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ABSTRACT

Research on multi-modal contrastive learning strategies for audio and text has
rapidly gained interest. Contrastively trained Audio-Language Models (ALMs),
such as CLAP, which establish a unified representation across audio and language
modalities, have enhanced the efficacy in various subsequent tasks by providing
good text aligned audio encoders and vice versa. These improvements are evi-
dent in areas like zero-shot audio classification and audio retrieval, among others.
However, the ability of these models to understand natural language and temporal
relations is still a largely unexplored and open field for research. In this paper,
we propose to equip the multi-modal ALMs with temporal understanding without
loosing their inherent prior capabilities of audio-language tasks with a temporal
instillation method TeminAL. We implement a two-stage training scheme Temi-
nAL A & B, where the model first learns to differentiate between multiple sounds
in TeminAL A, followed by a phase that instills a sense of time, thereby enhanc-
ing its temporal understanding in TeminAL B. This approach results in an average
performance gain of 5.28% in temporal understanding on the benchmark ESC-50
dataset, while the model remains competitive in zero-shot retrieval and classifi-
cation tasks on the AudioCap/Clotho datasets. We also note the lack of proper
evaluation techniques for contrastive ALMs and propose a strategy for evaluating
ALMs in zero-shot settings. The general-purpose Zero-Shot Temporal Evaluation
(ZSTE) strategy , is used to evaluate various prior models. ZSTE demonstrates
a general strategy to evaluate all ZS contrastive models. The model trained with
TeminAL successfully outperforms current models on most downstream tasks.

1 INTRODUCTION

Audio, text, and images are among the most prevalent forms of information data. Developing models
with multi-modal capabilities is well recognized as a path forward toward artificial general intelli-
gence (Fei et al., 2022; Huang et al., 2021). In the field of multi-modal learning, contrastive learn-
ing has emerged as an effective strategy for training models on extensive, less-structured internet-
sourced data (Radford et al., 2021; Liang et al., 2022; Tian et al., 2020). Contrastive learning-based
models have demonstrated exceptional adaptability across a range of related tasks, such as image
classification (Chen et al., 2020; He et al., 2020a), natural language processing (Gao et al., 2021) and
speech processing (Ravanelli et al., 2020), making them a crucial area of research in multi-modal
machine learning. One notable early model in this domain is CLIP, developed by Radford et al.
(2021). CLIP learns the relationship between text and images, aligning them in a common latent
domain. It stands out as a groundbreaking vision-language model, enabling tasks such as generating
images from text (Rombach et al., 2022) and formulating image captions (Mokady et al., 2021).

Similar work on contrastive learning has been extended to other multi-modal domains, such as video-
language (Xu et al., 2021; Fang et al., 2021; Zhao et al., 2022; Luo et al., 2022; Cheng et al., 2023;
Ge et al., 2022) and audio-language models (Elizalde et al., 2023; Huang et al., 2022; Guzhov et al.,
2022; Wu et al., 2023b; Deshmukh et al., 2023; Wu et al., 2023a). Contrastive models generally ex-
cel in relating different modalities through their learned embedding and performing similarity-based
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Figure 1: The overview of TeminAL where we are post–training orginal CLAP encoders fc and fa
with our TeminAL method to get f t

c and f t
a after application of the two–stage training. We only train

a subset of the total weights (f t
cθ

and f t
aϕ

) in both our training stages. Mathematical formualtion of
the functions are elaborated in section 3.3 and section 3.4.

retrieval tasks. These multi-context encoders integrate well with other downstream models, such as
retrieval and open-ended generation models (Ramesh et al., 2021; Li et al., 2022; Yuan et al., 2021;
Singh et al., 2022). However, previous authors have shown the limitations of audio-language models
in truly understanding natural language while learning the relationship between texts and audio (Wu
et al., 2023a; Ghosh et al., 2023). Critical applications like medical procedures, assembly instruc-
tions, commercial user applications, cooking instructions, and language learning may suffer from
mistaken outputs in either text or audio settings. Wu et al. (2023a) highlights a critical limitation
in current audio-language models (ALMs): a bias towards retrieving nouns and verbs, often at the
expense of understanding the complete sentence context. They illustrate this by training an ALM on
captions stripped of all but nouns and verbs, achieving performance comparable to or even surpass-
ing models trained on full, non-shuffled captions. This finding questions the prevailing assumption
that ALMs require holistic sentence comprehension for high performance, revealing gaps in their
compositional reasoning capabilities. Furthermore, studies such as Thrush et al. (2022), Ma et al.
(2023), and Yuksekgonul et al. (2022) have demonstrated that models like CLIP struggle with lan-
guage reasoning despite access to extensive training datasets. These limitations arise because con-
trastive pre-training primarily emphasizes retrieval tasks, enabling strong benchmark performance
without a deep understanding of sentence composition. In response to these challenges, Ghosh et al.
(2023) critique existing audio-retrieval benchmarks, arguing that the perceived success of ALMs
often lacks true compositional understanding. They introduce CompA-CLAP, an ALM designed
with novel contrastive training techniques to improve both language comprehension and attribution
capabilities in multiple training steps but with the same global objective of making the model di-
rectly adapt to temporality. Although the model perform well on various downstream tasks, these
approaches do not adequately address a fundamental prerequisite for compositional reasoning in au-
dio tasks: the ability to distinguish multiple sound events before attempting to establish relationships
between them. Our work emphasizes this overlooked step, proposing a framework where the model
first learns to recognize the existence of multiple sound events as a foundation for higher-level rea-
soning. Similarly Yuan et al. (2024); Wu et al. (2023a) trains a contrastive learning model without
requiring to address the need of multiple sounds distinction which defeats the purpose of increasing
the interpretability of the models.

In contrast, our approach achieves this advancements within a limited computational budget, train-
ing around 10% of the total trainable parameters of the base model (here CLAP) and utilizing a
single dataset (ESC-50). Unlike prior works, such as those by (Ghosh et al., 2023; Yuan et al.,
2024; Wu et al., 2023a), which rely on more expansive datasets and substantial computational re-
sources. Our focus is on developing a methodology that can effectively instill a sense of time in the
model within acceptable computational constraints, rather than on generalizing over large, diverse
datasets. Our approach detailed in section 3 and illustrated in fig. 1, modifies the contrastive training
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paradigm by introducing a multi-stage hierarchical training process. In the first stage, the model is
trained to recognize and differentiate multiple sound events. In the subsequent stage, it learns the
temporal relationships between these events, addressing limitations of prior contrastive models that
focus solely on text-audio pair similarities without incorporating temporal language dynamics. The
training objective is based on previous works of Oord et al. (2018) on the formulation of InfoNCE
loss and Bagad et al. (2023) who explored temporal instillation in video-language models, however
we take the research forward and implement a structured, multi-step post-training process tailored
to complex temporal tasks in the audio-language domain. Our objective Comparative analysis in
section 5 demonstrates the necessity and efficacy of this approach, showing that our two-stage pro-
cess outperforms single-stage methods in enabling ALMs to comprehend audio-language modality
relationships. This work establishes a significant advancement in ALMs by addressing foundational
gaps in sound event distinction and temporal reasoning which has been overlooked in the past.

We further critique current zero-shot evaluation methods, which predominantly rely on basic
similarity-based retrieval accuracies or employ large language models (LLMs) as evaluators, both
of which have shown inherent biases and limitations (Gao et al., 2024; Jones & Steinhardt, 2023;
Stureborg et al., 2024; Wang et al., 2023). Although previous models have been evaluated for their
robustness over time (Shocher et al., 2018; Bau et al., 2019; Kundu et al., 2020; Huang et al., 2020;
Sun et al., 2020; Liu et al., 2021), these assessments fail to test the models’ general language and
temporal understanding comprehensively. To bridge this gap, we propose a sequential zero-shot
evaluation method that poses increasingly complex tasks, aiming to create a general-purpose evalu-
ation framework (details discussed in algorithm 2).

Main contributions. Here are the key contributions of our work, which, to the best of our knowl-
edge, are novel and not present in current state-of-the-art models:

• Our analysis indicates that current contrastive ALMs face challenges in accurately captur-
ing temporal relationships between audio and text, as shown in table 3, highlighting an area
for potential improvement in existing models.

• We propose a two step post–training within limited compute budget scheme TeminAL:
Temporal Instillation in Audio-Language Models for multi-modal contrastive ALMs.
Aimed towards developing temporally aware contrastive audio & text encoders which can
be employed in various close and open ended generation models as described in section 3.4.

• We propose ZSTE: Zero Shot Temporal Evaluation scheme for contrastively trained mod-
els. The sequentially complicated evaluation strategy used for evaluating our objectives of
temporal instillation section 4.2.

2 BACKGROUND AND RELATED WORK

2.1 FOUNDATION MODELS AND MULTI-MODAL TEXT-AUDIO LEARNING

The expansion of Pretrained Foundation Models (PFMs) now includes auditory (Baevski et al.,
2020), visual (Dosovitskiy et al., 2020), text-image (Ramesh et al., 2021; Radford et al., 2021), and
multi-modal data (Lu et al., 2019; Akbari et al., 2021), driving multi-modal integration. Recent
work uses audio-visual contrasts for sound localization (Chen et al., 2021; Wu et al., 2022a), cross-
modal retrieval (Surı́s et al., 2022), and zero-shot classification (Wu et al., 2022b; Guzhov et al.,
2022). Audio-text models are gaining traction, including those in the DCASE competition for audio
retrieval with language (Xie et al., 2022), and PFMs have been applied in music tagging (Manco
et al., 2022), environmental sound identification (Zhao et al., 2021; Lou et al., 2022; Mei et al., 2022;
Koepke et al., 2022), and zero-shot tasks (Zhao et al., 2021; Lou et al., 2022; Mei et al., 2022; Koepke
et al., 2022; Elizalde et al., 2023). Open-ended models (Kong et al., 2024; Chu et al., 2023; Liu et al.,
2024; Deshmukh et al., 2023) enable QA capabilities, but our focus is on contrastive learning for
audio encoders. The trend is towards integrating language into auditory systems, with applications in
text-to-audio (Ghosal et al., 2023; Liu et al., 2023a; Huang et al., 2023), music generation from text
(Agostinelli et al., 2023), and sound source separation (Liu et al., 2023b). Frameworks like CLAP
and Compa (Elizalde et al., 2023; Ghosh et al., 2023) unify auditory-linguistic domains, offering
strong zero-shot performance in multimodal tasks.
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2.2 SELF-SUPERVISED LEARNING AND POST-TRAINING

Self-Supervised Learning (SSL) has revolutionized machine learning, especially in NLP and com-
puter vision (He et al., 2020b; Bao et al., 2021). SSL involves training models to predict parts of
their input using other parts, leveraging the data’s inherent structure for supervision. A prominent
SSL method, Contrastive Learning, learns representations by contrasting positive and negative ex-
amples, effectively distinguishing similar and dissimilar data samples (Radford et al., 2021; Liang
et al., 2022; Tian et al., 2020; Chen et al., 2020; He et al., 2020a). This approach has significantly
advanced representation learning, achieving state-of-the-art results across various domains (Chen
et al., 2020; He et al., 2020a).

Post-training introduces an additional self-supervised phase to existing models using a limited set
of data before downstream task evaluation, reducing the costs of initial large-scale training (Luo
et al., 2022; Xue et al., 2022). Luo et al. (2022) employs static mean-pooling, whereas Xue et al.
(2022) aligns image captions with video subtitles. In this unsupervised setting, post-training usually
fine-tunes few parameters, maintaining the core strengths of the parent model.

2.3 ZERO-SHOT INFERENCE: LIMITATIONS OF CLASSICAL ZERO-SHOT RETRIEVAL

Zero-shot inference enables models to recognize unseen classes without relying on labeled data
from each target class, unlike traditional supervised learning (Xian et al., 2018; Wang et al., 2020b).
While zero-shot learning facilitates generalization to unseen classes, conventional audio-retrieval
benchmarks often lack compositional complexity, typically involving single acoustic events without
proper word order (Radford et al., 2021; Baevski et al., 2020; Gemmeke et al., 2017). In traditional
audio classification, models are trained on specific classes like musical genres or environmental
sounds, but zero-shot audio classification requires identifying audio samples from previously un-
seen classes. For example, a model trained on animal and vehicle sounds should also classify new
categories like “machinery” or “insects” (Wang et al., 2020a). As illustrated in fig. 8, zero-shot clas-
sification involves encoding audio and text prompts through respective encoders and using cosine
similarity to predict classes (Harwath & Glass, 2015; Kim & Pardo, 2018). Zero-shot audio retrieval
extends this concept by finding relevant audio clips from unseen classes based on queries, such as
retrieving ”birdsong” or ”ocean waves” when trained only on spoken words and ambient sounds
(Fonseca et al., 2021). As shown in fig. 9, the process involves encoding prompts and audio clips,
with cosine similarity determining the most relevant match (Chang & Yang, 2019). This approach
leverages class information to understand semantic relationships.

3 METHODOLOGY

3.1 PRELIMINARIES

Audio :

Time reversal Time overlayed

ai ⊕ aj aj ⊕ ai ai ∧ aj

 after ci cj before ci cj  while ci cjText :

Figure 2: Temporal Augmentations

Introduction to Fundamentals. Consider set
A as the domain of audio recordings and C
as the set of corresponding textual transcripts
(contexts). For any two discrete and non-
overlapping audio clips {ai, aj} within A, let
their relevant transcripts be {ci, cj} in C (We
use ‘c’ for transcripts to avoid confusion with
the time variable ‘t’). We define an integrated
segment that respects the sequential order as
(aij , cij), with aij constructed by the opera-
tion [ai ⊕ aj ], which concatenates the two au-
dio clips as marked by the operator ⊕ which
shows the concatenation operation also shown
in fig. 2. Similarly for contexts, we first intro-
duce τ = {τt, τo} to represent a sequential re-
lationship, where τt can either be preceding or

succeeding as prompted by {before or after} and we define τo for overlapping language prompt
{while}. Following which cij is represented as [ci : τt; cj ], merging the transcripts in a manner that
it reflects the temporal relation τ = {τt, τo}. Later in section 3.2, we relate [ai ⊕ aj ] with [aj ⊕ ai]
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using mathematical operators. It should be noted that the arrangement of ai and aj within aij may
vary depending on the value of τt. The same is applicable for overlapping sounds (aj , aj), for which
the overlapping texts can be represented by [ci : τo; cj ], which essentially means “ci while cj” with
overlaid audios [ai ∧ aj ]. For simplicity, we will refer to the composite audio-text pair (aij , cij) as
(a, c), except where additional specificity is required.

3.2 DATA-PROCESSING: DESIGNING OUR TRAINING DATA.

The dataset for our post–training study was meticulously curated from publicly available audio-text
pairs, we specifically select the ESC-50 dataset for the current study. The dataset selection and pro-
cessing is descried in detail in appendix B.2. We introduce a temporal inversion operator ‘T’ and
temporal overlay operator ‘O’ to represent the transformation of audio and text training data to form
the temporally inverted samples and temporally overlapped samples as shown in equation 1 for the
temporal inversion and equation 2 for temporally overplayed samples. This function is designed to
operate on pairs of simultaneous audios (ai, aj) or transcription sequences (ci, cj) where sequences
in both these sets are initially non–overlapping. We show temporal addition/ concatenation of the
pair of audios by aj ⊕ ai and overlaying of the audio pair by aj ∧ ai. Meanwhile temporal addi-
tion and overlaying of texts are shown as cj ; τt; ci and cj ; τo; ci respectively and follows the same
convention as mentioned in section 3.1.

T(a) = T([ai; aj ]) := [aj ⊕ ai], T(c) = T([ci; cj ]) := [cj ; τt; ci] (1)
O(a) = O([ai; aj ]) := [aj ∧ ai], O(c) = O([ci; cj ]) := [cj ; τo; ci] (2)

It is essential to recognize that ‘T’ does not literally reverse time within the audio tracks, rather it
rearranges the sequence of events within the compiled segments. Our goal is to cultivate a model
capable of distinguishing an original audio-text pair (a, c) from both of its temporally inverted coun-
terpart (a,T(c)), and also (T(a), c); furthermore to contrast all of these from the overlaid text-
audio pair as (O(a), c) (which is the same as (a,O(c))). So a typical training batch would look
like BaB

= {a,T(a),O(a)} for the audio and BtB = {c,T(c),O(c)} for the text. The details
for out data–preparation method is described in algorithm 3. As described earlier in section 1 we
have a hierarchical 2–stage training process TeminAL A followed by TeminAL B. The text–audio
dataset {BaB

, BtB} is used to train TeminAL B. While the first pretraining TeminAL A, works on
learn single sounds and multiple sounds thus the input data in the batch doesn’t consists of time–
reversed data, it’s made up of BaA

= {ai, ai ⊕ aj ∀i, j ∈ {1, N} the audio and BtA = {ci, ci ⊕ cj
∀i, j ∈ {1, N} for the text.

3.3 PRELIMINARIES OF POST–TRAINING WITH SSL

The input texts and audios are first transformed into machine-level embeddings. Let the processed
embedding for audio be xa where xa ∈ RF×T , with F representing frequency components (e.g.,
Mel frequency bins) and T indicating the number of temporal segments. The corresponding textual
data is denoted as xc for a given sample. For a batch of N text-audio pairs, the audio and corre-
sponding text are represented as {Xa, Xc}i = {x(i)

a ,x
(i)
c } for i = 1, . . . , N . For simplicity, we

denote the entire collection of N pairs as {Xa, Xc}. Each audio segment and its corresponding text
description are processed through separate encoders: fa(.) for audio and fc(.) for text. For a batch
of size N , we have:

z(i)
a = fa(x

(i)
a ) ∈ Rd, z(i)

c = fc(x
(i)
c ) ∈ Rd, i = 1, . . . , N

where z
(i)
a and z

(i)
c represent the audio and text encodings, respectively. To evaluate the similarity

between embeddings z
(i)
a and z

(i)
c , we calculate their similarity matrix as C = γ · (zcz⊤

a ). Here,
τ is a scaling constant that adjusts the logarithmic scale after applying softmax, as detailed in part
D. The similarity matrix C is RN×N , with N compatible pairs along the diagonal and N2 − N
non-compatible pairs elsewhere. The overall objective function is defined as L = 0.5 · (ℓtext(C) +
ℓaudio(C)).where ℓtext(C) and ℓaudio(C) are computed separately for the text and audio embeddings,

using cross-entropy loss. Specifically, ℓtext(C) = − 1
N

∑N
i=1 log

e(z
(i)
c ·z(i)

a /γ)∑N
j=1 e(z

(i)
c ·z(j)

a /γ)
. This promotes
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joint optimization of the audio and text encoders along with their respective transformations, as
described in later sections.

𝕆

𝕆

Time reversal 

Time overlayed 

𝕆

TeminAL BInitial Encoders Final Encoders

[ci; cj]
𝕋([ci; cj])
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Encoders

fc,  fa
Temporal contrastive loss

Text 
Embedding

Audio 
Embedding

 Time Instilled 
Encoders

f t
c,  f t

a

Text batch
xNb
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𝕋([ai; aj])

Audio batch
xNb

fa

fc

fa

fc

f t
a

f t
c

Figure 3: The overview of TeminAL B where we are post–training orginal CLAP encoders fc and
fa with our TeminAL method to get f t

c and f t
a. The functions as described in section 3.3, while the

objective formulation for training (fc, fa) to achieve (f t
c , f t

a) has been described in section 3.4. The
“Temporal contrastive loss” for TeminAL B has been elaborated in fig. 4.

.

3.4 OBJECTIVE FUNCTION FOR TEMINAL: WHAT ADDITION WE PROPOSE ON CLASSICAL
CONTRASTIVE LEARNING

We propose a multi-stage training approach, outlined in fig. 1, with two stages: TeminAL A and
TeminAL B. In TeminAL A, the model is trained to distinguish between single and multiple sounds,
while in TeminAL B, the model learns to differentiate temporally distinct sounds along with their
corresponding text labels. Both stages use contrastive learning with a modified infoNCE loss func-
tion (Oord et al., 2018), detailed further in this section and appendix B.3, the difference in training
being the training data and contrastive objective. We have already elaborated on the different train-
ing dataset and it’s formulation in section 3.2, while the detailed loss function for both stages has
been discussed in this section. Context (text) and audio encodings are processed through their re-
spective encoders, producing embeddings Ce and Ae as shown in fig. 3. These embeddings are used
to form a (batch × batch) matrix to identify positive and negative pairs (see Figures 4). Similar-
ity scores are calculated from these embeddings and used to compute the modified infoNCE loss
function, as described latter in the section. Logits derived from similarity scores are transformed
using a Softmax function to generate probabilities (equation 4 and equation 5), which are evaluated
with cross-entropy against true labels. The loss function is computed as the sum of text loss (Lc)
and audio loss (La), which sum up to form LB = LcB + β(LaB

) which stands for the TeminAL
B loss. The text loss LcB optimizes the selection of texts from n possible options generated by
Ce (equation 3), while audio loss LaB

does the same for the audio embeddings (equation 7). This
dual-component loss ensures balanced training of both context (Ce) and audio (Ae) encoders. The
overall methodology is schematically depicted in Figure 3.

Unlike traditional contrastive loss functions that primarily reinforce true positives, our approach
modifies the infoNCE loss to make encoders more sensitive to time-reversed and overlapping sam-
ples, as shown in equation 4 and equation 5. For temporal alignment, we use an adapted version
of the InfoNCE loss function in both TeminAL A and B to distinguish the temporal sequence of
audio-text pairs. For a time-aligned audio-text pair (a, c), following section 3.1, we design a loss
function that maintains chronological order within the pair, differing only in the loss components.
The training batch for TeminAL A is defined as BcA = {Bcs , Bcd} for texts (single and dual stitched
audio) and BaA

= {Bas
, Bad

} for audio, following the conventions in section 3.2. For TeminAL B,
the batches are BcB = {Bcf , Bcr , Bco} for texts and BaB

= {Baf
, Bar

, Bao
} for audio (forward,

reversed, and time-overlaid); In general we represent batches of audio–text data by symbol B. These
batches are processed through encoders, converting them into audio and text embeddings that are
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used in subsequent stages of training. For the layout of the batches of data kindly refer to fig. 5. Fur-
thermore, our encoders are not trained from scratch; we extend our framework using a pre-existing
audio-language model comprising an audio encoder fcθ and a text encoder faϕ

shown in fig. 3 from
CLAP by Elizalde et al. (2023). These pre-trained encoders are post-trained to enhance temporal ac-
curacy while maintaining baseline retrieval performance, as demonstrated in table 1. Due to limited
dataset size, selective refinement of specific layers within Θ = {θ, ϕ} is performed, as schematically
shown in fig. 1 and detailed in appendix B.3.

LcB =
∑

(a,c)∈BcB

(TNCE(za, zc) + TNCE(za, zT(c)) + TNCE(za, zO(c))) (3)

To complete our model construct, in the following section we have explained the details of the loss
function mathematically in equations equation 3–equation 9. Kindly note that, the hyperparameters
introcuded are discussed in the following section 3.5. Earlier, we had seen the discussion on text
and audio losses (Lc and La), we now define them mathematically in the following equations. Here,
TNCE stands for Temporal Noise Contrastive Estimation, a variant of the NCE loss.

TNCE(za, zc) = − log
exp(za · zc)∑

c′∈Bcf
exp(za · zc′) + Ccr + Cco

(4)

TNCE(za, zO(c)) = − log
exp(za · zO(c))∑

c′∈Bco
exp(za · zO(c′)) + Ccc

(5)

In equation 4, Ccr and Cco is an accumulation of negatives fashioned via time-reversal and
time–overlay respectively in equation 4, and is expressed as: Ccr = αst exp(za · zT(c)) +
αct

∑
c′∈Bcr\{c}

exp(za ·zT(c′)) and Cco = αso(exp(za ·zO(c)))+αto

∑
c′∈Bc\{o} exp(za ·zO(c′)).

While Ccc from equation 5 is expressed as:

Ccc = exp(za ·zc)+
∑

c′∈Bcf
\{c}

exp(za ·zc′)+αst exp(za ·zT(c))+αct

∑
c′∈Bcr\{c}

exp(za ·zT(c′))

(6)

The loss function is constructed in such a way that it penalises the miss-classifications among the
audio–text pairs. The loss formulations gives a handle on penalising the time-reversed samples and
time–overlayed samples with the hyper–parameters αst and αso , we present a detailed analysis on
effects of these hyper–parameters later in section 3.5. The total loss LB for TeminAL B can then
be written with LcB and LaB

which follows the same formulation as LcB . Detailed formulation
for LcB and LaB

have been provided in the supplementary section. The net loss for TeminAL B is
expressed as LB = LcB + β(LaB

), where LaB
is as follows:

LaB
=

∑
(a,c)∈BaB

(TNCE(zc, za) + TNCE(zT(c), za) + TNCE(zO(c), za)) (7)

After discussing the loss formulation of TeminAL B, we have similar formulation for TeminAL A.
With necessary changes in the configuration of data within the batch (BaA

and BcA ) as it’s men-
tioned in the previous paragraph, kindly refer to fig. 6 for the layout of the batch. The mathematical
formulation of the contrastive loss function is described as follows and schematically shown in fig. 7:

LcA =
∑

(T(a),T(c))∈BcA

(TNCE(zcs , zas) + TNCE(zcd , zad
)) (8)

LaA
=

∑
(O(a),O(c))∈BaA

(TNCE(zas
, zcs) + TNCE(zad

, zcd)) (9)

The loss function construction and mathematical derivation of LA = LcA + βA(LaA
) for TeminAL

A is also detailed in appendix B.3.
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Figure 4: The schematic showing Temporal Contrastive Loss for TeminAL B. On the vertical axis
we have the audio embeddings with batches of data corresponding to BaB

= {Baf
, Bar , Bao} and

text embedding batches of data corresponding to BcB = {Bcf , Bcr , Bco} on the horizontal axis.

3.5 DETAILS ON HYPER-PARAMETERS OF THE LOSS FORMULATION

The loss function formulation introduces hyper-parameters that affect the temporal sensitivity of the
encoders. The choice of {αso , αco , αst , αct} and {βA, β}, which can be either 0 or 1, significantly
impacts the model’s behavior. For example, setting αst = 1 increases sensitivity to time-reversed
sound samples by adding the term αst exp(za · zT(c)) to the expression Ctr denominator of equa-
tion 6. This adjustment forces the encoders to ensure the sum of terms equals unity, which reduces
the encoding values of non-similar pairs, enhancing sensitivity to time-reversed samples and guiding
the encoders to assign lower values to dissimilar batch samples.

These coefficients also help adapt the model to different datasets. In fig. 4, these parameters ex-
tend the contrastive loss function over time: the top three sub-squares represent TNCE(za, zc),
the middle sub-squares represent TNCE(za, zT(c)), and the last three sub-squares represent
TNCE(za, zO(c)). The top-left quadrant shows contrastive loss on stitched pairs, with positive
(green) and negative (red) diagonal terms crucial for temporal understanding.

The key role of β is to increase the number of training samples, while the α coefficients enhance
sensitivity to time-reversal and overlapping sounds. When α = 0, sensitivity is nullified, but higher
values compel the encoders to refine recognition of temporal variations by minimizing the denom-
inator. Without these hyper-parameters, the loss converges similarly, but encoders learn different
relationships. Their inclusion ensures distinct sample treatment, enhancing temporal sensitivity.

4 EXPERIMENTS

4.1 BASE MODEL

We employ a pre–trained CLAP model Elizalde et al. (2023) using transformer-based encoders:
HTSAT Chen et al. (2022) for audio and BERT Devlin et al. (2018) for text, each with a projection
layer. We focuses on the final layers and projection layers of both encoders for our training. While
our TeminAL training approach is model-agnostic, we start with the CLAP model as a foundation.

8
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4.2 ZSTE AND DOWNSTREAM TASKS

We construct comprehensive evaluation of our proposed method in order to satisfy our objectives
of temporal instillation. ZSTE (Zero Shot Temporal Evaluation) is our evaluation framework for
assessing contrastive models in zero-shot tasks. The implementation is discussed in algorithm 2 and
algorithm 3. ZSTE begins with basic classification on unseen classes in Task 1 (fig. 10), progressing
to complex scenarios involving overlapping audio features and novel composite text classes in Task
2. The subtasks 2A and 2B involve the model being able to distinguish both classes and at–least
one class respectively, model which correctly understands both sounds performs well on subtask
A. The subtask 2C and 2D are similar tasks as 2A and 2B but on overlapping sounds rather than
concatenated sounds. Thus given the overlapping text-audio pair, we need compute the accuracy
of the model to detect both the audio classes in 2C and at-least one of the classes in 2D (fig. 11).
Models which are able to distinguish multiple overlapping sounds, perform better in 2C.

ZSTE Task 3 evaluates temporal comprehension by testing sequences of interchanged acoustic
events, building on the configuration from Task 2 but now using temporal texts (fig. 12). A model
capable of understanding temporal relationships in text will excel in this task. Task 4 (fig. 13) as-
sesses the model’s ability to maintain focus amid irrelevant class labels, which act as noise to the
actual audio embeddings. Task 5 (fig. 14) examines the model’s generalization to out-of-distribution
prompts, reflecting real-world complexities. Each of these three tasks includes subtasks A and B:
Subtask A requires detecting all audio classes, while Subtask B involves identifying at least one
class. These tasks test the model’s grasp of temporality and general language attribution. Models
with a robust understanding of both temporality and language generalisability will perform better.

This comprehensive approach ensures robust evaluation of the model’s zero-shot learning capabil-
ities. The primary aim is to foster model improvement rather than solely benchmark performance.
Further details on ZSTE is shown in appendix B.4.

5 RESULTS

In this section, we present the experimental results to support the claims outlined in our objectives
and discuss our key findings. The results are organized around several downstream tasks, beginning
with audio and text retrieval and progressing to an in-depth evaluation of the models’ temporal be-
havior and finally comparing various SOTA contrastive ALM models for temporal understanding.
Firstly we compare the retrieval performance of closed-ended and open-ended models on benchmark
AudioCap and Clotho dataset, as summarized in Tables 1 and 7. Our model, T–CLAP, demonstrates
superior performance across retrieval tasks, surpassing most existing models in both closed-ended
and open-ended categories. Notably, it achieves competetive state-of-the-art results for both text-
to-audio (T–A) and audio-to-text (A–T) retrieval tasks. These results underscore the effectiveness
of our contrastive training strategy, employed both during the pre-training phase of CLAP and the
subsequent fine-tuning phase using TeminAL. Our approach effectively preserves the contrastive
knowledge acquired during pre-training, ensuring strong retrieval performance. However, as men-
tioned previously in section 1, the retrieval metrics alone do not fully encapsulate the temporal
understanding capabilities of our model. To address this limitation, we conduct a rigorous Zero-
Shot Temporal Evaluation (ZSTE), which offers deeper insights into the temporal reasoning ability
of T–CLAP. The method of evaluation is further elaborated in appendix B.4.

Firstly we try and study the model’s behaviour through the hyperparameter variations, the role of
each hypermeter is detailed in section 3.5. The results from Table 2 convey important information
on how the model captures temporal behaviour in general (across the ZSTE tasks) through our mod-
ification of the overall objective function through parametric variations and the impact of including
a multistage training objective. As mentioned in section 4.2 in Task 1, the model must excel in the
initial pre-training task, and results indicate that our training strategies prevent catastrophic forget-
ting, although increasing temporality in the objective function we observe decrease in performance
in this task we still remain well above across different tasks. Simillarly, task 2 tests multi-sound
understanding, where the two-stage TeminAL AB training significantly improves sound distinction
capabilities. Task 3 focuses on temporal reasoning, demonstrating that specific loss coefficients en-
hance the model’s ability to capture temporal relationships. Task 4 and 5 evaluates complex and
general text prompts, showing that our model outperforms the original CLAP in correctly mapping
stitched audio to appropriate text although much room for improvement is there for future models.
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Model T-A Retrieval A-T Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

MMT 36.1 / 6.7 72.0 / 21.6 84.5 / 33.2 39.6 / 7.0 76.8 / 22.7 86.7 / 34.6
ML-ACT 33.9 / 14.4 69.7 / 36.6 82.6 / 49.9 39.4 / 16.2 72.0 / 37.6 83.9 / 50.2
CLAP 34.6 / 16.7 70.2 / 41.1 82.0 / 54.1 41.9 / 20.0 73.1 / 44.9 84.6 / 58.7
CLAP-LAION 36.2 / 17.2 70.3 / 42.9 82.5 / 55.4 45.0 / 24.2 76.7 / 51.1 88.0 / 66.9
CompA–CLAP 36.1 / 16.8 78.6 / 43.5 90.2 / 56.1 47.8 / 23.9 83.5 / 50.7 90.2 / 67.6
T–CLAP(ours) 35.1 / 17.0 71.2 / 42.2 82.1 / 54.7 49.2 / 23.1 85.1 / 52.2 87.8 / 66.4

Table 1: Comparison of models on text-to-audio (T-A) and audio-to-text (A-T) retrieval tasks. Per-
formance of Text-to-Audio and Audio-to-Text retrieval on AudioCap/Clotho dataset. The values for
other models have been taken from previous publications (Ghosh et al., 2023; Elizalde et al., 2023).

Loss–coefficients ZSTE

αst αct αso αco β
Task 1 Task 2 Task 3 Task 4 Task 5

A A B C D A B A B A B

T–
B

0 0 0 0 1 78.77 10.11 77.60 8.46 78.01 32.67 31.57 3.50 1.12 26.01 1.10
1 0 1 0 1 77.67 11.02 83.20 8.71 81.21 48.50 18.20 36.28 7.10 27.07 12.7
0 1 0 1 1 76.54 10.11 83.44 7.98 83.01 49.11 18.74 40.38 8.32 28.01 15.2
1 1 1 1 1 76.14 12.20 83.61 11.44 83.2 51.3 22.83 41.10 9.18 31.21 15.8

T–
A

B

0 0 0 0 1 77.34 38.45 80.90 49.87 79.67 34.22 33.12 34.50 32.15 27.34 2.01
1 0 1 0 1 76.76 39.23 86.34 50.65 83.78 52.12 42.45 39.45 38.67 28.45 14.23
0 1 0 1 1 75.29 43.45 85.89 59.56 84.56 50.78 24.33 52.78 41.45 29.78 16.89
1 1 1 1 1 75.11 46.78 86.12 62.34 85.45 54.56 56.78 46.23 44.89 32.45 18.34

Table 2: Hyper-parameter analysis for loss coefficients {α, β} = { αst ,αct , αso ,αco ,β }. Each Task
is defined according to appendix B.4, kindly refer this section for details on each task. Here T–B
and T–AB refers to models trained with only TeminAL B and TeminAL A + B respectively.

Our findings show that setting αct = 0 benefits ZS-tasks with fewer confusing classes, like Task 1,
while αct = 1 improves performance in tasks with more complex classes (Tasks 4, and 5). Models
trained with αso = 0 lack overlaid classes in the denominator, impacting how negatives are penal-
ized. Table 2 illustrates our model’s adaptability across ZSTE tasks, with key improvements noted
when using combined TeminAL A and B training. Adjusting αct and αco makes the model more
sensitive to time-reversed samples, enhancing performance in time-sensitive tasks. The T–CLAP
model sometimes struggles with sound distinction due to training focused on temporal understand-
ing, not sound separation, affecting sensitivity and overall accuracy. However, hierarchical training
with both TeminAL A and B significantly improves sound distinction and general language under-
standing tasks. This result grounds the importance of our multi-stage training method in order to
learn the temporal behavior of multiple sound as described in section 1.

Tasks Subtasks ML-ACT CLAP CLAP-LAION CompA-CLAP T-CLAP
TeminAL B TeminaAL AB

1 A 76.12 81.22 82.5 83.0 76.14 75.11

2 A 7.2 9.59 10.1 18.4 32.20 46.78
2 B 78.1 81.00 81.3 91.6 83.61 87.12
2 C 6.5 9.39 10.0 21.3 31.4 62.34
2 D 71.7 80 80.4 90.8 83.2 85.45

3 A 28.01 33.27 34.93 54.5 51.3 54.56
3 B 27.5 34.29 34.6 49.87 22.83 56.78
4 A 2.2 2.4 7.56 48.71 41.1 46.23
4 B 2.0 1.98 5.45 38.74 9.18 44.89
5 A 3.0 26 26.4 36.81 31 32.45
5 B 2.5 0 0.7 18.2 15.8 18.34

Table 3: Showing the comparison of various contrastive learning models on our ZSTE tasks. The
details on each task is discussed in section 4.2 and further detailed in appendix B.4.
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We next evaluate and compare the performance of various models on temporal understanding
through the ZSTE tasks. As shown in Table 3, T–CLAP outperforms most state-of-the-art mod-
els across a majority of tasks. Notably, T–CLAP excels in tasks 2A and 2C, as mentioned previously
section 4.2, these two substasks invovle the model to distinguish multiple sounds and detecting both
the sounds. While remaining competitive in Task 1A we observe, demonstrating that our temporal
instillation approach effectively instills the model with a sense of time without significantly degrad-
ing its performance on the original pre-training tasks. Furthermore, results of Tasks 2B and 2C,
which require the model to associate multiple sounds with at least one correct class, show better
performance with larger models due to their capacity to handle complex associations. Following
the results of Task 3, we observe T–CLAP performs competitively with other models, despite those
models being specifically trained on audio-text pairs. Interestingly, these competing models achieve
strong results on Task 3 without performing as well in tasks requiring the differentiation of mul-
tiple audio sounds, such as Tasks 2B and 2C. However, all models, including T–CLAP, encounter
challenges in general language understanding tasks, such as Tasks 4 and 5. This suggests that lever-
aging a more robust pre-trained language encoder along with diversifying the dataset could further
enhance overall performance.

6 CONCLUSION

This research introduces the Temporal Instillation in Audio-Language Models, a post-training tech-
nique that enhances temporal and language understanding in Audio-Language Models (ALMs). Our
approach employs sequential inversion and temporal augmentations, effectively improving sequen-
tial discernment in ALMs. The hierarchical training strategy proves crucial, as seen in the perfor-
mance comparison between TeminAL B and TeminAL AB, highlighting the need for structured
training in complex tasks like time instillation. Our findings also demonstrate that modifying the
infoNCE loss improves model sensitivity, as shown in our parametric study (table 2). Zero Shot
Temporal Evaluation (ZSTE) results (section 5) confirm T–CLAP’s strength in zero-shot classifi-
cation and retrieval tasks, offering new evaluation insights for contrastive learning models. While
T–CLAP shows a slight decrease in traditional audio classification accuracy, it consistently outper-
forms baseline models in scenarios involving temporal relationships, demonstrating enhanced se-
quential information processing. This study opens new research directions, particularly in refining
contrastive loss for broader task optimization, paving the way for ALMs that excel in both retrieval
and complex temporal-linguistic tasks.
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A APPENDIX

B SUPPLEMENTARY SECTION

B.1 PROOF OF PROPOSITIONS

B.1.1 PROPOSITION 1 :

Contrastive models, when used for audio-text matching, do not comprehend the semantic relation-
ship between the audio and text, but rather operate by matching similar audios to similar texts based
on superficial features.

Let faudio : A → Rd and ftext : T → Rd be the functions mapping audio A and text T into a
d-dimensional embedding space, respectively. The similarity score between an audio sample a and
a text sample t is given by s(a, t) = faudio(a) · ftext(t).

1. Contrastive models can yield high similarity scores for pairs of audio and text samples that
share similar superficial features but lack semantic congruence.

2. Contrastive models, as defined, cannot inherently discern semantic relationships between
audio and text but rely on the co-occurrence of similar features in their respective embed-
dings.

Assume a pair of audio samples a1, a2 and text samples t1, t2 such that a1 and t1, a2 and t2 are
semantically congruent but share similar superficial features with a2 and t1 respectively.

According to the model, s(a1, t1) and s(a2, t2) should be high. However, due to the shared
superficial features, s(a1, t2) and s(a2, t1) may also be high, indicating a false positive match.

This contradiction shows that the model’s high similarity score does not necessarily correspond to a
true semantic match, supporting the hypothesis.

B.2 DATASET SELECTION AND CREATION

For dataset selection and creation process we chose ESC–50 dataset. Due to its high audio quality,
adequate pre–processing, suitable length and number of samples, and its inherent robustness. Im-
portantly, we excluded datasets generated through crowd–sourcing to reduce labeling inaccuracies.
ESC–50’s assortment of 50 classes encompasses a variety of real-world sounds from natural, animal,
and human sources, making it versatile for different applications and particularly effective for zero-
shot classification tasks, which require identifying items from previously unseen categories. From
the ESC–50 dataset we get 50 pairs of Audio, Label data, these pairs are then processed according
to algorithm 2 to make a training dataset. We select two distinct sounds from the possible 50 sounds
giving us a total of 2450 pairs (ai, aj) and (ti, tj) of sounds. For each pair we have 3 possible
configurations using keywords ‘before’ , ‘after’ and ’while’ as suggested in section 3.1. Thus our
total dataset thus becomes 7350 data pairs. For teminAL A, we only use 2450 pairs of data while
selecting either one of the audio and text from this pair. The prompt used for concatenating the texts
are ‘single sound of ti’ and ‘combined sound of ti and tj’.

Our Sequential Inversion Approach challenges traditional contrastive learning methods, which typ-
ically align audio segments with matching text while contrasting them against unrelated pairs. This
practice, akin to a bag-of-words model, often fails to capture sequential nuances as it emphasizes dis-
tinguishing features over temporal understanding. To foster a deeper comprehension of sequences,
we introduced a novel technique for generating negative samples that share thematic elements, com-
pelling the model to focus on the order of events. This method, depicted in fig. 2, utilizes two types
of temporal augmentations “before” and “while” to enhance the model’s ability to discern sequential
information. The transformation aims to capture the dynamic interplay between the two arguments,
allowing the model to discern the original audio-transcript pair (a, c) from its transformed versions
(a,O(c)) and (O(a), c). It is applicable to concatenated audio or transcription pairs, effectuating a
temporal reordering of the components.
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Algorithm 1 Dataset Preparation and Sequential Inversion for Contrastive Learning

1: Input: Acoustic Events Dataset P = {(Audioi,Labeli)}
2: Output: Refined Dataset (Apos, Aneg, Tpos, Tneg) for Contrastive Learning
3: Initialization:
4: Initialize ESC-50 dataset with selected criteria.
5: Organize dataset into classes {C1, C2, . . . , Cn} representing distinct sounds.
6: Define empty sets for positive and negative samples: Apos, Aneg, Tpos, Tneg .

7: Step 1: Positive Sample Selection
8: for each class Ci in the dataset do
9: for each audio-text pair (aj , cj) ∈ Ci do

10: if (aj , cj) meets quality standards then
11: Append aj to Apos, cj to Tpos.
12: end if
13: end for
14: end for

15: Step 2: Sequential Inversion and Overlay
16: for each (aj , cj) ∈ (Apos, Tpos) do
17: Generate negative audio samples a′j using inversion function T.
18: Define T(a) = [aj ⊕ ai], T(c) = [cj ; τt; ci].
19: Generate overlapping samples using overlay function O:

O(a) = [aj ∧ ai],O(c) = [cj ; τo; ci].
20: Append resulting negative samples a′j , c

′
j to Aneg and Tneg .

21: end for

22: Step 3: Template-Based Caption Generation
23: for each positive sample ck ∈ Tpos do
24: Generate captions using Caption(ck) and append to Tpos.
25: end for
26: for each negative sample cn ∈ Tneg do
27: Generate captions using Caption(cn) and append to Tneg .
28: end for

29: Return: (Apos, Aneg, Tpos, Tneg).

B.3 MATHEMATICAL DERIVATIONS:

In this section, we derive the loss functions used in our model, specifically focusing on the Tem-
poral Noise Contrastive Estimation (TNCE) technique. TNCE is a variant of the Noise Contrastive
Estimation (NCE) loss, adapted for temporal learning tasks. This method helps in effectively dis-
tinguishing between positive and negative samples over time. (Kindly note that we have used ‘t’ as
text in the Mathematical derivation instead of ‘c’ as we have shown in the main paper, all the other
component remains the same. For example here we have shown batch of texts Bt = {Btf , Btr , Bto}
instead of Bc = {Bcf , Bcr , Bco}).
For the loss function Lr, we define it as follows:

LtB =
∑

(a,t)∈B

(TNCE(za, zt) + TNCE(zT(t), za)) + TNCE(zO(t), za)) (10)

Here, TNCE(za, zt), TNCE(zT(t), za)) and TNCE(zO(t), za)) represent the temporal consistent,
temporally reversed and temporally overlap components of the TNCE loss, respectively. The func-
tion TNCE is calculated by the formula:
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Figure 5: Schematic explanation of the terms in loss function for TeminAL B. Here we show a
term (row) in the summation of LtB which is TNCEt(za, zt) The other two terms TNCEt(za, zt)
and TNCEt(za, zt) of this loss function can be calculated in the similar way and will belong to
the green and pink blocks of the above schematic. Here, Btf , Btr and Bto are the batches of texts
corresponding to time consistent, reversed and overlaid samples which compose the whole batch of
text following the same convention as shown in section 3.4.

Figure 6: Schematic explanation of the terms in loss function for TeminAL A. Here we show a term
(row) in the summation of LtA which is TNCEt(zas

, zts) The other term TNCEt(zad
, ztd) of this

loss function can be calculated in the similar way and will belong to the green block of the above
schematic. Here, Bts and Btd are the batches of texts corresponding to single and concatenated
(double) samples which compose the whole batch of text following the same convention as shown
in section 3.4.
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TNCE(za, zt) := − log
exp(za · zt)∑

t′∈Btf
exp(za · zt′) + Ctr + Cto

(11)

Similarly, the overlap component TNCEo is given by:

TNCE(za, zt) := − log
exp(za · zt)∑

t′∈Bto
exp(za · zt′) + Ctc

(12)

In these equations: B represents the batch of user-item pairs (a, t), where a is a user and t is a
temporal context. za and zt denote the latent representations of the user and the temporal context,
respectively. Btf and Bto are subsets of the batch B that serve as temporal and overlap negatives,
respectively. The constants Ctr , Cto , and Ctc are designed to account for additional temporal and
contextual information, enhancing the robustness of the loss function against trivial solutions. The
term Ctr accounts for the influence of time-reversed negatives and is defined as:

Ctr = αst exp(zu · zΠ(t)) + αct

∑
t′∈Btr\{t}

exp(zu · zΠ(t′)) (13)

where: Π(t) denotes the time-reversed representation of the context t. The coefficients αst and αct
modulate the contribution of individual and cumulative time-reversed negatives, respectively. The
term Cto captures the effect of overlapping contexts, defined as:

Cto = αso(exp(za · zt) + exp(za · zΠ(t))) + αco

∑
t′∈Bt\{o}

exp(za · zΠ(t′)) (14)

Here: αso and αco control the impact of single and multiple overlapping contexts.

Finally, Ctc integrates both temporal and contextual negative sampling:

Ctc =

exp(za · zt) +
∑

t′∈Btf
\{t}

exp(za · zt′)


+

αs exp(za · zΠ(t)) + αc

∑
t′∈Btr\{t}

exp(za · zΠ(t′))

 (15)

This term combines the effect of immediate and cumulative context influences, with parameters αs

and αc providing tunable weights.

For the loss function LaB
, which deals with another set of temporal dynamics, we follow a similar

structure. The formulation and constants remain analogous, ensuring consistency across different
temporal modeling aspects.

LaB
=

∑
(a,t)∈B

(TNCE(za, zt) + TNCE(zT(t), za)) + TNCE(zO(t), za)) (16)

Here, TNCE stands for Temporal Noise Contrastive Estimation, a variant of the NCE loss tailored
for temporal learning, and is calculated as:

TNCE(za, zt) = − log
exp(za · zt)∑

t′∈Btf
exp(za · zt′) + Ctr + Cto

(17)

TNCE(zO(t), za)) = − log
exp(za · zt)∑

t′∈Bto
exp(za · zt′) + Ctc

(18)
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Figure 7: The schematic showing Temporal Contrastive Loss for TeminAL A. On the vertical
axis we have the audio embeddings with batches of data corresponding to BaA

= {Bas , Bad
}

and text embedding batches of data corresponding to BcA = {Bcs , Bcd} on the horizontal axis.
Here, {Bas

, Bad
} corresponds to batch of single audio and double audio respectively and similarly

{Bcs , Bcd} corresponds to batch of single text and double text respectively.

In this expression, B represents the batch of (a, t) pairs, and Bt is the set of text samples within
the batch that serve as temporal negatives. Ct is an accumulation of negatives fashioned via time-
reversal, and is expressed as:

Ctr = αst exp(za · zΠ(t)) + αct

∑
t′∈Btr\{t}

exp(za · zΠ(t′)) (19)

Cto = αso(exp(za · zt) + exp(za · zΠ(t))) + αco

∑
t′∈Bt\{o}

exp(za · zΠ(t′)) (20)

Ctc =

exp(za · zt) +
∑

t′∈Btf
\{t}

exp(za · zt′)

+

αs exp(za · zΠ(t)) + αc

∑
t′∈Btr\{t}

exp(za · zΠ(t′))

 (21)

Now we move on towards deriving the mathematical formulations for TeminAL A. Following from
our initial discussion from section 3.4. For the loss function LtA , we define it as follows:

LtA =
∑

(T(u),T(t))∈B

(TNCE(zts , zas) + TNCE(ztd , zad
)) (22)

Here, TNCE(zts , zas
) and TNCE(ztd , zad

) represent the temporal and overlap components of the
TNCE loss, respectively. zts , zas

represents the text and audio samples of single samples in the
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batch. And ztd , zad
represents the text and audio samples of the double or concatenated batch. The

function TNCE is calculated by the formula:

TNCE(zas , zts) = − log
exp(zas · zts)∑

t′∈Bts
exp(zas

· zt′s) + Ctd
(23)

Where Ctd the contribution of the concatenated samples to the above loss function.

Ctd = αsame exp(zad
· zΠ(t)) + αdiff

∑
t′∈Btd

\{t}

exp(zad
· zΠ(t′d)

) (24)

The terms αsame in the above represent the concatenated samples which have one of the sounds
similar to zas , while αdiff is the co–efficient used for all the concatenated samples (zad

) which
don’t have any sound similar to zas . Next up we have similar formulation for the other half of the
TeminAL A loss function which is shown below.

LaA
=

∑
(O(a),O(t))∈B

(TNCE(zas , zts) + TNCE(zad
, ztd)) (25)

Finally the overall loss function for TeminAL A is composed of LtA and LaA
shown as follows.

Note, We keep all our hyper–parameters set as unity for the training of TeminAL A.

LA = LtA + βA(LaA
) (26)

The rest of the formulation follows the same derivation scheme as what we have detailed for Temi-
nAL B in the above paragraphs.

B.4 ZERO SHOT DOWNSTREAM TASK AND DETAILS:

1. The sound of dog

2. The sound of cat
3. The sound of rain
4. The sound of thunder
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Figure 8: Zero Shot Audio Classification
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Figure 10: Configuration of task 1 Figure 11: Configuration of task 2

Figure 12: Configuration of task 3 Figure 13: Configuration of task 4

Figure 14: Configuration of task 5
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Table 4: Performance comparison on audio classification task on different datasets. For ESC-50 and
US8K we have used the prompt ”The sound of a {class}” over all the 50 and 10 classes respectively.
For ESC–50 the other text prompts are from the validation set of the model.

Method ESC-50 US8K

Wav2CLIP 41.4 40.4
AudioClip 69.4 65.3
CLAP 82.6 73.2
CLAP-LAION-audio-630K 88.0 75.8
CompA-CLAP 89.1 85.7
T-CLAP (ours) 75.1 72.2

Algorithm 2 ZSTE: Zero Shot Temporal Evaluation; evaluating Zero-Shot Temporal Classification
Capabilities for General-purpose contrastive training multi-modal models. Implementation of ZSTE
in our study is detailed in appendix B.4 also refer appendix B.4.1 for detail on parameters.

1: Input: Dataset D, Contrastive Learning-based ModelM
2: Output: Model evaluation scores for zero-shot tasks S
3: Initialization:
4: Load dataset D and the contrastive learning-based modelM
5: Task 1: Basic Zero-Shot Evaluation
6: Evaluate model’s zero-shot capabilities on basic classification tasks T1
7: Measure accuracy by correct label identification for unseen classes refer algorithm 3: Acc1 =

1
|U|

∑
i∈U 1(ŷi = yi)

8: Record baseline zero-shot performance Acc1
9: Task 2: Zero-Shot with Overlapping Features

10: Test model’s ability to discern overlapping or composite features T2
11: Measure accuracy based on correct label predictions for unseen composite instances refer

algorithm 3: Acc2 = 1
|C|

∑
j∈C 1(ŷj = yj)

12: Record and analyze performance degradation or improvement S2
13: Task 3: Temporal Relationship Comprehension
14: Present model with unseen sequences Q to assess temporal relationship understanding T3
15: Measure accuracy in identifying the correct order of events refer algorithm 3: Acc3 =

1
|Q|

∑
k∈Q 1(ôk = ok)

16: Evaluate against known sequences to determine zero-shot temporal comprehension S3
17: Task 4: Resistance to Irrelevant Features
18: Challenge model with unseen data N that includes irrelevant features T4
19: Determine model’s ability to ignore noise and focus on relevant zero-shot features: Acc4 =

1
|N |

∑
l∈N 1(ŷl = yl)

20: Assess confusion metrics and resilience to irrelevant data S4
21: Task 5: Generalization to Novel Scenarios
22: Evaluate model’s generalization to completely novel zero-shot scenarios T5
23: Measure model’s performance on tasks with new contexts or relationships refer algorithm 3:

Acc5 = 1
|X |

∑
m∈X 1(ŷm = ym)

24: Test for understanding of complex temporal sequences and novel feature combinations S5
25: Conclusion:
26: Compile and compare evaluation scores across all tasks S = {S1,S2,S3,S4,S5}
27: Determine model’s strengths and weaknesses in zero-shot learning
28: Provide insights into model’s potential real-world applicability
29: return Compiled evaluation scores S , insights, and potential applications

• Task 1 : In our initial experiment, we aimed to evaluate T–CLAP’s performance on a
straightforward classification task devoid of a temporal dimension. Our goal was to de-
termine if T–CLAP exhibited any improvement or loss of capabilities compared to CLAP
in this domain. We conducted this experiment by presenting the model with 50 distinct
prompts in the format “The sound of [class label]”, with each prompt corresponding to a
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class in the ESC dataset. We then measured accuracy by assessing how often the model
correctly identified the label associated with a given audio input (refer to Figure 10).

• Task 2 : Subsequently, we explored whether T–CLAP demonstrated enhanced abilities in
discerning two distinct sounds within a given audio clip with one of the sounds being from
the validation set. The task configuration paralleled that of Task 1, with the key difference
being that the accuracy assessment was conducted on audio clips featuring either concate-
nated or overlapping sounds (refer to Figure 11). We measured two accuracy metrics: one
based on the model correctly identifying the two highest probabilities corresponding to the
correct labels and another based on the model selecting at least one correct class.

• Task 3 : In contrast to the preceding task, which disregarded temporality, this new exper-
iment focuses on assessing T–CLAP’s capability to accurately discern classes with their
respective temporal relationships. For this task, we presented the model with three prompts
following the same format as those encountered during training: “[class label 1] before
[class label 2]”, “[class label 2] before [class label 1]”, and “[class label 1] while [class la-
bel 2]” (see Figure 12) while picking the 2 classes similar to Task 2. By exposing the model
to an audio featuring one of these three temporal combinations, we gauged its accuracy in
correctly identifying the corresponding temporal relationship within each prompt.

• Task 4 : This task represents a more challenging iteration of Task 3. Here, our objec-
tive is to challenge the model by introducing prompts that include additional class labels
not present in the audio (Figure 13), aiming to create confusion for the model during the
evaluation process.

• Task 5 : In our final task, we aimed to push the model’s boundaries by presenting it with a
temporal prompt it had not encountered during training, assessing its ability to generalize to
novel temporal inputs. Our hypothesis was rooted in the nature of the text encoder, T5; if T–
CLAP had truly grasped the temporal nuances embedded in “before” and “while” prompts,
it should demonstrate an understanding of temporality across various prompt formats. For
testing its comprehension of the “before” temporal aspect, we provided the model with four
prompts structured as follows: “In this concatenated sound” followed by“The first sound is
[class label 1]”, “The second sound is [class label 1]”, “The first sound is [class label 2]”
and “The second sound is [class label 2]” (refer to Figure 14). In each instance, there were
two correct prompts, and we evaluated the model based on its ability to correctly identify
the combination of two prompts out of the six possible options. The model received a score
of 1 if it correctly identified both prompts and 0.5 if it identified only one.
Regarding the “while” temporality, we presented the model with 50 diverse prompts of
the form “Simultaneous sound of [class label 1] and [class label 2].” The model’s task
was to select the two correct prompts, considering the two correct classes in both possible
orderings. The same reward function was applied, scoring the model based on its accuracy
in identifying both correct prompts or one, as appropriate.

B.4.1 PARAMETER LIST FOR ALGORITHM 3

D : Dataset used for evaluation,M : Contrastive learning-based model being evaluated, S : Model
evaluation scores for zero-shot tasks, T1 : Basic classification tasks for zero-shot evaluation, U :
Set of unseen classes in basic classification tasks, Acc1 : Accuracy for basic zero-shot classification
tasks, ŷi : Predicted label for the i-th unseen class, yi : True label for the i-th unseen class, C : Set of
unseen composite instances in overlapping features tasks, Acc2 : Accuracy for zero-shot tasks with
overlapping features, ŷj : Predicted label for the j-th composite instance, yj : True label for the j-th
composite instance, S2 : Performance evaluation for overlapping features tasks, Q : Set of unseen
sequences in temporal relationship comprehension tasks, Acc3 : Accuracy for zero-shot temporal
relationship comprehension tasks, ôk : Predicted order for the k-th sequence, ok : True order for
the k-th sequence, S3 : Performance evaluation for temporal relationship comprehension tasks, N
: Set of unseen data including irrelevant features, Acc4 : Accuracy for tasks involving irrelevant
features, ŷl : Predicted label for the l-th instance in irrelevant features task, yl : True label for
the l-th instance in irrelevant features task, S4 : Performance evaluation for resistance to irrelevant
features, T5 : Tasks for evaluating generalization to novel scenarios, X : Set of instances in novel
scenarios, Acc5 : Accuracy for generalization to novel zero-shot scenarios, ŷm : Predicted label for
the m-th instance in novel scenarios, ym : True label for the m-th instance in novel scenarios, S5 :
Performance evaluation for generalization to novel scenarios
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Figure 15: Model’s performance of test dataset.

B.5 TRAINING DETAILS

The model is trained on NVIDIA-RTX 4060 for 14hrs (including both TeminAL A and B). A total
number of around 17.9 million parameters have been trained as detailed in table 5. The details of the
dataset for the post–training is described in appendix B.2 while details of the training of the original
CLAP model Elizalde et al. (2023) is shown in table 6. A total of 2450 audio–text pairs were used
for TeminAL A and a total of 7350 audio-text pairs were used for the training of TeminAL B with
a train–test split of 0.7. The batch size was selected as 256 after iterating on the size of 128, 256
and 512 as larger batches needed more iterations for convergence. Although we acknowledge that
contrastive learning models generalises well for larger batch sizes as mentioned by Radford et al.
(2021). The learning rate was chosen to be 10−4. Interestingly we found that the model trained only
with TeminAL B converged but didn’t do well on the learning as shown in fig. 15 due to the inability
of the model to distinguish multiple sounds as explained in the section section 3.4. Thus the model
warranted a hierarchical training with both TeminAL A and TeminAL B.

Table 5: Comparison of Text and Audio Parameters

Parameter Type Text Audio
# Trainable Parameters 9,515,520 8,423,951
% of Total Parameters 8.54% 9.91%

Table 6: Original model’s (CLAP Elizalde et al. (2023)) training dataset statistics

Dataset Pairs Unique audios Unique captions

FSD50k 36,796 36,796 36,796
ClothoV2 29,646 5,929 29,646
AudioCaps 44,292 44,292 44,292
MACS 17,276 3,930 17,276

Total 128,010 90,947 128,010
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B.6 BASELINE MODELS

In evaluating retrieval tasks, specifically text-to-audio and audio-to-text, we assess CompA-CLAP
alongside six other baseline models. MMT Oncescu et al. (2021) revolutionized the task of audio re-
trieval by introducing the use of free-form natural language queries, suggesting this method is more
natural and versatile compared to traditional techniques reliant on text annotations. The research
also highlights the advantages of pre-training on a variety of audio tasks. ML-ACT Mei et al. (2022)
investigates the effects of distinct metric learning objectives on audio-text retrieval tasks, identifying
the NT-Xent loss as a particularly effective method that consistently performs well across various
datasets and training conditions, surpassing commonly-used triplet-based losses. Metric learning
objectives are crucial for training cross-modal retrieval systems, as they organize data into an em-
bedding space where similar items cluster together and dissimilar ones are separated. CLAP Elizalde
et al. (2023) presents a new framework for retrieving audio utilizing a contrastive learning objec-
tive along with dual audio encoders to bridge the gap between language and audio content. Lastly,
CLAP-LAION Wu et al. (2023b) offers a methodology for contrastive language-audio pre-training,
aiming to forge robust audio representations by marrying audio data with corresponding natural lan-
guage descriptions. Their model considers various audio and text encoders and enhances the model
architecture with feature fusion strategies and keyword-to-caption augmentation.

Model T-A Retrieval A-T Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Pengi 36.2 / 9.4 76.0 / 26.1 86.8 / 36.7 16.9 / 7.0 72.8 / 22.7 84.5 / 34.6
Qwen-Audio 39.1 / 16.2 78.9 / 45.8 87.1 / 57.2 38.0 / 16.1 73.2 / 23.3 85.0 / 35.1
Audio Flamingo 41.9 / 18.0 80.2 / 46.3 93.9 / 58.0 38.9 / 17.01 78.9 / 44.0 85.7 / 55.8
CLAP 34.6 / 16.7 70.2 / 41.1 82.0 / 54.1 41.9 / 20.0 73.1 / 44.9 84.6 / 58.7
T–CLAP(ours) 35.1 / 17.0 71.2 / 42.2 82.1 / 54.7 49.2 / 23.1 85.1 / 52.2 87.8 / 66.4

Table 7: Comparison of models with open-ended generation models on Text-Audio and Audio-Text
retrieval performance on the AudioCap/Clotho dataset. The results for previous models have been
taken from (Deshmukh et al., 2023; Elizalde et al., 2023). For retrieval in open-ended generation
models, we use a consistent prompt style as mentioned in (Deshmukh et al., 2023).

B.7 LIMITATIONS OF THE CURRENT MODEL

1. General-Purpose ALM: Our proposed model is not a general-purpose Audio-Language
Model (ALM) capable of performing all downstream applications across all datasets. The
current implementation is specifically designed and validated on the ESC-50 dataset as
a proof-of-concept and to achieve our defined objectives. Consequently, generalization
remains a limitation, although addressing this was beyond the scope of our work.

2. Temporality Beyond the Dataset: The model does not provide a general understanding
of temporality beyond the ESC-50 dataset. Results from the ZSTE Task 4 and 5 confirm
that neither does the model propose general temporality, nor does it achieve it. Notably, we
emphasize that achieving general-purpose temporality would require larger, more compre-
hensive pre-trained text encoders. Specifically, open-ended text encoders (e.g., encoders
from encoder-decoder models) would be more suitable than encoders trained on closed
masked language modeling techniques, such as BERT.

3. Zero-Shot Evaluation Scheme: While our zero-shot evaluation scheme is designed to be
general-purpose, it is inherently limited to contrastive models. Furthermore, the evaluation
has not been tested on domains beyond the ESC-50 dataset. The reported ZSTE results are
restricted to this dataset because it aligns with the training data used in our model and those
of prior works. To mitigate data leakage, we ensure that our evaluation dataset is separate
from the training data. However, it is important to note that the primary objective of this
evaluation is to validate the proof-of-concept rather than to set new benchmarks.

4. Evaluation Dataset Overlap: A broader limitation, relevant to most models in this do-
main, is the overlap between evaluation datasets across various benchmarks. These over-
laps can occur in terms of sound events or contextual similarities. Therefore, we cau-
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tion against uncritical comparisons of model performance on classical benchmarks without
careful consideration of dataset overlap.

By addressing these limitations, we hope to guide future researchers in expanding and improving
upon the current work to achieve broader applicability and more generalized performance.

B.8 EVALUATION METRICS

Our evaluation metrics are task specific, but in general they follow a similar strategy. The primary
objective of the model appears to be to determine how well it can match audio clips with their
corresponding textual descriptions. Here’s a breakdown of key elements in the code and how they
can be translated into a mathematical formulation for the evaluation section:

Algorithm 3 General calculation for accuracy in ZSTE tasks

1: Evaluation procedure
2: Step 1: Audio Encoding
3: Encode audio inputs using the Audio Encoder A to get audio embeddings Ai

4: Ensure the embeddings are normalized to have a unit norm to maintain consistency in
comparisons

5: Step 2: Similarity Calculation
6: Compute similarity scores between audio embeddings Ai and text embeddings Tj using a

suitable similarity metric (e.g., cosine similarity)
7: Generate a similarity matrix S where Sij represents the similarity between the i-th audio

embedding and the j-th text embedding
8: Step 3: Probability Calculation
9: Apply the softmax function to the similarity scores to obtain probabilities pij for each class

10: pij =
eSij∑50

k=1 eSik

11: Step 4: Classification and Accuracy Measurement
12: Determine the predicted class by selecting the class with the highest probability for each

audio input
13: ŷi = argmaxj pij
14: Measure accuracy by comparing predicted labels ŷi with ground truth labels yi: Acc1 =

1
|U|

∑
i∈U 1(ŷi = yi)

15: return Evaluation scores Acc1, insights, and potential improvements
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Algorithm 4 Audio-Text Matching Evaluation with CLAP Model

1: Initialize CLAP model with pre-trained weights
2: Load dataset D = {(ai, ti)}Ni=1
3: Split dataset into training, validation, and test sets
4: Prepare DataLoader for batch processing
5: Load wordsList from file
6: Set prompt as ‘this is a sound of ’
7: Create target texts y = [prompt + x for x in words list]
8: function ONEHOTENCODE(text, wordsList)
9: Initialize a zero vector oneHotV ector ∈ {0, 1}|wordsList|

10: for each word ∈ wordsList do
11: if text starts with word then
12: Set oneHotV ector[index of word]→ 1
13: break
14: end if
15: end for
16: return oneHotV ector
17: end function
18: for each batch ∈ testLoader do
19: Extract audio and text samples from batch
20: Compute audio embeddings faudio(ai)
21: One-hot encode the text samples
22: for each tj in text samples do
23: oneHotV ector ← OneHotEncode(tj ,wordsList)
24: Compute text embeddings ftext(oneHotV ector)
25: end for
26: Compute similarity scores s(faudio(ai), ftext(OneHotEncode(tj ,wordsList)))
27: Apply softmax to get P (tj |ai)
28: Record predicted and true labels
29: end for
30: Compute accuracy:
31: Accuracy = 1

N

∑N
i=1 I(t̂i = ti)

32: where t̂i = argmaxt∈T s(ai, t) and I is used as the indicator function.
33: return accuracy
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