeddings for moments in time series in an
unsupervised way, which allows for good performance in classification or detec-
tion tasks after later minimal human labeling. In this paper, we propose dynamic
contrastive learning (DynaCL), an unsupervised contrastive representation learn-
ing framework for time series that uses temporal adjacent steps to define positive
pairs. DynaCL adopts N-pair loss to dynamically treat all samples in a batch as
positive or negative pairs, enabling efficient training and addressing the challenges
of complicated sampling of positives. We demonstrate that DynaCL embeds in-
stances from time series into semantically meaningful clusters, which allows supe-
rior performance on downstream tasks on a variety of public time series datasets.
Our findings also reveal that high scores on unsupervised clustering metrics do not
guarantee that the representations are useful in downstream tasks.

1 INTRODUCTION

A common task in time series (TS) analysis is to split the series into many small windows and
identify or label the event taking place in each window. Learning a good representation for these
moments eases the time and domain expertise needed for this data annotation. Self-supervised
learning, which produces descriptive and intelligible representations in natural language processing
(NLP) and computer vision (CV), has emerged as a promising path for learning TS representation.
One approach to representation learning is contrastive learning, in which positive and negative pairs
of samples are identified, the embeddings of positive pairs are made similar, and the embeddings
of negative pairs are made dissimilar. In CV, data augmentation has been successful in creating
positive pairs in an unsupervised way. In TS analysis, it is instead possible to create positive pairs
on the assumption that moments close in time are also likely to have similar embeddings. Currently,
TS representation learning that leverages temporal information in the contrastive objective relies on
inefficient sampling positives (Yue et al., 2022; Luo et al., 2023; Oord et al., 2018; Tonekaboni et al.,
2021; Woo et al., 2022). This work introduces dynamic contrastive learning (DynaCL), an approach
to TS representation learning through a simple contrastive learning framework that efficiently cap-
tures temporal information by sampling positives from adjacent time steps.

Our contrastive objective extends the N-pair loss introduced by Sohn (2016) to efficiently harness
every time step in a sequence as positive and negative pairs. The N-pair loss solves the problem
of selecting statistically relevant and varying window sizes in every batch, allowing our method to
adapt to the different data structures without prior knowledge of the data distribution. Inspired by
the finite difference heat equation in thermodynamics (Mitchell & Griffiths, 1980), we use multiple
adjacent moments as positive partners for the reference time step to enhance convergence. Moti-
vated by feature prediction methods (Assran et al., 2023; Caron et al., 2021; Oquab et al., 2023),
we extend our model by incorporating a margin into the contrastive loss (DynaCL-M) in a bid to
introduce feature invariance, and train this variant to jointly optimize both the contrastive and feature
prediction objectives. Both of these approaches learn representations before using any human effort
on labeling.

As in Tonekaboni et al. (2021), we measure the quality of our learned embeddings using statistics
measuring properties of the resulting clusters. However, as the goal is not just to create clusters, but

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to learn generalizable features that are useful for downstream classification, we use linear evaluation
with a frozen backbone to evaluate the quality of the learned representations. Our findings demon-
strate that DynaCL not only produces useful off-the-shelf representations but also outperforms pre-
vious TS contrastive learning state-of-the-art methods. This paper makes three main contributions:

• Propose DynaCL, an unsupervised contrastive representation learning framework for time series
that samples positive pairs from temporal adjacent steps, and DynaCL-M, an augmentation of
DynaCL that combines the contrastive learning objective with a masked feature prediction loss to
learning time series representation.

• Introduce multiple positive pairs in the normalized temperature-scaled cross-entropy loss (NT-
Xent) Chen et al. (2020) loss to accelerate learning and adapt this for time series representation
learning. For convenience, we term this loss MP-Xent (multiple positive cross-entropy loss).

• Conduct extensive experiments on three public datasets and demonstrate superior results com-
pared to state-of-the-art baselines on clustering and classification.

2 RELATED WORK

Contrastive representation learning. Contrastive learning (CL) (Hadsell et al., 2006) is a widely
used self-supervised learning strategy with huge success in CV and NLP (Chen et al., 2020; He
et al., 2020; Brown, 2020). Unlike generative models that try to reconstruct inputs, contrastive-
based methods aim to learn data representation by contrasting positive and negative samples. Sohn
(2016) introduces the N-pair loss for efficient learning by employing multiple negatives in each
batch update. Specifically, Sohn (2016) extends triple loss (Weinberger et al., 2005) by allowing
joint comparison among negative samples. Contrastive predictive coding (CPC) (Oord et al., 2018)
learns representation using autoregressive models to predict future time steps in a latent space. A
key component of CPC is the introduction of InfoNCE loss, based on noise-contrastive estimation
(Gutmann & Hyvärinen, 2010; Jozefowicz et al., 2016) by removing the proximal constraint and
using positive pairs. SimCLR (Chen et al., 2020) uses data augmentation and a contrastive loss
called NT-Xent that encourages positive pairs (augmented view of the same image) to be closer
in the representation space while pushing negative pairs apart. He et al. (2020) proposes a CL
framework that uses a momentum encoder to update the features stored in a dynamic dictionary for
stable and consistent feature representation over time. Mitrovic et al. (2020) enforces invariance
by adding regularization to the InfoNCE objective. Yeh et al. (2022) further removes the positive
pair in the denominator, while in Dwibedi et al. (2021), instead of relying solely on augmentations,
uses the nearest neighbor of the current data point in feature space to serve as positive pairs. In this
work, we extend the NT-Xent loss by introducing multiple positive pairs in the numerator to capture
adjacent time steps, we call this modified loss MP-Xent.

Contrastive learning in time series. With the recent traction of CL in CV and NLP, several works
in TS representation learning have proposed different methods for sampling positive and negative
pairs. Wickstrøm et al. (2022) creates a new augmented sample of a time series and attempts to pre-
dict the strength of the mixing components. Zhang et al. (2022) samples positive pairs as time-based
and frequency-based representations from the time series signal and introduces a time-frequency
consistency framework. Yang et al. (2022) introduces dynamic time warping (DTW) data augmen-
tation for creating phase shifts and amplitude changes. Lee et al. (2024) proposes soft assignment
to leverage every pair other than the positive pairs by assigning weights to both instance and tem-
poral CL to improve on previous CL frameworks. However, this soft assignment is precomputed
offline and not during training. To learn discriminative representation across time, TS2Vec (Yue
et al., 2022) considers the representation at the same time stamp from two views as positive pairs.
InfoTS (Luo et al., 2023) focuses on developing criteria for selecting good augmentation in con-
trastive learning in the TS domain. T-loss (Franceschi et al., 2019) employs a time-based sample
and a triplet loss to learn representation by selecting positive and negative samples based on their
temporal distance from the anchor. TNC (Tonekaboni et al., 2021) presents temporal neighborhood
with a statistical test to determine the neighborhood range that it treats as positive samples. Yèche
et al. (2021), on the other hand, selects neighbors based on both instance-level and temporal-level
criteria with a trade-off parameter allowing the model to balance instance-wise distinction with tem-
poral coherence. (Kiyasseh et al., 2021) define a positive pair as a representation of transformed
instances of the same subject. TS-TCC (Eldele et al., 2021) proposes a method to combine temporal

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and contextual information in TS using data augmentation to select positives and predict the future
of one augmentation using past features of another representation in the temporal contrasting mod-
ule. CoST (Woo et al., 2022) applied CL in learning representation for TS forecasting by having
inductive biases in model architecture to learn disentangled seasonal trends.

Feature prediction in representation learning. A growing body of work in TS representation
learning has attempted to enforce feature invariance by jointly optimizing instance-wise CL with
temporal CL (Yue et al., 2022; Lee et al., 2024). However, we argue that selecting positive pairs
and negatives, for instance-wise CL based on distance in the feature space, might lead to subop-
timal performance. Ideally, pair selection should be guided by semantic similarity in the learned
feature space, rather than raw distance. Self distillation methods have sorted to avoid the need for
selecting negatives in their training objectives (Grill et al., 2020; Caron et al., 2021). They rely on
encoding two augmented views and mapping one to the other using a predictor. To avoid mode
collapse in self-distillation due to the absence of negative as in CL, they update one of the encoder
weights with the running exponential moving average (EMA) of the other encoder. Chen & He
(2021) show that the EMA was not necessary in practice, even though it led to a small performance
boost. Logacjov & Bach (2024) uses the traditional pretext of masked reconstruction to learn fea-
ture invariance by a random reconstruction of the masked input of one sensor from another. Masked
reconstruction approaches have also produced noteworthy results in forecasting tasks (Dong et al.,
2023). TST (Zerveas et al., 2020) attempts to reconstruct masked timestamps using transformers,
while PatchTST (Nie et al., 2023) aims to predict subseries of masked patches to learn local invariant
features. We adopt the mask approach in our DynaCL-M variant but treat it as a feature prediction
task rather than reconstruction, similar to the self-distillation methods. Predicting in representation
space has been shown to produce versatile representation with good performance in downstream
tasks (Assran et al., 2023; Oquab et al., 2023), as well as eliminate irrelevant data-level details from
the target representation.

3 PROPOSED ARCHITECTURE: DYNACL

Our main objective is to learn useful representation from instances of time series data. We assume
similarity within nearby instances – that consecutive instances in a sequence have the same class
and event labels would not change too often. This condition often holds for time series, which
have repeated labels in the temporal dimension. DynaCL learns a mapping function fθ : x → z,
such that given a time series sequence with length T , x = {x1, x2, . . . , xT }, where xi ∈ R1×D,
projects this series to a representation space z = {z1, z2, . . . , zT }, where zi ∈ R1×F where T is
the sequence length, D is in the input dimension and F is the dimension of the learned embeddings.
To that end, we proposed DynaCL and DynaCL-M (Figure 1). To learn from a training sequence x
of TS instances in DynaCL, we select an anchor (a single instance), then use adjacent instances as
positives and every other sample in the sequence as negatives in the MP-Xent loss. The MP-Xent
loss, described more fully in Section 3.1, encourages representations of positive pairs to be similar,
and representations of negative pairs to be dissimilar.

For the expanded DynaCL-M model, the architecture consists of an encoder, Eθ(.), which computes
the representation z from the masked input xm, and a linear projector Pϕ(.) that projects the original
unmasked input x to a target representation z̄ to serve as targets in the feature prediction MSE
objective. For the MP-Xent loss, we reused the learned representation z, along with the margin, to
ensure that the learned representations are pushed further apart.

3.1 MULTIPLE POSITIVES CROSS-ENTROPY (MP-XENT)

Sohn (2016) N-pair loss uses every sample in a batch to compute an (N+1) tuple loss. SimCLR
(Chen et al., 2020) builds on this by treating augmented views as positive pairs and all other samples
in the batch as negatives. In each batch update, every sample serves as a positive pair at least once.
We extend this to time series (TS) representation learning by using each instance (1-2 seconds of
TS) within a sequence of length T. For a batch of size N and sequence T, we select each time step
as an anchor, adjacent steps as positives, and the rest as negatives, forming an NT-tuple loss (Figure
2a). We train our encoder network Eθ(.) to learn a representation that clusters similar time series
while pushing apart dissimilar time series in space using the MP-Xent objective. The encoder Eθ(.)
takes an input x such that z = Eθ(x) where z is the learned feature representation. Given a single

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

batch i, If zi,t and zi,t+1 are two consecutive time steps in a sequence of length T , with zi,t and
zi,t+1 ∈ R1×F , equation 1 shows the NT-Xent loss.

ℓ(i, t) = − log
exp(sim(zi,t, zi,t+1)/τ)∑T

k=1 1[k ̸=t] exp(sim(zi,t, zi,k+1/τ)
(1)

Where T is the sequence length, τ is the temperature parameter (Chen et al., 2020), and cosine sim-
ilarity is the similarity score. Implementing the objective in equation 1 leads to slower convergence.
Building upon the principles of the finite difference method (Mitchell & Griffiths, 1980), we extend
the NT-Xent loss objective in equation 1 to account for multiple positives for faster convergence and
efficient training, as shown in Figure 2b. As before, given a reference time step zi,t with adjacent
time steps zi,t−1 and zi,t+1, our MP-Xent loss is as follows.

ℓ(i, t) = − log
exp(sim(zi,t, zi,t−1)/τ) + exp(sim(zi,t, zi,t+1)/τ)∑T

k=1 1[k ̸=t,t−1,t+1] exp(sim(zi,t, zi,k+1)/τ) +
∑T

l=1 1[l ̸=t,t−1] exp(sim(zi,t−1, zi,l)/τ)
(2)

For the entire sequence length T and batch N , we have an NT tuple loss per update, making our
training very efficient.

LMP−Xent =
1

NT

N∑
i=1

T∑
t=1

ℓ(i, t) (3)

In our DynaCL model, we focus on optimizing only equation 3.

3.2 DYNAMIC CONTRASTIVE LEARNING WITH MARGIN (DYNACL-M)

In this section, we introduce a variant called DynaCL-M. DynaCL-M contains two augmentations
to DynaCL. First, we add feature prediction. Second, we add a dynamic margin to further separate
dissimilar but adjacent time steps. We will use comparisons between DynaCL and DynaCL-M
to demonstrate the lack of correlation between clustering metrics and downstream effectiveness in
Section 4. In that same section, we will perform an ablation study to illustrate the impact of each
augmentation.

Feature prediction has been shown to learn invariant representations by guiding the model to focus
on relevant underlying patterns rather than high-level details (Assran et al., 2023; Oquab et al.,
2023). To enforce feature invariance in our learned representation for highly dynamic datasets, we
extend DynaCL by introducing feature prediction into our MP-Xent objective.

We mask our input x to give xm, then compute the representation z from the masked input xm.
Additionally, we project the unmasked x to a target vector, z̄ = Pϕ(x), where Pϕ is a randomly-
chosen projection operator into F dimensions, making z̄ the same size as z. We encourage the
encoding of the masked xm to be close to the projection of the unmasked x using the LMSE loss
for mask feature prediction.

LMSE =
1

NT

N∑
i=1

T∑
t=1

∥zi,t − z̄i,t∥2 (4)

In addition, in this variant, we introduce dynamic margins in the similarity vectors that increase
the distance between features in the representation space if two adjacent time steps are dissimilar
based on a threshold hyperparameter. Given an input x with sequence length T , we precompute
a pseudo-label Y based on the cosine similarities between consecutive time steps and threshold as

Y =

{
0 if sim(zi, zj) > threshold
1 otherwise

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We apply this pseudo-label Y and a constant margin to our similarity matrix M ∈ RT×T . This
matrix contains the similarity score for all time steps in a single batch. To be specific, element
Mt,t+1 corresponds to sim(zt, zt+1).

Mmargin =
1

2
(1− Y)M2 +

1

2
Y [max(0,margin −M)]

2 (5)

Combine objective for DynaCL-M variant. The final objective of DynaCL-M combines the MP-
Xent and MSE loss using a λ hyperparameter. We use the learned representation z both as the target
for the MSE and as the input to our MP-Xent loss, as shown in Figure 1. The first term ensures the
learned representations have temporal coherence, while the second term enforces feature invariance
and training stability through a masked feature prediction.

LDynaCL−M = λLMP−Xent + (1− λ)LMSE (6)

Here, λ is a fixed scalar hyperparameter that represents the relative contribution of each loss term.

Algorithm 1 : DynaCL-M

1: Input: Data batch {xi}Ni=1, margin m, pseudo-labels {Yi}Ni=1, λ
2: Initialize: Model parameters θ
3: for batch n = 1 to N do
4: for sequence t = 1 to T do
5: Mask xn,t to get xm

n,t
6: Encode xm

n,t → zn,t
7: end for
8: Compute MP-Xent loss using z̄n, m, Yn

9: for sequence t = 1 to T do
10: Project xn,t → z̄n,t
11: Compute MSE loss between zn,t and z̄n,t
12: end for
13: Jointly optimize MP-Xent and MSE losses using λ
14: end for
15: Output: Optimized θ

Figure 1: Unsupervised representation learning using dynamic contrastive learning with margin
(DynaCL-M). We train on TS instances of length T and feature dimension D. (Right to left): We
mask random features from the time series instances and use this as input to the encoder. The
encoder processes this mask input to generate an embedding vector.

3.3 NETWORK ARCHITECTURE

We use a simple convolutional neural network (CNN) architecture as our feature extractor backbone
in our encoder Eθ(·). The CNN network consists of 3 blocks of 1D convolution with a kernel size of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Single positive T-tuple loss (b) Multiple positives T-tuple loss

Figure 2: Positive pairs selection for the contrastive learning objective. The index i refers to the
current batch (a) The (N+1) tuple loss (Sohn, 2016) operates on batch N, we adapted this to TS
of sequence length T and batch N to obtain NT-tuple losses per batch. (b) We further extend the
NT-Xent loss (Chen et al., 2020) by introducing multiple positives for a given reference step from
adjacent time steps to enhance convergence. We skip the reference instance t1 and tT as both losses
behave similarly at the edges.

1, followed by batch normalization and ReLU activation, with an embedding dimension of 32. Since
our focus is on developing a loss function, we use the same architecture for all baselines in Section
4. To preprocess the time series signal for our encoder, we perform a short-time Fourier transform
(STFT) on the signal to obtain input with dimension B×T ×D, where B is the batch size, T is the
sequence length, and D is the input dimension (see Appendix D for more details on data processing
for each dataset). We apply a mask to a random fraction of features from the input x by assigning
these values to 0. The encoder Eθ processes the masked input xm to predict a feature representation
z. For the projector network Pϕ, we use a single-layer linear network to project the unmasked input
x to a 32-dimensional vector z̄, which serves as the target in the MSE loss (see Figure 1).

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed method on three benchmark datasets
to assess the quality of the learned embeddings. We compare our approach against state-of-the-art
baselines for time series representation learning on clustering quality and event classification using
linear fine-tuning with a frozen backbone. Additionally, we qualitatively compare learned embed-
dings alongside those from previous methods using t-SNE plots in Figure 3. These experiments
demonstrate that DynaCL-M builds more compact and separate clusters than other methods, but that
vanilla DynaCL outperforms other approaches in building semantically meaningful representations.
We perform an ablation study to highlight the effects of the different components of our DynaCL
models. Lastly, though it is not a focus of our work, we show that the simplicity of DynaCL allows
it to be trained the fastest of all tested methods.

We evaluate our model on three public datasets on human activity recognition, electrical activity of
the heart, and sleep stage classification. Table 1 shows the summary statistics of these datasets.

Table 1: Summary of dataset distributions used across all experiments. An instance is a preprocessed
block of TS. For the HARTH and ECG, each instance is 1 second while for the SLEEPEEG an instance
is 2 seconds.

Instance Sequence length Dimension Classes Frequency (Hz)

HARTH 1,270,087 119 156 12 50
SLEEPEEG 371,055 300 178 5 100
ECG 1,531,771 119 252 4 250

HARTH - This is a human activity recognition (HAR) dataset (Logacjov et al., 2021) that contains
recordings from 22 participants, each wearing two 3-axial Axivity AX3 accelerometers for approxi-
mately 2 hours in a free-living setting at a sampling rate of 50Hz. This dataset comprises 12 distinct
classes of varying human activities (standing, lying, walking, shuffling, running, sitting, stairs - as-
cending and descending, and four different cycling positions). We preprocess the signal by applying
a short-time Fourier transform (STFT) using a one-second Hann window (Blackman & Tukey, 1958;

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Logacjov & Bach, 2024) with a half-second overlap. We then concatenate the activities from all 22
subjects to build a continuous time series, resulting in a spectrogram with 1,270,087 instances and
156 feature dimensions. During our unsupervised representation learning, for each iteration, we use
a sequence length of 119 instances, corresponding to 60 seconds, and encode the representations in
a 32-dimensional space.

SLEEPEEG - This dataset (Goldberger et al., 2000) contains 153 whole-night electroencephalogra-
phy (EEG) sleep recordings from 82 healthy subjects, sampled at 100 Hz. We use the preprocessed
dataset from Zhang et al. (2022), which is segmented with a window size of 200, resulting in 371,055
instances with a feature dimension of 178. Each sample corresponds to one of the five sleep stages:
Wake (W), Non-Rapid Eye Movement (N1, N2, N3), and Rapid Eye Movement (REM). In our
training, we use a sequence length of 300 and output representations in a 32-dimensional space.

ECG - We use the MIT-BIH Atrial Fibrillation dataset (Moody, 1983), which includes 25 long-term
electrocardiogram (ECG) recordings of human subjects with atrial fibrillation, each with a duration
of 10 hours. The dataset contains two ECG signals, each sampled at 250 Hz, with annotations
marking the different rhythms: atrial fibrillation (A), atrial flutter (F), AV junctional rhythm (AV),
and all other rhythms. Similar to the HARTH dataset, we apply a short-time Fourier transform
(STFT) with a one-second Hann window and a half-second overlap, producing a total of 1,531,771
instances with a feature dimension of 252. Finally, we select 119 instances, corresponding to 60
seconds as sequence length. The learned representations are encoded in a 32-dimensional space.
This dataset is particularly useful for evaluating how our proposed method performs on imbalanced
data, as the atrial (A) rhythm and “all other rhythms” account for more than 99% of the entire dataset.

We compare our model with five state-of-the-art approaches in time series representation learning:
InfoTS (Luo et al., 2023), CPC (Oord et al., 2018), TNC (Tonekaboni et al., 2021), TS2Vec (Yue
et al., 2022) and CoST (Woo et al., 2022). InfoTS maximizes agreement between representations
of the same subseries through temporal augmentations. CPC extracts useful representations by
predicting future latent representations in a sequence. TNC learns by contrasting data points within
the same neighborhood against those from different neighborhoods. TS2Vec captures both global
and temporal dependencies by contrasting time series across different scales and timesteps, while
CoST employs a two-step approach to TS forecasting by learning disentangled seasonal trends.
To ensure a fair comparison, all models were trained using the same preprocessing pipeline and
hyperparameters. Specifically, we employed the AdamW optimizer with a learning rate of 1e−3 and
a batch size of 8. Additionally, to eliminate any performance differences arising from variations in
model architecture, we use the same encoder network across all baselines. We aim to compare the
learning frameworks independent of the choice of encoder. To this end, we selected a simple CNN
architecture to assess how effectively each framework can leverage the limited capacity of a basic
encoder to learn meaningful representations. Consequently, we substituted the dilated CNN unique
to the TS2Vec encoder with a regular 1D CNN. All experiments were conducted on an NVIDIA
Tesla V100 GPU (refer to Appendix B for more details on each baseline and implementation).

4.1 CLUSTERABILITY

Even though our final objective is to learn useful embeddings for downstream tasks, we echo the
evaluation in Tonekaboni et al. (2021) by checking the properties of the distribution of the repre-
sentations in the encoding space. Bengio et al. (2014) posit that the formation of natural clustering
is one of the properties of a good representation. To capture the performance of each baseline on
clustering, we use two popular clustering evaluation metrics, namely Davies-Bouldin Index (DBI)
(Davies & Bouldin, 1979) and Silhouette Score (SS) (Rousseeuw, 1987). DBI measures the average
similarity ratio of each cluster with its most similar cluster. A lower DBI score indicates better sep-
aration between clusters. SS evaluates how similar an object is to its own cluster compared to other
clusters. SS values range from -1 to 1, with higher values reflecting both compactness and separa-
tion. Table 2 shows the result of our approach against the baseline methods on these unsupervised
clustering measures. Overall, our proposed DynaCL-M outperforms all four baselines in two out
of the three datasets, and performs competitively on the third, the highly imbalanced ECG dataset.
While strong cluster scores are not our ultimate goal, DynaCL-M performs well in the metrics used
in other papers in this field.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison with state-of-the-art methods in clustering. All models are evaluated on test
sets that were not used during pretraining. DynaCL-M demonstrates superior clustering performance
on two of the three datasets and ranks second to TNC (Tonekaboni et al., 2021) on the ECG.

HARTH SLEEPEEG ECG

DBI↓ Silhouette ↑ DBI↓ Silhouette ↑ DBI↓ Silhouette↑
CoST 1.46±0.05 0.25±0.03 2.13±0.18 0.28±0.02 1.15±0.10 0.45±0.01
CPC 1.65±0.11 0.17±0.02 2.59±0.10 0.26±0.01 1.88±0.06 0.16±0.02
TNC 0.60±0.11 0.67±0.24 0.58±0.07 0.21±0.00 0.48±0.06 0.96±0.02
InfoTS 0.96±0.08 0.58±0.03 0.67±0.08 0.24±0.01 0.97±0.10 0.63±0.03
TS2Vec 1.23±0.07 0.59±0.02 1.01±0.05 0.31±0.01 0.74±0.03 0.64±0.02

DynaCL 1.07±0.06 0.35±0.02 1.12±0.25 0.41±0.20 0.98±0.23 0.63±0.13
DynaCL-M 0.46±0.01 0.95±0.01 0.48±0.01 0.87±0.05 0.51±0.11 0.72±0.12

4.2 LINEAR EVALUATION WITH FROZEN BACKBONE

Our main goal is to learn representations that are useful in downstream classification. With that in
mind, we train a linear classifier on top of the learned representations to assess how well the learned
features generalize to the task of interest when used by a simple classifier, which is reflective of
real-world usage where the learned representations are further fine-tuned or used for downstream
tasks. We fine-tuned a linear classifier with a frozen backbone on the features from the learned
representation and evaluated the performance of our model on the test set. We perform an 80-20
subject-wise train-test split. We train our unsupervised models on the 80% data. We then reused this
80% to fine-tune a linear model with a frozen encoder network and evaluate on the remaining 20%.
We have presented our results on the accuracy, F1 score, precision, and recall metrics in Table 3.

Table 3: Comparison with state-of-the-art methods on linear evaluation with a frozen backbone. We
compare DynaCL with state-of-the-art baselines and a randomly initialized encoder (Random Init.)
on frozen evaluation. We train a linear classifier on top of the from an encoder on the 80% train
set (excluding the all other rhythms for the ECG dataset) and evaluate the remaining 20%. We train
5 different runs for 50 epochs on all datasets. DynaCL achieved the best performance on all three
datasets.

Datasets Models Accuracy F1 score Precision Recall

HARTH

Random Init. 34.45±4.01 0.26±0.03 0.18±0.02 0.14±0.01
CoST 32.74±9.67 0.26±0.06 0.17±0.02 0.15±0.02
CPC 27.80±4.65 0.20±0.03 0.14±0.01 0.12±0.01
TNC 30.14±1.04 0.16±0.02 0.06±0.02 0.10±0.01
InfoTS 33.73±2.48 0.21±0.03 0.16±0.03 0.12±0.02
TS2Vec 35.58±1.51 0.24±0.02 0.15±0.02 0.12±0.01
DynaCL 37.95±4.51 0.29±0.06 0.18±0.04 0.13±0.02
DynaCL-M 31.31±2.73 0.18±0.05 0.08±0.05 0.10±0.01

SLEEPEEG

Random Init. 44.94±0.19 0.32±0.01 0.36±0.01 0.26±0.00
CoST 50.30±0.23 0.39±0.01 0.32±0.00 0.26±0.01
CPC 44.19±0.63 0.34±0.02 0.35±0.01 0.26±0.01
TNC 41.78±0.20 0.26±0.01 0.26±0.01 0.21±0.00
InfoTS 44.02±0.25 0.34±0.01 0.38±0.02 0.24±0.01
TS2Vec 48.43±0.49 0.42±0.01 0.42±0.02 0.31±0.01
DynaCL 62.08±0.64 0.60±0.01 0.52±0.01 0.50±0.01
DynaCL-M 41.40±4.00 0.28±0.01 0.24±0.01 0.20±0.00

ECG

Random Init. 55.01±0.00 0.51±0.00 0.30±0.00 0.28±0.00
CoST 55.82±4.95 0.50±0.08 0.31±0.03 0.29±0.02
CPC 55.36±1.43 0.50±0.04 0.31±0.00 0.29±0.00
TNC 47.76±0.02 0.31±0.00 0.24±0.01 0.25±0.00
InfoTS 53.46±0.59 0.45±0.01 0.32±0.01 0.28±0.00
TS2Vec 49.96±0.65 0.41±0.01 0.27±0.00 0.26±0.00
DynaCL 58.74±0.62 0.56±0.01 0.32±0.00 0.30±0.00
DynaCL-M 50.05±0.42 0.37±0.01 0.31±0.00 0.26±0.00

From Table 3, we see that our DynaCL model exhibits remarkable performance and outperforms
all baselines on all three public datasets, despite poor clustering scores. Conversely, DynaCL-M
struggles in downstream linear evaluation, despite having better clustering scores. The general lower

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

scores across all models on the HARTH are due to this dataset having varying activities with more
classes than SLEEPEEG and ECG, thereby yielding representations that are not as linearly separable.

4.3 VISUALIZATION OF LEARNED REPRESENTATIONS

In addition to our representation being useful in downstream tasks, we also want to learn compact
and semantically meaningful representations. We seek to understand how consistently the learned
representation clusters similar instances together, despite not having access to this information dur-
ing training. This is a good indicator of whether the representations are meaningful. To that end, we
visualize a random subset from that test set that was not used during training. Figure 3 shows a t-
SNE plot of the learned representation from all baselines on all three datasets. Interestingly, despite
having lower scores on the unsupervised clustering metrics, our vanilla DynaCL model, compared
to other baselines on TS representation learning, seems to embed instances into well-defined, se-
mantically meaningful clusters, challenging the assumption that good scores on these unsupervised
clusters necessarily lead to meaningful representations.

Figure 3: t-SNE visualization of the learned embeddings on random instances on the SLEEPEEG
(first row), HARTH (second row), and ECG (third row) test sets across all methods. For the
SLEEPEEG each instance (data point) spans 2 seconds, while for the HARTH and ECG each instance
is 1 second.

4.4 ABLATION STUDY

To investigate the relevance of the individual components of our proposed DynaCL and DynaCL-M
methods, we conducted an ablation study. We compare these components on clustering and linear
fine-tuning with a frozen backbone. In particular, we check the effect of adding margin and MSE
feature prediction loss to the vanilla MP-Xent objective.

From Table 4, we observe that our best-performing model for downstream tasks is DynaCL (MP-
Xent only). DynaCL-M (MP-Xent + MSE + Margin), however, achieved better clustering per-
formance and learned useful representation of highly dynamic datasets like the HARTH. We also
observe that naively adding the margin in our MP-Xent loss causes the representations to collapse
to 0 in all features, making cluster metrics impossible; naturally, this also resulted in lower scores
on the downstream tasks. This highlights the significance of the MSE feature prediction term in the
combined loss in equation 6, contributing to both the learning of feature invariance and the stability
of the training process. Finally, as shown in Table 4, although DynaCL-M achieves the best cluster-
ing performance, it struggles in downstream evaluations. This indicates that a successful clustering
score does not necessarily result in well-separated or semantically meaningful embeddings. Another
notable observation from Figure 4 is that, on the ECG dataset, the performance of the MP-Xent +
MSE + margin configuration is identical to that of MP-Xent + MSE, indicating that the inclusion
of the margin component did not produce any discernible effect in this case. It is worth noting that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study to understand the impact of different components of our model. We notice
that only the DynaCL and DynaCL-M variants stand out across all metrics. Clearly, DynaCL-M
produces top scores on unsupervised clustering, while DynaCL shows outstanding performance on
downstream evaluation.

HARTH SLEEPEEG ECG

DBI↓ Silhouette ↑ DBI↓ Silhouette ↑ DBI↓ Silhouette ↑
MP-Xent only (DynaCL) 1.07±0.06 0.35±0.02 1.12±0.25 0.41±0.20 0.98±0.23 0.63±0.13
MP-Xent + MSE 1.05±0.08 0.34±0.03 1.31±0.06 0.24±0.01 0.51±0.11 0.72±0.12
MP-Xent + margin - - - - - -
MP-Xent + MSE + margin (DynaCL-M) 0.46±0.01 0.95±0.01 0.48±0.01 0.87±0.05 0.51±0.11 0.72±0.12

Linear Acc. F1 Score Linear Acc. F1 Score Linear Acc. F1 Score
MP-Xent only (DynaCL) 37.95±4.51 0.29±0.06 62.08±0.64 0.60±0.01 58.74±0.62 0.56±0.01
MP-Xent + MSE 36.27±2.55 0.26±0.04 47.12±0.68 0.39±0.01 50.05±0.42 0.37±0.01
MP-Xent + margin 28.15±0.00 0.12±0.00 41.29±0.01 0.24±0.00 47.76±0.00 0.31±0.00
MP-Xent + MSE + margin (DynaCL-M) 31.31±2.73 0.18±0.05 41.40±0.28 0.28±0.01 50.05±0.42 0.37±0.01

this dataset is also the only one where DynaCL-M was outperformed by the TNC baseline on the
unsupervised clustering metrics in Table 2.

4.5 TRAINING TIME

The simplicity of DynaCL allows it to train very quickly. In table 5, we show it trains the fastest of
all tested methods.

Table 5: Unsupervised pretraining time (in seconds) for all baseline models over 500 epochs on all
three datasets.

TIME (S)

HARTH SLEEPEEG ECG

CoST 13.4k 1.5k 3.5k
CPC 4.1k 0.8k 2.1k
TNC 6.5k 1.0k 2.6k
InfoTS 6.1k 1.3k 3.4k
TS2Vec 13.9k 2.3k 5.5k

DynaCL 3.4k 0.6k 1.9k
DynaCL-M 4.6k 1.2k 4.4k

5 CONCLUSION

In this work, we present DynaCL, a method for unsupervised representation learning of time series
data. The DynaCL method demonstrates the ability to learn semantically meaningful representations
off the shelf and outperforms previous time series representation learning methods in downstream
linear evaluation. Additionally, we show that including margin in our MP-Xent objective and jointly
optimizing with MSE loss is particularly effective in producing clusters with top scores on the DBI
and SS clustering metrics. Our findings, however, indicate that achieving high scores on unsuper-
vised clustering metrics does not necessarily imply that the learned embeddings are meaningful or
effective in downstream tasks. Finally, we studied the contribution of individual components of Dy-
naCL and DynaCL-M. We concluded that our best-performing model for downstream tasks is the
vanilla DynaCL without the MSE loss and margin, which proves that with a simple positive sam-
pling strategy of selecting adjacent time steps as positive in an NT tuple loss, Our model competes
with previous approaches that rely on statistical methods and prediction sampling, where window
sizes are selected based on prior knowledge (Tonekaboni et al., 2021; Oord et al., 2018) as well as
the use of temporal augmentations (Luo et al., 2023; Yue et al., 2022). Also, DynaCL model not
only delivers exceptional performance in downstream classification tasks but also exhibits the short-
est training time (Figure 5). This highlights the efficiency of the multiple positive sampling strategy
in our MP-Xent contrastive objective.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives, 2014. URL https://arxiv.org/abs/1206.5538.

Ralph Beebe Blackman and John Wilder Tukey. The measurement of power spectra from the point
of view of communications engineering—part i. Bell System Technical Journal, 37(1):185–282,
1958.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers, 2021. URL https:
//arxiv.org/abs/2104.14294.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, 1979. doi: 10.1109/TPAMI.
1979.4766909.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling, 2023. URL
https://arxiv.org/abs/2302.00861.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. With
a little help from my friends: Nearest-neighbor contrastive learning of visual representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9588–9597,
2021.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. arXiv
preprint arXiv:2106.14112, 2021.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32,
2019.

Ary Goldberger, Luı́s Amaral, Leon Glass, Jeffrey Hausdorff, Plamen Ivanov, Roger Mark, Joseph
Mietus, George Moody, Chung-Kang Peng, and H. Stanley. Physiobank, physiotoolkit, and phy-
sionet : Components of a new research resource for complex physiologic signals. Circulation,
101:E215–20, 07 2000. doi: 10.1161/01.CIR.101.23.e215.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

11

https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2302.00861

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
across space, time, and patients. In International Conference on Machine Learning, pp. 5606–
5615. PMLR, 2021.

Seunghan Lee, Taeyoung Park, and Kibok Lee. Soft contrastive learning for time series. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=pAsQSWlDUf.

Aleksej Logacjov and Kerstin Bach. Self-supervised learning with randomized cross-sensor masked
reconstruction for human activity recognition. Engineering Applications of Artificial Intelligence,
128:107478, 2024.

Aleksej Logacjov, Atle Kongsvold, Kerstin Bach, Hilde Bremseth Bårdstu, and Paul Jarle Mork.
HARTH. UCI Machine Learning Repository, 2021. DOI: https://doi.org/10.24432/C5NC90.

Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao
Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, et al. Time series contrastive learning with
information-aware augmentations. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 4534–4542, 2023.

Andrew Ronald Mitchell and David Francis Griffiths. The finite difference method in partial differ-
ential equations. A Wiley-Interscience Publication, 1980.

Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, and Charles Blundell. Represen-
tation learning via invariant causal mechanisms. arXiv preprint arXiv:2010.07922, 2020.

George Moody. A new method for detecting atrial fibrillation using rr intervals. Proc. Comput.
Cardiol., 10:227–230, 1983.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987. doi: 10.1016/
0377-0427(87)90125-7.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin
nearest neighbor classification. Advances in neural information processing systems, 18, 2005.

12

https://openreview.net/forum?id=pAsQSWlDUf
https://openreview.net/forum?id=pAsQSWlDUf
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kristoffer Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, and Robert Jenssen. Mixing
up contrastive learning: Self-supervised representation learning for time series. Pattern Recogni-
tion Letters, 155:54–61, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint
arXiv:2202.01575, 2022.

Xinyu Yang, Zhenguo Zhang, and Rongyi Cui. Timeclr: A self-supervised contrastive learning
framework for univariate time series representation. Knowledge-Based Systems, 245:108606,
2022.

Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, and Gunnar Rätsch. Neigh-
borhood contrastive learning applied to online patient monitoring. In International Conference
on Machine Learning, pp. 11964–11974. PMLR, 2021.

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun. De-
coupled contrastive learning. In European conference on computer vision, pp. 668–684. Springer,
2022.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning, 2020. URL
https://arxiv.org/abs/2010.02803.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised con-
trastive pre-training for time series via time-frequency consistency. Advances in Neural Informa-
tion Processing Systems, 35:3988–4003, 2022.

13

https://arxiv.org/abs/2010.02803

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FULL DESCRIPTION OF MODEL ARCHITECTURE

The encoder model is designed to extract features from time-series data using 1D convolutional
layers. It reduces the dimensionality of the input while retaining meaningful temporal information.
The model consists of three 1D convolutional layers, each followed by batch normalization and
ReLU activation to introduce non-linearity and stabilize the training process.

The input to the model is a 3D tensor of shape (batch size, sequence length, input dimension), where
the batch size is 8 for all datasets while the sequence length and dimension are dependent on the
dataset. After passing through the three convolutional layers, the output dimensionality is reduced
to embedding dimension = 32. Each convolutional layer applies a kernel size of 1 to focus on
individual time steps, progressively reducing the number of channels from the input dimension to
128, 64, and 32. We apply batch normalization after each convolution to stabilize the activations, and
ReLU activation functions introduce non-linearity, ensuring only positive values are passed through.
The output tensor is reshaped back to the original order, returning a feature representation of shape
(batch size, sequence length, embedding dimension). This architecture efficiently captures temporal
dependencies while reducing the dimensionality, making it suitable for downstream tasks such as
the classification and prediction of time-series data.

B IMPLEMENTATION OF BASELINE MODELS

In this section, we provide the reproduction details for the methods compaired against. All results
presented in this work are based on reproduction using code provided by the authors.

InfoTS (Luo et al., 2023). We use the code and default parameters provided by the authors for the
baseline. Specifically, we set the probabilities of the two different augmentation views as p = 0.2,
maximum train length = 500, and then the temperature used in contrastive loss functions τ0 and τ1
as 2.0 and 0.1, respectively. In the loss function, k=8 is used to define the number of local negatives
for the local infoNCE loss function (again, default parameters by authors). Finally, we combine both
the global and local infoNCE losses.

TS2Vec (Yue et al., 2022). We use the implementation and default parameters provided by the
authors for the TS2Vec model. Specifically, we set the maximum sequence length during training to
500. The cropping is performed by selecting two random temporal windows within the sequence,
defined by crop lengths and offsets dynamically generated during training. In each epoch, two
augmented views of the input sequence are created: x1 and x2, where the lengths of the crops vary
slightly. To ensure matching dimensions for the contrastive loss, padding is applied to equalize the
output dimensions if one crop is shorter than the other. Finally, the hierarchical contrastive loss is
computed based on these two views. We substituted the dilated CNN with our simple 1D CNN
encoder to create a fair comparison across all baselines.

CPC (Oord et al., 2018). The CPC method has two extra network architectures: the density esti-
mator, which is a linear model, and the auto regressor with a gated recurrent unit (GRU). We select
encodings from the middle of the sequence and with a window of size 5 to select the next 5 future
instances. During training, the model uses a contrastive loss based on density ratios derived from
the encoded time series instances. After processing the entire sequence through the encoder, a cen-
tral segment is extracted and passed through a GRU to obtain the context vector ct This vector is
projected using the linear estimator to compute density ratios that measure similarity between the
encodings and the projected vector. Negative samples are randomly selected from the encodings,
avoiding indices near the center, while the positive sample corresponds to the encoding immediately
after the center. These density ratios are concatenated into tensor XN , from which the cross-entropy
loss is calculated against a label tensor indicating the positive sample’s index (code adapted from
the authors).

TNC (Tonekaboni et al., 2021). For the TNC, we adopt all relevant functions from the author
code repository, namely: find neighbors, find non-neighbors, and binary cross entropy (BCE) loss
function. The authors use a discriminator network to distinguish between two inputs, x and x̄, based
on their similarity. The model architecture comprises two linear layers with a ReLU activation and
dropout for regularization. Specifically, it concatenates the feature vectors of the two inputs into
a single tensor, then fed through the model to output a probability score indicating whether the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

inputs belong to the same neighborhood. The weights of the linear layers are initialized using the
Xavier uniform distribution. We use a Monte Carlo sample size and window size of 20, and w
(hyperparameter to control the contribution of the different losses) as 0.1. All hyperparameters are
used as provided by the authors and kept the same for all datasets.

CoST Woo et al. (2022). For this reproduction of the CoST baseline, we use the implementation
and default parameters provided by the authors. The CoST method adapted the Dilated CNN from
TS2Vec. To ensure all methods have the same backbone feature extractor we replace this with our
1D CNN used across all methods. The parameters used for this experiment are: kernels = [1, 2, 4,
8, 16, 32, 64, 128], depth = 10, alpha = 0.05, K = 256, sigma = 0.5 and multiplier = 5.

C UNSUPERVISED PRE-TRAINING SETUP

For the pretraining of all models, we maintain the same parameters for all baselines. For our DynaCL
model, we use temperature τ = 0.5. For DynaCL-M, we use temperature τ = 0.5, margin = 5, λ =
1, mask fraction of 0.3, and threshold of 0.4. For the HARTH dataset, however, we find that mask
fraction = 1e-5 (almost no masking) and λ of 1e-30 produced the best results. We perform an 80-20
subject-wise train-test split with the total instances for each category shown in Figure 6.

Table 6: Dataset distributions used across all experiments. We pre-train all models for 500 epochs on
80% of the entire data instances and evaluate downstream performance on the remaining 20%. For
the HARTH and ECG, each instance is 1 second while for the SLEEPEEG an instance is 2 seconds.

Train instances # Test instances Dimensions Classes

HARTH 1,016,141 253,946 156 12
SLEEPEEG 296,700 74,100 178 5
ECG 1,225,416 306,355 252 4

We train all models with a batch size of 8 from 500 epochs on an NVIDIA V100 GPU.

D DATA SETUP FOR CLUSTERING EVALUATION AND VISUALIZATION

To train our model, we use three public datasets: HARTH, ECG, and SLEEPEEG. We preprocess
these datasets using different window and hop lengths in the STFT. The HARTH dataset is processed
to have a sequence length of 119 instances (each instance is 1 second, but with half a second overlap
during preprocessing via STFT), corresponding to 60 seconds on the original signal, with a feature
dimension of 156. The ECG dataset, on the other hand, has a sequence length of 500 instances,
corresponding to 250 seconds, with a feature dimension of 252. Lastly, the SLEEPEEG dataset
has a sequence length of 300 instances, with each instance representing 200 window size of the
signal, and a feature dimension of 178. For model evaluation on clustering, we set aside a balanced
subset of all three datasets, not used during the training of the unsupervised representation learning
model. Specifically, for the HARTH, we randomly select 1000 instances of all classes, except class
11 (insufficient samples), where we select 500 random samples. Similarly, for the SLEEPEEG, we
select random 1000 instances from all classes. Finally, for the ECG, we select random 1% of both
majority classes and the entirety of the remaining classes to give a distribution of 1577, 972, 459,
and 1467 for all four classes, respectively.

15

	Introduction
	Related Work
	Proposed architecture: DynaCL
	Multiple positives cross-entropy (MP-Xent)
	Dynamic contrastive learning with margin (DynaCL-M)
	Network architecture

	Experiments
	Clusterability
	Linear evaluation with frozen backbone
	Visualization of learned representations
	Ablation study
	Training time

	Conclusion
	Full Description of Model Architecture
	Implementation of Baseline Models
	Unsupervised Pre-training Setup
	Data Setup for Clustering Evaluation and Visualization

