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ABSTRACT

We consider the problem of learning Signed Distance Functions (SDF) from sparse
and noisy 3D point clouds. This task is significantly challenging when no ground-
truth SDF supervision is available. Unlike recent approaches that rely on smooth-
ness priors, our method, rooted in a distributionally robust optimization (DRO)
framework, incorporates a regularization term that leverages samples from the
uncertainty regions of the model to improve the learned SDFs. Thanks to tractable
dual formulations, we show that this framework enables a stable and efficient
optimization of SDFs in the absence of ground truth supervision. Through exten-
sive experiments and evaluations, we illustrate the efficacy of our DRO inspired
learning framework, highlighting its capacity to improve SDF learning with respect
to baselines and the state-of-the-art using synthetic and real data evaluation.

1 INTRODUCTION

3D reconstruction from point clouds is a long standing problem at the intersection of computer vision,
graphics and machine learning. While classical optimization methods such as Poisson Reconstruction
(Kazhdan & Hoppe, 2013; Hou et al., 2022) or Moving Least Squares (Guennebaud & Gross, 2007)
can be effective with dense, clean point sets and accurate normal pre-estimations, recent deep learning-
based alternatives provide more robust predictions, particularly for noisy and sparse inputs, bypassing
the need for normal data in many cases. In this regard, several existing methods rely on deep priors
learned from large fully labeled 3D data such as the synthetic dataset ShapeNet (Chang et al., 2015).
However, this strategy entails computationally expensive trainings, and the resulting models can still
be prone to out-of-distribution generalization issues, as pointed by (Chen et al., 2023a; Ouasfi &
Boukhayma, 2024c), whether caused by change in the input density or domain shift. As a matter
of fact, Table 2 shows that our unsupervised method outperforms supervised generalizable models
when testing on data that is sparser and different in nature from their training corpus. Therefore, it is
important to design learning frameworks that can lead to robust reconstruction under such extreme
constraints.

Recent work (Ouasfi & Boukhayma, 2024a) shows that strategies that can successfully recover
SDF representations from dense point clouds such as Neural-Pull (NP) (Ma et al., 2021) often
struggle when the point cloud is sparse and noisy due to overfitting. As a consequence, the ex-
tracted shapes have missing parts and hallucinations (cf. Figures 4,2). Instead or relying on smooth-
ness priors, Ouasfi & Boukhayma (2024a) focus on how training distributions affect performance
of the SDF network. They introduce distributionally robust optimization for sdf learning and
rely on pointwise adversarial samples to regularize the learning process. Within the DRO (Volpi
et al., 2018; Rahimian & Mehrotra, 2019) framework, the loss is minimized over the worst-case
distribution within a neighborhood of the observed training data distribution. In this paper we
show that this procedure can be generalized to hedge against different types of perturbations and
provide more robustness to noise. To measure the distance between distributions, various met-
rics have been explored in DRO literature including f-divergence (Ben-Tal et al., 2013; Miyato
et al., 2015; Namkoong & Duchi, 2016), alongside the Wasserstein distance (Blanchet & Murthy,
2019; Mohajerin Esfahani & Kuhn, 2018). The latter has demonstrated notable advantages in
terms of efficiency and simplicity, in addition to being widely adopted in computer vision and
graphics downstream applications (Rubner et al., 2000; Pele & Werman, 2008; Solomon et al.,
2015; 2014), as it takes into account the geometry of the sample space contrarily to other metrics.
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Figure 1: We learn a neural SDF fθ from a
point cloud (black dots) by minimizing the er-
ror between projection of spatial queries {q}
on the level set of the field (gray curve) and
their nearest input point p. Instead of learn-
ing with a standard predefined distribution
of queries Q, we optimize for the worst-case
query distribution Q′ within a ball of distri-
butions around Q.

In order to learn a neural SDF from a sparse noisy point
cloud withint a DRO framework we proceed in this work
as follows. We first present a tractable implementation for
this problem (SDF WDRO) benefiting from the dual re-
formulation (Blanchet & Murthy, 2019) of the DRO prob-
lem with Wasserstein distribution metric (Mohajerin Es-
fahani & Kuhn, 2018; Blanchet & Murthy, 2019; Sinha
et al., 2017; Bui et al., 2022). We build on NP (Ma et al.,
2021), but instead of using their predefined empirical spa-
tial query distribution (sampling normally around each of
the input points) we rely on queries from the worst-case
distribution in the Wasserstein ball around the empirical
distribution. While this leads to reduced overfitting and
more robust reconstructions thanks to harnessing more
informative samples midst training instead of overfitting
on easy ones, this improvement comes at the cost of addi-
tional training time compared to the NP baseline as shown
in Figure 7. Furthermore, by interpreting the Wasserstein
distance computation as a mass transportation problem,
recent advances in Optimal Transport show that it is possi-
ble to obtain theoretically grounded approximations by regularizing the original mass transportation
problem with relative entropy penalty on the transport plan (e.g. Cuturi (2013)). The resulting distance
is referred to as Sinkhorn distance. Thus, we show subsequently that substituting the Wasserstein
distance with the Sinkhorn one in our SDF DRO problem results in a computationally efficient dual
formulation that significantly improves the convergence time of our first baseline SDF WDRO. The
training Algorithm of the resulting SDF SDRO is outlined in 1.

Through extensive quantitative and qualitative evaluation under several real and synthetic benchmarks
for object, non rigid and scene level shape reconstruction, our results show that our final method (SDF
SDRO) outperforms SDF WDRO, baseline NP, as well as the most relevant competition, notably
the current state-of-the-art in learning SDFs from sparse point cloud unsupervisedly NTPS (Chen
et al., 2023a), NAP (Ouasfi & Boukhayma, 2024a). Our ablation studies the utility of distributional
robustness in the context of unsupervised neural reconstruction from sparse input using pointwise
adversaries.

Summary of intuition and contribution Our key idea is to construct a distribution of the most
challenging query samples around the shape in terms of the loss function by “perturbing” the initial
distribution of query points. The cost of this perturbation is controled globally through an optimal
transport distance. Minimising the expected loss over this distribution flattens the landscape of the
loss spatially ensuring that the implicit model behaves consistently in the 3D space. Not only does this
act as a regularization but it additionally refines the implicit representation by providing informative
samples throughout the training process.

2 RELATED WORK

Reconstruction from Point Clouds Classical approaches include combinatorical methods where
shape is defined based on the input point cloud through space partitioning, using e.g. alpha shapes
(Bernardini et al., 1999), Voronoi diagrams (Amenta et al., 2001), or triangulation (Cazals & Giesen,
2006; Liu et al., 2020; Rakotosaona et al., 2021). Alternatively, the input samples can define an
implicit function, with its zero level set representing the target shape. This is achieved through global
smoothing priors (Williams et al., 2022; Lin et al., 2022; Williams et al., 2021; Ouasfi & Boukhayma,
2024c), such as radial basis functions (Carr et al., 2001) and Gaussian kernel fitting (Schölkopf et al.,
2004), or local smoothing priors like moving least squares (Mercier et al., 2022; Guennebaud & Gross,
2007; Kolluri, 2008; Liu et al., 2021). Another approach involves solving a boundary-conditioned
Poisson equation (Kazhdan & Hoppe, 2013). Recent literature suggests parameterizing these implicit
functions with deep neural networks and learning their parameters through gradient descent, either in
a supervised (e.g. (Boulch & Marlet, 2022; Williams et al., 2022; Huang et al., 2023b; Peng et al.,
2020; Chibane & Pons-Moll, 2020; Lionar et al., 2021; Ouasfi & Boukhayma, 2024b; Peng et al.,
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2021)) or unsupervised manner. Unsupervised Implicit Neural Reconstruction A neural network is
typically fitted to the a single point cloud without additional information in this setting. Improvements
can be achieved through regularizations, such as the spatial gradient constraint based on the Eikonal
equation introduced by Gropp et al. Gropp et al. (2020), a spatial Laplacian constraint as described
in Ben-Shabat et al. (2022), and Lipschitz regularization on the network (Liu et al., 2022). Periodic
activations were introduced in Sitzmann et al. (2020). Lipman (2021) learns a function that converges
to occupancy, while its log transform converges to a distance function. Atzmon & Lipman (2020a)
learn an SDF from unsigned distances, further supervising the spatial gradient of the function with
normals (Atzmon & Lipman, 2020b). Ma et al. (2021) express the nearest point on the surface as a
function of the neural signed distance and its gradient. They also utilize self-supervised local priors
to handle very sparse inputs in Ma et al. (2022a) and enhance generalization in Ma et al. (2022b).
Peng et al. (2021) proposed a differentiable Poisson solving layer that efficiently converts predicted
normals into an indicator function grid. Koneputugodage et al. (2023) guides the implicit field
learning with an Octree based labelling. Boulch et al. (2021) learns occupancy fields considering that
needle end points close to the surface lie statistically on opposite sides of the surface. In Williams
et al. (2021), infinitely wide shallow MLPs are learned as random feature kernels using points and
their normals. Chen et al. (2023a) learns a surface parametrization leveraged to provide additional
coarse surface supervision to the shape network. However, most of the aforementioned methods still
encounter difficulties in learning suitable reconstructions when dealing with sparse and noisy input,
primarily due to lack of adequate supervision. Ouasfi & Boukhayma (2024d) learn an occupancy
function by sampling from it’s uncertainty field and stabilise the optimization process by biasing
the occupancy function towards minimal entropy fields. Ouasfi & Boukhayma (2024a) augment the
training with adversarial samples around the input point cloud. Differently from this literature, we
explore here a new paradigm for learning unsupervised neural SDFs for the first time, namely
through tractable reformulations of DRO.

3 METHOD

Let Ξ be a subset of R3. We denote the set of measures and the set of probabilities measures on Ξ by
M(Ξ), and P(Ξ) respectively. Given a noisy, sparse unoriented point cloud P ⊂ ΞNp , our objective
is to obtain a corresponding watertight 3D shape reconstruction, i.e. the shape surface S that best
explains the observation P. In order to achieve this goal, we learn a shape function f parameterised
with an MLP fθ. The function represents the implicit signed distance field relative to the target shape
S. The inferred shape Ŝ can be obtained as the zero level set of the SDF (signed distance function)
fθ at convergence: Ŝ = {q ∈ R3 | fθ(q) = 0}. Practically, an explicit triangle mesh for Ŝ can be
obtained through the Marching Cubes algorithm (Lorensen & Cline, 1987), while querying neural
network fθ.

3.1 BACKGROUND: LEARNING AN SDF BY PULLING QUERIES ONTO THE SURFACE.

Neural Pull (NP) (Ma et al., 2021) approximates a signed distance function by pulling query points to
their their nearest input point cloud sample using the gradient of the SDF network. The normalized
gradient is multiplied by the negated signed distance predicted by the network in order to pull both
inside and outside queries to the surface. Query points q ∈ Q are sampled around the input point
cloud P, specifically from normal distributions centered at input samples {p}, with locally defined
standard deviations {σp}:

Q :=
⋃
p∈P

{q ∼ N (p, σpI3)}, (1)

where σp is defined as the maximum euclidean distance to the K nearest points to p in P. For each
query q, the nearest point p in P is computed subsequently, and the following objective is optimized
in Ma et al. (2021) yielding a neural SDF fθ whose zero level set concurs with the samples in P:

L(θ, q) = ||q − fθ(q) ·
∇fθ(q)
||∇fθ(q)||2

− p||22, where p = argmin
t∈P

||t− q||2. (2)

The SDF network is trained with empirical risk minimization (ERM) by minimizing the expected
loss under the empirical distribution Q =

∑
q∈Q δq over the set Q where δq is the dirac distribution

or the unit mass on q.

3
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3.2 NEURAL SDF DRO

Inspired by Ouasfi & Boukhayma (2024a), we focus on how to distribute the SDF approximation
errors uniformly throughout the shape as these erros tends to concentrate low-density and noisy
areas without regularization. We consider the DRO problem introduced by NAP with Wasserstein
uncertainty sets. This restrains the set of worst-case distributions using the Wasserstein distance (Eq.
3). We optimize the parameters of the SDF network θ under the worst-case expected loss among a
ball of distributions Q′ in this uncertainty set (Gao & Kleywegt, 2023; Blanchet & Murthy, 2019),:

inf
θ

sup
Q′:Wc(Q′,Q)<ϵ

E
q′∼Q′

L(θ, q′), where Wc(Q
′, Q) := inf

γ∈Γ(Q′,Q)

∫
cdγ. (3)

Here, ϵ > 0 andWc denotes the optimal transport (OT) or a Wasserstein distance for a cost function
c, defined as the infimum over the set Γ(Q′, Q) of couplings whose marginals are Q′ and Q. We refer
the reader to the body of work in e.g. Gao & Kleywegt (2023); Blanchet & Murthy (2019) for more
background.

Neural SDF Wasserstein DRO (WDRO) A tractable reformulation of the optimization problem
defined in Equation 3 is made possible thanks to the following duality result (Blanchet & Murthy,
2019). For upper semi-continuous loss functions and non-negative lower semi-continuous costs
satisfying c (z, z′) = 0 iff z = z′, the optimization problem (3) is equivalent to:

inf
θ,λ≥0

{λϵ+ LWDRO(θ,Q)} , where LWDRO(θ,Q) = Eq∼Q

[
sup
q′
{L(θ, q′)− λc (q′, q)}

]
. (4)

As shown in Bui et al. (2022), solving the optimization above with a fixed dual variable λ yields
inferior results to the case where λ is updated. In fact, optimizing λ allows to capture global
information when solving the outer minimization, whilst only local information (local worst-case
spatial queries) is considered when minimizing LWDRO solely. Following Bui et al. (2022), the
optimization in Equation 4 can be carried as follows: Given the current model parameters θ and the
dual variable λ, the worst-case spatial query q′ corresponding to a query q drawn from the empirical
distribution Q can be obtained through a perturbation of q followed by a few steps of iterative gradient
ascent over L(θ, q′)− λc (q′, q). Subsequently, inspired by the Danskin’s theorem we can update λ

accordingly λ ← λ− ηλ

(
ϵ− 1

Nb

∑Nb

i=1 c (q
′
i, qi)

)
, where Nb represents the query batch size, and

ηλ > 0 symbolizes a learning rate. The current batch loss LWDRO can then be backpropagated. We
provide an Algorithm in supplemental material recapitulating this training (2).

To sample from the worst case distribution around the shape, WDRO (Equation 4) relies on a soft-ball
projection controlled by the parameter λ that is adjusted throughout the training. The λ update
rule ensures that it grows when the worst-case sample distance from the initial queries exceeds the
Wasserstein ball radius ϵ. In contrast, NAP consists of a hard-ball projection with locally adaptive
radius.

While WDRO provides promising results, it suffers from rather slow convergence, as shown in Figure
7. Furthermore, because our nominal distribution Q is finitely supported, the worst-case distribution
generated with WDRO is proven to be a discrete distribution (Gao & Kleywegt, 2023), even while
the underlying actual distribution is continuous. As pointed out in Wang et al. (2021), concerns
emerge around whether WDRO hedges the right family of distributions and generates solutions that
are too conservative. In the next section, we show how these limitations can be addressed by taking
inspiration from recent advances in Optimal Transport (OT).

Neural SDF Wasserstein DRO with entropic regularization (SDRO) One key technical aspect
underpinning the recent achievements of Optimal Transport (OT) in various applications lies in the use
of regularization, particularly entropic regularization. This approach has paved the way for efficient
computational methodologies (see e.g. Cuturi (2013)) to obtain theoretically-grounded approximations
of Wasserstein distances. Building upon these advancements, recent work (Azizian et al., 2023; Wang
et al., 2021) extend the framework of Wasserstein Distributionally Robust Optimization with entropic
regularization by substituting the Wasserstein distance in Equation 3 with the Sinkhorn distance
(Wang et al., 2021).

For P,Q ∈ P(Ξ), and two reference measures µ, ν ∈ M(Ξ) such that P and Q are absolutely
continuous to µ and ν respectively, the Sinkhorn distance is defined as:

Wρ(P,Q) = inf
γ∈Γ(P,Q)

{
E(x,y)∼γ [c(x, y)] + ρH(γ | µ⊗ ν)

}
, (5)

4
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where ρ ≥ 0 is a regularization parameter. H(γ | µ ⊗ ν) denotes the relative entropy of γ with
respect to the product measure µ⊗ ν :

H(γ | µ⊗ ν) = E(x,y)∼γ

[
log

(
dγ(x, y)

dµ(x)dν(y)

)]
, (6)

where dγ(x,y)
dµ(x)dν(y) stands for the density ratio of γ with respect to µ⊗ ν evaluated at (x, y).

Compared to the Wasserstein distance, Sinkhorn distance regularizes the original mass transportation
problem with relative entropy penalty on the transport plan. The choice of the reference measures µ
and ν acts as a prior on the DRO problem. Following Wang et al. (2021), we fix µ as our empirical
distribution Q and ν as the Lebesgue measure. Consequently, optimization problem in Equation 3
with the Sinkhorn distance admits the following dual form:

inf
θ,λ≥0

{
λϵ̄+ λρEq∼Q

[
logEq′∼Qq,ρ

[
eL(θ,q

′)/(λρ)
]]}

, (7)

where ϵ̄ is a constant that depends on ρ and ϵ (Wang et al. (2021)). Additionally, distribution Qq,ρ is
defined through:

dQx,ρ(z) :=
e−c(x,z)/ρ

Eu∼ν
[
e−c(x,u)/ρ

]dν(z). (8)

As discussed in Wang et al. (2021), optimizing λ within problem 7 leads to instability. Hence, for
a given fixed λ > 0, optimization 7 can be carried practically by sampling a set of Ns samples
q′ ∼ Qq,ρ for each query q, then backpropagating the following distributionaly robust loss:

LSDRO(θ,Q) = λρEq∼Q

[
logEq′∼Qq,ρ

[
eL(θ,q

′)/(λρ)
]]

. (9)

Algorithm 1 summarizes the training of our SDRO based method.

3.3 TRAINING OBJECTIVE

Similar to Ouasfi & Boukhayma (2024a) we train using the strategy of Liebel & Körner (2018) which
combines the original objective and the distributionally robust one:

L(θ, q) =
1

2λ1
L(θ, q) + 1

2λ2
LDRO(θ, q) + ln (1 + λ1) + ln (1 + λ2), (10)

where λ1 and λ2 are learnable weights and LDRO is either LSDRO or LWDRO. Sur training procedure
is shown in Algorithms 2 and 1.

Algorithm 1 The training procedure of our method with SDRO.

Input: Point cloud P, learning rate α, number of iterations Nit, batch size Nb.
SDRO hyperparameters: ρ, λ, Ns.

Output: Optimal parameters θ∗.
Compute local st. devs. {σp} (σp = maxt∈Knn(p,P) ||t− p||2).
Q← sample(P,{σp}) (Equ. 1)
Compute nearest points in P for all samples in ∈ Q.
Initialize λ1 = λ2 = 1.
for Nit times do

Sample Nb query points {q, q ∼ Q}.
For each q, sample Ns points {q′, q′ ∼ Qq,ρ}. (Equ.8)
Compute SDRO losses {LSDRO(θ, q)} (Equ. 9)
Compute combined losses {L(θ, q)} (Equ. 10)
(θ, λ1, λ2)← (θ, λ1, λ2)− α∇θ,λ1,λ2

ΣqL(θ, q)
end for

4 RESULTS

We evaluate our method using standard reconstruction benchmarks. Following previous work, we
compute the accuracy of the 3D meshes extracted from our MLPs at convergence. We compare to
state of the art methods dedicated to sparse unsupervised reconstruction NP(Ma et al., 2021),NAP
(Ouasfi & Boukhayma, 2024a), SparseOcc (Ouasfi & Boukhayma, 2024d) and NTPS Chen et al.
(2023a). We additionally compare to SAP (Peng et al., 2021), DIGS (Ben-Shabat et al., 2022),
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NDrop (Boulch et al., 2021), NSpline (Williams et al., 2021) and methods combining explicit and
implicit representations such as OG-INR (Koneputugodage et al., 2023) and GP (GridPull) (Chen
et al., 2023b). We further compare to supervised methods including state of the art feed-forward
generalizable methods POCO (Boulch & Marlet, 2022), CONet (Peng et al., 2020) and NKSR (Huang
et al., 2023a), and the prior-based optimization method dedicated to sparse inputs On-Surf (Ma et al.,
2022a). Following NAP, we experimented with point clouds of size Np = 1024.
4.1 METRICS

We use standard metrics for the 3D reconstruction task. We compute the L1 Chamfer Distance
CD1 (×102), L2 Chamfer Distance CD2 (×102), the euclidean distance based F-Score (FS) and
Normal Consistency (NC) between our extracted mesh and the ground-truth. The corresponding
mathematical expressions are provided in the the supplementary material.

4.2 DATASETS AND INPUT DEFINITIONS

ShapeNet (Chang et al., 2015) includes a wide range of synthetic 3D objects spanning 13 different
categories. Following NAP, we show results on We show results on classes Tables, Chairs and Lamps
using the train/test splits defined in Williams et al. (2021). We generate noisy input point clouds by
sampling 1024 points from the meshes while adding Gaussian noise of standard deviation 0.005 (e.g.
Boulch & Marlet (2022); Peng et al. (2020); Ouasfi & Boukhayma (2024a)). Faust (Bogo et al.,
2014) consists of real scans of 10 human body identities in 10 different poses. We sample sets of 1024
points from the scans as inputs. 3D Scene (Zhou & Koltun, 2013) consists of large scale complex
real world scenes obtained with a handheld commodity range sensor. We follow Chen et al. (2023a);
Jiang et al. (2020); Ma et al. (2021); Ouasfi & Boukhayma (2024a) to sample sparse point clouds with
a density of 100 points per m3 and report results. We show results for scenes Burghers, Copyroom,
Lounge, Stonewall and Totempole. Surface Reconstruction Benchmark (SRB) (Williams et al.,
2019) is made of five object scans with complex topology, high level of detail, missing data and
varying feature scales. We sample 1024 points from the scans for the sparse input experiment, and we
experiment using the dense inputs as well. SemanticPOSS Pan et al. (2020) consists of 6 sequences
of road scene LiDAR data. Each scan covers a range of 51.2m ahead of the LiDAR, 25.6m to each
side, and 6.4m in height. We show qualitative examples from each sequence. We further test our
method on few challenging scenes from BlendedMVS (Yao et al., 2020) and on large-scale scenes
from Tanks Temples dataset (Knapitsch et al., 2017) with sparse views.

Figure 2: ShapeNet Chang et al. (2015) reconstructions.

Figure 3: Faust Bogo et al. (2014) reconstructions.
CONet and POCO use data priors.

4.3 IMPLEMENTATION DETAILS

Our MLP model, (fθ), follows the architecture specified in Neural Pull (NP) (Ma et al., 2021). We
optimize the model using the Adam optimizer with a batch size of Nb = 5000. Consistent with
NP, we set K = 51 to compute local standard deviations σp. Training is conducted on a single
NVIDIA RTX A6000 GPU. To ensure fairness and practicality in our comparative evaluation, we
identify the optimal evaluation epoch for each method based on the Chamfer distance between the
reconstructed and input point clouds, selecting the best-performing epoch under this metric. Using
this validation criterion, we conduct a hyperparameter search on the SRB benchmark to determine

6
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Figure 4: 3D Scene (Zhou & Koltun, 2013) reconstructions from sparse unoriented point clouds.

the optimal parameters for our methods. For the Wasserstein Robust DRO (WRDO) approach, we
perform Nwdro

it = 2 gradient ascent steps in the inner loop with a learning rate of αwdro = 10−3.
The dual variable is initialized to λ = 80, and the Wasserstein ball radius is fixed at ϵ = 10−4. For
the Standard DRO (SDRO) approach, we use Ns = 5 samples for each query point q ∼ Q, with
λ = 20 in our experiments. We define the transport cost as c(·, ·) = 1

2 || · − · ||
2, which implies that

sampling from Qq,ρ corresponds to sampling from a Gaussian distribution N (q, ρI3).

4.4 OBJECT LEVEL RECONSTRUCTION

We perform reconstruction of ShapeNet (Chang et al., 2015) objects from sparse and noisy point
clouds. Table 1 and Figure 2 show respectively a numerical and qualitative comparison to the
competition. While our WDRO-based method demonstrates superior performance compared to
competitors in terms of reconstruction accuracy, as assessed by CD1 and CD2, incorporating the
SDRO loss further enhances performance across all metrics. This is evidenced by the visually
superior quality of our reconstructions, which exhibit improved fidelity in capturing fine structures
and details. Despite achieving generally satisfactory coarse reconstructions, the thin plate spline
smoothing prior utilized by NTPS appears to limit its expressiveness. Additionally, we observed that
OG-INR struggles to converge to satisfactory results under sparse and noisy conditions, despite its
effective guidance from Octree-based sign fields in denser settings.

CD1 CD2 NC FS
SPSR 2.34 0.224 0.74 0.50
OG-INR 1.36 0.051 0.55 0.55
NP 1.16 0.074 0.84 0.75
GP 1.07 0.032 0.70 0.74
NTPS 1.11 0.067 0.88 0.74
NAP 0.76 0.020 0.87 0.83
SparseOcc 0.76 0.020 0.88 0.83
Ours (WDRO) 0.77 0.015 0.87 0.83
Ours (SDRO) 0.63 0.012 0.90 0.86

Table 1: ShapeNet (Chang et al., 2015) reconstruc-
tions from sparse noisy unoriented point clouds.

CD1 CD2 NC FS
POCO 0.308 0.002 0.934 0.981
CONet 1.260 0.048 0.829 0.599
On-Surf 0.584 0.012 0.936 0.915
NKSR 0.274 0.002 0.945 0.981
SPSR 0.751 0.028 0.871 0.839
GP 0.495 0.005 0.887 0.945
NTPS 0.737 0.015 0.943 0.844
NAP 0.220 0.001 0.956 0.981
SparseOcc 0.260 0.002 0.952 0.974
Ours (WDRO) 0.255 0.002 0.953 0.977
Ours (SDRO) 0.251 0.002 0.955 0.979

Table 2: Faust (Bogo et al., 2014) reconstructions
from sparse noisy unoriented point clouds. POCO,
CONet, On-Surf and NKSR use data priors.

4.5 REAL ARTICULATED SHAPE RECONSTRUCTION

We conduct the reconstruction of Faust (Bogo et al., 2014) human shapes using sparse and noisy point
clouds. Competing approaches are compared both quantitatively and qualitatively in Table 2 and
Figure 3. All evaluation metrics show that our distributionally robust training procedures work better.
Using SDRO leads to a marginally better performance and noticeably faster convergence as compared
to training with the WDRO loss. Our reconstructions are visually far better, especially when it comes
to catching details at the extremities of the body. These extremities present difficulties because of
sparse input point cloud data, which leads to confusing form prediction, much as the fine structures
shown in the ShapeNet experiment. Interestingly, our method is outperformed by NAP in this setting
and performs on par with SparseOcc. This expected as these methods work well under small levels of
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Burghers Copyroom Lounge Stonewall Totemple Mean
CD1 CD2 NC CD1 CD2 NC CD1 CD2 NC CD1 CD2 NC CD1 CD2 NC CD1 CD2 NC

SPSR 0.178 0.2050 0.874 0.225 0.2860 0.861 0.280 0.3650 0.869 0.300 0.4800 0.866 0.588 1.6730 0.879 0.314 0.6024 0.870
NDrop 0.200 0.1140 0.825 0.168 0.0630 0.696 0.156 0.0500 0.663 0.150 0.0810 0.815 0.203 0.1390 0.844 0.175 0.0894 0.769
NP 0.064 0.0080 0.898 0.049 0.0050 0.828 0.133 0.0380 0.847 0.060 0.0050 0.910 0.178 0.0240 0.908 0.097 0.0160 0.878
SAP 0.153 0.1010 0.807 0.053 0.0090 0.771 0.134 0.0330 0.813 0.070 0.0070 0.867 0.474 0.3820 0.725 0.151 0.1064 0.797
NSpline 0.135 0.1230 0.891 0.056 0.0230 0.855 0.063 0.0390 0.827 0.124 0.0910 0.897 0.378 0.7680 0.892 0.151 0.2088 0.872
NTPS 0.055 0.0050 0.909 0.045 0.0030 0.892 0.129 0.0220 0.872 0.054 0.0040 0.939 0.103 0.0170 0.935 0.077 0.0102 0.897
NAP 0.051 0.006 0.881 0.037 0.002 0.833 0.044 0.011 0.862 0.035 0.003 0.912 0.042 0.002 0.925 0.041 0.004 0.881
SparseOcc 0.022 0.001 0.871 0.041 0.012 0.812 0.021 0.001 0.870 0.028 0.003 0.931 0.026 0.001 0.936 0.027 0.003 0.886
Ours (WDRO) 0.014 0.0006 0.871 0.028 0.0036 0.820 0.038 0.0051 0.803 0.019 0.0005 0.930 0.009 0.0003 0.936 0.022 0.0020 0.872
Ours (SDRO) 0.015 0.0006 0.873 0.021 0.0017 0.823 0.027 0.0032 0.842 0.021 0.0006 0.932 0.020 0.0005 0.934 0.020 0.0013 0.881

Table 3: 3D Scene (Zhou & Koltun, 2013) reconstructions from sparse point clouds.

Figure 5: SemanticPOSS Pan et al. (2020) reconstruc-
tion from road scene LiDAR data.

Figure 6: Qualitative com-
parisons on BlendedMVS
(Yao et al., 2020) and Tanks
Temples dataset (Knapitsch
et al., 2017).

noise while ours is dedicated to high levels of noise. On the other hand, NTPS reconstructions are
typically coarser and less detailed. It should be noted that not every ShapeNet-trained Generalizable
method (seen in the table’s upper section) performs well in this particular experiment.

4.6 REAL SCENE LEVEL RECONSTRUCTION

We present reconstruction results on the 3D Scene (Zhou & Koltun, 2013) data from sparse point
clouds following Chen et al. (2023a). Results for the state-of-the-art NTPS technique, NP, SAP,
NDrop, and NSpline were compiled from NTPS. Results for NAP and SparseOcc are reported from
their respective papers and summarized in Table 3. We outperform the competition in this setting
because of our loss that can hedge against high levels of noise in contrast to NAP. The qualitative
comparisons to our baseline NP and SPSR are displayed in Figure 4. Areas where our technique
exhibits particularly excellent details and fidelity in the reconstruction are shown by colored boxes.

Additionally, we conduct qualitative comparisons on BlendedMVS (Yao et al., 2020) and large-scale
scenes from the Tanks Temples dataset (Knapitsch et al., 2017) using sparse views. VGGSfM (Wang
et al., 2024), a recent state-of-the-art fully differentiable structure-from-motion pipeline, is used for
this experiment. Although VGGSfM effectively generates point clouds by triangulating 2D point
trajectories and learned camera poses, the sparse input images result in sparse and noisy point clouds,
making SDF-based reconstruction challenging. To illustrate the strength of our method, we compare
3 examples from each dataset against SparseOcc and NAP in Fig. , demonstrating sharper details,
especially on large-scale scenes from Tanks Temples, where other methods struggle due to noise in
VGGSfM’s point clouds.

To further assess the robustness of our approach, we show reconstructions under the SemanticPOS
dataset Pan et al. (2020) and provide qualitative comparisons with SparseOcc, NAP , and NP (Ma
et al., 2021) in Figure 5. The visualizations use color-coded semantic segmentations from the dataset,
which are not used during training. Our results demonstrate a clear improvement in reconstruction
quality, attributable to our DRO formulation. Notably, objects such as cars, trees, and pedestrians
are reconstructed with greater detail and accuracy, while the baseline methods tend to merge these
object classes into indistinct blobs. Our method (SDRO) also excels in preserving the overall scene
layout. Notably, while SparseOcc and NAP perform well under low noise, their performance degrades
significantly under high noise levels. More qualitative results are available in the supplementary
material.
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Figure 7: Performance over
training time on Shapenet (Chang
et al., 2015) class Tables.

σ = 0.0 σ = 0.005 σ = 0.025
CD1 NC CD1 NC CD1 NC

NP (baseline) 0.73 0.906 1.07 0.847 2.45 0.668
NAP 0.63 0.926 0.75 0.86 2.21 0.67

SparseOcc 0.56 0.931 0.77 0.89 2.16 0.68
Ours(SDRO) 0.43 0.945 0.65 0.91 1.54 0.702

Table 4: Ablation of our method under varying levels
of noise on Shapenet (Chang et al., 2015) class Tables.

5 ABLATION STUDIES

Noise ablation To isolate the impact of input sparsity and input noise (displacement relative to the
surface) on our method’s performance compared to the NP baseline, we present results with varying
noise levels in Table 4. These findings consistently demonstrate our method’s improvement over the
baseline across different levels of noise. This suggests that our distributionally robust training strategy
effectively mitigates noise in the labels arising from both input displacement from the surface and
input sparsity. We note that with high levels of noise our approach outperforms NAP and SparseOcc.

Training time To assess the computational efficiency of our method, we present, in Figure 7, the
performance improvement over training time for our proposed DRO approaches as well as the
NP baseline. This graph illustrates the performance achieved by training for specific durations.
Specifically, we observe that WDRO reaches the NP baseline performance with a delay of 3 minutes
and requires a total of 10 minutes to achieve its peak performance. In contrast, SDRO shows
improvement over the NP baseline after training for only 2 minutes and reaches its best performance
in less than 6 minutes, matching the convergence time of the baseline while significantly improving on
both the baseline and our WDRO approach performance. This highlights the computational benefits
of relying on the Sinkhorn distance instead of Wasserstein distance in defining the uncertainty sets of
our distributional robust optimization problem (3). Additional ablation studies are provided in the
supplemental material.

6 LIMITATIONS

In some specific settings it can be hard to set the hyperparameters of our method. Increasing the dual
variable λ that controls the perturbation cost can result in under-performance. While this limitation is
shared with NAP (Ouasfi & Boukhayma, 2024a), it’s not clear how to combine the adaptive local
control on spatial adversaries provided by NAP (Ouasfi & Boukhayma, 2024a) with the global control
provided by WDRO and SDRO. We plan to address this point in future work.

7 CONCLUSION

We have shown that regularizing implicit shape representation learning from sparse unoriented point
clouds through distributionally robust optimization can lead to superior reconstructions. We believe
these new findings can usher in a new body of work incorporating distributional robustness in learning
various forms of neural implicits, which in turn can potentially have a larger impact beyond the
specific scope of this paper.

8 POTENTIAL BROADER IMPACT

This paper presents work whose goal is to advance the fields of Machine Learning and 3D Computer
Vision, specifically implicit neural shape representation learning. There are many potential societal
consequences of our work, none of which we feel must be specifically highlighted here.
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ADDITIONAL RESULTS

To accompany numerical results in Table 5 in the main paper using the SRB (Williams et al., 2019)
benchmark, we show here a qualitative comparison between our method and methods NP(Ma et al.,
2021) (our beseline), OG-INR(Koneputugodage et al., 2023) and SPSR (Kazhdan & Hoppe, 2013).
Notice that we recover better shapes overall.

ADDITIONAL ABLATIVE ANALYSIS

Sparse Dense
SPSR 2.27 1.25
DIGS (Ben-Shabat et al., 2022) 0.68 0.19
OG-INR (Koneputugodage et al., 2023) 0.85 0.20
NTPS (Chen et al., 2023a) 0.73 -
NP (Ma et al., 2021) 0.58 0.23
Ours (WDRO) 0.51 0.20
Ours (SDRO) 0.48 0.21

Table 5: Ablation of point cloud density

Varying the point cloud density We use the SRB benchmark (Williams et al., 2019) to evaluate
the performance of our method across various point cloud densities. Qualitative results in SRB are
provided in Figure 8. Table 5 presents comparative results for both 1024-sized and dense input point
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Figure 8: SRB (Williams et al., 2019) unsupervised reconstructions from sparse (1024 pts) unoriented point
clouds without data priors.

clouds. We include results from the competition, specifically OG-INR, in the dense setting. Our
distributionally robust training strategy outperforms competitors in the sparse case and performs
comparably with the state-of-the-art in the dense case. Notably, we observe substantial improvement
over our baseline (NP) for both sparse and dense inputs. These results underscore the practical utility
and benefit of our contribution, even in dense settings. Interestingly, our ablation analysis reveals that
for dense inputs, WDRO may exhibit slightly better performance compared to SDRO. This result is
not surprising, given that WDRO is certified to effectively hedge against small perturbations (Sinha
et al., 2017). Consequently, as the input becomes denser, the noise on the labels due to input sparsity
diminishes, thereby favoring WDRO.

In order to determine the hyperparameters of our proposed approach (SDRO), We performed a
hyperparameter search on the SRB (Williams et al., 2019) benchmark utilizing the chamfer distance
between the reconstruction and the input point cloud as a validation metric. For the remaining
datasets, we employed the same hyperparameters.

We carry out here an ablation study where we vary each one of the hyperparameters λ and ρ while
fixing the remaining ones in order to better understand the behavior of our approach (SDRO) and its
sensitivity to the choice of these hyperparameters.

Regularization parameter λ. This parameter controls how close the worst-case distribution
Q′ is to the nominal distribution. As a result, Figure 10 illustrates how a very high value for this
parameter minimizes the regularization impacts of SDRO by maintaining the worst-case samples
around the nominal samples. Conversely, excessively low values lead to overly pessimistic estimations
over-smoothing the results, despite greatly improving over the NP baseline.

Regularization parameter ρ. This parameter is responsible for the strength of the entropic
regularization: it controls how the SDRO worst case distribution is concentrated around the support
points of WDRO worst case distribution Wang et al. (2021). Consequently, it has to be defined such
that it facilitates finding challenging distributions around the surface while maintaining a useful
supervision signal. According to Figure 9, it is important to utilize a sufficiently high ρ value in
order to hedge against the right family of distributions. Contrastively, very high values can result in
increased variance. Notice that ρavg here corresponds to average σp over the input points P.
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Figure 9: Ablation of the regularization parameter
ρ.

Figure 10: Ablation of the regularization parame-
ter λ.

TRAINING ALGORITHM FOR WDRO

We provide in 2 the detailed training procedure for WDRO.

Algorithm 2 The training procedure of our method with WDRO.
Input: Point cloud P, learning rate α, number of iterations Nit, batch size Nb.

WDRO hyperparameters: ϵ, σ0, αwdro, Nwdro
it , ηλ.

Output: Optimal parameters θ∗.
Compute local st. devs. {σp} (σp = maxt∈Knn(p,P) ||t− p||2).
Q← sample(P,{σp}). (Equ. 1)
Compute nearest points in P for all samples in Q.
Initialize λ1 = λ2 = 1.
Initialize λ.
for Nit times do

Sample Nb query points {q, q ∼ Q}.
Initialize Nb points {q′}, (q′ ∼ N (q, σ0I3)).
for Nwdro

it times do
q′ ← q′ + αwdro∇q′ [L(θ, q′)− λc(q, q′)]

end for
λ← λ− ηλ

(
ϵ− 1

Nb

∑Nb
i=1 c (q

′
i, qi)

)
Compute WDRO losses {LWDRO(θ, q)} (Equ. 4)
Compute combined losses {L(θ, q)} (Equ. 10)
(θ, λ1, λ2)← (θ, λ1, λ2)− α∇θ,λ1,λ2ΣqL(θ, q)

end for

EVALUATION METRICS

Following the definitions from Boulch & Marlet (2022) and Williams et al. (2019), we present
here the formal definitions for the metrics that we use for evaluation in the main submission. We
denote by S and Ŝ the ground truth and predicted mesh respectively. We follow Chen et al. (2023a)
to approximate all metrics with 100k samples from S and Ŝ for ShapeNet and Faust and with
1M samples for 3Dscene. For SRB, we use 1M samples following Ben-Shabat et al. (2022) and
Koneputugodage et al. (2023). Chamfer Distance (CD1) The L1 Chamfer distance is based on the
two-ways nearest neighbor distance:

CD1 =
1

2|S|
∑
v∈S

min
v̂∈Ŝ
∥v − v̂∥2 +

1

2|Ŝ|

∑
v̂∈Ŝ

min
v∈S
∥v̂ − v∥2.

Chamfer Distance (CD2) The L2 Chamfer distance is based on the two-ways nearest neighbor
squared distance:

CD2 =
1

2|S|
∑
v∈S

min
v̂∈Ŝ
∥v − v̂∥22 +

1

2|Ŝ|

∑
v̂∈Ŝ

min
v∈S
∥v̂ − v∥22.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

F-Score (FS) For a given threshold τ , the F-score between the meshes S and Ŝ is defined as:

FS
(
τ,S, Ŝ

)
=

2 Recall · Precision
Recall + Precision

,

where
Recall

(
τ,S, Ŝ

)
=|

{
v ∈ S, s.t. minv̂∈Ŝ ∥v − v̂∥2⟨ τ

}
|,

Precision
(
τ,S, Ŝ

)
=|

{
v̂ ∈ Ŝ, s.t. minv∈S ∥v − v̂∥2⟨ τ

}
| .

Following Mescheder et al. (2019) and Peng et al. (2020), we set τ to 0.01.

Normal consistency (NC) We denote here by nv the normal at a point v in S . The normal consistency
between two meshes S and Ŝ is defined as:

NC =
1

2|S|
∑
v∈S

nv · nclosest(v,Ŝ) +
1

2|Ŝ|

∑
v̂∈Ŝ

nv̂ · nclosest(v̂,S),

where
closest(v, Ŝ) = argminv̂∈Ŝ ∥v − v̂∥2.
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