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Abstract
Constrained Reinforcement Learning (CRL) aims
to maximize cumulative rewards while satisfy-
ing constraints. However, existing CRL algo-
rithms often encounter significant constraint vi-
olations during training, limiting their applica-
bility in safety-critical scenarios. In this paper,
we identify the underestimation of the cost value
function as a key factor contributing to these vi-
olations. To address this issue, we propose the
Memory-driven Intrinsic Cost Estimation (MICE)
method, which introduces intrinsic costs to miti-
gate underestimation and control bias to promote
safer exploration. Inspired by flashbulb memory,
where humans vividly recall dangerous experi-
ences to avoid risks, MICE constructs a mem-
ory module that stores previously explored unsafe
states to identify high-cost regions. The intrinsic
cost is formulated as the pseudo-count of the cur-
rent state visiting these risk regions. Furthermore,
we propose an extrinsic-intrinsic cost value func-
tion that incorporates intrinsic costs and adopts
a bias correction strategy. Using this function,
we formulate an optimization objective within
the trust region, along with corresponding opti-
mization methods. Theoretically, we provide con-
vergence guarantees for the proposed cost value
function and establish the worst-case constraint
violation for the MICE update. Extensive exper-
iments demonstrate that MICE significantly re-
duces constraint violations while preserving pol-
icy performance comparable to baselines.

1. Introduction
Constrained Reinforcement Learning (CRL) has become a
powerful framework for addressing decision-making tasks
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with safety requirements (Stooke et al., 2020; Xu et al.,
2021; Yang et al., 2022; Gao et al., 2024), such as robotics
(Tang et al., 2024) and autonomous driving (Zhang et al.,
2024), by integrating constraints into Reinforcement Learn-
ing (RL) policy optimization. However, existing CRL meth-
ods often exhibit persistent constraint violations during pol-
icy training (Sootla et al., 2022a;b), undermining their relia-
bility in real-world deployments.

A key factor driving constraint violations is the underestima-
tion of the cost value. In CRL, unsafe high-cost regions pose
the risk of constraint violations, prompting policy updates
to reduce the cost value. However, the inherent noise in
function approximation disrupts the zero-mean assumption
under a minimization objective (Thrun & Schwartz, 2014),
resulting in cost underestimation. Consequently, high-cost
states may appear deceptively safe, enticing the agent to ex-
plore them for potentially high rewards. This underestima-
tion leads to frequent constraint violations during training,
even when an optimal safe policy theoretically exists.

Although biases in cost estimation are generally undesir-
able, they are not inherently detrimental and can enhance
policy learning and exploration in certain scenarios (Lan
et al., 2020; Karimpanal et al., 2023). Underestimation gen-
erally encourages exploration, while overestimation tends
to discourage exploration. Specifically, in high-cost regions,
overestimation can help prevent unsafe exploration to re-
duce risks, whereas underestimation may induce excessive
exploration of unsafe states. Therefore, the key challenge is
to shape cost estimation to mitigate harmful underestimation
in high-cost regions while ensuring safe exploration without
being overly conservative.

To address this challenge, we propose the Memory-driven
Intrinsic Cost Estimation (MICE) algorithm, integrating ex-
trinsic and intrinsic cost value updates to mitigate underesti-
mation while exploiting controlled bias for safer exploration.
Inspired by flashbulb memory (Conway, 2013), where hu-
mans vividly recall significant experiences to avoid risks,
we equip agents with a flashbulb memory module that stores
previously explored unsafe states, enabling the identification
of high-cost regions. The intrinsic cost is derived from the
flashbulb memory, formulated as the pseudo-count (Badia
et al., 2020) of the current state visiting high-cost regions in

1



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

memory. Then we introduce an extrinsic-intrinsic cost value
update that mitigates underestimation by augmenting ex-
trinsic cost estimates in high-cost regions, with a balancing
factor to correct excessive bias. Further, we propose an op-
timization objective within the trust region, ensuring align-
ment between the updated policy and the policy generating
the flashbulb memory samples. We also provide correspond-
ing solution methods for this objective. Theoretically, we
establish a constraint bound for the extrinsic-intrinsic cost
value function and provide a worst-case constraint violation
under the MICE update, ensuring minimal constraint viola-
tions during training. Additionally, we prove convergence
guarantees for the proposed cost value function. Extensive
experiments demonstrate that MICE significantly reduces
constraint violations while ensuring robust policy perfor-
mance. Our contributions are summarized as follows:

• We introduce a novel Flashbulb Memory mechanism
that records high-cost regions, enabling the derivation
of an intrinsic cost to effectively mitigate the prevalent
underestimation in these regions.

• We propose an Extrinsic-Intrinsic Cost Value Update
that incorporates the intrinsic cost estimate and applies
a bias correction strategy, ensuring more robust cost
estimation and safer exploration in high-cost regions.

• We provide a theoretical analysis with convergence
guarantees and constraint violation bounds, along with
practical optimization methods that demonstrate signif-
icant improvements in constraint satisfaction and pol-
icy performance through extensive experiments. The
code for this paper is available in https://github.
com/ShiqingGao/MICE.

2. Related Work
CRL methods. CRL optimization methods can be classi-
fied into primal-dual and primal approaches. Primal-dual
methods (Ding et al., 2021; Ying et al., 2024) convert con-
strained problems into unconstrained ones via dual variables.
NPG-PD (Ding et al., 2020) guarantees global convergence
with sublinear rates. PID Lagrangian (Stooke et al., 2020)
introduces proportional and differential control to mitigate
cost overshoot and oscillations. However, primal-dual ap-
proaches are sensitive to initial parameters, limiting their
application (Zhang et al., 2022). In contrast, primal methods
directly optimize constrained problems in the primal space
(Zhang et al., 2020; Yu et al., 2022; Gao et al., 2024). CPO
(Achiam et al., 2017) enforces performance and constraint
violation bounds within a trust region. PCPO (Yang et al.,
2020) alternates between reward improvement and policy
projection into feasible regions. CUP (Yang et al., 2022)
provides generalized theoretical guarantees using the gener-
alized advantage estimator (Schulman et al., 2015). How-

ever, both primal and primal-dual methods often encounter
significant constraint violations during training, primarily
due to the underestimation of cost value. To address this,
we propose a memory-driven intrinsic cost to correct under-
estimation with a convergence guarantee, ensuring minimal
constraint violations while maintaining performance.

Overestimation in RL. Overestimation in RL has been
extensively studied. Double Q-learning (Hasselt, 2010) and
Double DQN (Van Hasselt et al., 2016) reduce bias by us-
ing separate target value functions, avoiding maximization-
induced errors. However, in actor-critic frameworks, the
slow-changing policy keeps current and target values close,
failing to fully eliminate maximization bias. TD3 (Fuji-
moto et al., 2018) addresses this by using a pair of critics
and selecting the minimum value. AdaEQ (Wang et al.,
2021) employs an ensemble-based method, adjusting the
ensemble size based on Q-value approximation error to
mitigate overestimation. Notably, overestimation and un-
derestimation biases can be beneficial in certain scenarios.
Methods like Maxmin Q-learning (Lan et al., 2020) and
Balanced Q-learning (Karimpanal et al., 2023) focus on
controlling estimation bias to enhance learning. In this pa-
per, we demonstrate that underestimation of the cost value
causes constraint violations during training and introduce
the intrinsic cost to mitigate underestimation, controlling
bias for safer exploration.

Intrinsic reward. Intrinsic rewards in RL are typically
used to enhance exploration, falling into two categories: en-
couraging exploration of novel states (Zhang et al., 2021;
Seo et al., 2021), and reducing prediction errors or uncer-
tainties to improve environmental understanding (Sharma
et al., 2019; Laskin et al., 2022). Count-based methods
(Strehl & Littman, 2008; Badia et al., 2020) use state visit
counts as bonus rewards to encourage the exploration of
new states. (Lipton et al., 2016) indicates that agents tend to
periodically revisit states under new policies after forgetting
them, introducing an intrinsic fear model to prevent periodic
catastrophes. In CRL, ROSARL (Tasse et al., 2023) inter-
prets constraints as intrinsic rewards, optimizing policies
by assigning minimal penalties to unsafe states. This paper
introduces intrinsic costs to enhance safer exploration, par-
ticularly when extrinsic costs are underestimated. Memory-
driven intrinsic costs provide anticipatory signals, guiding
policy updates to avoid revisiting high-cost regions.

3. Preliminary
CRL can be modeled as a Constrained Markov decision
process (CMDP), denoted by a tuple (S,A,R,C, P, ρ, γ),
where S is the state space, A is the action space, R :
S × A→ R is the reward function, P : S × A→ [0, 1] is
the transition probability function, ρ is the initial state distri-
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bution, and γ ∈ (0, 1) is the discount factor. The extrinsic
cost function C : S × A → R maps state-action pairs to
extrinsic costs cE , which are task-specific costs provided by
the environment. The intrinsic cost is denoted as cI , and d
denotes the constraints threshold.

Starting from an initial state s0 sampled from the initial state
distribution ρ, the agent perceives the state st from the envi-
ronment at each time step t, selects an action at according
to the policy π : S → A, receives the reward rt = R(st, at)
and extrinsic cost cEt , and transfers to the next state st+1

based on P (st+1|st, at). The set of all stationary policies
is denoted as Π. The discounted future state visitation dis-
tribution is defined as dπ(s) := (1 − γ)

∑∞
t=0 γ

tP (st =
s|π). The value function for a policy π is V π

R (s) :=
Eτ∼π[

∑∞
t=0 γ

tR(st, at)|s0 = s], and action-value function
is Qπ

R(s, a) := Eτ∼π[
∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a].
The advantage function measures the advantage of action
a over the mean value: AπR(s, a) := Qπ

R(s, a) − V π
R (s).

The cost value function V π
C (s), cost action value function

Qπ
C(s, a) and cost advantage function AπC(s, a) in CMDP

can be obtained as in MDP by replacing the reward r
with the cost c. The expected discounted return JR(π) :=
Eτ∼π[

∑∞
t=0 γ

tR(st, at)], and the expected cumulative dis-
counted cost JC(π) := Eτ∼π[

∑∞
t=0 γ

tC(st, at)], where
τ = (s0, a0, s1, a1, · · · ) is the trajectory under π.

The CRL aims to find an optimal policy by maximizing the
expected discounted return over the set of feasible policies
ΠC := {π ∈ Π : JC(π) ≤ d}:

argmax
π∈Π

JR(π)

s.t. JC(π) ≤ d
(1)

4. Methodology
In this section, we introduce the MICE algorithm. We first
present the underestimation in the CRL cost value func-
tion. Then we introduce the flashbulb memory mechanism
for recording high-cost regions, and derive the intrinsic
cost to correct underestimation. Finally, we propose an
extrinsic-intrinsic update formulation for MICE and a new
optimization objective with its solutions.

4.1. Underestimate Bias in Cost Value Function

Overestimation in RL arises from the tendency of the value
function update to greedily select high value actions, result-
ing in estimates exceeding the optimal value (Fujimoto et al.,
2018). Conversely, the cost value function in CRL exhibits
underestimation, particularly during constraint violations,
due to the inherent tendency to minimize costs.

In methods like Q-learning, the cost value function is
updated using a greedy strategy during constraint viola-
tions: QC(s, a)← QC(s, a)+α[c+ γmina′ QC(s

′, a′)−

QC(s, a)], where α is the step size. Assuming that value
estimates contain zero-mean noise ϵ, a consistent under-
estimation bias is induced by minimizing the noisy value
estimate QC(s

′, a′) + ϵ. The zero-mean property of noise
is disrupted after minimization, resulting in the minimized
value estimate being generally smaller than the true mini-
mum (Thrun & Schwartz, 2014):

Eϵ[min
a′

QC(s
′, a′) + ϵ] ≤ min

a′
QC(s

′, a′) (2)

Such noise is inherent in function approximation methods
(Fujimoto et al., 2018).

In actor-critic-based CRL methods, the policy learns from
value estimation provided by the approximate reward critic
and cost critic. When constraints are violated, the policy is
updated with a policy gradient that minimizes the expected
cost value estimate: argminπ∈Πθ

Es∼dπ,a∼π[QC(s, a)],
where Πθ represents the policy set parameterized by θ.
Denote the true cost value function as Q∗

C(s, a) and the
approximate cost value function as Q̂C(s, a). Updated
from the current policy πk(·|θ) with deterministic policy
gradient, let π be the policy derived from the true cost
value Q∗

C(s, a), and π̂ the policy derived from the approx-
imate cost value Q̂C(s, a). According to TD3 (Fujimoto
et al., 2018), when the approximation introduces a bias such
that E[Q̂C(s, π(s))] ≤ E[Q∗

C(s, π(s))] due to unavoidable
noise in the function approximation, then the cost value is
underestimated under the updated policy π̂ within a suffi-
ciently small step size:

E[Q̂C(s, π̂(s))] ≤ E[Q∗
C(s, π̂(s))] (3)

To validate the presence of underestimation bias, we com-
pare the estimated cost value for various states against their
corresponding true values in both the primal method CPO
(Achiam et al., 2017) and the primal-dual method PID La-
grangian (Stooke et al., 2020). The true values are computed
by averaging the cumulative discounted costs over 1, 000
episodes under the current policy. Results in Figure 2 show
that cost value functions in different CRL methods are con-
sistently and significantly underestimated across various
environments during training.

Compared to overestimation in RL, underestimation in CRL
can have more detrimental impacts, as it directly leads to
unsafe actions that violate constraints. When the cost critic
underestimates the true cost, actions with high rewards but
violating constraints are mistakenly perceived as safe, caus-
ing these unsafe actions to be selected. Then these actions
are propagated through the Bellman equation, accumulat-
ing bias and generating increasingly unsafe policies. This
explains the frequent constraint violations observed during
training in various CRL methods.
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Figure 1: Structure of MICE. Underestimation of cost value in high-cost regions causes constraint violations. The Flashbulb
Memory records high-cost regions by storing previously explored unsafe states. The intrinsic cost is computed through the
pseudo-count of the current state’s visit to high-cost regions in memory. The trust region ensures the alignment of the stored
high-cost regions with the current policy. The extrinsic-intrinsic cost critic mitigates underestimation in high-cost regions.

Figure 2: Underestimation bias across environments. The x-
axis is time steps, the y-axis is the cost value estimate minus
the true value, and the dashed line is the zero deviation.

4.2. Intrinsic Cost Generated from Flashbulb Memory

Risk awareness enables humans to identify potential dan-
gers and adopt conservative behaviors to ensure safety. Hu-
mans are impressed by previous risky experiences, which
are vividly recalled to avoid danger in similar scenarios.
However, CRL agents with underestimated critics often
fail to recognize the consequences of unsafe actions, lead-
ing to constraint violations. Inspired by human cognitive
mechanisms, we introduce a memory-driven intrinsic cost
mechanism to enhance the agent’s risk awareness. This in-
trinsic cost discourages repeated visits to unsafe states while
promoting safer exploration.

We construct a flashbulb memory M to record high-cost
regions by storing unsafe states sm with positive extrinsic
costs. To reduce dimensionality while approximately pre-
serving inter-sample distances, each state s is embedded
into a lower-dimensional latent space f(s) using a random
projection layer f , implemented with a Gaussian random

matrix (Zhu et al., 2020). By the Johnson–Lindenstrauss
lemma (Johnson et al., 1984), this mapping approximately
maintains relative Euclidean distances in the original space.
The memory, with dynamically adjusted capacity, stores
unsafe samples collected by the policy from the previous
iteration. By mirroring the human tendency to prioritize
recent high-risk experiences, this design ensures that the
memory remains aligned with the current policy.

The intrinsic cost cI is derived from the flashbulb mem-
ory. By comparing the current state st with states stored
in memory, smaller differences indicate higher similar-
ity to prior unsafe experiences, signaling an increased
risk of constraint violations and resulting in a higher in-
trinsic cost cI . Denote the flashbulb memory as M :
{f(sm0 ), · · · , f(smi ), · · · }, where smi is the i-th unsafe state.
Inspired by theoretically-justified exploration methods that
convert state-action counts into bonus rewards (Strehl &
Littman, 2008), the intrinsic cost cIt at time t is generated
by comparing the current embedding state f(st) with those
in memory M :

cIt =

√ ∑
smi ∼Nk

K(f(st), f(smi )) (4)

Drawing inspiration from NGU (Badia et al., 2020), the
sum of the similarities, computed using a kernel function
K, is used to represent the pseudo-count of the current
state st visiting high-cost regions in memory. This sum is
approximated by the k-nearest neighbors Nk of f(st) in M .
The kernel function is:

K(x, y) =
ξ

l2(x, y) + ξ
(5)
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where l is the Euclidean distance, and ξ is a small constant
for numerical stability (set to 10−3 following NGU). To
preserve training stability, the intrinsic cost is normalized.
A larger visit count for st indicates a higher probability that
it resides in a high-cost region, thus resulting in a greater
intrinsic cost.

4.3. Safety Policy Optimization with the Intrinsic Cost

The standard cost value function QC(s, a) in CRL is up-
dated using only extrinsic costs cE : QC(s, a) = (1 −
α)QC(s, a) + α(cE + γEs′ [QC(s

′, a′)]). To mitigate un-
derestimation, we propose an extrinsic-intrinsic cost value
function QEI

C (s, a), which incorporates memory-driven in-
trinsic costs cI and task-driven extrinsic costs cE :

QEI
C (s, a) = (1− α)QEI

C (s, a)

+ α(cE + βcI + γEs′ [QEI
C (s′, a′)])

(6)

where α is the step size, β is the intrinsic factor. Starting
from the same initialization, QEI

C (s, a) ≥ QC(s, a) for the
same state-action pair, as the target QT = cE + βcI +
γEs′ [QEI

C (s′, a′)] for QEI
C incorporates the intrinsic cost,

resulting in a larger target compared to the standard cost
estimate. By augmenting the agent’s memory, the extrinsic-
intrinsic target cost value increases the cost estimate, effec-
tively mitigating underestimation in high-cost regions.

Overestimation and underestimation biases in cost value
are not inherently detrimental, their impact depends on the
current state (Lan et al., 2020), with detailed analysis in
Appendix B.1. Generally, underestimation bias encourages
exploration, while overestimation bias tends to discourage
exploration. In high-cost regions with a high risk of con-
straint violation, overestimation bias can be beneficial by
discouraging unsafe exploration, while underestimation bias
may lead to over-exploration of these unsafe regions.

In this work, flashbulb memory is employed to identify
previously explored high-cost regions, with intrinsic cost
quantifying the pseudo-count of the current state visiting
these regions. Higher intrinsic costs signal a greater likeli-
hood of entering a high-cost region, potentially introducing
overestimation to discourage unsafe explorations. Addition-
ally, the propagation of overestimation through cost value
updates is limited, as the policy tends to avoid actions with
large cost estimates (Fujimoto et al., 2018).

To avoid excessive estimate bias, we propose an adaptive
bias correction mechanism. The target for the (n + 1)-th
update QTn+1

is modified as:

Q′
Tn+1

= QTn+1
− α(Qn −Q∗) (7)

where Q∗ is the optimal value, Qn is the estimate at the n-th
update. When Qn − Q∗ < 0, the modified target Q′

Tn+1

is adjusted upward, introducing positive bias to mitigate

excessive underestimation. Conversely, when Qn −Q∗ >
0, Q′

Tn+1
is adjusted downward, introducing negative bias

to address excessive overestimation. Then we derive the
balancing intrinsic factor β to control the estimation bias.
Proposition 4.1. For a transition (s, a, cE , s′) in a CMDP,
where the n-th update of the extrinsic-intrinsic cost value
Qn corresponds to the n-th update target QTn , the modified
target for the (n + 1)-th update is Q′

Tn+1
, the balancing

intrinsic factor β′ for the (n+ 1)-th update is given by:

β′ = max{γn(βn −
αϵn
cI

), 0}, cI > 0 (8)

where ϵn = Qn − Q∗ is the n-th update estimation bias,
γ ∈ (0, 1) is the discount factor.

The derivation process is provided in Appendix B.2.

The direction of the β update depends solely on ϵn. When
ϵn < 0, indicating underestimation of Qn, β′ is increased to
raise the intrinsic cost and mitigate underestimation. When
ϵn > 0, indicating overestimation of Qn, β′ is decreased,
reducing the intrinsic cost to mitigate overestimation. The
discount factor is used to ensure the convergence of the
value function, with the convergence analysis in Theorem
4.5. By leveraging the estimated bias from the previous
update, we iteratively refine the intrinsic factor to control
the estimated bias of the current value function.

In practical implementation, since the optimal value Q∗ is
unknown, we approximate it by computing the cumulative
discounted cost along trajectories sampled by the current
policy, following (Wang et al., 2021; Fujimoto et al., 2018).

Based on the extrinsic-intrinsic cost value function, the
cumulative discounted extrinsic-intrinsic cost is defined as:

JEIC (π) := Eτ∼π

[ ∞∑
t=0

γtCEI(st, at)

]
(9)

where CEI(st, at) = cEt + βcIt is the extrinsic-intrinsic
cost function. The extrinsic-intrinsic advantage function in
MICE is defined as: AEIC (s, a) = Es′ [cE+βcI+γVC(s

′)−
VC(s)]. To minimize constraint violations, we replace the
standard constraint JC with the extrinsic-intrinsic constraint
JEIC in the optimization objective. To facilitate optimization,
we give the difference in expectation constraint between
extrinsic-intrinsic JEIC (π′) and extrinsic JC(π).
Lemma 4.2. Given arbitrary two policies π and π′, the
difference in expectation constraint of extrinsic-intrinsic
JEIC (π′) and extrinsic JC(π) is expressed as:

JEIC (π′)− JC(π) = Eτ |π′

[ ∞∑
t=0

γtAEIC (st, at|π)

]
(10)

where AEIC (st, at|π) = Est+1
[cEt + βcIt + γV π

C (st+1) −
V π
C (st)]. The expectation is over trajectories τ , with Eτ |π′

indicating that actions are sampled from π′ to generate τ .
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A proof is provided in Appendix B.3.

According to Equation 10, we present the optimization ob-
jective of MICE:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)] ≤ d

(11)

To ensure that the unsafe states stored in memory remain rel-
evant to the updated policy π, we further propose a surrogate
objective within the trust region:

πk+1 =arg max
π∈Πθ

Es∼dπk ,a∼π[A
πk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

EI
C (s, a|πk)] ≤ d,

D(π∥πk) ≤ φ
(12)

where D(π∥πk) = Es∼dπk [DKL(π∥πk)[s]], and DKL is
the KL divergence. φ > 0 is the trust region size, and the
set {π ∈ Πθ : D(π∥πk) ≤ φ} defines the trust region.

The trust region constrains the updated policy π to remain
close to the previously sampled policy πk. This alignment
preserves the relevance of unsafe states stored in memory,
ensuring that the identified high-cost regions adequately
cover the sampling space of the updated policy π. Conse-
quently, the intrinsic cost more accurately reflects the risk
of the updated policy π visiting these high-cost regions, ef-
fectively mitigating underestimation and promoting safer
exploration in unsafe regions.

To solve the optimization objective 12, we propose the
MICE-CPO and MICE-PIDLag optimization methods, as
detailed in Appendix A.

4.4. Theoretical Analysis

Theoretically, we establish an upper bound on the difference
in the expected extrinsic–intrinsic constraint between two
arbitrary policies.
Theorem 4.3 (Extrinsic-intrinsic Constraint Bounds). For
arbitrary two policies π′ and π, the following bound for the
expected extrinsic-intrinsic constraint holds:

JEIC (π′)− JEIC (π)

≤ 1

1− γ
Es∼dπ,a∼π′

[
AEIC (s, a|π) + 2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

(13)
where ϵEIπ′ := maxs |Ea∼π′ [AEIC (s, a|π)]|, the TV-
divergence DTV (π

′||π)[s] = (1/2)
∑
a |π′(a|s)− π(a|s)|.

The proof is provided in Appendix B.4.

The upper bound in Theorem 4.3 is associated with the TV
divergence between π and π′. A larger divergence between

two policies results in a larger upper bound on the constraint
gap. This theorem supports the optimization objective 12
within the trust region in MICE.

By mitigating the underestimation, the MICE algorithm sig-
nificantly reduces constraint violations during the learning
process. We further establish a theoretical upper bound on
the constraint violation for the updated policy within the
MICE optimization framework:

Theorem 4.4 (MICE Update Worst-Case Constraint Vio-
lation). Suppose πk, πk+1 are related by the optimization
objective 12, an upper bound on the constraint of the up-
dated policy πk+1 is:

JC(πk+1) ≤ d− I +

√
2φγϵ

πk+1

C

(1− γ)2
(14)

where ϵ
πk+1

C := maxs |Ea∼πk+1
[Aπk

C (s, a)]|, and I =
Eτ |πk+1

[∑∞
t=0 γ

tβcIt
]
.

A proof is provided in Appendix B.4.

Theorem 4.4 demonstrates that our method achieves a tighter
upper bound on constraint violation compared to CPO, guar-
anteeing that the updated policy in MICE has a lower proba-
bility of exceeding the constraint threshold.

Based on similar assumptions as in TD3 and Double Q-
learning, we give convergence guarantees of the extrinsic-
intrinsic cost value function.

Theorem 4.5 (Convergence Analysis). Given following
conditions:

1. Each state-action pair is sampled an infinite number
of times.

2. The MDP is finite.

3. γ ∈ [0, 1).

4. QEI
C values are stored in a lookup table.

5. QEI
C receives an infinite number of updates.

6. The learning rates satisfy αt(s, a) ∈ [0, 1],∑
t αt(s, a) = ∞,

∑
t(αt(s, a))

2 < ∞ with proba-
bility 1, αt(s, a) = 0, ∀(s, a) ̸= (st, at).

7. V ar[cEt + βcIt ] <∞, ∀s, a.

The extrinsic-intrinsic QEI
C will converge to the optimal Q∗

C

with probability 1.

The proof is in Appendix B.5.

Theorem 4.5 ensures that MICE converges to the optimal
solution, which guarantees policy performance while satis-
fying constraints.

6



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

Figure 3: Comparison of MICE to baselines on Safety Gym. The x-axis is the total number of training steps, the y-axis is
the average return or constraint. The solid line is the mean and the shaded area is the standard deviation. The dashed line is
the constraint threshold which is 25.

5. Experiment
The experiments address the following questions: 1) Does
MICE reduce constraint violations while maintaining policy
performance compared to baselines? 2) Does the intrin-
sic cost component effectively mitigate underestimation?
Baselines include the primal-dual PID Lagrangian method
(Stooke et al., 2020), the primal CUP method (Yang et al.,
2022), and state augmentation methods Saute (Sootla et al.,
2022a) and Simmer (Sootla et al., 2022b) focusing on zero
constraint violations. Results for additional baselines are
provided in the Appendix C.3.1.

We implemented both MICE-CPO and MICE-PIDLag, with
optimization details provided in Appendix A. All experi-
ments followed uniform conditions to ensure fairness and
reproducibility, with a total of 107 training time steps and
a maximum trajectory length of 1000 steps. To reduce ran-
domness, 6 random seeds were used for each method, and
the results are presented as mean and variance. The algo-
rithm process is provided in Appendix C.1, and additional
experiments are presented in Appendix C.3.

Environments Description. Experiments were conducted
across four navigation tasks in Safety Gym (Ji et al., 2023)
and four MuJoCo physical simulator tasks (Todorov et al.,
2012), as detailed in Appendix C.4. All tasks aim to max-
imize expected reward (higher is better) while satisfying
constraints (below a threshold). In Safety Gym, we train
Point and Car agents on navigation tasks, including the
Goal task (navigate to a goal while avoiding hazards) and
the Circle task (go around a circle’s center without crossing
boundaries). In Safety MuJoCo, agents are rewarded for
running along a straight path with a velocity limit for safety.

Performance and Constraint. Figure 3 presents the learn-
ing curves for MICE and baselines in Safety Gym. The
first row shows the cumulative discounted reward during
training, and the second row is the cumulative discounted
cost, with the black dashed line indicating the cost thresh-
old. The results indicate that MICE significantly reduces
constraint violations while maintaining superior or similar
policy performance to baselines. Notably, in the Goal1 nav-
igation tasks with multiple hazards, MICE enhances policy
performance while maintaining constraint satisfaction, as
its intrinsic cost provides predictive signals to avoid haz-
ards and encourage safe exploration. In Safety MuJoCo,
as shown in Figure 4, MICE consistently maintains zero
constraint violations throughout training, with convergence
speed comparable to or faster than baselines. MICE matches
the constraint satisfaction levels of Saute and SimmerPID,
which emphasize zero constraint violations, while surpass-
ing them in policy performance. In HalfCheetahVelocity,
PIDLag exceeds the constraint threshold, thus its higher
return compared to MICE does not indicate a better pol-
icy. Extended experiments covering more complex tasks
are provided in Appendix C.3.2. The results demonstrate
that MICE continues to achieve superior constraint satisfac-
tion while maintaining policy performance in these more
challenging scenarios.

Estimation Bias in MICE. To validate the effectiveness
of the intrinsic cost in MICE for mitigating estimation bias,
we compare the difference between estimated and true cost
values across MICE and baselines. True values are com-
puted as the average cumulative discounted cost over 1, 000
episodes under the current policy. Figure 5 shows that the
estimated values in MICE are significantly higher than those
of the baselines, indicating that the intrinsic cost effectively

7



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

Figure 4: Comparison of MICE to baselines on Safety MuJoCo. The x-axis is the total number of training steps, the y-axis
is the average return or constraint. The solid line is the mean and the shaded area is the standard deviation. The dashed line
in the cost plot is the constraint threshold which is 25.

Figure 5: Validation experiments of mitigating underestimation with MICE. The y-axis is the cost value estimate minus the
true value, and the dashed line is the zero deviation.

mitigates underestimation. Meanwhile, the estimation bias
in MICE approaches zero, confirming that the balancing
factor β in MICE can effectively correct estimation bias.
Furthermore, the extrinsic-intrinsic cost value function in
MICE gradually converges to the true value, supporting the
convergence analysis in Theorem 4.5. Additionally, we com-
pare the TD3-based cost value function with that of MICE
in mitigating constraint bias, showing that the intrinsic cost
component in MICE more accurately mitigates underestima-
tion, resulting in improved constraint satisfaction and policy
performance, as detailed in Appendix C.3.3.

Ablation Study of Intrinsic Cost. To verify that memory-
driven intrinsic cost enhances policy learning, we conduct
an ablation study where the intrinsic cost in MICE is re-
placed by fixed constants (3, 5, 15). Figure 6a and 6b show
that introducing fixed constants results in decreased pol-
icy performance. Notably, constraint violations are more
frequent with constant 5 compared to 3, indicating that
simply adding a larger value to the cost estimate does not
necessarily reduce constraint violations. MICE achieves
the best performance, demonstrating that the intrinsic cost
in MICE does not merely ensure constraint satisfaction by

introducing conservatism. Instead, it is derived from the
count of visits to high-regions stored in memory, effectively
mitigating underestimation in high-regions and promoting
safer exploration. Our method is theoretically and empir-
ically proven to converge to the optimal value, while the
constant-based approach lacks such guarantees, leading to
suboptimal policy performance. Additionally, we perform
an ablation study on the random projection layer in MICE
to validate its effectiveness. The results show that it signifi-
cantly reduces computational complexity without degrading
policy performance or increasing constraint violations, as
detailed in Appendix C.3.4.

Robustness to Constraint Thresholds. Sensitivity analy-
sis experiments are conducted in SafetyPointGoal1-v0 with
thresholds of 0, 15, and 25, as illustrated in Figure 6c and
6d. The results show that MICE adapts effectively to vary-
ing constraint requirements. With a threshold of 15, MICE
achieves a balance between performance and constraint sat-
isfaction. Under the strict threshold of 0, MICE enforces
compliance, ensuring the policy adheres to constraints.
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(a) Return of Ablation (b) Constraint of Ablation (c) Return of Sensitivity (d) Constraint of Sensitivity
Figure 6: (a)(b) Ablation study of extrinsic-intrinsic cost value in MICE, comparing MICE with variants that remove the
intrinsic cost and add fixed constants to the cost value function. (c)(d) Robustness of MICE to different cost thresholds.

Figure 7: Sensitivity analysis of MICE algorithm for the number of nearest neighbors k in KNN, showing that increasing k
enhances the safety of the policy but also raises computational overhead. We uniformly set k = 10 across all environments
to balance safety, performance, and computational efficiency.

Sensitivity Analysis of Hyperparameters. To evaluate
the sensitivity of the number of nearest neighbors k in KNN,
we varied k across multiple environments and analyzed its
impact, as shown in Figure 7. The results indicate that in-
creasing k enhances policy safety by incorporating more
unsafe states from memory, but also raises computational
overhead. Conversely, a smaller k may result in insufficient
leveraging of unsafe state information, potentially leading
to higher constraint violations. In this paper, we uniformly
set k = 10 across all environments to balance safety, perfor-
mance, and computational efficiency.

6. Discussion and Conclusion
This paper addresses an important challenge in CRL, the
underestimation of the cost value, which significantly con-
tributes to constraint violations. To mitigate this issue,
we propose the MICE algorithm, which incorporates an
extrinsic-intrinsic cost value update mechanism inspired by
human cognitive processes. MICE enhances the cost esti-
mates of high-cost regions, encouraging safer exploration.
Theoretically, we provide an upper bound on constraint vio-
lations and establish convergence guarantees of the MICE

algorithm. Extensive experimental results demonstrate that
MICE effectively reduces constraint violations while main-
taining robust policy performance.

The MICE framework exhibits strong applicability across
diverse tasks. For example, the criterion for adding states
to the flashbulb memory can be flexibly adjusted. In our
experiments, we adopt a rule based on whether the extrinsic
cost of a state is greater than zero, where extrinsic costs are
directly provided by the environment without noise. How-
ever, in real-world applications, extrinsic costs may be noisy
and may not accurately reflect the true cost of a given state.
A practical alternative is to employ the expected cumula-
tive cost as the criterion for memory inclusion: a state is
stored if its expected cumulative cost exceeds a predefined
threshold. By aggregating information across multiple fu-
ture timesteps, this approach effectively mitigates the influ-
ence of individual outlier values. Additionally, in domains
such as autonomous driving, the expense of sampling unsafe
states is prohibitively high. In these scenarios, the memory
can be constructed using offline datasets to ensure safety and
feasibility, with techniques such as importance resampling
employed to correct for potential distributional shifts.
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Notations

cI intrinsic cost

cE extrinsic cost

R reward function

P transition probability function

ρ initial state distribution

γ discount factor

π the policy

dπ the discounted future state visitation distribution

τ trajectory

AπR(s, a) advantage function

JR the expected discount return

JC the expected discount cost return

d cost threshold

ΠC the set of feasible policies

Qπ
C(s, a) action cost value function

V π
C (s) cost value function

AπC(s, a) cost advantage function

α step size

M flashbulb memory

sm unsafe state

f Random Projection

β intrinsic factor

ϵ estimation bias

QEI
C extrinsic-intrinsic cost value function

QT extrinsic-intrinsic update target

Qn extrinsic-intrinsic n-th update

JEIC cumulative discount extrinsic-intrinsic cost

CEI extrinsic-intrinsic cost function

AEIC extrinsic-intrinsic cost advantage function

δ extrinsic-intrinsic TD-error

φ trust region size

k the number of nearest neighbors in KNN

12



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

A. Safety Policy Optimization in MICE
The CRL aims to find an optimal policy by maximizing the expected discount return over the set of feasible policies
ΠC := {π ∈ Π : JC(π) ≤ d}:

argmax
π∈Π

JR(π)

s.t. JC(π) ≤ d
(15)

The following equation briefly gives the performance difference of arbitrary two policies, which represents the expected
return of another policy π′ in terms of the advantage function over π:

JR(π
′)− JR(π) =

1

1− γ
Es∼dπ′ ,a∼π′ [AπR(s, a)] (16)

This implies that iterative updates to the policy, π′(s) = argmaxaA
π
R(s, a), lead to performance improvement until

convergence to the optimal solution.

According to the performance difference equation (16), CRL is defined as a constrained optimization problem:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[Aπk

C (s, a)] ≤ d
(17)

where policy π ∈ Πθ is parameterized with parameters θ, and πk represents the current policy.

In this paper, we define the cumulative discount extrinsic-intrinsic cost as:

JEIC (π) := Eτ∼π[
∞∑
t=0

γtCEI(st, at)] (18)

where CEI(s, a) = cE + βcI is the extrinsic-intrinsic cost function. The extrinsic-intrinsic advantage function in MICE is
defined as:

AEIC (s, a) = Es′ [cE + βcI + γVC(s
′)− VC(s)] (19)

To reduce constraint violations, we replace JC with the extrinsic-intrinsic constraint JEIC in the optimization objective. We
give the optimization objective of MICE based on the extrinsic-intrinsic cost value estimate and Lemma 1:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)] ≤ d

(20)

where policy π ∈ Πθ is parameterized with parameters θ, and πk represents the current policy. We propose two optimization
methods, MICE-CPO and MICE-PIDLag, based on CPO and PID Lagrangian respectively, to solve the optimization
objective 20.

A.1. MICE-CPO

The complex dependency of state visitation distribution dπ(s) on unknown policy π makes objective 20 difficult to optimize
directly. To address this, this paper uses samples generated by the current policy πk to approximate the original problem
locally. We seek to solve the following optimization problem in the trust region:

πk+1 =arg max
π∈Πθ

Es∼dπk ,a∼π[A
πk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

EI
C (s, a|πk)] ≤ d

D(π∥πk) ≤ φ

(21)
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where Πθ is the policy set parameterized by parameter θ, D(π∥πk) = Es∼dπk [DKL(π∥πk)[s]], DKL is the KL divergence
and φ > 0 is the trust region size. The set {π ∈ Πθ : D(π∥πk) ≤ φ} is the trust region.

In the MICE-CPO method, we approximate the reward objective and cost constraints with first-order expansion and
approximate the KL-divergence constraint with second-order expansion. The local approximation to equation 21 is:

θk+1 =argmax
θ

gT (θ − θk)

s.t. c+ (gEIC )T (θ − θk) ≤ 0

1

2
(θ − θk)

TH(θ − θk) ≤ φ

(22)

where g denotes the gradient of the reward objective in equation 21, gEIC denotes the gradient of extrinsic-intrinsic constraint
in equation 21, c = JC(πk)− d, H is the Hessian of the KL-divergence. When the constraint is satisfied, we can get the
analytical solution with the primal-dual method. The solution to the primal problem is:

θ∗ =θk +
1

λ∗H
−1(g − gEIC ν∗) (23)

where λ and ν are the Lagrangian multipliers of the KL-divergence term and the constraint term in the Lagrangian function,
respectively. λ∗, ν∗ are the solutions to the dual problem:

ν∗ = max{0, λ
∗c− u

v
} (24)

λ∗ = argmax
λ≥0

{
1
2λ

(
u2

v − q
)
+ λ

2

(
c2

v − φ
)
− uc

v , ifλc > u

− 1
2

(
q
λ + λφ

)
, otherwise,

(25)

where q = gTH−1g, u = gTH−1gEIC , v = (gEIC )TH−1gEIC .

When the constraint is violated, we use the conjugate gradient method to decrease the constraint value:

θ∗ =θk −
(

2φ

(gEIC )TH−1gEIC

) 1
2

H−1gEIC (26)

A.2. MICE-PIDLag

In the MICE-PIDLag method, we write the CRL problem 20 as the first-order dynamical system:

θk+1 = θk + η(g − λkg
EI
C )

yk = JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)]

λk = h(y0, · · · , yk, d)

(27)

where η is the step size of the update, g is the gradient of reward objective in equation 20 and gEIC denotes the gradient of
extrinsic-intrinsic constraint in equation 20. h denotes the control function. λ is the Lagrangian multiplier for the equation
20. We provide the updated formulas for the Lagrangian multiplier in MICE-PIDLag:

λ← (KP∆+KII +KD∂)+ (28)

where (·)+ = max{0, ·}, and:

∆← (JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)]− d),

I ← (I +∆)+,

∂ ←
(
JC(πk) +

1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)]− JC(πk−1)−

1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk−1)]

)
+

=
1

1− γ

(
Es∼dπ,a∼π[AEIC (s, a|πk)]− Es∼dπ,a∼π[AEIC (s, a|πk−1)] + Es∼dπk ,a∼πk

[A
πk−1

C (s, a)]
)
+

(29)

KP , KI , and KD are the coefficients of the respective control terms. The initial value of the integral term I is 0.
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B. Theoretical Proof
B.1. Estimation Bias Lemma

Lemma B.1. In a finite MDP for a given state-action pair (s, a), the difference between the optimal cost value function
Q∗
C(s, a) and the cost value estimate QEI

C,m(s, a) after (m+ n)-th update is given by:

Q∗
C(s, a)−QEI

C,n+m(s, a) = (1− α)m[Q∗
C(s, a)−QEI

C,n(s, a)]− α

m∑
i=1

(1− α)i−1tn+m−i(s, a) (30)

where QEI
C,n(s, a) is the estimate of the value function at the n-th update, α is the step size, and tn(s, a) = cE + βcI +

γEs′ [QEI
C,n(s

′, a′)]−Q∗
C(s, a) is the target difference.

Proof. We use induction method to proof this lemma B.1.

Base Case: m = 1

Substituting m = 1 in lemma B.1, we get:

Q∗
C(s, a)−QEI

C,n+1(s, a) = (1− α)[Q∗
C(s, a)−QEI

C,n(s, a)]− αtn(s, a) (31)

According to the update equation of the extrinsic-intrinsic cost value function in MICE, we get:

QEI
C,n+1(s, a) = (1− α)QEI

C,n(s, a) + α(cE + βcI + γEs′ [QEI
C,n(s

′, a′)])

= (1− α)QEI
C,n(s, a) + α(tn(s, a) +Q∗

C(s, a))
(32)

which is equivalent to equation 31.

Induction Step: m = k + 1

Assuming lemma B.1 is true for m = k, which is:

Q∗
C(s, a)−QEI

C,n+k(s, a) = (1− α)k[Q∗
C(s, a)−QEI

C,n(s, a)]− α

k∑
i=1

(1− α)i−1tn+k−i(s, a) (33)

Now we need to prove that it holds for m = k + 1. According to the cost value update equation in MICE, we get:

QEI
C,n+k+1(s, a) = (1− α)QEI

C,n+k(s, a) + α(cE + βcI + γEs′ [QEI
C,n+k(s

′, a′)])

= (1− α)QEI
C,n+k(s, a) + α(tn+k(s, a) +Q∗

C(s, a))
(34)

Then we can get:

Q∗
C(s, a)−QEI

C,n+k+1(s, a) = (1− α)[Q∗
C(s, a)−QEI

C,n+k(s, a)]− αtn+k(s, a) (35)

Substituting the equation 33, we get:

Q∗
C(s, a)−QEI

C,n+k+1(s, a)

=(1− α)

[
(1− α)k[Q∗

C(s, a)−QEI
C,n(s, a)]− α

k∑
i=1

(1− α)i−1tn+k−i(s, a)

]
− αtn+k(s, a)

=(1− α)k+1[Q∗
C(s, a)−QEI

C,n(s, a)]− α

k+1∑
i=1

(1− α)i−1tn+k+1−i(s, a)

(36)

which satisfies the equation when m = k + 1 in lemma B.1.
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Lemma B.1 indicates that when m = 1 and QEI
C,n(s, a) is a random initial value for the cost value function, in a stochastic

high value region of the state-action space, it is likely that Q∗
C(s, a) > QEI

C,n(s, a) (Karimpanal et al., 2023). In this
case, overestimation of our extrinsic-intrinsic cost value function can effectively reduce the estimation bias, whereas
underestimation in the traditional value function further increases the estimation bias.

B.2. Balancing Intrinsic Factor

Proposition B.2. For a transition (s, a, cE , s′) in a CMDP, where the n-th update of the extrinsic-intrinsic cost value Qn

corresponds to the n-th update target QTn
, the modified target for the (n+ 1)-th update is Q′

Tn+1
, the balancing intrinsic

factor β′ for the (n+ 1)-th update is given by:

β′ = max{γn(βn −
αϵn
cI

), 0}, cI > 0 (37)

where ϵn = Qn −Q∗ is the n-th update estimation bias, γ ∈ (0, 1) is the discount factor.

To avoid excessive estimate bias, we propose an adaptive mechanism for bias correction. The target for the (n+1)-th update
QTn+1

is modified as:
Q′
Tn+1

= QTn+1 − α(Qn −Q∗) (38)

where Q∗ is the optimal value, Qn is the n-th update estimate. When Qn −Q∗ < 0, the modified target Q′
Tn+1

is adjusted
upward, introducing positive bias to mitigate excessive underestimation. Conversely, when Qn−Q∗ > 0, Q′

Tn+1
is adjusted

downward, introducing negative bias to address excessive overestimation. (Karimpanal et al., 2023).

Denote ϵn = Qn −Q∗ as the estimation bias of the n-th update.

Q′
Tn+1

= QTn+1
− α(Qn −Q∗)

= QTn+1
− αϵn

(39)

The ideal estimation bias for the ideal (n+ 1)-th update target can be denoted as:

ϵ′n+1 = Q′
Tn+1

−Q∗ (40)

According to equation 39, the ideal estimation bias for the (n+ 1)-th target can be expressed as:

ϵ′n+1 = QTn+1 − αϵn −Q∗ (41)

where:
QTn+1 = cE + βnc

I + γEs′ [QEI
n+1(s

′, a′)] (42)

The we get the ideal estimation bias of the (n+ 1)-th update, with the current value of balancing factor βn:

ϵ′n+1 = cE + βnc
I + γEs′ [QEI

n+1(s
′, a′)]− αϵn −Q∗ (43)

We define the ideal balancing factor β′
n+1 as β′:

ϵ′n+1 = Q′
Tn+1

−Q∗

= cE + β′cI + γEs′ [QEI
n+1(s

′, a′)]−Q∗ (44)

According to equation 43 and equation 44, we get the ideal factor β′:

β′ = βn −
αϵn
cI

, cI > 0 (45)

16



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

To ensure the non-negativity of intrinsic cost, we clip the balancing factor:

β′ = max{βn −
αϵn
cI

, 0}, cI > 0 (46)

Based on the convergence analysis of the traditional value function (Van Hasselt et al., 2016; Fujimoto et al., 2018), it
gradually converges to the optimal value, causing the estimation bias to approach zero. To ensure the convergence of the
extrinsic-intrinsic cost value function, we incorporate the discount factor to the balancing factor:

β′ = max{γn(βn −
αϵn
cI

), 0}, cI > 0 (47)

We provide the convergence guarantee in Theorem 4.5.

B.3. Constraint Difference Lemma

Lemma B.3. Given arbitrary two policies π and π′, the difference in expectation constraint of extrinsic-intrinsic JEIC (π′)
and extrinsic JC(π) can be expressed as:

JEIC (π′)− JC(π) = Eτ |π′

[ ∞∑
t=0

γtAEIC (st, at|π)

]
(48)

where AEIC (st, at|π) = Est+1 [c
E
t + βcIt + γV π

C (st+1)− V π
C (st)]. The expectation is taken over trajectories τ , and Eτ |π′

indicates that actions are sampled from π′ to generate τ .

Proof. The expectations in JEIC (π′) and JC(π) can be expanded as:

JEIC (π′) := Eτ∼π′ [

∞∑
t=0

γt(cEt + βcIt )]

JC(π) := Eτ∼π[
∞∑
t=0

γtcEt ] = Es0∼ρ[V π
C (s0)]

(49)

JEIC (π′)− JC(π)

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + βcIt

)]
− Es0∼ρ[V π

C (s0)]

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + βcIt

)
− V π

C (s0)

]

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + βcIt + V π

C (st)− V π
C (st))

)
− V π

C (s0)

]
=Eτ |π′

[
−V π

C (s0) + cE0 + βcI0 + V π
C (s0)− V π

C (s0) + γcE1 + γβcI1 + γV π
C (s1)− γV π

C (s1) + · · ·
]

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + βcIt + γV π

C (st+1)− V π
C (st)

)]

=Eτ |π′

[ ∞∑
t=0

γtAEIC (st, π
′(st)|π)

]

(50)

Here the term AEIC (st, π
′(st)|π) denotes that the advantage value function AEIC is over π, the action is selected according to

π′.
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The second equation above holds because that

Eτ |π′ [V π
C (s0)]

=Es∼dπ′ ,a∼π′,s′∼P [V π
C (s0)]

=Es0∼ρ [V π
C (s0)]

(51)

The initial state s0 in V π
C (s0) depends solely on the initial state distribution ρ, allowing the expectation over τ |π′ to be

expressed as an expectation over s0 ∼ ρ.

The third equation in equation 50 holds by adding V π
C while subtracting V π

C . The fourth equation expands the cumulative
sum over time steps t. The final equation follows from the definition of AEIC .

B.4. Constraint Bounds

Theorem B.4 (Extrinsic-intrinsic Constraint Bounds). For arbitrary two policies π′ and π, the following bound for the
expected extrinsic-intrinsic constraint holds:

JEIC (π′)− JEIC (π) ≤ 1

1− γ
Es∼dπ,a∼π′

[
AEIC (s, a|π) + 2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

(52)

where ϵEIπ′ := maxs |Ea∼π′ [AEIC (s, a|π)]|, the TV-divergence DTV (π
′||π)[s] = (1/2)

∑
a |π′(a|s)− π(a|s)|.

Proof. Define the state visit probability for time step t as ptπ(s) = P (st = s|π), denote the transition matrix as Pπ(s′|s) =∫
daπ(a|s)P (s′|s, a), we get ptπ = Pπp

t−1
π = · · · = P tπρ. The discounted future state distribution dπ(s) satisfies:

dπ(s) = (1− γ)

∞∑
t=0

γtP (st = s|π)

= (1− γ)

∞∑
t=0

γtptπ(s)

= (1− γ)

∞∑
t=0

γtP tπρ

= (1− γ)

∞∑
t=0

(γPπ)
tρ

= (1− γ)(I − γPπ)
−1ρ

(53)

where ρ is the initial state distribution, I is the identity matrix. Multiply both sides by (I − γPπ), we get

(I − γPπ)d
π(s) = (1− γ)ρ (54)

For cost value function VC(s) with polices π′ and π, we get the following according to equation 54:

(1− γ)Es∼ρ[VC(s)] + Es∼dπ,a∼π,s′∼P [γVC(s′)]− Es∼dπ [VC(s)]

=(1− γ)

∫
dsρ(s)VC(s) +

∫
ds

∫
da

∫
ds′dπ(s)π(a|s)P (s′|s, a)γVC(s′)−

∫
dsdπ(s)VC(s)

=

∫
ds(1− γ)ρ(s)VC(s) +

∫
dsdπ(s)PπγVC(s

′)−
∫

dsdπ(s)VC(s)

=

∫
ds(I − γPπ)d

π(s)VC(s) +

∫
dsdπ(s)PπγVC(s

′)−
∫

dsdπ(s)VC(s)

=0

(55)
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The third equation above holds according to equation 54. Then we get:

(1− γ)Es∼ρ[VC(s)] + Es∼dπ,a∼π,s′∼P [γVC(s′)]− Es∼dπ [VC(s)] = 0 (56)

The definition of discount total extrinsic-intrinsic cost is:

JEIC (π) =
1

1− γ
Es∼dπ,a∼π,s′∼P [CEI(s, a, s′)] (57)

By combining this with equation 56, we get the discount total extrinsic-intrinsic cost equation:

JEIC (π) = Es∼ρ[VC(s)] +
1

1− γ
Es∼dπ,a∼π,s′∼P [CEI(s, a, s′) + γVC(s

′)− VC(s)] (58)

where the first term on the right side is the estimate of the policy constraint, and the second term on the right side
is the average extrinsic-intrinsic TD-error of the approximator. The extrinsic-intrinsic TD-error is: δEIV (s, a, s′) =
CEI(s, a, s′) + γVC(s

′)− VC(s). According to the equation 58, the expectation extrinsic-intrinsic constraint difference of
any two policies is:

JEIC (π′)− JEIC (π) =
1

1− γ

(
Es∼dπ′ ,a∼π′,s′∼P [δ

EI
V (s, a, s′)]− Es∼dπ,a∼π,s′∼P [δEIV (s, a, s′)]

)
(59)

To simplify the representation, we denote δ̄π′(s) = Ea∼π′,s′∼P [δ
EI
V (s, a, s′)]. The first term of the right side in equation 59

can be represented as:

Es∼dπ′ ,a∼π′,s′∼P [δ
EI
V (s, a, s′)] =

∫
dsdπ

′
∫

daπ′
∫

ds′PδEIV (s, a, s′)

= ⟨dπ
′
, δ̄π′⟩

= ⟨dπ, δ̄π′⟩+ ⟨dπ
′
− dπ, δ̄π′⟩

(60)

the second equation holds by adding dπ while subtracting dπ .

According to the Hölder’s inequality, for any p, q ∈ [1,∞] satisfy 1
p +

1
q = 1, we set p = 1 and q =∞, and get:

⟨dπ
′
− dπ, δ̄π′⟩ ≤ ∥dπ

′
− dπ∥1∥δ̄π′∥∞ (61)

According to the definition in this theorem, we have ∥δ̄π′∥∞ = ϵEIπ′ , and ∥dπ′ − dπ∥1 = 2DTV (d
π′∥dπ). According to

Lemma 3 in CPO, we have:

∥dπ
′
− dπ∥1 ≤

2γ

1− γ
Es∼dπ [DTV (π

′∥π)[s]] (62)

By the importance sampling, we get:

⟨dπ, δ̄π′⟩ = ⟨π
′

π
dπ, δ̄π⟩ (63)

The second term of the right side in equation 59 can be represented as:

Es∼dπ,a∼π,s′∼P [δEIV (s, a, s′)] =

∫
dsdπ

∫
daπ

∫
ds′PδEIV (s, a, s′)

= ⟨dπ, δ̄π⟩
(64)

Then we get the final result by combining the above equations:
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JEIC (π′)− JEIC (π) ≤ 1

1− γ

(
⟨π

′

π
dπ, δ̄π⟩+ 2DTV (d

π′
∥dπ)ϵEIπ′ − ⟨dπ, δ̄π⟩

)
=

1

1− γ

(
(
π′

π
− 1)⟨dπ, δ̄π⟩+ 2DTV (d

π′
∥dπ)ϵEIπ′

)
≤ 1

1− γ
Es∼dπ,a∼π,s′∼P

[
(
π′

π
− 1)δEIV (s, a, s′) +

2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

=
1

1− γ
Es∼dπ,a∼π′

[
AEIC (s, a|π) + 2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

(65)

Theorem B.5 (MICE Update Worst-Case Constraint Violation). Suppose πk, πk+1 are related by the optimization objective
21, an upper bound on the constraint of the updated policy πk+1 is:

JC(πk+1) ≤ d− I +

√
2φγϵ

πk+1

C

(1− γ)2
(66)

where ϵ
πk+1

C := maxs |Ea∼πk+1
[Aπk

C (s, a)]|, and I = Eτ |πk+1

[∑∞
t=0 γ

tβcIt
]
.

Proof. According to Corollary 2 in CPO (Achiam et al., 2017),

JC(πk+1)− JC(πk) ≤
1

1− γ
Es∼dπk ,a∼πk+1

[
Aπk

C (s, a) +
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]

]
(67)

As πk, πk+1 are related by objective 21, we get

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[AEIC (s, a|πk)] ≤ d (68)

which is:

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[cE + βcI + γVC(s
′)− VC(s)] ≤ d

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a)] +
1

1− γ
Es∼dπk ,a∼πk+1

[βcI ] ≤ d

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a)] ≤ d− I

(69)

According to Pinsker’s inequality, for arbitrary distributions p, q, the TV-divergence and KL-divergence are related by:

DTV (p||q) ≤
√

DKL(p||q)
2

(70)

According to Jensen’s inequality, we get:

Es∼dπk [DTV (πk+1||πk)[s]] ≤
√

1

2
Es∼dπk [DKL(πk+1||πk)[s]]

≤
√

φ

2

(71)

Then we get the final result:

JC(πk+1) ≤ d− I +

√
2φγϵ

πk+1

C

(1− γ)2
(72)
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B.5. Convergence Analysis

Based on the same assumptions as in TD3 and Double Q-learning, we give convergence guarantees of the extrinsic-intrinsic
cost value function in MICE.

Lemma B.6. Consider a stochastic process (ζt,∆t, Ft), t ≥ 0 where ζt,∆t, Ft : X → R satisfy the equation:

ζt+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt) (73)

where xt ∈ X ant t = 0, 1, 2, · · · . Let Pt be a sequence of increasing σ-fields such that ζ0 and ∆0 are P0-measurable and
ζt, ∆t and Ft−1 are Pt-measurable, t = 1, 2, · · · . Assume that the following holds:

1. The set X is finite.

2. ζt(xt) ∈ [0, 1],
∑
t ζt(xt) =∞,

∑
t(ζt(xt))

2 <∞ with probability 1 and ∀x ̸= xt : ζ(x) = 0.

3. ∥ E[Ft|Pt] ∥∞≤ κ ∥ ∆t ∥∞ +ct where κ ∈ [0, 1) and ct converges to 0 with probability 1.

4. V ar[Ft(xt)|Pt] ≤ K(1 + κ ∥ ∆t ∥∞)2, where K is some constant.

where ∥ · ∥∞ denotes the maximum norm. Then ∆t converges to 0 with probability 1.

We use the Lemma B.6 to prove the convergence of our approach with a similar condition in Q-learning.

Theorem B.7 (Convergence Analysis). Given the following conditions:

1. Each state-action pair is sampled an infinite number of times.

2. The MDP is finite.

3. γ ∈ [0, 1).

4. QC values are stored in a lookup table.

5. QC receives an infinite number of updates.

6. The learning rates satisfy αt(s, a) ∈ [0, 1],
∑
t αt(s, a) =∞,

∑
t(αt(s, a))

2 <∞ with probability 1 and αt(s, a) = 0,
∀(s, a) ̸= (st, at).

7. V ar[cEt + βcIt ] <∞, ∀s, a.

The extrinsic-intrinsic QEI
C will converge to the optimal value function Q∗

C with probability 1.

Theorem B.7 ensures that our method converges to the optimal solution.

Proof. We apply Lemma B.6 to prove Theorem B.7. Denote the variables in Lemma B.6 with Pt =
{QEI

C0, s0, a0, α0, c
E
1 , s1, · · · , st, at}, X = S × A, ζt = αt. Define ∆t(st, at) = QEI

Ct (st, at) − Q∗
C(st, at), Ft =

cEt + βcIt + γQEI
Ct (st+1, at+1)−Q∗

C(st, at).

Condition 1 of the lemma B.6 holds by condition 2 of the theorem B.7. Condition 2 of the lemma B.6 holds as the theorem
condition 6 with ζt = αt. The condition 4 of lemma B.6 holds as a consequence of the condition 7 in the theorem.

So we need to show that the lemma condition 3 on the expected contraction of Ft holds.

The extrinsic-intrinsic Q-learning equation in our paper is:

QEI
C (s, a) = (1− α)QEI

C (s, a) + α(cE + βcI + γEs′ [QEI
C (s′, a′)]) (74)
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We have:

∆t+1(st, at) =QEI
Ct+1(st, at)−Q∗

C(st, at)

=(1− αt)Q
EI
Ct (st, at) + αt(c

E
t + βcIt + γQEI

t (st+1, at+1))−Q∗
C(st, at)

=(1− αt)(Q
EI
Ct (st, at)−Q∗

C(st, at)) + αt(c
E
t + βcIt + γQEI

Ct (st+1, at+1)−Q∗
C(st, at))

=(1− αt)∆t + αtFt

(75)

For the Ft, we can write as:

Ft(st, at) =cEt + βcIt + γQEI
Ct (st+1, at+1)−Q∗(st, at)

=FEt (st, at) + βcIt
(76)

where FEt (st, at) = cEt + γQEI
Ct (st+1, at+1)−Q∗

C(st, at) is the value of Ft in normal value function. According to the
convergence analysis in value function, we get E[FEt |Pt] ≤ γ ∥ ∆t ∥∞. Then condition 3 of lemma 2 holds if cIt converges
to 0 with probability 1.

The intrinsic cost is normalized and the discount factor term γn is included in the balancing factor, where γ ∼ (0, 1). So βcIt
converges to 0 with probability 1, which then shows condition 3 of lemma B.6 is satisfied. So the QEI

C (st, at) converges to
Q∗(st, at).

C. Experiment
C.1. Algorithm Process

We provide the code for MICE-CPO and MICE-PIDLag in https://github.com/ShiqingGao/MICE. A formal
description of our method is shown in Algorithm 1.

Algorithm 1 MICE: Memory-driven Intrinsic Cost Estimation

Input: Initialize policy network πθ, value networks V ω
R and V ψ

C , flashbulb memory M . Set the hyperparameter.
Output: The optimal policy parameter θ.
1: for epoch k=0,1,2,... do
2: Sample under the current policy πθk .
3: Update flashbulb memory M .
4: Output the intrinsic cost cI .
5: Process the trajectories to C-returns, calculate extrinsic-intrinsic advantage functions AEI with V ψ

C and cI by GAE
method.

6: for K iterations do
7: Update value networks V ω

R , V ψ
C .

8: Update policy network πθ.
9: if 1

N

∑N
j=1 DKL(πθ||πθk)[sj ] > φ then

10: Break.
11: end if
12: end for
13: end for
14: Return: Policy parameters θ = θk+1.

C.2. Complexity Analysis

The Time complexity of MICE is O(M ·N), where M represents the size of the flashbulb memory, and N denotes the
number of samples processed during training. For the state of each sample in the training, we compute the distance between
the embedding generated by the random projection layer and the contents of the memory in order to retrieve the k-nearest
neighbors.
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C.3. Additional Experiments

We conducted comparative experiments against additional baselines. Additionally, we designed ablation study to verify the
effect of different components in MICE.

C.3.1. BASELINES

The MICE approach can be extended to other CRL algorithms based on actor-critic architectures. We compare MICE-CPO
and MICE-PIDLag with their corresponding baselines, CPO and PIDLag, across multiple environments to validate the
improvements offered by our approach. The results are shown in Figure 8 and Figure 9, which indicates that our MICE
approach effectively improves constraint satisfaction over the respective original approaches while maintaining the same or
even better level of policy performance. It is crucial to note that in SafetyCarGoal1-v0, CPO exceeds the constraint threshold,
so its higher return compared to MICE-CPO does not indicate a better policy. A direct comparison of the returns of CPO
and MICE-CPO is not meaningful. A similar phenomenon occurs in SafetyAntVelocity-v4 when evaluating MICEPID and
PIDLag.

Here, we provide an additional introduction to the baseline methods employed in the main text. CUP (Yang et al., 2022) is a
projection approach that provides generalized theoretical guarantees for surrogate functions with a generalized advantage
estimator (Schulman et al., 2015), effectively reducing variance while maintaining acceptable bias. State augmentation
methods aim to achieve constraint satisfaction with probability one. Saute RL (Sootla et al., 2022a) eliminates safety
constraints by expanding them into the state space and reshaping the objective. Specifically, the residual safety budget is
treated as a new state to quantify the risk of violating the constraint. Simmer (Sootla et al., 2022b) extends the state space
with a state encapsulating the safety information. This safe state is initialized with a safety budget, and the value of the safe
state can be used as a distance measure to the unsafe region. Simmer reduces safety constraint violations by scheduling the
initial safety budget.

Figure 8: Comparison of MICE and their respective baseline approaches on Safety Gym. The x-axis is the total number of
training steps, the y-axis is the average return or constraint. The solid line is the mean and the shaded area is the standard
deviation. The dashed line in the cost plot is the constraint threshold which is 25.

C.3.2. COMPLEX TASKS

We conducted additional experiments comparing MICE with CPO in the SafetyCarButton1-v0 and SafetyPointButton1-v0
environments. These tasks are more complex, requiring agents to navigate to a target button and correctly press it while
avoiding Gremlins and Hazards. Results presented in Figure 10 show that MICE achieves superior constraint satisfaction
while maintaining policy performance comparable to CPO.

C.3.3. COMPARED TO TD3-BASED COST VALUE FUNCTION

TD3 is a reinforcement learning method designed to mitigate the overestimation bias in the reward value function, which
uses the minimum output from two separately-learned action-value networks during policy updates. Similarly, TD3 can

23



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

Figure 9: Comparison of MICE and their respective baseline approaches on Safety MuJoCo. The x-axis is the total number
of training steps, the y-axis is the average return or constraint. The solid line is the mean and the shaded area is the standard
deviation. The dashed line in the cost plot is the constraint threshold which is 25.

Figure 10: Comparison of MICE with CPO in more complex environments. MICE achieves better constraint satisfaction
while maintaining policy performance comparable to CPO.

serve as a baseline for addressing underestimation bias in cost by using the maximum output from two separately-learned
cost value networks. We conducted experiments to compare the cost value estimation bias between the TD3 cost value
function and MICE with the PIDLag optimization method in SafetyPointGoal1-v0 and SafetyCarGoal1-v0, as shown in
Figure 11, and the performance results are shown in Figure 12.

The results show that TD3 mitigates underestimation bias in cost value estimation, but it cannot fully eliminate it. This
limitation arises from the inherent slow adaptation of neural networks, which results in a residual correlation between the
value networks, thus preventing TD3 from completely eliminating the underestimation bias. In contrast, MICE eliminates
this bias more accurately with the memory-driven intrinsic cost, resulting in significantly improved constraint satisfaction.
The intrinsic cost in MICE enhances policy learning by enabling safer exploration, thereby improving performance while
maintaining constraint compliance.

Additionally, compared to the TD3 cost value function, the flashbulb memory structures in MICE help address the
catastrophic forgetting issue in neural networks (Lipton et al., 2016), where agents may forget previously encountered
states and revisit them under new policies. This mechanism generates intrinsic cost signals that guide the agent away from
previously explored dangerous states, effectively preventing repeated encounters with the same hazards.

C.3.4. ABLATION STUDY ON RANDOM PROJECTION LAYER

In this paper, a random projection layer is used to compress states before applying KNN. Specifically, states are projected
from their original dimension n to a lower embedding dimension m using a Gaussian random matrix of shape (n,m).
This reduces the computational complexity of KNN from O(Mn) to O(Mm), where M is the number of stored states.
According to the Johnson-Lindenstrauss lemma (Johnson et al., 1984), random projection approximately preserves Euclidean
distances in the original space.

We further conducted ablation experiments on random projection, as shown in Figure 13, which confirm that using random
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Figure 11: Comparison experiment about Estimation Error of MICE to TD3PID. The y-axis is the cost value estimate
minus the true value, and the dashed line is the zero deviation. MICE achieves more accurate mitigation of estimation bias
compared to TD3

(a) Return (b) Constraint (c) Return (d) Constraint
Figure 12: Comparison of MICE, TD3PID and PIDLag. The x-axis is the total number of training steps, the y-axis is the
average return or constraint. The solid line is the mean and the shaded area is the standard deviation. The dashed line in the
cost plot is the constraint threshold which is 25.

projection in MICE does not reduce policy performance or increase constraint violations, while substantially reducing
training time.

In our work, relative similarity between states is more important than absolute scalar distances. In our implementation, both
extrinsic and intrinsic costs are normalized to ensure training stability. This normalization alters absolute distance values
but preserves similarities between states, which is key to maintaining meaningful guidance for intrinsic cost computation
and policy learning. The ablation results show that random projection effectively preserves this relative similarity, thus
maintaining the performance of MICE.

C.4. Environments

C.4.1. SAFETY GYM

Figure 14 shows the environments in the Safety Gym (Ji et al., 2023). Safety Gym is the standard API for safe reinforcement
learning. The agent perceives the world through the sensors of the robots and interacts with the environment via its actuators
in Safety Gym. In this work, we consider two agents, Point and Car, and two tasks, Goal and Circle.

The Point is a simple robot constrained to a two-dimensional plane. It is equipped with two actuators, one for rotation and
another for forward/backward movement. It has a small square in front of it, making it easier to visually determine the
orientation of the robot. The action space in Point consists of two dimensions ranging from -1 to 1, and the observation
space consists of twelve dimensions ranging from negative infinity to positive infinity.

The Car is a more complex robot that moves in three-dimensional space and has two independently driven parallel wheels
and a freely rotating rear wheel. For this robot, both steering and forward/backward movement require coordination between
the two drive wheels. The action space of Car includes two dimensions with a range from -1 to 1, while the observation

25



Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

Figure 13: Ablation study of random projection layer in MICE algorithm. Utilizing random projection in MICE does not
degrade policy performance or increase constraint violations.

(a) SafetyPointGoal1-v0 (b) SafetyCarGoal1-v0 (c) SafetyPointCircle1-v0 (d) SafetyCarCircle1-v0

Figure 14: Environments in Safety Gym.

space consists of 24 dimensions with a range from negative infinity to positive infinity.

Goal: The agent is required to navigate towards the location of the goal. Upon successfully reaching the goal, the goal
location is randomly reset to a new position while maintaining the remaining layout unchanged. The rewards in the task of
Goal are composed of two components: reward distance and reward goal. In terms of reward distance, when the agent is
closer to the Goal it gets a positive value of reward, and getting farther will cause a negative reward. Regarding the reward
goal, each time the agent successfully reaches the Goal, it receives a positive reward value denoting the completion of the
goal. In SafetyGoal1, the Agent needs to navigate to the Goal’s location while circumventing Hazards. The environment
consists of 8 Hazards positioned throughout the scene randomly.

Circle: Agent is required to navigate around the center of the circle area while avoiding going outside the boundaries. The
optimal path is along the outermost circumference of the circle, where the agent can maximize its speed. The faster the
agent travels, the higher the reward it accumulates. The episode automatically ends if the duration exceeds 500 time steps.
When out of the boundary, the agent gets an activated cost.

C.4.2. SAFETY MUJOCO

The agent in Safety MuJoCo is provided by OpenAI Gym (Brockman et al., 2016), and it is trained to move along a straight
line while constrained with a velocity limit. Figure 15 illustrates the different environments.
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(a) SafetyAntVelocity (b) SafetyHalfCheetahVelocity (c) SafetyHumanoidVelocity (d) SafetyHopperVelocity

Figure 15: Environments in Safety MuJoCo.

C.5. HyperParameters

All experiments are implemented in Pytorch 2.0.0 and CUDA 11.3 and performed on Ubuntu 20.04.2 LTS with a single
GPU (GeForce RTX 3090). The hyperparameters are summarized in Table 1.

Parameter Saute Simmer CUP CPO PIDLag MICE-CPO MICE-PIDLag

hidden layers 2 2 2 2 2 2 2
hidden sizes 64 64 64 64 64 64 64
activation tanh tanh tanh tanh tanh tanh tanh
actor learning rate 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4
critic learning rate 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4 3e− 4
batch size 64 64 64 64 64 64 64
trust region bound 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2
discount factor gamma 0.99 0.99 0.99 0.99 0.99 0.99 0.99
GAE gamma 0.95 0.95 0.95 0.95 0.95 0.95 0.95
normalization coefficient 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
clip ratio 0.2 0.2 0.2 N/A 0.2 N/A 0.2
conjugate gradient damping N/A N/A N/A 0.1 N/A 0.1 N/A
initial lagrangian multiplier N/A N/A 1e− 3 N/A 1e− 3 N/A 1e− 3
lambda learning rate N/A N/A 0.035 N/A 0.035 N/A 0.035

Table 1: Hyperparameters
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