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ABSTRACT

We introduce Shallow Learning In Materio (SLIM) as a resource-efficient method
to realize closed-loop higher-order perceptrons. Our SLIM method provides a
rebuttal to the Minsky school’s disputes with the Rosenblatt school about the ef-
ficacy of learning representations in shallow perceptrons. As a proof-of-concept,
here we devise a physically-scalable realization of the parity function. Our find-
ings are relevant to artificial intelligence engineers, as well as neuroscientists and
biologists.

1 Introduction

How do we best learn representations? We do not yet fully understand how cognition is manifested
in any brain, not even in those of a worm (Rankin, 2004). It is an open question if the shallow
brain of a worm is capable of working memory, but if it were then it certainly must depart from the
mechanistic models of large-scale brains (Eliasmith et al., 2012). Nevertheless, worm-brain inspired
learning combined with ”scalable” deep learning architectures have been employed in self-driving
cars (Lechner et al., 2020). At present, by scalable we refer to TPU-based architectures (Jouppi
et al., 2017) trained by gradient-descent (Rumelhart et al., 1986). However, one could envision a
super-scalable future that is less synthetic and based on self-organized nanomaterial systems (Bose
et al., 2015; Chen et al., 2020; Mirigliano et al., 2021) that natively realize higher-order (Lawrence,
2022a) and recurrent neural networks. In this short communication, we shall lay yet another brick
towards such a future by providing theoretical arguments.
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Figure 1: A typology of cognitive material systems.
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Our perspective on cognitive material systems is illuminated in Figure 1. Deep learning owes its
success to our technological capacity to synthesize massively-parallel and programmable electronic
circuits. It is yet to fully exploit Darwinian and Hebbian learning methods that pioneers of the
cybernetics movement experimented with by training homeostats (Ashby, 1952) and perceptrons
(Rosenblatt, 1961). The spirit of Darwinian (Stanley et al., 2019) and Hebbian (Scellier & Bengio,
2017) learning continues to be alive, though. Here, we add fuel to that fire by advocating for an
in-materio approach.

Employing physical systems in their native form for solving computational tasks had gained atten-
tion due to the efforts of the ’evolution in materio’ community (Miller & Downing, 2002). The ear-
liest result was by Pask (1960) who grew dendritic metallic threads in a ferrous sulphate solution to
function as a sound-frequency discriminator (which he called an ear, quite romantically). Now, more
recent efforts are under the banner of physical reservoir computing (Tanaka et al., 2019) for realizing
sequential functionality. Here, we will commit to combinational functionality by equilibrium-point
logic (Lawrence, 2022b) in material systems realizing closed-loop higher-order perceptrons.

2 Theory

Perceptrons were developed by Rosenblatt and his team, and were trained by a Hebbian learning
rule (error-controlled reinforcement) with proven guarantees for convergence. Unfortunately, they
started recieving a bad rap after Minsky & Papert (1988) published a proof that 2N association
neurons are required to learn the N -bit parity function. However, this analysis is only applicable if
all neurons are threshold logic gates, what Rosenblatt called simple units. Physical neural networks,
on the other hand, can natively realize complex units. Hence, we introduce a shallow learning in
materio (SLIM) perceptron as depicted in Figure 2.

y

x[1]

x[2]

x[N]

w[1] 

w[2] 

w[N] 

s[1]

s[2]

s[N]

s[1]

y

x[1]

x[2]

x[N]

s[2N]

s[N+1]

w[1] 

w[N+1] 

w[2N] 

Minsky-Papert perceptron SLIM perceptron

Figure 2: To learn the N -bit parity function, the required number of synaptic weights (depicted as
dashed lines) for our SLIM perceptron scales as N instead of the 2N required for the Minsky-Papert
perceptron. This gain in resource-efficiency is possible because the hidden states s1:N of the SLIM
perceptron can compute deep-feedforward functionality by equilibrium-point control.

For a proof-of-concept, we commit to a minimally connected recurrent network with physical states
si from i = 1 : N , yielding a state-space model of the form

ṡi = xi + Fi(si−1, si, si+1), (1)
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where Fi is a nonlinear function. We conjecture that all possible N -bit functions may be realized if
arbitrary choices of F1:N are allowed. At present there is no engineering theory to design an optimal
Fi (even when N = 2).

We first take an approach amicable to discrete mathematics, and demonstrate equilibrium-point
logic in Figure 3 with F1:2 designed as piecewise-constant functions. A promising approach to
obtain Fi for higher dimensions is to identify an analogy with cellular automaton that are capable of
equilibrium-point parity logic in arbitrary dimensions (Betel et al., 2013). Obtaining scaling laws for
the volume of state-space in action during equilibrium-point logic may be another worthy problem
to ponder upon.
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Figure 3: Equilibrium-point logic in a piecewise-constant vector field ṡi = xi+Fi(s1, s2) designed
to realize s1 = x1 ⊕ x2. The components of Fi combine to generate the field at x1 = x2 =
0 for the input-driven dynamical system. The field can be updated on addition of input(s) in 3
possible directions, and the system traverses to a new equilibrium-point as shown (traversing the
gray regions).
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Figure 4: Maximum and minimum eigenvalues over all 2N locally-linear modes of equation 2.

Imposing conditions of physical realizability on Fi would affect the neuronal capacity (Baldi & Ver-
shynin, 2018) of our SLIM perceptron. To obtain an insight into the abundance of unique functions
expressable by SLIM, let us consider a unit-resistor learnable-threshold (wi) diode network of the
form

Fi(si−1, si, si+1) = si−1 + si+1 − 2si − Ramp(si − wi), (2)
with s0 ≡ s1 and sN+1 ≡ sN . The above equation is the simplest expression that captures the non-
linear synergetic interactivity found in the Lyapunov-stable resistor tunnel-diode networks studied in
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(Lawrence, 2022b). For each i = 1 : N , depending on sgn si − wi, there is a positive or a negative
mode of equation 2, and thus there are 2N modes of convergence to equilibrium. Each mode has
N eigenvalues, thus there are N2N different timescales. The smallest and largest eigenvalues are
plotted in Figure 4, and the eigenvalue spread is larger for higher N . Because the largest eigenvalue
is positive, while the system is Lyapunov stable, we may expect a non-trivial mixing of the modes
of functionality on the way to equilibrium. This was confirmed empirically for N = 8 and 1000
random arrays of weights with wi ∈ (0, 1). No two weight arrays yielded the same mode of equi-
libriation for all 2N = 256 inputs, and thus 1000/1000 functions expressed were unique (for N = 3
this was not true and only 266/1000 unique functions were expressed). Wolfram Mathematica code
to reproduce this result and investigate it for other values of N is provided in the Appendix.

3 Conclusion

Our contribution here is threefold: (1) a typology of cognitive material systems that puts a spotlight
on yet-to-be-appreciated alternatives to deep learning, (2) a mathematically tractable framework to
investigate recurrent networks for deep feedforward functionality, (3) framing open problems in
equilibrium-point logic. More theory is needed to develop constructive high-dimensional examples,
and a statistical analysis of SLIM’s performance. Next steps could be to obtain estimates on the
learning duration, and check if it is superior to estimates obtained from the principal convergence
theorem for perceptrons (Rosenblatt, 1961, Section 5.5, Theorem 4). Given the well established (in
silico) deep learning industry, even with a more practical demonstration, business economics would
prevent the shift to a SLIM paradigm in the near future. Nevertheless, the SLIM concept may act as
a catalyst for gifted mathematicians to make new connections or help neuroscientists in unravelling
the mysteries of small-scale brains.

Reviewer contributions

Reviewer sByK asks why this work should be considered novel, in comparison to earlier concepts
such as predictive coding networks. The novelty here comes from using the function Fi in equation 1
to efficiently realize nonlinear predictors in materio, an improvement over the linear weighted-sum
predictors (Srinivasan et al., 1982) that were inspired from image-compression techniques designed
for conventional computers.

Reviewer joB1 is kind to provide a thoughtful summary, and suggests to compare this work to two
other alternatives for realizing the parity function : the complex-weighted neuron of Aizenberg
(2008) and the translated multiplicative neuron of Iyoda et al. (2003). In both alternatives, the
implementation would be less robust to noise at large N , because only a single neuron is employed
(a robust implementation would require a circuit of many physical units for the neuron, making
it ”single” only in a mathematical sense). SLIM need not suffer from such crowding problems,
because the state-space can grow exponentially in volume with N . Several provably convergent
schemes of Hebbian learning as given by Pineda (1987) may be engineered in materio, to act as a
generalization of backpropagation for closed-loop higher-order perceptrons.

Based on feedback from all reviewers, the technical novelty of this work has been clarified in the
conclusion (contribution no. 2).
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A Appendix

Snippet of Wolfram Mathematica code used to estimate the abundance of in-materio functionality.

6


	Introduction
	Theory
	Conclusion
	Appendix

