
On Hierarchies of Fairness Notions in Cake Cutting:
From Proportionality to Super Envy-Freeness

Arnav Mehra
Capital One

mehraarn000@gmail.com

Alexandros Psomas
Purdue University

apsomas@purdue.edu

Abstract

We consider the classic cake-cutting problem of producing fair allocations for n
agents, in the Robertson–Webb query model. In this model, it is known that: (i)
proportional allocations can be computed using O(n log n) queries, and this is opti-
mal for deterministic protocols; (ii) envy-free allocations (a subset of proportional

allocations) can be computed using O

(
nnnnnn )

queries, and the best known

lower bound is Ω(n2); (iii) perfect allocations (a subset of envy-free allocations)
cannot be computed using a bounded (in n) number of queries.
In this work, we introduce two hierarchies of new fairness notions: Harmonically
Coalition-Resistant (HCR) and Linearly Coalition-Resistant (LCR). An allocation
is HCR-k if the allocation is complete and, for any subset of agents S of size at
most k, every agent i ∈ S believes the value of all pieces allocated to agents in
S to be at least 1

n−|S|+1 , making the union of all pieces allocated to agents not in

S at most n−|S|
n−|S|+1 ; for LCR-k allocations, these bounds become |S|

n and n−|S|
n ,

respectively. Intuitively, these notions of fairness ask that, for every agent i, the
collective value (from the perspective of agent i) that a group of agents receives
is limited. If the group includes i, its value is lower-bounded, and if the group
excludes i, it is upper-bounded, thus providing the agent some protection against
the formation of coalitions.
Our hierarchies bridge the gap between proportionality, envy-freeness, and super
envy-freeness. HCR-k and LCR-k coincide with proportionality for k = 1.
For all k ≤ n, HCR-k allocations are a superset of envy-free allocations (i.e.,
easier to find). On the other hand, for k ∈ [2, ⌈n/2⌉ − 1], LCR-k allocations are
incomparable to envy-free allocations. For k ≥ ⌈n/2⌉, LCR-k allocations are a
subset of envy-free allocations (i.e., harder to find), while LCR-n coincides with
super envy-freeness: the value of each agent for their piece is at least 1/n, and
their value for the piece allocated to any other agent is at most 1/n.
We prove that HCR-n allocations can be computed using O(n4) queries in the
Robertson–Webb model. On the flip side, finding HCR-2 (and therefore all HCR-k
for k ≥ 2) allocations requires Ω(n2) queries, while LCR-2 (and therefore all
LCR-k for k ≥ 2) allocations cannot be computed using a bounded (in n) number
of queries. Our results reveal that envy-free allocations occupy a curious middle
ground, between a computationally impossible notion of fairness, LCR-⌈n/2⌉, and
a computationally “easy” notion, HCR-n.

1 Introduction

We consider the classic problem of cake cutting, proposed by Hugo Steinhaus [Ste48], while in
hiding during World War II [Wik25]. In this problem, there is a heterogeneous resource, the “cake,”

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



typically represented by the interval [0, 1]. There is a set N of n agents with different valuations
functions V1, . . . , Vn over subsets of the cake; these valuations functions are induced by probability
measures over [0, 1] (and hence, for example, the value of every agent for the entire cake is equal
to 1). The goal in this problem is to allocate to each agent a piece of the cake — a finite union of
disjoint intervals — in a fair manner, under various notions of fairness. This simple model has served
as a cornerstone for fair division, shaping many of the field’s foundational questions.

A major focus has been the complexity of computing fair allocations. The complexity of discrete
cake-cutting protocols is measured by the number of queries they require in the query model suggested
by Robertson and Webb [RW98] and later formalized (and named) by Woeginger and Sgall [WS07].
For example, it is well understood that proportional allocations, those where every agent i ∈ N
values their piece at least 1/n, can be computed using O(n log n) queries [EP84]; and, this is tight:
every deterministic protocol requires Ω(n log n) queries [EP11]. Another major notion of fairness
is equitability, which requires that every agent has the same value for the piece allocated to them,
i.e., for all agents i, j ∈ N , Vi(Ai) = Vj(Aj) (where Aℓ is the piece allocated to agent ℓ). Procaccia
and Wang [PW17] proved that equitable allocations cannot be computed in a bounded (in n) number
of queries. This result, in turn, rules out bounded protocols for another major notion of fairness,
perfection: an allocation A is perfect if for all agents i, j ∈ N , Vi(Aj) = 1/n.1

Arguably the most important notion of fairness — the holy grail of fair division — is envy-freeness; an
allocation A is envy-free if every agent prefers their piece to the piece allocated to any other agent, i.e.,
for all agents i, j ∈ N , Vi(Ai) ≥ Vi(Aj). It is easy to see that every perfect allocation is envy-free,
and every envy-free and complete (∪iAi = [0, 1]) allocation is proportional. Unlike proportionality,
equitability, and perfection, the complexity of computing (complete) envy-free allocations has been
rather elusive. The existence of bounded protocols remained open for two decades until Aziz and

Mackenzie [AM16a] presented a protocol that requires at most O(nnnnnn

) queries. The best known
lower bound is Ω(n2) [Pro09], leaving an astronomical gap in our understanding.

In this paper, we zoom in on the landscape of fairness between proportionality and perfection,
focusing on the query complexity of different notions in this less understood intermediate space.

1.1 Our contributions

We introduce two new hierarchies of fairness: Harmonically Coalition-Resistant (HCR) and Linearly
Coalition-Resistant (LCR). An allocation A satisfies HCR-k if, for every subset of agents S such that
|S| ≤ k, and for every agent i ∈ S, the value of i for the union of pieces allocated to agents not in S is
at most n−|S|

n−|S|+1 , i.e.,
∑

j /∈S Vi(Aj) = Vi(AN\S) ≤ n−|S|
n−|S|+1 . Equivalently, Vi(AS) ≥ 1

n−|S|+1 . For

LCR-k, the upper bound is n−|S|
n , and the lower bound is |S|

n . The existence of HCR-k allocations
is implied by the existence of envy-free allocations. Let A be an envy-free allocation; for all agents
i, j ∈ N , Vi(Aj) ≤ Vi(Ai). Adding up for all j /∈ S gives

∑
j /∈S Vi(Aj) ≤ (n − |S|)Vi(Ai) ≤

(n − |S|)(1 −
∑

j /∈S Vi(Aj)); re-arranging gives the desired inequality. The existence of LCR-k
allocations is similarly implied by the existence of perfect allocations.

Our new fairness notions are interesting precisely because they occupy a natural but largely unexplored
middle ground between proportionality and envy-freeness. HCR-k allocations limit how much value
groups of agents collectively derive from other agents’ shares; thus, they may be particularly suited for
contexts where collective perceptions of fairness are important. LCR-k allocations impose stronger
conditions, which makes them appealing when perfection is desired (where the computational cost
is prohibitive/unbounded). By providing a spectrum of fairness guarantees, these notions offer a
more nuanced toolkit, enabling practitioners to better navigate the trade-off between computational
complexity and fairness requirements.

In Appendix A we start by showing how our new notions relate to the existing notions of fairness; we
focus on complete allocations (as, otherwise, envy-freeness is the easiest notion, since it is satisfied
by an empty allocation). We show that the entire HCR-k hierarchy lies between proportionality and
envy-freeness, with HCR-1 being proportionality, but HCR-n being a strict superset of envy-freeness.
On the other hand, the entire LCR-k hierarchy lies between proportionality and perfection, with
LCR-1 also being proportionality, while LCR-n is equivalent to super envy-freeness. An allocation

1Which, perhaps surprisingly, always exist [Lia40, Alo87]!

2



PROP =
HCR-1 =

LCR-1

Θ(n log n)[EP84, EP11]

HCR-2 . . . HCR-n

Ω(n2)[∗]

O(n4)[∗] O(nnnnnn

)[AM16a]

LCR-2 . . . LCR-(⌈n2 ⌉ − 1)

Unbounded [∗]
EF LCR-⌈n2 ⌉ . . . LCR-(n− 2)

SUPER-EF =
LCR(n− 1) =

LCR-n

Figure 1: Relation between our new notions of fairness, Proportionality (PROP), Envy-Freeness (EF),
and Super Envy-Freeness (SUPER-EF). A solid arrow from Y to X represents that notion Y implies
notion X , i.e. X ← Y means X ⊋ Y . X ← Y implies that finding an allocation with property Y is
a harder task. Our results, highlighted in colored rectangles, are marked with [∗].

A is super envy-free if, for all agents i, j ∈ N , Vi(Ai) ≥ 1/n ≥ Vi(Aj). Regarding LCR-k and
envy-freeness, for 2 ≤ k ≤ ⌈n2 ⌉ − 1, LCR-k is incomparable to envy-freeness; for k ≥ ⌈n2 ⌉, LCR-k
implies envy-freeness. See Figure 1.

We proceed to study the complexity of computing our new notions in the Robertson-Webb model.
In Section 3 we prove our main upper bound, Theorem 1: there exists a protocol that computes
complete, HCR-n allocations, using at most O(n4) queries in the Robertson-Webb model. The first
key observation is that, a complete, proportional and “near-perfect” allocation A = (A1, . . . , An)
satisfies all the constraints required by HCR-n; concretely, completeness, along with Vi(Ai) ≥ 1

n and
Vi(Aj) ≥ 1

2n for all j, implies HCR-n. Therefore, it is natural to start with an ϵ-perfect allocation
— which can be computed using only O(n3/ϵ) queries [BM15] — and try to adjust it to satisfy the
additional proportionality property. An obstacle in this approach is that, for any ϵ > 0, it might be the
case that the ϵ-perfect allocation is such that Vi(Aj) >

1
n , for all j ̸= i, making it impossible to satisfy

proportionality for i, unless we trim other agents’ pieces. This obstacle can be bypassed with the
following trick: introduce ℓ phantom agents, with arbitrary valuation functions, and find an ϵ-perfect
partition for the instance with n + ℓ agents. Then, the “real” agents get almost equal allocations,
no one gets a piece whose value is larger than 1

n , and the allocations of the phantom agents can be
combined into a new piece, the residue, to be allocated among the real agents, using, e.g., a clever
recursion. However, intuitively, such a step forces us to find an allocation of the residue that is
weighted proportional, where agents have different weights (or, equivalently, find an allocation such
that agents’ utilities meet specific utility lower bounds). Unfortunately, this leads us to a dead-end:
there is no bounded protocol for finding a proportional division with unequal shares [CF20]. The
final piece of this puzzle is that pieces returned by the ϵ-perfect call do not need to be matched to
specific “real” agents, but should be available for anyone to claim.

In more detail, our algorithm, Algorithm 1, starts by finding an ϵ-perfect allocation B for 4n/3
agents, where the n/3 extra agents, agents n+ 1, . . . , 4n/3, have arbitrary valuation functions. Let
B1, . . . , Bn be the first n pieces of this allocations; pieces Bn+1, . . . , B4n/3 are combined into the
residue R. Importantly, “real” agents are not allocated any of the Bj pieces (yet). Algorithm 1 then
proceeds à la Dubins-Spanier [DS61] (or Last Diminisher [Ste48]). Let S be the subset of the Bj

pieces still available. The algorithm asks every agent i to make a mark on R, such that their value to
the left of the mark is equal to 1/n−maxB∈S Vi(B). The agent i∗ with the left-most mark (breaking
ties arbitrarily) gets the two corresponding pieces, one from cutting the residue and their favorite piece
from S, and exits the process. The process is repeated until a single agent j is left, who is allocated
the entire remaining residue, and the unique piece left in S. We prove that Algorithm 1 computes a
HCR-n allocation using O(n4) queries. Importantly, our query complexity bound relies on the fact
that the algorithm of Brânzei and Miltersen [BM15] for finding ϵ-perfect allocation produces at most
O(n2) intervals.

In Appendix B we prove our main lower bounds. First, we prove that computing a HCR-2 allocation
requires Ω(n2) queries (Theorem 6), while computing a LCR-2 allocation is impossible using a
bounded protocol (Theorem 7). To prove our first lower bound, Theorem 6, we first formalize the

3



amount of knowledge an algorithm can have about an agent i after t queries. We use the notion of
active intervals. Intuitively, if an interval I is active for agent i at step t, denoted by I ∈ Πt

i, then
Vi(I) is known to the algorithm, but for all I ′ ⊊ I , an adversary can pick Vi(I

′) to be anything from
0 to Vi(I). That is, all these choices for Vi(I

′) are consistent with the query responses up until time t.
This definition was also at the core of the Ω(n2) lower bound for envy-freeness, by Procaccia [Pro09].
Here, we argue that, if the adversary responds to queries as if the valuation functions are uniform
for the entirety of an algorithm’s execution, the allocation A = (A1, . . . , An) that the algorithm
outputs must be such that Ai ∈ ΠT

i and Vi(Ai) =
1
n , for all i ∈ N , where T is the number of queries

the algorithm made before terminating. For LCR-2 to be satisfied, Vi(Ai) =
1
n implies a condition

on Vi(Aj), that similarly needs to be “checked” (i.e., I ∈ ΠT
i , for some I ⊆ Aj) for all pairs of

agents i, j ∈ N ; the Ω(n2) lower bound follows. Our second lower bound, Theorem 7, reduces the
problem of finding an LCR-2 allocation to a known problem with unbounded query complexity:
the problem of finding an exact division. In the exact division problem, we are given target values
w1, . . . , wz , and are asked to split the cake into z pieces, so that every agent i has value wℓ for piece
ℓ, for ℓ = 1, . . . , z. Exact division is known to be impossible to solve with a bounded protocol, even
for the case of two valuation functions and z = 2 pieces with equal weights [RW98]. Theorem 7
immediately implies that the problem of finding a super-envy free allocation has unbounded query
complexity in the Robertson-Webb model, which, to the best of our knowledge, was an open problem.

Finally, in Section 4, in light of the strong lower bounds for LCR-2, we consider approximations.
The minimally weaker notion that we could hope to achieve is the following: (i) if |S| = 1,
then Vi(AS̄) ≤ n−1

n , for all i ∈ S (i.e., the allocation is proportional), (2) if |S| = 2, then
Vi(AS̄) ≤ n−2

n (1 + δ), for all i ∈ S. We show that this notion is possible to achieve with a bounded
protocol. More generally, we define δ-LCR-k to be the set of complete and proportional allocations,
such that if k ≥ |S| ≥ 2, then Vi(AS̄) ≤

n−|S|
n (1 + δ); we prove that the query complexity of

computing a δ-LCR-n allocation is O
(

n6

ϵ
ln(n/ϵ)
ln(n)

)
. To prove this result, we give an algorithm

for finding complete, proportional, and ϵ-perfect allocations using O
(

n5

ϵ
ln(1/ϵ)
ln(n)

)
queries, which

might be of independent interest. The high-level blueprint of this algorithm, Algorithm 2, is similar
to Algorithm 1: in phase one split the cake into approximately equal pieces and residue, and in phase
two run a “cut-and-match Last Diminisher.” Algorithm 2 requires much stricter conditions from the
pieces and residue at the end of phase one. As opposed to Algorithm 1, phase one in Algorithm 2
is implemented via a recursion: at each iteration the residue is split into an (n+ 1)-piece ϵ′-perfect
allocation. Out of these n + 1 pieces, one of them serves as the residue in the next iteration. The
first n pieces are carefully matched to previously computed pieces. This process is done d times in
total, where d and ϵ′ need to be carefully chosen so that the value of every agent for every “combined”
piece (across iterations) is within the required bounds.

Our results provide significant insight into the spectrum of fairness notions between proportionality
and super envy-freeness; see Figure 1. We observe that the two ways of strengthening proportionality,
HCR-2 and LCR-2, lead to strikingly different lower bounds on the corresponding query complexity.
Envy-freeness occupies a curious middle ground. The minimally weaker fairness notion, HCR-n, can
be solved in O(n4) queries, while the minimally stronger fairness notion, LCR-⌈n2 ⌉, has unbounded
query complexity. A concrete take-home message of our work regarding the query complexity of
finding envy-free allocations is that, if a super polynomial lower bound exists, then there must exist
a subproblem strictly harder than finding HCR-n allocations which requires a super polynomial
number of queries to solve.

1.2 Related work

As already discussed, proportional allocations can be computed using O(n log n) queries [EP84],
and this is tight for deterministic protocols [EP11]. Randomized algorithms can bypass this lower
bound [EP06]. Surprisingly, finding a (weighted) proportional allocation when agents have unequal
shares requires an unbounded number of queries [CF20].

Regarding envy-freeness, the cut-and-choose method gives an envy-free allocation for n = 2 agents,
and the Selfridge–Conway procedure gives an envy-free allocation for n = 3 agents. The problem
of finding an envy-free allocation for four agents, using a bounded number of queries, was resolved
by [AM16b], and later improved by [ACF+18]. For n agents, the best known protocol requires

4



O(nnnnnn

) queries, while the currently best known lower bound is Ω(n2) [Pro09]. Equitable alloca-
tions, and therefore perfect allocations, cannot be found in a bounded number of queries [PW17].

Approximate solutions are typically easier to find. Brânzei and Miltersen [BM15] prove that finding
an ϵ-perfect allocation requires at most O(n3/ϵ) queries, and Brânzei and Nisan [BN22] prove
that finding an ϵ-envy free and connected allocation requires at most O(n/ϵ) queries (and at least
Ω(log(1/ϵ)) queries. Cechlárová and Pillárová [CP12] prove that finding an ϵ-equitable and propor-
tional allocation requires at most O(n(log n+ log(1/ϵ))) queries.

Segal-Halevi and Suksompong [SHS20, SHS23] and Segal-Halevi and Nitzan [SHN19] study cake
cutting among groups. Specifically, Segal-Halevi and Suksompong [SHS20, SHS23] study contiguous
and envy-free cake cutting among groups (where agents within a group also get a contiguous piece).
Segal-Halevi and Nitzan [SHN19] study a problem where a cake must be divided and allocated to
(pre-determined) groups of agents, and study the existence and query complexity of various fairness
notions in this model. For example, in their unanimous FS allocations the n agents are placed in k
groups, K, of size n/k, and for any group S ∈ K and any agent i ∈ S it must hold that Vi(AS) ≥ k

n .
This condition is quite similar to LCR-k; however, it is considerably less restrictive, as it places no
constraints on subsets of size less than k, or different groupings of the agents (LCR-k considers all
possible groupings of size at most k). Segal-Halevi and Nitzan [SHN19] prove that unanimous-FS
allocations require infinite queries; yet little is known about how close one can get with a bounded
number of queries. Our algorithms provide allocations as close to LCR-k as possible, with a bounded
number of queries.

Berliant et al. [BTD92], and later Husseinov [Hus11], study a notion of group fairness, group envy-
freeness, where, similar to our work, the subsets are not predefined. However, their definition only
considers groups of equal size: they call an allocation A = (A1, . . . , An) group envy-free, if for every
pair of groups of agents C1 and C2, with |C1| = |C2|, there is no partition {Bi}i∈C1

of ∪j∈C2
Aj ,

such that, for all i ∈ C1, i prefers Bi to Ai, with strict preference for at least one i ∈ C1. This notion
is stronger (“harder to achieve”) than perfection; the focus of the aforementioned works is existence
of such allocations, and compatibility with economic efficiency.

Further afield, numerous papers study fair allocation of indivisible items among groups of
agents [CFSV19, FT22, CLS25, MS22, STZ23, KSV20, AR21].

2 Preliminaries

We have an infinitely divisible resource, the “cake,” denoted by the interval [0, 1]. A piece of cake
refers to a finite set of disjoint intervals of [0, 1]. Our goal is to allocate the cake among a set N of n
agents. An allocation A = (A1, . . . , An) of the cake to the agents consists of n pieces, where Ai is
the piece allocated to agent i, such that Ai ∩Aj = ∅ for all pairs of agents i, j. An allocation A is
complete if ∪ni=1Ai = [0, 1]. For an allocation A and a subset of agents S ⊆ N , we will use notation
AS = ∪i∈SAi to denote the union of all pieces allocated to the agents in S. We also use notation
S̄ = N \ S for the complement of a set S.

Every agent i ∈ N has a valuation function Vi that assigns a non-negative value to any subinterval
of [0, 1]. It is convenient to think of these values as being induced by a density function vi. That
is, for an interval I = [a, b], Vi(I) =

∫ b

x=a
vi(x)dx. Valuations are (i) normalized: Vi([0, 1]) =∫ 1

x=0
vi(x)dx = 1, (ii) additive: for a set of disjoint intervals I1, . . . , Im, Vi(∪mj=1Ij) =

∑m
j=1 Vi(Ij),

(iii) non-atomic: ∀x, y ∈ [0, 1], λ ∈ [0, 1],∃z ∈ [x, y] where Vi([x, z]) = λ · Vi([x, y]).

2.1 Robertson-Webb Model

We study the complexity of cake-cutting algorithms in the model suggested by Robertson and
Webb [RW98] and later formalized (and named) by Woeginger and Sgall [WS07]. This model allows
for two types of queries:

1. EVALi(I): Given an agent i and an interval I ⊆ [0, 1], this query returns Vi(I).

2. CUTi(x, v): Given an agent i, a point x ∈ [0, 1], and a value v ∈ [0, 1], this query returns
the smallest point x′ ∈ [x, 1] such that Vi([x, x

′]) = v.

5



To the best of our knowledge, every discrete cake-cutting algorithm can be (and has been) analyzed in
this model. As a simple example, the cut-and-choose algorithm can be implemented by two queries
as follows. First, a CUT1(0, 1/2) will return the point y such that V1([0, y]) = V1([y, 1]) = 1/2.
The algorithm can determine whether [0, y] or [y, 1] should be allocated to agent 1, by making a
EVAL2([0, y]) and checking whether the value returned is at most 1/2.

2.2 Fairness notions

Our goal is to produce allocations that are fair. An allocation A is proportional if Vi(Ai) ≥ 1/n
for all i ∈ N . An allocation A is envy-free if for all i, j ∈ N , Vi(Ai) ≥ Vi(Aj). An allocation A is
ϵ-perfect if for all i, j ∈ N , 1/n+ ϵ ≥ Vi(Aj) ≥ 1/n− ϵ; an allocation A is perfect if it is 0-perfect.
Finally, an allocation, A, is super envy-free if every agent values their own piece at least 1/n, and
values any other agent’s piece at most 1/n, i.e., Vi(Ai) ≥ 1

n ≥ Vi(Aj), for all i, j ∈ N .

We write PROP, EF, SUPER-EF, and PERF for the set of all complete proportional, envy-free, super
envy-free, and perfect allocations, respectively. For complete allocation, every perfect allocation
is super envy-free, every super envy-free allocation is envy-free, and every envy-free allocation
is proportional, and there exist perfect allocations that are not super envy-free, super envy-free
allocations that are not envy-free, as well as envy-free allocations that are not proportional; that is,
PROP ⊋ EF ⊋ SUPER-EF ⊋ PERF.

In this paper, we define the following new notions of fairness.

Definition 1 (Harmonically Coalition-Resistant-k (HCR-k)). Let k be an integer, such that n ≥ k ≥
1. An allocation A is Harmonically Coalition-Resistant-k (HCR-k) if it is complete and, for every
non-empty subset of agents S ⊆ N such that |S| ≤ k, and every i ∈ S, Vi(AS̄) =

∑
j /∈S Vi(Aj) ≤

n−|S|
n−|S|+1 .

It is easy to see that the definition of Harmonically Coalition-Resistant-1 coincides with the definition
of proportionality. Slightly overloading notation, we write HCR-k for the set of all complete
Harmonically Coalition-Resistant-k allocations.

Definition 2 (Linearly Coalition-Resistant-k (LCR-k)). Let k be an integer, such that n ≥ k ≥ 1.
An allocation A is Linearly Coalition-Resistant-k (LCR-k) if it is complete, for every non-empty
subset of agents S ⊆ N such that |S| ≤ k, and every i ∈ S, Vi(AS̄) =

∑
j /∈S Vi(Aj) ≤ n−|S|

n .

Slightly overloading notation, again, we write LCR-k for the set of all complete Linearly Coalition-
Resistant-k allocations. Notice that every Linearly Coalition-Resistant-k allocation is Harmonically
Coalition-Resistant-k, since n−|S|

n ≤ n−|S|
n−|S|+1 for all |S| ≥ 1.

3 An Algorithm for HCR-n

In this section, we prove our main upper bound: HCR-n allocations can be computed using O(n4)
queries in the Robertson-Webb model.

Theorem 1. Algorithm 1 computes a HCR-n allocation using O(n4) CUT and EVAL queries.

Proof. We first prove that every complete and proportional allocation A such that Vi(Aj) ≥ 1
2n , for

all agents i, j, satisfies HCR-n. Towards this, consider such an allocation A, and an arbitrary subset
of agents S ⊆ N and i ∈ S. Vi(AS̄) = 1 − Vi(AS) ≤ 1 −

(
1
n + |S|−1

2n

)
= 2n−|S|−1

2n ≤ n−|S|
n−|S|+1 ,

as long as |S| ≤ n− 1. For |S| = n, Vi(AS̄) = 0 ≤ n−|S|
n−|S|+1 . Therefore, A ∈ HCR-n.

It remains to prove that Algorithm 1 finds an allocation with these properties (completeness, propor-
tionality, and Vi(Aj) ≥ 1

2n ) using O(n4) CUT and EVAL queries.

Algorithm 1 first computes an 1
4n -perfect allocation B for 4n/3 agents, where the n/3 extra agents,

agents n + 1, . . . , 4n/3, have arbitrary valuation functions. Let B1, . . . , Bn be the first n pieces
of this allocations; pieces Bn+1, . . . , B4n/3 are combined into the residue R, i.e., R = ∪4n/3j=n+1Bj .
Importantly, “real” agents are not allocated any of the Bj pieces (yet).

6



ALGORITHM 1: An algorithm for finding HCR-n allocations

1 Let V +
n+1, . . . , V

+
4n/3 be n/3 arbitrary valuation functions.

2 B ← 1
4n -PERFECT(V1, . . . , Vn, V

+
n+1, . . . , V

+
4n/3). ▷ Find an ϵ-PERFECT allocation with the

extra agents
3 R← ∪4n/3j=n+1Bj . ▷ The pieces of the additional agents becomes the residue
4 M ← {1, . . . , n}. ▷ Initialize the set of active agents.
5 for X ∈ {B1, . . . , Bn−1} do
6 Ask every agent i ∈M to make a mark on R such that the piece to the left of the mark has

value 1/n− Vi(X).
7 Let i∗ ∈M be the agent with the left-most mark on R (breaking ties arbitrarily).
8 Let Ri∗ be the part of R to the left of i∗’s mark.
9 Ai∗ ← Ri∗ ∪X . ▷ Allocate to agent i∗

10 R← R \Ri∗ . ▷ Update the residue
11 M ←M \ {i∗}. ▷ Remove i∗’s piece from S and i∗ from M
12 end
13 For the remaining agent i ∈M , Ai ← Bn ∪R.
14 return A

Algorithm 1 then proceeds à la Dubins-Spanier [DS61]/Last Diminisher [Ste48]. Let S be the subset
of the Bj pieces still available. The algorithm asks every agent i to make a mark on R, such that their
value to the left of the mark is equal to 1/n−maxB∈S Vi(B). The agent i∗ with the left-most mark
(breaking ties arbitrarily) gets the two corresponding pieces (one from cutting the residue and their
favorite piece from S), and exits the process; we denote their final allocation by Ai∗ = A′

i∗ ∪Ri∗ ,
where A′

i∗ is their favorite piece in S, and (slightly overloading notation) Ri∗ is the part of the residue
allocated to them. The process is repeated until a single agent j is left, who is allocated the entire
remaining residue, and the unique piece left in S.

Query complexity. Using the algorithm of Brânzei and Miltersen [BM15] for finding ϵ-perfect
allocation, computing (B,R) costs O((4n/3)3/(1/4n)) = O(n4) queries. This protocol produces
at most O(n2) intervals, and therefore, at most O(n3) EVAL queries are necessary for every agent to
compute the value of every interval. When the value of each interval is known, any query across any
set of these intervals, which we refer to as a super-query, will require at most 2 queries (see proof
below). Applying this, the “Last Diminisher” steps (the while loop in Algorithm 1) will cost another
O(n2) queries. Marking a piece of value 1

n − Vi(Sj) on R for a single agent requires 1 super-query.
So, O(n2) super-queries, or O(n2) actual queries are required for this step. Therefore, the overall
complexity is O(n4).

Claim 1. Let I be a collection of z noncontiguous intervals. If Vi(Ij) is known for all i ∈ N, Ij ∈ I ,
then any super-query over any subset of intervals of I will require at most 2 “real” queries.

Proof. Consider the super-query EVALi([x1, x2]) where x1 ∈ I and x2 ∈ I ′ for some intervals
I, I ′ ∈ I. If I = I ′, x1 and x2 belong to the same interval, meaning only 1 actual query is required.
If I ̸= I ′, then EVALi([x1, x2]) = EVALi([x1, Iright])+EVALi([I

′
left, x2])+

∑
I∈I:I “between” I,I′ Vi(I).

Now consider the super-query CUTi(v1, x1) where x1 ∈ I for some interval I ∈ I. This requires at
most 2 queries: First, perform the true query EVALi([x1, Iright]). Then, using this evaluation along
with those of the intervals to the right of I to determine the interval I ′ the mark x2 will be placed and
the value v2 = v1 − Vi(x1, I

′
left) that should be to the left of x2 in I ′. Finally, only one actual query

is required to determine the cut x2, x2 = CUTi(v2, I
′
left). Thus, given each agent’s evaluation of each

noncontiguous interval, any super-query requires at most 2 actual queries.

Correctness of Algorithm 1. All allocations are complete, by construction. First, we prove that each
allocation is proportional, i.e., Vi(Ai) ≥ Vi(A

′
i) ≥ 1/n, which simply means that at each iteration,

all remaining agents in M will be able to mark out a piece of value 1
n . Consider some iteration t.

Assuming that previous iterations were completed successfully, each agent in M did not have the
left-most mark in R, Vi(A

′
j) ≤ 1

n for all i ∈M, j ∈ N\M . Let Bt be the piece arbitrarily chosen to

7



create an allocation in iteration t. Vi(R) + Vi(Bt) = 1−
∑

j∈N\M Vi(A
′
j)−

∑
Bj∈S\Bt

Vi(Bj) ≥
1− t−1

n −
n−t
n = 1

n . Thus, in this iteration, all agents will be able to place a mark on the residue.
Starting with the trivial case of t = 1 and inductively applying this logic shows that enough of R will
remain for each agent remaining in M to place such a mark.

Regarding the second condition, Vi(Aj) ≥ 1
2n for all agents i, j, we have the following. By the fact

that B is 1
4n -perfect for the instance with 4n/3 agents: Vi(Bℓ) ≥ 1

4n/3 −
1
4n = 1

2n . Observing that
Vi(Aj) = Vi(A

′
j) + Vi(Rj) ≥ Vi(A

′
j), and A′

j is one the Bℓ pieces, completes the proof.

4 Algorithms for Relaxations of LCR-n

In this section, we study approximations of LCR-k, aiming to bypass the strong lower bounds
of Theorem 7. Since LCR-2 is impossible, but LCR-1 (aka, proportionality) is easy to achieve,
the minimally weaker notion that we could hope to achieve is the following: (i) if |S| = 1, then
Vi(AS̄) ≤ n−1

n , for all i ∈ S (i.e., the allocation is proportional), (ii) if |S| = 2, then Vi(AS̄) ≤
n−2
n (1 + δ), for all i ∈ S. More generally, we have

Definition 3 (δ-LCR-k). Let k be an integer, such that n ≥ k ≥ 1. An allocation A is δ-Linearly
Coalition-Resistant-k (LCR-k) if it is proportional, and, for every non-empty subset of agents S ⊆ N

such that 2 ≤ |S| ≤ k, and every i ∈ S, Vi(AS̄) =
∑

j /∈S Vi(Aj) ≤ n−|S|
n (1 + δ).

We prove that δ-LCR-n allocations can be computed efficiently, by expanding on our approach for
HCR-n, i.e., Algorithm 1. First, it is easy to see that a complete, ϵ-perfect, and proportional allocation
A is (ϵn)-LCR-n: for all S ⊆ N such that 2 ≤ |S|, and i ∈ S, Vi(AS̄) ≤ (n − |S|)

(
1
n + ϵ

)
=

n−|S|
n (1 + ϵn). We give an algorithm, Algorithm 2, for finding a complete, ϵ-perfect, and exactly

proportional allocation that requires O
(

n5

ϵ
ln(1/ϵ)
ln(n)

)
queries, which might be on independent interest.

To the best of our knowledge, the closest results in the literature are: (i) an algorithm that finds
proportional and ϵ-equitable allocations using O(n(log n + log(1/ϵ)) queries, by Cechlárová and
Pillárová [CP12], and (ii) the O(n3/ϵ) algorithm of Brânzei and Miltersen [BM15] for finding ϵ-
perfect allocations. Algorithm 2 immediately implies that the query complexity of finding a δ-LCR-n
allocation is O

(
n6

δ
ln(1/δ)
ln(n)

)
.

Theorem 2. For all ϵ > 0, there exists d ∈ Θ
(

ln(1/ϵ)
ln(n)

)
and ϵ′ ∈ Θ

(
ϵ
n2

)
, such that Algorithm 2, with

parameters d and ϵ′, computes a complete, ϵ-perfect, and proportional allocation using O
(

n5

ϵ
ln(1/ϵ)
ln(n)

)
CUT and EVAL queries.

Algorithm 2 differs from Algorithm 1 in its computation of S and the residue R prior to the final
“Last Diminisher” phase (i.e. line 5 in Algorithm 1, line 11 in Algorithm 2 ). In Algorithm 1, the goal
was for each piece of S to have value at least 1

2n , but at most 1
n for any agent. In Algorithm 2, the

goal is similar, but quite harder. Each piece of S must have value at least 1
n − ϵ̃ but at most 1

n for any
agent, for ϵ̃ = ϵ

n ; as we show, this will suffice for ϵ-perfection.

To achieve this Algorithm 2 computes S and R recursively. Starting with the entire cake, it computes
an (n + 1)-piece ϵ′-perfect allocation, designating a single piece of the allocation as R and the
remaining n pieces as S. Then it repeats this process, treating the residue R itself as an entire cake,
designating a piece of the new allocation as the new residue, and combining each of the remaining n
pieces with a distinct piece in S. This process is done d times in total, with the goal that the expected
value of each piece of S (for any agent) is spaced enough between 1

n − ϵ̃ and 1
n . This allows us to

choose a non-zero ϵ′ that keeps the potential values of each piece in S for any agent within a desired
range. In short, if the number of subdivisions d and the margin of error for near-perfect divisions ϵ′
are chosen correctly, then 1

n − ϵ̃ ≤ Vi(Bj) ≤ 1
n for all i, j ∈ N .

Proof of Theorem 2. In Appendix C, we show that if the parameters ϵ′ and d are picked correctly,
Algorithm 2 outputs an allocation where Vi(Ai) ≥ 1

n , Vi(Aj) ≥ 1
n − ϵ̃, ∀i, j ∈ N for any ϵ̃ > 0.

By picking ϵ̃ = ϵ
n , our allocations are ϵ-perfect (in addition to proportional and complete). To see

this, notice that (i) Vi(Aj) ≥ 1
n − ϵ̃ = 1

n −
ϵ
n ≥

1
n − ϵ, and (ii) Vi(Aj) ≤ 1 − (n − 1)

(
1
n − ϵ̃

)
=

8



ALGORITHM 2: An algorithm for finding complete, ϵ-perfect, and exactly proportional alloca-
tions
Input: Parameters ϵ′ and d.

1 Let V + be an arbitrary valuation function.
2 Let B be a set of n empty pieces. R← {[0, 1]} ▷ Initialize the residue as the entire cake
3 for t ∈ {1, . . . , d} do
4 P ← ϵ′-PERFECT(V1, . . . , Vn, V

+) with respect to, and normalized on, R.
5 R← Pn+1

6 for i ∈ [1, n] do
7 Bi ← Bi ∪ Pi ▷ Assign the other n pieces in B to a piece in S
8 end
9 end

10 M ← {1, . . . , n}
11 for X ∈ {B1, . . . , Bn−1} do
12 Ask every agent i ∈M to make a mark on R such that the piece to the left of the mark has

value 1/n− Vi(X).
13 Let i∗ ∈M be the agent with the left-most mark on R (breaking ties arbitrarily).
14 Let Ri∗ be the part of R to the left of i∗’s mark.
15 Ai∗ ← Ri∗ ∪X . ▷ Allocate to agent i∗
16 R← R \Ri∗ . ▷ Update the residue
17 M ←M \ {i∗}. ▷ Remove i∗’s piece from S and i∗ from M
18 end
19 For the remaining agent i ∈M , Ai ← Bn ∪R.
20 return A

1− (n−1)
(
1
n −

ϵ
n

)
= 1

n + ϵ− ϵ
n ≤

1
n + ϵ. In the remainder of the proof, we prove that Algorithm 2

satisfies the desired property, and has query complexity O
(

n4

ϵ̃ ·
ln(1/ϵ̃)
ln(n)

)
.

Query Complexity. We claim that the algorithm requires at most O
(

n4

ϵ̃ ·
ln(1/ϵ̃)
ln(n)

)
to compute an

allocation such that Vi(Ai) ≥ 1
n , and Vi(Aj) ≥ 1

n − ϵ̃. The algorithm involves (i) computing d
(n+ 1)-piece ϵ′-perfect allocations and (ii) performing a “cut-and-match Last Diminisher.” Brânzei
and Miltersen give a protocol for finding ϵ-perfect allocations that uses O

(
n3

ϵ

)
queries [BM15], and

it is well-known that traditional “Last Diminisher” requires O(n2) queries. However, it is premature
to conclude that this would require O

(
n3

ϵ′

)
· d + O(n2) ∈ O

(
n3

ϵ′ · d
)

queries. Many of these
“queries” are performed over a collection of noncontiguous intervals, rather than a contiguous cake,
i.e., they are super-queries. To account for this, similar to our analysis of Algorithm 1, we maintain
each agent’s valuation of each interval, so that each super-query requires at most 2 actual queries.
This is shown as Claim 1 in Algorithm 1; an identical argument works here as well.

Next, we show that if we tracked each agent’s evaluation of each noncontiguous interval, then the
algorithm would still require just O

(
n3

ϵ′ · d
)

(actual) queries. Prior to computing each ϵ′-perfect
allocation, we must normalize each agent’s valuation function over R. While we do not have access
to valuation functions, this can be achieved by scaling the output of an EVAL super-query by 1

Vi(R) ,
or scaling the input value of a CUT super-query by Vi(R). Fortunately, since R is a set of intervals
whose values are assumed to be known, this requires no additional queries. Thus, computing all
d ϵ′-perfect allocations (with (n + 1)-pieces each) requires O

(
n3

ϵ′ · d
)

(actual) queries. As for
performing our “cut-and-match Last Diminisher”, at worst, an agent will perform EVAL super-queries
on every piece in S and n CUT super-queries on R. Applying our prior result again, this translates to
only O(n2) actual queries in total (which is dominated by O

(
n3

ϵ′ · d
)

).

Finally, we show that tracking each agent’s evaluation of each noncontiguous interval requires
O(n3 · d) queries (which is also dominated by O

(
n3

ϵ′ · d
)

). The ϵ-perfect algorithm by Brânzei and

9



Miltersen [BM15] produces allocations with O(n2) cuts (thus introducing O(n2) noncontiguous
intervals). To incorporate each new cut x on an existing interval I (thus creating intervals I+1 =
[Ileft, x] and I+2 = [x, Iright]) for an agent i, we perform 1 query EVALi(I

+
1 ) to determine the values

of the new intervals created (Vi(I
+
2 ) is deduced from Vi(I)− Vi(I

+
1 )). Thus, introducing a cut (and

by extension a noncontiguous interval) only requires O(n) true queries to keep our noncontiguous
interval evaluations up-to-date. To account for the scaling performed in iterations performed on
the residue, no additional queries are necessary as the scaling factor can be computed using the
value of the residue (which is comprised of intervals of known valuations). Since our d ϵ′-perfect
allocations introduce O(n2 · d) cuts and our “cut-and-match Last Diminisher” introduces O(n)
cuts (one for each of the first n − 1 pieces allocated), tracking the desired information requires
O(n3 · d) +O(n) ∈ O(n3 · d) queries in total.

Putting these pieces together, we can conclude that Algorithm 2 computes complete and proportional
allocations, where Vi(Aj) ≥ 1

n − ϵ̃ for all i, j ∈ N , using O
(

n3

ϵ′ · d
)
= O

(
n4

ϵ̃ ·
ln(1/ϵ̃)
ln(n)

)
queries in

total (and therefore a complete, proportional and ϵ-perfect allocation using O
(

n5

ϵ ·
ln(1/ϵ)
ln(n)

)
queries).

Correctness. From our earlier discussion on query complexity and choice of parameters d and ϵ′,
we have that the first phase of the algorithm (lines 1 to 10) end with n pieces, B1, . . . , Bn, such that
1
n − ϵ̃ ≤ Vi(Bj) ≤ 1

n , as well as a residue. Since the final allocation of every agent j is a superset of
some piece Bℓ, we have that Vi(Aj) ≥ Vi(Bℓ) ≥ 1

n − ϵ̃. Following this stage of the algorithm, we
can apply the same logic as done for Algorithm 1 to conclude that, for all i ∈ N , Vi(Ai) ≥ 1

n after
the “cut-and-match Last Diminisher” stage. Thus, by Theorem 2 we can conclude the final allocation
A to be δ-LCR-n.

Acknowledgements

The authors would like to thank Yorgos Amanatidis, Yorgos Christodoulou, John Fearnley, and
Vangelis Markakis for their input in the initial development of this project. The authors would also
like to thank Ariel Procaccia for the valuable discussions and suggestions. Alexandros Psomas is
supported in part by an NSF CAREER award CCF-2144208, and a research award from the Herbert
Simon Family Foundation.

References
[ACF+18] Georgios Amanatidis, George Christodoulou, John Fearnley, Evangelos Markakis,

Christos-Alexandros Psomas, and Eftychia Vakaliou. An improved envy-free cake
cutting protocol for four agents. In Algorithmic Game Theory: 11th International Sympo-
sium, SAGT 2018, Beijing, China, September 11-14, 2018, Proceedings 11, pages 87–99.
Springer, 2018.

[Alo87] Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.

[AM16a] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol
for any number of agents. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 416–427. IEEE, 2016.

[AM16b] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol
for four agents. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 454–464, 2016.

[AR21] Haris Aziz and Simon Rey. Almost group envy-free allocation of indivisible goods and
chores. In Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pages 39–45, 2021.

[BM15] Simina Brânzei and Peter Bro Miltersen. A dictatorship theorem for cake cutting. In
Twenty-fourth international joint conference on artificial intelligence. Citeseer, 2015.

[BN22] Simina Brânzei and Noam Nisan. The query complexity of cake cutting. Advances in
Neural Information Processing Systems, 35:37905–37919, 2022.

10



[BTD92] Marcus Berliant, William Thomson, and Karl Dunz. On the fair division of a heteroge-
neous commodity. Journal of Mathematical Economics, 21(3):201–216, 1992.

[CF20] Ágnes Cseh and Tamás Fleiner. The complexity of cake cutting with unequal shares.
ACM Transactions on Algorithms (TALG), 16(3):1–21, 2020.

[CFSV19] Vincent Conitzer, Rupert Freeman, Nisarg Shah, and Jennifer Wortman Vaughan. Group
fairness for the allocation of indivisible goods. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 1853–1860, 2019.

[CLS25] Ioannis Caragiannis, Kasper Green Larsen, and Sudarshan Shyam. A new lower
bound for multi-color discrepancy with applications to fair division. arXiv preprint
arXiv:2502.10516, 2025.

[CP12] Katarína Cechlárová and Eva Pillárová. On the computability of equitable divisions.
Discrete Optimization, 9(4):249–257, 2012.

[DS61] Lester E Dubins and Edwin H Spanier. How to cut a cake fairly. The American Mathe-
matical Monthly, 68(1P1):1–17, 1961.

[EP84] Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied Mathematics,
7(3):285–296, 1984.

[EP06] Jeff Edmonds and Kirk Pruhs. Balanced allocations of cake. In 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), pages 623–634, 2006.

[EP11] Jeff Edmonds and Kirk Pruhs. Cake cutting really is not a piece of cake. ACM Transac-
tions on Algorithms (TALG), 7(4):1–12, 2011.

[FT22] Uriel Feige and Yehonatan Tahan. On allocations that give intersecting groups their fair
share. arXiv preprint arXiv:2204.06820, 2022.

[Hus11] Farhad Husseinov. A theory of a heterogeneous divisible commodity exchange economy.
Journal of Mathematical Economics, 47(1):54–59, 2011.

[KSV20] Maria Kyropoulou, Warut Suksompong, and Alexandros A Voudouris. Almost envy-
freeness in group resource allocation. Theoretical Computer Science, 841:110–123,
2020.

[Lia40] AA Liapounoff. Sur les fonctions-vecteurs completement additives. Izvestiya Rossiiskoi
Akademii Nauk. Seriya Matematicheskaya, 4(6):465–478, 1940.

[MS22] Pasin Manurangsi and Warut Suksompong. Almost envy-freeness for groups: Improved
bounds via discrepancy theory. Theoretical Computer Science, 930:179–195, 2022.

[Pro09] Ariel D Procaccia. Thou shalt covet thy neighbor’s cake. In Twenty-First International
Joint Conference on Artificial Intelligence, 2009.

[PW17] Ariel D Procaccia and Junxing Wang. A lower bound for equitable cake cutting. In
Proceedings of the 2017 ACM Conference on Economics and Computation, pages 479–
495, 2017.

[RW98] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK
Peters/CRC Press, 1998.

[SHN19] Erel Segal-Halevi and Shmuel Nitzan. Fair cake-cutting among families. Social Choice
and Welfare, 53:709–740, 2019.

[SHS20] Erel Segal-Halevi and Warut Suksompong. How to cut a cake fairly: A generalization to
groups. The American Mathematical Monthly, 128(1):79–83, 2020.

[SHS23] Erel Segal-Halevi and Warut Suksompong. Cutting a cake fairly for groups revisited. The
American Mathematical Monthly, 130(3):203–213, 2023.

[Ste48] Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

11



[STZ23] Jonathan Scarlett, Nicholas Teh, and Yair Zick. For one and all: Individual and group
fairness in the allocation of indivisible goods. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, pages 2466–2468, 2023.

[Wik25] Wikipedia contributors. Hugo Steinhaus. https://en.wikipedia.org/wiki/Hugo_
Steinhaus, 2025. [Online; accessed 2-February-2025].

[WS07] Gerhard J Woeginger and Jiří Sgall. On the complexity of cake cutting. Discrete
Optimization, 4(2):213–220, 2007.

12

https://en.wikipedia.org/wiki/Hugo_Steinhaus
https://en.wikipedia.org/wiki/Hugo_Steinhaus


NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper and supplementary material contain the proofs of all theorems,
lemmas, claims, etc stated in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the introduction for a discussion of the scope of this paper. The model
includes all assumptions needed for the results to hold. The results themselves (theorems,
lemmas, etc) state any additional requirements.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



Answer: [Yes]

Justification: The model is in Section 2. Proofs are included in the main body and supple-
mentary material (technical appendix).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked the guidelines and we follow them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The introduction discusses relevance to practice. The work is theoretical, so
there are no societal impacts of the nature described in the guidelines.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical; there are no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

18



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Relations Between Fairness Notions

In this section, we show the relation between our new fairness notions, and existing fairness notions:
proportionality, envy-freeness, and perfection.

A.1 HCR-k Relations

Theorem 3. PROP = HCR-1 ⊋ HCR-2 ⊋ · · · ⊋ HCR-(n− 1) = HCR-n ⊋ EF.

Proof of Theorem 3. The first equality, PROP = HCR-1 is immediate from the definition of HCR-1:
for |S| = 1, 1 − Vi(Ai) = Vi(AS̄) ≤ n−1

n = 1 − 1
n . It is equally easy to see that HCR-k ⊇

HCR-(k+1), for 1 ≤ k ≤ n− 2, since the conditions required to satisfy the latter are a subset of the
conditions required to satisfy the former notion; Claim 2 gives an allocation A such that A ∈ HCR-k,
but A /∈ HCR-(k + 1), proving that HCR-k ⊋ HCR-(k + 1).

Claim 2. HCR-k does not imply HCR-(k + 1) for 1 ≤ k ≤ n− 1.

Proof. Let A ∈ HCR-k be an allocation such that, for all i ∈ N , Vi(Ai) =
1

n−k+1 , and there exists
an agent ji ∈ N \ {i}, such that Vi(Aj) = 1− 1

n−k+1 (all other Vi(Aw) are 0). It is straightforward

to construct such an allocation. A ∈ HCR-k, since Vi(AS̄) ≤ 1− 1
n−k+1 ≤

n−|S|
n−|S|+1 for all S such

that |S| ≤ k and i ∈ S. However, by picking S such that i ∈ S, ji /∈ S, and |S| = k + 1, we have
that Vi(AS̄) = 1− 1

n−k+1 = n−k
n−k+1 > n−|S|

n−|S|+1 , i.e., A /∈ HCR-(k + 1).

The last equality, HCR-(n − 1) = HCR-n, again immediately follows from the definitions. Fi-
nally, Claim 3 proves that HCR-n ⊋ EF.

Claim 3. EF ⊊ HCR-n.

Proof. To see that EF ⊆ HCR-n, consider an allocation A ∈ EF; we will show that A ∈ HCR-n.
Let S ⊆ N be an arbitrary subset of agents of size |S| ≤ n. By the definition of envy-freeness, we
have that, for i, j ∈ N , Vi(Aj) ≤ Vi(Ai). Consider i ∈ S; adding up for all j /∈ S we have that

Vi(AS̄) ≤ (n− |S|)Vi(Ai)

≤ (n− |S|)Vi(AS) (Vi(Ai) ≤ Vi(AS))
= (n− |S|)(1− Vi(AS̄)).

Re-arranging we get the desired inequality: Vi(AS̄) ≤
n−|S|

n−|S|+1 .

To see that HCR-n does not imply EF, consider an allocation A ∈ HCR-n such that, for all agents
i ∈ N Vi(Ai) =

1
3 ; furthermore, for every agent i ∈ N , there exist distinct agents ji and ℓi such

that Vi(Aji) =
1
2 and Vi(Aℓi) =

1
6 (and Vi(Aw) = 0 for all other agents w). It is easy to see that

such an allocation can be constructed. A ∈ HCR-n, since: (i) for all S ⊆ N , |S| ≤ n − 2, and
all i ∈ S, Vi(AS̄) ≤ 1 − Vi(Ai) =

2
3 ≤

n−|S|
n−|S|+1 , (ii) for all S ⊆ N , |S| = n − 1, and all i ∈ S,

Vi(AS̄) ≤ 1− (Vi(Ai)+min{Vi(Aji), Vi(Aℓi)}) ≤ 1
2 ≤

n−|S|
n−|S|+1 , and (iii) Vi(AS̄) = 0 for S = N .

However, A /∈ EF, since every agent i ∈ N envies agent ji.

This concludes the proof of Theorem 3.

A.2 LCR-k Relations

Theorem 4. PROP = LCR-1 ⊋ LCR-2 ⊋ · · · ⊋ LCR-(n− 1) = LCR-n = SUPER-EF.

Proof of Theorem 4. By the definition of LCR-k, we have that PROP = LCR-1, LCR-k ⊇
LCR-(k + 1) for 1 ≤ k ≤ n − 1, and LCR-(n − 1) is equivalent to LCR-n. The theorem
follows from Claim 4 and Claim 5.

Claim 4. LCR-k does not imply LCR-(k + 1), for any 1 ≤ k < n− 1.

20



Proof. Consider an allocation A ∈ LCR-k such that, for all i ∈ N : (i) Vi(Ai) =
k
n , (ii) Vi(Aj) = 0,

for all j ∈ Zi, for some Zi ⊂ N \ {i} such that |Zi| = k, and (iii) Vi(Aj) =
(
1 + 1

n−k−1

)
· 1n , for

all j ∈ N \ (Zi ∪ {i}). Si = Zi ∪ {i}; |Si| = k + 1. Then, Vi(ASi
) = Vi(Ai) =

k
n , and therefore

Vi(AS̄i
) = n−k

n < n−|Si|
n , i.e. A /∈ LCR-(k + 1).

Claim 5. LCR-n = SUPER-EF.

Proof. Consider an allocation A ∈ LCR-n. For all S ⊆ N such that |S| = n − 1, and all i ∈ S,
Vi(AS̄) ≤ 1

n ; however, S̄ has a single (arbitrary) agent. That is, Vi(AS̄) = Vi(Aj) ≤ 1
n , for all

j ∈ N \ {i}. And, since LCR-n ⊆ PROP, we also have Vi(Ai) ≥ 1
n , therefore, A ∈ SUPER-EF.

Consider an allocation A ∈ SUPER-EF. We have that, for all i, j ∈ N , j ̸= i, 1
n ≥ Vi(Aj).

Adding up this for all j /∈ S, for some arbitrary set S ⊆ N , |S| ≤ n, such that i ∈ S, we have
Vi(AS̄) ≤

n−|S|
n , i.e., A ∈ LCR-n.

This concludes the proof of Theorem 4

Theorem 5. EF ⊋ LCR-⌈n2 ⌉, but EF ̸⊇ LCR-(⌈n2 ⌉ − 1) and EF ̸⊆ LCR-2.

Proof of Theorem 5. Consider an allocation A ∈ LCR-⌈n2 ⌉. Let i, j ∈ N be two arbitrary agents.
Let S ⊆ N \{j}, such that (i) i ∈ S, and (ii), |S| = ⌈n2 ⌉. We have that Vi(AS) = 1−Vi(AS̄) ≥ 1−
n−|S|

n = 1
2+

n mod 2
2n . Let S′ be such that S̄′ = (S\{i})∪{j} (i.e., S′ = {i}∪(N \({j}∪S))). We

have that |S′| = n− ⌈n2 ⌉ = ⌊
n
2 ⌋, therefore, since A ∈ LCR-⌈n2 ⌉, and i ∈ S′, Vi(AS̄′) ≤ n−|S′|

n =
1
2 + n mod 2

2n . Therefore, Vi(AS) ≥ Vi(AS̄′). However, Vi(AS) = Vi(Ai) +
∑

z∈S\{i} Vi(Az), and
Vi(AS̄′) = Vi(Aj) +

∑
z∈S\{i} Vi(Az). Therefore, we have that Vi(Ai) ≥ Vi(Aj), i.e., i does not

envy j.

Next, notice that LCR-(⌈n2 ⌉ − 1) (and by extension, LCR-k for k < ⌈n2 ⌉ − 1) does not imply EF.
Consider an allocation A ∈ LCR-(⌈n2 ⌉ − 1) such that, for all i ∈ N , Vi(Ai) = (⌈n2 ⌉ − 1) · 1n , and
there exists an agent ji such that Vi(Aji) = 1 − (⌈n2 ⌉ − 1) · 1

n , and Vi(Az) = 0, for all agents
z ̸= i, ji. Since Vi(Ai) < Vi(Aji), envy-freeness is violated.

Finally, EF does not imply LCR-2 (and by extension, LCR-k for k > 2). Consider an allocation
A ∈ EF such that, for all i ∈ N there exists an agent ji, such that Vi(Aji) = 0, and Vi(Az) =

1
n−1 ,

for all z ̸= i, ji. For S = {i, ji} and n > 2, Vi(AS̄) =
n−2
n−1 > n−|S|

n = 2
n .

B Lower Bounds

In this section, we state our lower bounds for HCR-2 (Theorem 6) and LCR-2 (Theorem 7).
Theorem 6. Computing HCR-2 allocations requires Ω(n2) queries.

Proof. For this proof, we use many definitions and lemmas from the work of Procaccia [Pro09], who
proves the Ω(n2) lower bound for finding envy-free allocations.

Consider an arbitrary algorithm. First, to analyze the information available to the algorithm at each
step, we define, for every agent i ∈ N and every step t, a set of disjoint intervals Πt

i, that is a partition
of [0, 1]. We say that interval I ∈ Πt

i is active with respect to agent i at step t.

Πt
is are defined recursively. Π0

i = {[0, 1]}, since the only information available to the algorithm
after 0 steps/queries is that Vi([0, 1]) = 1. Assuming that at step t we have Πt

i, if at step t+ 1 the
algorithm does not make a query for agent i (i.e., the query at step t+ 1 is EVALj or CUTj for some
j ̸= i), then Πt+1

i = Πt
i. Otherwise, Πt+1

i gets updated accordingly. For example, if the query is
EVALi(x1, x2), where x1 ∈ I1 and x2 ∈ I2, for some intervals I1, I2 ∈ Πt

i, then, informally,

Πt+1
i = (Πt

i \ {I1, I2}) ∪ {[left(I1), x1], [x1, right(I1)], [left(I2), x2], [x2, right(I2)]},
where for an interval I = [a, b], left(I) = a and right(I) = b. Intuitively, the algorithm at step t
“knew” i’s value for I1 and I2, and after the EVALi(x1, x2), it can infer (at most) the value of agent i for

21



four additional intervals: [left(I1), x1], [x1, right(I1)], [left(I2), x2], and [x2, right(I2)] (noting,
that the first two imply the value for I1 and the second two imply the value for I2). Procaccia [Pro09]
proves two crucial lemmas:

Lemma 1 ([Pro09]; Lemma 3.2). For all i ∈ N and stage t, |Πt+1
i | − |Πt

i| ≤ 2.

Lemma 2 ([Pro09]; Lemma 3.3). For all i ∈ N and stage t, Πt
i has the following properties:

1. For every I ∈ Πt
i, Vi(I) is known to the algorithm at stage t.

2. For every I ∈ Πt
i, I

′ ⊊ I , and 0 ≤ λ ≤ 1, it might be the case (based on the information
available to the algorithm at stage t) that Vi(I

′) = λVi(I).

Consider an adversary that, for every agent i ∈ N , responds as if the valuation of the agent was
uniform over the interval [0, 1] (i.e., responds EVALi([x1, x2]) = x2 − x1, and CUTi(x, v) = x+ v).
Let T be the number of queries our algorithm asks before it terminates and outputs allocation
A = (A1, . . . , An) ∈ HCR-2.

First, we claim that for all i ∈ N , there exists an active interval Ii ⊆ Ai, such that (i) Ii ∈ ΠT
i , and (ii)

Vi(Ii) ≥ 1
n . If this is not the case, one can define Vi (consistently with ΠT

i ) such that proportionality
is violated. Concretely, (1) if I /∈ ΠT

i for all I ⊆ Ai then we can concentrate the value of all I such
that I ∩Ai ̸= ∅ to the sub-intervals outside of Ai (and therefore, Vi(Ai) = 0), and (2) if Vi(I) <

1
n

for all I ⊆ Ai, I ∈ ΠT
i , then we can pick Vi such that Vi(Ai) = maxI∈ΠT

i
Vi(I) < 1/n.

Since all queries until time T have been answered as if the valuations were uniform, it must be
that 1/n ≤ Vi(Ii) = |Ii| for all i ∈ N . However, if for all i ∈ N we have: (i) Ii ⊆ Ai, (ii)
|Ii| ≥ 1/n, (iii) Ai ∩ Aj = ∅ for all j ̸= i, and (iv) ∪ni=1Ai = [0, 1], then it must be that
|Ii| = |Ai| = 1/n, as well as Vi(Ai) = 1/n, for all i ∈ N . The HCR-2 property then implies that
Vi(AN\{i,j}) = 1− Vi(Ai)− Vi(Aj) ≤ 1− 1

n−1 , or Vi(Aj) ≥ 1
n−1 −

1
n = 1

n(n−1) for all i, j ∈ N .

To meet this condition, it must be that for every agent i and piece Aj , there exists an active interval
I ∈ ΠT

i such that (i) I ⊆ Aj , and (ii) Vi(I) ̸= 0. Similarly to our earlier argument, if this is not the
case, one can define Vi (consistently with ΠT

i ) such that Vi(Aj) = 0 (< 1
n(n−1) ). Concretely, we can

pick Vi such that Vi(I ∩Aj) = 0 and Vi(I \Aj) = Vi(I) for all I ∈ ΠT
i and I ∩Aj ̸= ∅.

Since allocations are pair-wise disjoint, we must then have at least n active intervals per agent by
time T , i.e. |ΠT

i | ≥ n for every agent i. Since |Π0
i | = 1, Lemma 1 implies that |ΠT

i | ≤ 2T + 1, and
therefore 2T + 1 ≥ n, i.e. the algorithm makes at least n−1

2 queries to every agent i ∈ N . Overall,
the algorithm makes at least n · n−1

2 ∈ Ω(n2) queries overall.

Theorem 7. Computing LCR-2 allocations requires an infinite number of queries, for all n ≥ 3.

Proof. We prove the statement for all odd n, n ≥ 3; the proof can be easily adjusted to even n.

Consider an instance where ⌊n2 ⌋ agents — agents 1 through ⌊n2 ⌋— have the same valuation function
V1, ⌊n2 ⌋ agents — agents ⌊n2 ⌋+ 1 through n− 1 — have the same valuation function V2, and the last
agent, agent n, has valuation function Vn(x) =

V1(x)+V2(x)
2 for all x ⊆ [0, 1].

Let A be a LCR-2 allocation. For every agent i = 1, . . . , ⌊n2 ⌋, let ji = i+ ⌊n2 ⌋. Since agent i has
valuation V1, we have that V1([0, 1]\(Ai∪Aji)) ≤ 1−2/n, or simply, V1(Ai∪Aji) ≥ 2/n, from the
definition of LCR-2. It also holds that V2(Ai∪Aji) ≥ 2/n. We have ∪⌊

n
2 ⌋

i=1 (Ai ∪Aji) = [0, 1]\An,
and V1([0, 1]) = V2([0, 1]) = 1, therefore, V1(An) = 1 −

∑⌊n
2 ⌋

i=1 V1(Ai ∪ Aji) ≤ 1 − ⌊n2 ⌋
2
n =

1 − n−1
2

2
n = 1

n . Similarly, V2(An) ≤ 1
n . Since LCR-2 implies proportionality, Vn(An) =

V1(An)+V2(An)
2 ≥ 1

n , i.e., V1(An)+V2(An) ≥ 2
n . Therefore, it must be that V1(An) = V2(An) =

1
n .

Since V1(Ai ∪Aji) ≥ 2
n , for all i = 1, . . . , ⌊n2 ⌋, and ⌊n2 ⌋

2
n = n−1

2
2
n = 1− 1

n (which is exactly the
value of [0, 1] \An), it must be that V1(Ai ∪Aji) =

2
n . Similarly, it must be that V2(Ai ∪Aji) =

2
n .

Therefore, we overall have that, there are ⌊n2 ⌋+ 1 pieces, An and the (Ai ∪Aji)s, such that, V1 and
V2 have the same value of 1

n for the first piece, and the same value of 2
n for all remaining pieces.

22



Given n valuations functions U1, . . . , Un and weights w1, . . . , wk, asking for a partition of the cake
into k pieces I1, . . . , Ik such that Ui(Ij) = wj , is known as the exact division, or consensus splitting,
problem. This problem is known to be impossible to solve with a bounded protocol, even for the case
of two valuation functions and k = 2 pieces with equal weights [RW98]. Since finding a LCR-2
allocation would give a solution to the exact division problem for two valuation functions and ⌊n2 ⌋+1
pieces, we can conclude that there is no bounded protocol for finding a LCR-2 allocation.

Note that for even n, the proof is near-identical: the only difference is that the n-th agent is
not necessary (i.e., half the agents have valuation V1 and the other half have valuation V2), and
using the same arguments we would conclude that V1(Ai ∪ Aji) = V2(Ai ∪ Aji) = 2

n , for all
i = 1, . . . , n/2.

C Picking the parameters of Algorithm 2

Consider the partition, B, created in the tth iteration of line 4. Due to the normalization of R at each
iteration, B will have the following property:

(
1

n+ 1
− ϵ′

)t

≤ Vi(Bj) ≤
(

1

n+ 1
+ ϵ′

)t

, ∀i, j ∈ N

Let S′ describe the state of S prior to the final “Last Diminisher” phase of the algorithm (i.e. line 11).
S′
i will be comprised of 1 piece from each ϵ′-perfect partition, B, created. As discussed, each piece

of S′ needs to have value at least 1
n − ϵ̃ but at most 1

n for any agent.

Vi(S
′
j) ≤

d∑
t=1

(
1

n+ 1
+ ϵ′

)t

≤ 1

n

Vi(S
′
j) ≥

d∑
t=1

(
1

n+ 1
− ϵ′

)t

≥ 1

n
− ϵ̃

Notice that by polynomial expansion, we can see that:

(
1

n+ 1
+ ϵ′

)t

−
(

1

n+ 1

)t

≥
(

1

n+ 1

)t

−
(

1

n+ 1
− ϵ′

)t

Therefore, if we define d such that
∑d

t=1

(
1

n+1

)t

≥ 1
n −

ϵ̃
2 (the average of the required upper and

lower bounds of Vi(S
′
j)), then for increasing ϵ′, the computed upper bound of Vi(S

′
j) will exceed 1

n

before the computed lower bound dips below 1
n − ϵ̃. With this in mind, we define d as described:

d∑
t=1

(
1

n+ 1

)t

=
1−

(
1

n+1

)d

n
≥ 1

n
− ϵ̃

2

d =

 ln
(
ϵ̃n
2

)
ln
(

1
n+1

)
 =

⌈
ln(2) + ln(1/ϵ̃) + ln(1/n)

ln(n+ 1)

⌉
∈ Θ

(
ln(1/ϵ̃)

ln(n)

)
.

23



Now, we define ϵ′ such that Vi(S
′
j) ≤ 1

n , noting that if the required upper bound holds, then so will
the required lower bound. For simplicity, we first loosen the upper bound:

Vi(S
′
j) ≤

d∑
t=1

(
1

n+ 1
+ ϵ′

)t

=

(
1

n+ 1
+ ϵ′

)
·
1−

(
1

n+1 + ϵ′
)d

1−
(

1
n+1 + ϵ′

)
≤

(
1

n+ 1
+ ϵ′

)
·

1−
(

1
n+1

)d

1−
(

1
n+1 + ϵ′

)
≤

(
1

n+ 1
+ ϵ′

)
·

1− 1
n+1 ·

ϵ̃n
2

1−
(

1
n+1 + ϵ′

) .
Enforcing that this last expression is at most 1/n we have ( 1

n+1+ϵ′)
1−( 1

n+1+ϵ′)
≤ 1

n(1− 1
n+1 ·

ϵ̃n
2 )

, or

ϵ′ ≤ 1

n
(
1− 1

n+1 ·
ϵ̃n
2

)
+ 1
− 1

n+ 1
=

ϵ̃n2

2(n+ 1)2
(
n+ 1− ϵ̃n2

2(n+1)

) .
Considering that ϵ̃n2

2(n+1) > 0, we can tighten this constraint by decreasing the upper bound as so:

ϵ′ ≤ ϵ̃n2

2(n+ 1)3
∈ Θ

(
ϵ̃

n

)
.

Thus, the aforementioned conditions will hold for some d ∈ Θ
(

ln(1/ϵ̃)
ln(n)

)
and ϵ′ ∈ Θ

(
ϵ̃
n

)
.

24


	Introduction
	Our contributions
	Related work

	Preliminaries
	Robertson-Webb Model
	Fairness notions

	An Algorithm for HCR-n
	Algorithms for Relaxations of LCR-n
	Relations Between Fairness Notions
	HCR-k Relations
	LCR-k Relations

	Lower Bounds
	Picking the parameters of algo:almostlinearn

