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TransLinkGuard: Safeguarding Transformer Models Against
Model Stealing in Edge Deployment
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ABSTRACT
Proprietary large language models (LLMs) have been widely ap-
plied in various scenarios. Additionally, deploying LLMs on edge
devices is trending for efficiency and privacy reasons. However,
edge deployment of proprietary LLMs introduces new security
challenges: edge-deployed models are exposed as white-box ac-
cessible to users, enabling adversaries to conduct effective model
stealing (MS) attacks. Unfortunately, existing defense mechanisms
fail to provide effective protection. Specifically, we identify four
critical protection properties that existing methods fail to simultane-
ously satisfy: (1) maintaining protection after a model is physically
copied; (2) authorizing model access at request level; (3) safeguard-
ing runtime reverse engineering; (4) achieving high security with
negligible runtime overhead. To address the above issues, we pro-
pose TransLinkGuard, a plug-and-play model protection approach
against model stealing on edge devices. The core part of TransLink-
Guard is a lightweight authorization module residing in a secure
environment, e.g., TEE. The authorization module can freshly au-
thorize each request based on its input. Extensive experiments show
that TransLinkGuard achieves the same security protection as the
black-box security guarantees with negligible overhead.

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy; Authorization; • Computing methodologies→ Natural
language processing.

KEYWORDS
Intellectual Property Protection, Edge-deployed TransformerModel,
Authorization, Trusted Execution Environment

1 INTRODUCTION
Large languagemodels (LLMs), especially proprietary LLMs, such as
ChatGPT [14], Gemini [3], and Claude [39], have achieved astound-
ing success in recent years, demonstrating remarkable capabilities
on myriad tasks [4, 43]. Typically, interaction with these propri-
etary models purely relies on APIs (Figure (1a)), where users submit
prompts and receive outputs from API (referred to as API-based
access) [40]. However, due to concerns about user privacy, high
bandwidth costs, and latency inherent in this API-based access, the
edge deployment of LLMs has emerged as an alternative [30]. This
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(a) API-based access
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(b) Direct edge deployment

Protect both parties
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Model ProviderModel Provider

secure environment

M

(c) TransLinkGuard

Figure 1: Paradigms of interacting with LLMs. (a) API-based
access: users send data to the model owner. (b) Direct edge
deployment: the model is straightforwardly deployed in a
normal environment. (c) TransLinkGuard: deploy the locked
models in a normal environment and the corresponding au-
thorization module in a secure environment.

approach addresses these concerns by keeping model interaction
within the environment that the users have full access to.

However, straightforward edge deployment of proprietary LLMs
also introduces new security threats to the deployed LLMs (Fig-
ure (1b)): by making models white-box accessible to users, adver-
saries can obtain full model information (including architecture
and weights) and easily achieve high attack effectiveness of model
stealing (MS) [21, 41, 42]. Given the significant investment required
to develop high-performance LLMs [53], it is essential to protect the
intellectual property of the models produced by providers. There-
fore, one key objective of the edge deployment of LLMs is to protect
these deployed models. Ideally, the protection can downgrade such
white-box (with wholemodel information)MS attacks to black-box
settings (with only model query access).

Unfortunately, as shown in Table 1, traditional solutions strug-
gle to protect the intellectual property of edge-deployed models as
they fail to address the diverse requirements. Specifically, passive
protection methods, such as watermark [1, 22, 31], are not appli-
cable since only the proof of ownership is insufficient in such an
unsupervised edge operation scenario, where attackers can mis-
use the model without detection. In contrast, active authorization
protection works by allowing only authorized users to use the
well-performed model [12, 15, 65]. For example, only users who
possess the key can use the model, thereby achieving authorization
(referred to as key-based access). However, these methods provide
only a model-level authorization. Specifically, once authorization is
completed (i.e., the key is distributed), anyone can copy and misuse

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Solutions (exemplar) Proactivity Request-level authorization Runtime security Security with efficiency

Watermarking [1] ✗ ✗ ✓ ✓
Key-based access [15] ✓ ✗ ✗ ✓
Model encryption [65] ✓ ✗ ✗ ✓
PTSE [36] ✓ ✓ ✓ ✗

TransLinkGuard (ours) ✓ ✓ ✓ ✓

Table 1: Comparison with existing solutions. ✓/✗ illustrates whether the method can achieve the corresponding property.

the model with the key. To avoid the model being copied and mis-
used, some work encrypts it before deploying it on devices [33, 65],
and these models are only decrypted before execution. However, it’s
crucial to recognize that while these solutions can implement effec-
tive access control before the inference state, current studies [5, 59]
suggest that, even after authorization, models remain susceptible
to runtime attacks during inference, i.e., attackers reverse engineer
the model in its runtime state.

To defend against runtime attacks, one potential solution [6, 37]
is to place the model into a secure execution environment, e.g., a
trusted execution environment (TEE). TEE is an isolated hardware
enclave that stores sensitive data and safeguards against runtime
attacks. However, straightforward black-box protection by TEEs
is impractical because shielding entire LLMs within TEEs results
in a roughly 50× reduction in model efficiency due to TEEs’ lim-
ited computational speed [55]. Thus, some researchers propose
only putting a subset of the model in TEEs and offloading the rest
of the computation to GPUs, i.e., Partial TEE-Shielded Execution
(PTSE) [36, 49, 51]. Nonetheless, TEE’s poor computational power
still causes PTSE solutions to struggle with balancing security and
efficiency (proved in recent studies [64]). Specifically, due to effi-
ciency demands, the computations that can be executed within the
TEE are extremely limited, compelling PTSE to offload a significant
number of layers to GPUs. This constraint opens a vulnerability:
attackers can replicate the majority of the model offloaded to GPUs
and, with minimal training, restore the protected segments, i.e.,
achieve MS attacks successfully.

Considering the limitations of existing defense strategies, we
identify four challenges (C) to the intellectual property protection of
edge-deployed LLMs. C1: Achieving proactive protection to ensure
the deployed model remains unusable even if it is physically ob-
tained by attackers. C2: Continuously protecting the model beyond
model-level authorization, i.e., demanding request-level authoriza-
tion for every access. C3: Ensuring the protection remains effective
against runtime attacks. C4: Ensuring security while minimizing
model runtime overhead.

To ensure the security of edge-deployed LLMs, we propose a plug-
and-play transformer model protection approach, TransLinkGuard
(Figure (1c)), which addresses all the aforementioned challenges.
Specifically, to addressC1, TransLinkGuard deploys a locked model
as a substitute for the original model. The locked model is designed
to function normally only when correct authorization is granted for
each request by an authorizationmodule (addressingC2). Therefore,
even if attackers obtain the locked model, it cannot be used without
the authorization module. Given the importance of securing this
authorization module, it is placed in a secure environment, e.g.,

TEE (addressing C3). In this framework, model owners can enforce
request-level access control of the edge-deployed model through
TEE.

The key challenge in implementing TransLinkGuard is to achieve
the authorization mechanism that fulfills the lightweight require-
ment, i.e., addressing C4. To this end, we propose a permutation
strategy that row-permutes the weights matrix of linear layers
within the model, ensuring that only the corresponding column-
permuted input can correctly be computedwith the permuted layers.
Therefore, as a prerequisite, the input features of the permuted lay-
ers must be authorized by an authorization module, which adjusts
the features according to the permutation order of this layer before
they can be processed by the permuted layer. Consequently, the au-
thorizationmodule requires minimal overhead, as it merely involves
rearranging feature elements. Conversely, unauthorized users, lack-
ing knowledge of the permutation order, cannot effectively utilize
the permuted layer, even if they can obtain all its parameters. This
lightweight nature ensures that even if the authorization mecha-
nism is deployed to all transformer layers, its overhead remains
negligible. That is, TransLinkGuard still guarantees efficiency under
sufficient security.

Our evaluation shows that TransLinkGuard outperforms existing
PTSE approaches in terms of security guarantee and efficiency cost.
Attackers can hardly obtain any performance promotion byMS com-
pared to the black-box baseline (i.e., shielding the whole model in
TEE). Besides, the experiment, consistent with formulaic derivation,
shows no change between the accuracy of the TransLinkGuard-
protected model and the original model. The contributions of this
work are as follows:

• We systematically identify the requirements for intellec-
tual property protection of edge-deployed LLMs: proactivity,
request-level authorization, runtime security, and efficiency.
We propose TransLinkGuard, a plug-and-play solution that
can protect the edge-deployed transformer models with all
these requirements fulfilled.

• TransLinkGuard utilizes a permutation strategy to achieve
request-level authorization for edge-deployed LLMs. Com-
patible with the limited computational speed of TEEs, the
lightweight nature of the authorization module surmounts
the restriction of PTSE solutions and ensures protection
across all transformer layers, thereby enhancing security.

• Extensive experiments demonstrate that compared to the
existing PTSE approaches, our proposed TransLinkGuard
offers a higher security guarantee with lower overhead and
no accuracy loss.
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2 BACKGROUND AND PROBLEM STATEMENT
2.1 Background

TEE. A Trusted Execution Environment (TEE) is an isolated
hardware enclave that stores and processes sensitive data. Popular
TEE implementations include Intel SGX [34], AMD SEV [25], and
TrustZone [2]. In this paper, we follow prior work and deem TEE a
secure area on a potential adversary host device (including GPUs).
This means the data, code, and computation processes inside TEEs
are secure. Although there are side-channel attacks that may leak
sensitive data from TEE, they are out of the scope of this paper.

PTSE Sloutions. Partial TEE-Shielded Execution (PTSE) solu-
tions aim to provide protection against MS by shielding and exe-
cuting partial models inside TEEs. The motivation of existing work
is to reduce inference latency of the straightforward black-box
protection that shields the whole model inside TEEs (latency up
to 50× [55]). Beyond efficiency considerations, the security goal
of PTSE solutions is to downgrade white-box MS against edge-
deployed models to black-box attacks. Such degeneration is impor-
tant for edge-deployed models in the LLMs supply chain.

One Time Pad. TheOne Time Pad (OTP) represents the pinnacle
of encryption [48], providing unparalleled secrecy by encrypting
messages with a key as long as the message itself. The strength
of the OTP lies in its simplicity and the fact that decryption is
impossible without the key [47]. In this paper, we leverage the OTP
to enhance the security of the authorization process.

2.2 Threat Model
In this paper, we consider two parties: the defender and the attacker.
The defender is the party that owns the model deployed on an edge
device. The attacker attempts to steal the model from the device.
We explore a more realistic edge deployment scenario in which
the defender attempts to deploy a customized task-specific model
aligned with user needs. This makes defense more challenging,
as attackers familiar with the task (e.g., possessing some datasets)
could facilitate model stealing. The following are the details of the
two parts.

Defender’s Goal. The primary goal of the defender is to ensure
the deployed model (donate as𝑀𝑣𝑖𝑐 ) only works when proper au-
thorization is given by the trusted hardware (i.e., TEE) within the
device. To ensure efficiency, the defender offloads most of the com-
putations to a GPU, which can be accessed in a white-box manner
by the user. In the context of MS attacks, the defender’s goal is
to degrade white-box attacks to black-box settings (the attackers
cannot access𝑀𝑣𝑖𝑐 ’s weights).

Adversary’s Capability. To obtain a model with similar perfor-
mance of authorized𝑀𝑣𝑖𝑐 , the attacker attempts to develop a surro-
gate model𝑀𝑠𝑢𝑟 (can work independently) that mirrors𝑀𝑣𝑖𝑐 ’s per-
formance on customized tasks. The attacker inspects the offloaded
part of 𝑀𝑣𝑖𝑐 in a white-box manner to improve the effectiveness
of MS. Specifically, the attacker can infer the architecture of the
whole protected model based on the offloaded part with the exist-
ing techniques [7, 8] and obtain all the weights in the offloaded
part of𝑀𝑣𝑖𝑐 . Besides, we assume that the attacker possesses some
well-labeled datasets (less than 1% of the training data) of the task,
a practical assumption shared by prior work [19, 45, 60, 64].

2.3 Model Stealing Attack
We consider the MS attack, which can obtain the 𝑀𝑠𝑢𝑟 , as the se-
curity benchmark for protection approaches. Following the prior
work [64], we leverage the attack implementation specifically de-
signed for edge-deployed models. Specifically, for an edge-deployed
𝑀𝑣𝑖𝑐 (comprising both protected and offloaded parts), attackers may
exploit the offloaded parts to enhance the effectiveness of their at-
tacks.

Attack Pipeline. The attack pipeline consists of two phases:
surrogate model initialization (𝑃1), and parameter reconstruction
(𝑃2). In 𝑃1, the attack begins by inferring the architecture of𝑀𝑣𝑖𝑐

through its offloaded parts and outputs with existing techniques [7,
8]. Following this, an initial surrogate model,𝑀𝑖𝑛𝑖𝑡 , is constructed
with the same architecture as𝑀𝑣𝑖𝑐 . Finally, the attacker transports
𝑀𝑣𝑖𝑐 ’s offloaded weights to the corresponding parts of 𝑀𝑖𝑛𝑖𝑡 . In
𝑃2, the attacker attempts to replicate the functionality of𝑀𝑣𝑖𝑐 on
𝑀𝑖𝑛𝑖𝑡 . To this end, one potential approach is to train𝑀𝑖𝑛𝑖𝑡 with the
dataset they possess to recover the backbone, thus outputting𝑀𝑠𝑢𝑟 .
In this process, we consider a more commonly used and effective
training method, namely full-parameter training.

3 DESIGN OF TRANSLINKGUARD
We argue that the fundamental weakness of PTSE solutions is that
all PTSE approaches follow a direct execution strategy, which
crudely loads parameter computation into the TEE for protec-
tion [64]. The TEE’s limitation on speed restricts PTSE from protect-
ing only a small portion of parameters, thereby leading to security
vulnerability. With this regard, we champion that an ideal solution
should avoid direct model computation execution by the TEE while
protecting the model parameters.

We propose TransLinkGuard, a model intellectual property pro-
tection approach that protects models through a permutation strat-
egy rather than direct execution. Specifically, TransLinkGuard, tai-
lored for transformer models, protects every linear layer in models
through weight permutation. This permutation swaps the positions
of each row within the weight matrix of the linear layer. In this
way, the positional information of the weights is disrupted, pre-
venting unauthorized users (who are unaware of the permutation
order) from utilizing the permuted layers, thus achieving access
control. However, with the knowledge of permutation order, the
input feature can be column permuted correspondingly so that
the elements within the feature correspond positionally with the
permuted weights, thus enabling authorized usage. Given that the
permutation matrix is crucial for authorization, its protection is
essential. To ensure its security, TransLinkGuard secures the autho-
rization process within a TEE to provide a hardware-level guarantee.
Furthermore, on the algorithmic level, TransLinkGuard is inspired
by previous work [20, 64] and introduces a One-Time Pad (OTP) to
encrypt the authorization process.

3.1 Approach Overview
This section presents TransLinkGuard, fulfilling requirements in
Table 1. Given the subtle structural differences among various trans-
former models, as the most common scenario, we demonstrate its
application on the most classic transformer structure [56].
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Figure 2: An overview of TransLinkGuard. (a) Model lockdown: TransLinkGuard uses permutation matrices to permute each
transformer layer in𝑀𝑜𝑟𝑖 , creating a locked model𝑀𝑣𝑖𝑐 . (b) Inference authorization: as a prerequisite, the input features of the
permuted layers must be authorized before they can be processed by the permuted layer. To facilitate this, the authorization
process is integrated within the MLP block of the preceding transformer layer.

As shown in figure 2, our proposed TransLinkGuard operates
in two phases: model lockdown (before deployment) and inference
authorization (after deployment). In the model lockdown phase,
taking the pre-trained 𝑀𝑜𝑟𝑖 as input, TransLinkGuard randomly
initializes different confidential permutationmatrices for each trans-
former layer. To generate the locked model𝑀𝑣𝑖𝑐 , each transformer
layer is permuted according to its respective permutation matrix.
Therefore, for a permuted transformer layer, its input feature must
be authorized correspondingly to achieve accurate computation.

In the inference authorization phase, the authorization module
is integrated within the MLP block of the preceding transformer
layer, ensuring that features are authorized before they enter the
permuted transformer layer. This authorization module takes fea-
tures as input and outputs the authorized features. To enhance the
security, we integrate the authorization mechanism with a linear
layer, which involves more parameters and thus makes the autho-
rization process difficult to crack. Considering the limited capacity
of TEEs for such a large number of parameter computations, we
offload this linear layer to a GPU. Furthermore, To ensure the se-
curity of feature transmission between the GPU and TEE during
this process, we employ OTP to encrypt the features. Consequently,
the authorization process is divided into two steps. Specifically, the
first step takes place after the ReLU layer in the MLP block, where
the TEE encrypts the feature using OTP. The encrypted feature
then undergoes dense linear operations (the second linear layer
of the MLP block) on the GPU. In the second step, the feature is
decrypted and permuted to complete the authorization.

3.2 Model Lockdown
Given a transformer layer (consisting of an attention block and an
MLP block), we introduce how to permute its weights (specifically
within the attention block) for protection. Although the MLP block
is also protected, we will introduce it in section 3.3 as it necessitates
integration with the authorization module.

Attention Block Formalization. Let 𝑥 ∈ R𝑙×𝑑 denote the input
where 𝑙 is the sequence length (e.g., the number of tokens) and 𝑑 is
the model dimension. We define an attention block as a function
𝑓𝜃 : R𝑙×𝑑 → R𝑙×𝑑 with weight parameters 𝜃 . Then the attention

block (including the attention mechanism and its subsequent nor-
malization layer), i.e., 𝑓𝜃 (𝑥) = 𝑦, is computed as follows:

𝑄 = 𝑥𝑊𝑞, 𝐾 = 𝑥𝑊𝑘 ,𝑉 = 𝑥𝑊𝑣, 𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ R𝑑×𝑑 ,

𝑜 = softmax
(
𝑄𝐾𝑇
√
𝑘

+𝑀
)
𝑉𝑊𝑜 , 𝑀 ∈ R𝑛×𝑛,𝑊𝑜 ∈ R𝑑×𝑑 ,

𝑦 = 𝛾1 ⊙
𝑜 + 𝑥 − 𝜇𝑜+𝑥

𝜎𝑜+𝑥
+ 𝛽1, 𝛾1, 𝛽1 ∈ R𝑑 ,

(1)

where 𝑘 is a constant equal to 𝑑 divided by the number of attention
heads, 𝑀 denotes the mask, which is an all-zero matrix in the
encoder and a matrix whose upper right corner is negative infinity
in the decoder. The parameter 𝜃 consists of attention weights (𝑊𝑞 ,
𝑊𝑘 ,𝑊𝑣 ,𝑊𝑜 ), LayerNorm weights (𝛾1, 𝛽1).

Permutation Protocol. Let 𝜋𝑖 ∈ {0, 1}𝑑×𝑑 denote a permutation
matrix of the 𝑖-th attention block, where ∀𝜋𝑖 , 𝜋𝑖𝜋𝑇𝑖 = 𝐼 , with 𝐼 is
identity matrix, a property characteristic of permutation matrix.
We permute the parameters 𝜃 as follows:

𝑊 ′
𝑞 = 𝜋𝑇𝑖 𝑊𝑞,𝑊

′
𝑘
= 𝜋𝑇𝑖 𝑊𝑘 ,𝑊

′
𝑣 = 𝜋𝑇𝑖 𝑊𝑣,

𝑊 ′
𝑜 =𝑊𝑜𝜋𝑖 , 𝛾

′
1 = 𝛾1𝜋𝑖 , 𝛽

′
1 = 𝛽1𝜋𝑖 .

(2)

With the permuted parameters (denoted as 𝜃 ′), 𝑓𝜃 ′ (𝑥𝜋𝑖 ) can be
described as follows :

𝑄 ′ = 𝑥𝜋𝑖𝜋𝑇𝑖 𝑊𝑞 = 𝑥𝑊𝑞 = 𝑄,

𝐾 ′ = 𝑥𝜋𝑖𝜋𝑇𝑖 𝑊𝑘 = 𝑥𝑊𝑘 = 𝐾,

𝑉 ′ = 𝑥𝜋𝑖𝜋𝑇𝑖 𝑊𝑣 = 𝑥𝑊𝑣 = 𝑉 ,

𝑜′ = softmax
(
𝑄𝐾𝑇
√
𝑘

+𝑀
)
𝑉𝑊𝑜𝜋𝑖 = 𝑜𝜋𝑖 ,

𝑦′ = 𝛾1𝜋𝑖 ⊙
𝑜𝜋𝑖 + 𝑥𝜋𝑖 − 𝜇𝑥+𝑜

𝜎𝑥+𝑜
+ 𝛽1𝜋𝑖 = 𝑦𝜋𝑖 .

(3)

The functionality of the permuted attention block can be repre-
sented as 𝑓𝜃 ′ (𝑥 ′) = 𝑦𝜋𝑖 = 𝑓𝜃 (𝑥)𝜋𝑖 , valid only when 𝑥 ′ = 𝑥𝜋𝑖 .

3.3 Inference Authorization
The authorization module design addresses functionality and se-
curity. Given that 𝑓𝜃 ′ (𝑥 ′) requires permuted input for accurate
computation, the authorization process, tied to the MLP module,



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TransLinkGuard: Safeguarding Transformer Models Against Model Stealing in Edge Deployment ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

ensures this prerequisite is met (i.e., permutes the feature by 𝜋 ).
Furthermore, the security of the authorization module is ensured by
encrypting features by OTP and involving more model parameters.
The authorization process is summarized in Algorithm 1.

Algorithm 1 Algorithm for authorization protocol

Require: 𝑦𝜋𝑖 ,𝑊 ′
𝑎 ,𝑊

′
𝑏
, 𝛾 ′2, 𝛽

′
2, 𝜋𝑖+1,𝑚

Ensure: 𝑧𝜋𝑖+1
1: Calculate with the first linear layer as Eq.(6). // in GPU
2: Encrypt feature by the one-time mask as Eq.(7). // in TEE
3: Calculate with the second linear as Eq.(8). // in GPU
4: Decrypt feature and permutation as Eq.(9). // in TEE
5: Permutate 𝑦𝜋𝑖 to 𝑦𝜋𝑖+1 as Eq.(9). // in TEE
6: Get 𝑧′ (𝑧𝜋𝑖+1) as Eq.(9). // in TEE
return 𝑧𝜋𝑖+1

MLP Block Formalization. Considering a classic MLP module
that receives 𝑦 from the prior attention block as input, we define its
function 𝑔𝑤 : R𝑙×𝑑 → R𝑙×𝑑 with weights𝑤 . This block (including
layer norm), i.e., 𝑔𝑤 (𝑦) = 𝑧 is described as follows:

𝑎 = ReLU(𝑦𝑊𝑎), 𝑊𝑎 ∈ R𝑑×𝑑 ,

𝑏 = 𝑎𝑊𝑏 𝑊𝑏 ∈ R𝑑×𝑑 ,

𝑧 = 𝛾2 ⊙
𝑦 + 𝑏 − 𝜇𝑦+𝑏

𝜎𝑦+𝑏
+ 𝛽2, 𝛾2, 𝛽2 ∈ R𝑑 ,

(4)

where the parameter𝑤 consists of MLP weights (𝑊𝑎 ,𝑊𝑏 ), Layer-
Normweights (𝛾2, 𝛽2). Some network architectures may be different.
However, this does not affect the authorization because the autho-
rization process mainly relies on𝑤𝑏 , which is a universal structure.

Authorization Protocol. Let 𝜋𝑖+1 ∈ {0, 1}𝑑×𝑑 denote a permu-
tation matrix of the next attention block. We permute the parame-
ters𝑤 as follows:

𝑊 ′
𝑎 = 𝜋𝑇𝑖 𝑊𝑎, 𝑊 ′

𝑏
= 𝜋𝑇𝑖+1𝑊𝑏 , 𝛾 ′2 = 𝛾2𝜋𝑖+1, 𝛽′2 = 𝛽2𝜋𝑖+1 . (5)

With the permuted weights (denoted as𝑤 ′), taking 𝑦𝜋𝑖 (output
of previous permuted attention block) as input, the first linear layer
of the permuted MLP block can be described as follows:

𝑎′ = ReLU(𝑦𝜋𝑖𝜋𝑇𝑖 𝑊𝑎) = 𝑎. (6)

To enable authorization to occur in an encrypted state, a ran-
dom mask𝑚 (just as the OTP) is introduced in TEE. Meanwhile,
TransLinkGuard introduces 𝜋𝑖+1 to conceal𝑚 (otherwise,𝑚 could
be discerned from the difference between 𝑎′ and 𝑎′ +𝑚). The com-
putation carried out by TEE is as follows:

𝑎′′ = 𝑎′𝜋𝑖+1 +𝑚1𝜋𝑖+1 = 𝑎𝜋𝑖+1 +𝑚𝜋𝑖+1, (7)

where 𝑎′′ is the encrypted feature, meaning that even for the same
𝑎′, the value of𝑎′′ produced is different, which protects themapping
from plaintext (𝑎′) to encrypted state (𝑎′′) from being cracked.

To reduce the computational load executed within TEE, the com-
putations with𝑊 ′

𝑎 are offloaded to GPUs:

𝑏′′ = 𝑎′′𝜋𝑇𝑖+1𝑊𝑏 = (𝑎𝜋𝑖+1 +𝑚𝜋𝑖+1)𝜋𝑇𝑖+1𝑊𝑏 = 𝑏 +𝑚𝑊𝑏 , (8)

where 𝑎′′ remains encrypted (by𝑚𝑊𝑏 ).

The second step of authorization consists of two parts: decryp-
tion (eliminate𝑚𝑊𝑏 ) and authorization (introduce 𝜋𝑖+1). We ensure
the security of this process at both the hardware and algorithmic.
From the algorithmic level, the attacker does not know the conver-
sion relationship from encrypted state to plaintext, it effectively
conceals 𝜋𝑖+1. From the hardware level, to protect the authorization
process from runtime attacks, we execute it within TEE:

𝑏′ = (𝑏′′ −𝑚𝑊𝑏 )𝜋𝑖+1 = 𝑏𝜋𝑖+1,

𝑦′′ = 𝑦′𝜋𝑇𝑖 𝜋𝑖+1 = 𝑦𝜋𝑖+1,

𝑧′ = 𝛾2𝜋𝑖+1 ⊙
𝑏𝜋𝑖+1 + 𝑦𝜋𝑖+1 − 𝜇𝑦+𝑏

𝜎𝑦+𝑏
+ 𝛽2𝜋𝑖+1 = 𝑧𝜋𝑖+1 .

(9)

Note that following prior work [55], computing 𝑚𝑊𝑏 can be
conducted by the model provider or inside TEE in an offline phase.
Both strategies do not increase the overhead of online inference or
impede its efficiency [64].

In conclusion, the permuted transformer layer can be represented
as 𝑔𝑤′ (𝑓𝜃 ′ (𝑥𝜋𝑖 ), 𝜋𝑖+1) = 𝑧′ = 𝑧𝜋𝑖+1, where 𝜋𝑖 originates from the
authorization of the previous layer and 𝜋𝑖+1 is introduced by TEE to
authorize the next transformer layer. In particular, for a transformer
model with 𝑛 transformer layers. The first permutation matrix 𝜋1
and the last permutation matrix 𝜋𝑛+1 are both equal to identity
matrix 𝐼 , thereby enabling the correct inference.

Security Analysis. Potential attackers might attempt to steal
the lockedmodel by the recovery of permuted parameters. However,
it is impossible as the probability of guessing the correct 𝜋 is 1/(𝑑!)
for each transformer layer. In practice, 𝑑 is typically larger than
512, e.g., 𝑑 = 4096 in LLaMA [54].

Another strategy for stealing the locked model is to crack (or
approximate) the authorization process based on its functional
behavior. Notably, TransLinkGuard employs the OTP to make any
attempt at approximating the authorization process unfeasible. This
is because, even with identical inputs, the TEE produces different
outputs for each inference.

However, a sophisticated attacker might attempt to approximate
the authorization process on a larger scale, attempting to map the
relationship from the start (𝑢′) to the end (𝑧𝜋𝑖+1) to circumvent
the OTP encryption. Nonetheless, it is also impractical (proved in
Section 4.4), as the second linear layer of the MLP block is involved
in the authorization process, requiring the attacker to approximate
a substantial portion of the parameters—about a third of the total
network parameters [10].

4 EXPERIMENTS
In this section, we perform extensive experiments to answer the
following research questions:

RQ1: How does TransLinkGuard compare with other represen-
tative defenses in security? RQ2: How does TransLinkGuard’s
efficiency compare to other defenses? RQ3: Does TransLink-
Guard sacrifice the accuracy of the model?

4.1 Evaluation Settings
Datasets. To evaluate TransLinkGuard’s adaptability and ef-

fectiveness in varied real-world contexts, we select various from
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No-Shield Serdab SOTER ShadowNet DarkneTZ OLG Ours Black-box

RoBERTa

SQuAD 81.66% 51.05% 47.54% 81.63% 35.91% 67.55% 4.24% 2.75%
MNLI 87.77% 82.98% 75.53% 88.01% 73.73% 77.17% 32.82% 41.69%
QQP 91.14% 81.51% 85.55% 91.24% 90.94% 85.33% 66.98% 69.33%
SST-2 94.03% 84.63% 78.55% 93.72% 92.89% 80.96% 70.76% 75.80%

BART

SQuAD 78.28% 63.71% 67.92% 68.01% 44.91% 62.05% 3.98% 4.91%
MNLI 84.10% 84.81% 80.41% 84.14% 81.84% 82.89% 40.51% 41.71%
QQP 91.47% 78.82% 83.81% 91.64% 88.71% 83.26% 70.17% 68.92%
SST-2 93.10% 88.42% 82.91% 82.47% 90.48% 87.61% 75.30% 73.62%

GPT-2

SQuAD 55.60% 47.81% 58.71% 35.56% 33.10% 45.89% 3.91% 5.81%
MNLI 81.04% 70.81% 57.91% 61.03% 78.85% 62.91% 47.81% 35.17%
QQP 88.55% 71.14% 72.06% 88.62% 81.41% 70.75% 74.52% 70.59%
SST-2 91.63% 74.58% 78.91% 82.18% 85.84% 75.55% 58.91% 57.47%

ChatGLM-6B

GSM8k 34.91% 12.81% 15.26% 34.85% 28.24% 13.35% 4.91% 3.89%
Spider 19.24% 5.92% 12.30% 17.81% 12.61% 6.67% 4.29% 5.13%

PubMedQA 69.50% 14.00% 5.00% 48.00% 7.00% 16.50% 0.00% 1.00%
SQuAD 76.00% 43.34% 35.25% 55.23% 16.28% 45.18% 10.82% 7.81%

LLaMA2-7B

GSM8k 42.68% 15.92% 12.60% 42.12% 3.15% 14.89% 0.47% 1.04%
Spider 35.81% 8.91% 6.47% 14.52% 5.83% 10.82% 4.50% 3.15%

PubMedQA 71.00% 13.50% 14.00% 49.50% 17.00% 12.50% 0.00% 0.00%
SQuAD 68.34% 45.01% 25.91% 69.03% 26.34% 33.90% 6.91% 4.51%
Average 2.50× 1.81× 1.73× 2.23× 1.73× 1.80× 1.01× 1.00×

Table 2: Attack accuracy regarding representative defense schemes. The last row reports the average accuracy of each defense
relative to the baseline black-box solutions. For each setting, we mark the lowest attack accuracy in yellow. Attack accuracy
toward TransLinkGuard is marked with green.

different domains. We assess models on the most representative sub-
tasks of the standard GLUE benchmark [58] (SST-2, MNLI, QQP) and
four distinct domain-specific datasets: GSM8k (mathematics) [9],
Spider (code generation) [62], PubMedQA (medical question an-
swering) [23], and SQuAD (reading comprehension) [44].

Models. We focus on several commonly used representative
transformer models for validation, including three medium-sized
models: RoBERTa (encoder-only) [32], BART (encoder-decoder) [28],
GPT-2 (decoder-only) [43], and two large models, LLaMA2-7B [54]
and ChatGLM-6B [10], to encompass models of different archi-
tectures and scales. We equip BART, GPT-2, and RoBERTa with
classification heads for text classification tasks and consistently
designed prompts for effective training for generative tasks.

Metric. For performance evaluation, accuracy is uniformly used
as the metric. For classification tasks, correct category output is
considered accurate, while for generation tasks like GSM8k and
Spider, precise matching of the answer in the output is deemed
correct. For security, we use model-stealing accuracy (denoted as
“MS acc”). Higher MS acc indicates better effectiveness of MS, i.e.,
poorer security of the defense. To measure the efficiency cost of
models, we follow prior work to use Floating Point Operations
(FLOPs) as the efficiency cost metric [17, 52]. FLOPs is a platform-
irrelevant metric used to assess efficiency costs by counting the
total number of multiplication and addition operations conducted
inside TEEs. For clarity, we define %𝐹𝐿𝑂𝑃𝑠 as the ratio of FLOPs
over the total FLOPs of the model.

Implementation Details. We conduct our experiments using
the Huggingface transformers library1. For optimization, we use
the AdamW optimizer and a linear learning rate scheduler with

1https://huggingface.co/docs/transformers/index

an initial rate of 5e-5. Our reported results are based on the runs
that achieved the highest performance, consistent with real-world
practices prioritizing optimal model performance.

4.2 Comparisons
Representative Defenses. For existing PTSE solutions, we select

four representative solutions for comparison. (1) SOTER [49]: we
chose SOTER as it demonstrated the best performance against MS
attack in the evaluations conducted by [64] in existing PTSE solu-
tions. (2) Serdab [11]: we selecte Serdab as it focuses on protecting
the shallow layers of networks, which are often more crucial for
transformer models [61]. (3) DarkenTZ [36]: we chose DarkneTZ
because, according to prior work [16, 35], it is the state-of-the-art
(SOTA) solution for protecting edge models. (4) ShadowNet [51]:
we chose ShadowNet as it is the most recently published work with
significant influence in the field.

Baselines. To ease the comparison, we also provide baseline
evaluation results. (1) No-shield: we consider the white-box solution
as the easiest baseline because the adversary can directly use the
offloaded 𝑀𝑣𝑖𝑐 as 𝑀𝑠𝑢𝑟 and does not need to train the model. (2)
Black-box: we consider a black-box setting, where attackers can
only identify the𝑀𝑣𝑖𝑐 ’s architecture. (3) One-layer-Guard (referred
to as OLG): this is a variant of TransLinkGuard that only permutes
the first transformer layer and manually authorizes it. We use this
variant to assess security when only a single layer is permuted.

4.3 Configuration Settings
Current PTSE methods are fundamentally designed for CNNs. To
adapt them for use with transformer models, we rigorously config-
ure each PTSE solution based on its papers. Specifically, for SOTER,
TEE shields 20% randomly selected layers and multiplies the other
layers with a scalar to conceal the weight values. For Serdab, the
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Figure 3: Comparison of TransLinkGuard and the black-box
protection against MS attacks with different sizes of dataset.

No-Shield TransLinkGuard Black-box

Ro
BE

RT
a SST-2 94.03% 78.12% 75.80%

MNLI 87.77% 45.40% 41.69%
QQP 91.14% 69.75% 69.33%

LL
aM

A
2 SQuAD 68.34% 4.91% 4.51%

Spider 35.81% 6.18% 3.15%
GSM8k 42.68% 5.29% 1.04%

Table 3: Security evaluation of TransLinkGuard against au-
thorization process simulation attack.

TEE shields the first transformer layers. ShadowNet obfuscates and
offloads all the linear transformation layers with matrix transfor-
mation and filter permutation, and we follow the prior work [64]
to use the decoded weights to initialize𝑀𝑖𝑛𝑖𝑡 . For DarkneTZ, the
last transformer layer and subsequent parts are put into TEE.

4.4 Security Guarantee
Security Guarantee. In this subsection, we assess if the defense

is sufficiently secure against potential MS attacks. Specifically, we
consider a realistic scenario in which attackers have a small amount
of data (such as 1% of the training dataset) and attempt to steal the
𝑀𝑣𝑖𝑐 by MS attack. The attack pipeline is the same as in Section 2.3.

Table 2 reports the results: in all cases, the attack accuracies
of TransLinkGuard (marked with green) are comparable with
black-box protection and are better than the best of existing de-
fenses (marked with yellow). Specifically, the relative accuracy of
TransLinkGuard compared to the black-box baseline is 1.01×, while
the relative value of the best defense, Serdab, is 1.81×. Notably, the
relative accuracy of OLG (1.80×) is similar to that of Serdab (1.81×),
which achieves protection by placing the first layer into the TEE
(i.e., a black-box protection). This implies that even with protection
applied to a single transformer layer, the permutation strategy of
TransLinkGuard achieves black-box-level security.

Security under Other Assumptions of Data. In security guar-
antee, we evaluate a realistic adversary with a small amount of
training data. Although our assumption of the adversary is real-
istic [19, 45, 60, 64], we still evaluate the security of TransLink-
Guard with an ideal adversary with a large amount of data to verify
whether TransLinkGuard ensures the security of models under ex-
treme conditions. Figure 3 shows accuracies between our approach
and black-box protection on various data sizes. In all cases, the
attack accuracies are lower than or close to the black-box base-
line. To summarize, under a different assumption of training data,

TransLinkGuard demonstrates robust security for models even
when faced with an ideal adversary equipped with a large dataset.

Security against Sophisticated Attackers. In this subsection,
we assess the security of TransLinkGuard against attackers who are
familiar with the principles of TransLinkGuard and implement at-
tacks accordingly. Specifically, the core mechanism of authorization
involves a row-wise permutation of features between the second
linear layer and the norm layer within each MLP block. This autho-
rization process is initially envisioned as a two-step multiplication
(first by 𝑀𝑣 and then by 𝜋𝑖+1). However, it is achievable through
a single operation where 𝑀𝑣 and 𝜋𝑖+1 are multiplied to result in
𝑀𝑣𝜋𝑖+1. Expanding on this, the attackers copy and freeze all other
components, then reinitialize and train both the𝑀𝑣 and the norm
layer to bypass TEE’s authorization (refer to as authorization process
simulation attack).

The results are compiled in Table 3; the attack accuracy is similar
between TransLinkGuard and the black-box baseline but signifi-
cantly lower than the no-shield baseline.We believe the outstanding
defense effectiveness is due to the massive parameters of𝑀𝑣 , which
makes it difficult for attackers to simulate. Specifically, the number
of parameters they need to simulate is about one-third of the entire
network, which is much higher than the existing PTSE methods
(where the highest, SOTER, protects about 10% of the parameters
within an acceptable efficiency cost).

Answer to RQ1: TransLinkGuard surpasses other representa-
tive defenses in security and achieves black-box-level secu-
rity guarantees to a single transformer layer. Furthermore,
TransLinkGuard consistently achieves black-box-level security
under various attack assumptions.

4.5 Efficiency Cost
To answer RQ2, we quantitatively compare TransLinkGuard with
the %𝐹𝐿𝑂𝑃𝑠 of other defenses in Table 4. Taking an example length
of 128 as input, we calculate the overhead of a single inference.
TransLinkGuard achieves a similar %𝐹𝐿𝑂𝑃𝑠 than other defenses.
Specifically, the additional overhead caused by TransLinkGuard is
less than 0.1% for all cases. The computational overhead for protec-
tion at a single layer (OLG column) executed in TEE is minimal (all
less than 0.01%), which allows the protection to remain negligible
even when extended to all transformer layers (TransLinkGuard col-
umn). On the contrary, the efficiency cost of other defenses ranges
from 3.0337% to 38.0071%. That is, TransLinkGuard takes 30× less
efficiency cost to achieve the highest (black-box) security.

Answer to RQ2: The overhead of TransLinkGuard is negligible.
The efficiency cost of TransLinkGuard is 30× less than other
PTSE solutions.

4.6 Accuracy Loss
To answer this research question, we compare the accuracy between
the original model𝑀𝑜𝑟𝑖 and the derived model𝑀𝑣𝑖𝑐 . The result is
shown in Table 5. In general, TransLinkGuard does not lead to a
noticeable loss of accuracy. Consistent with formulaic derivation,
there is no difference in accuracy between𝑀𝑜𝑟𝑖 and𝑀𝑣𝑖𝑐 in most
cases. However, for some specific cases, accuracy slightly fluctuates
(marked in blue). For example, with RoBERTa on SST-2, there is a
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Models Original 𝐹𝐿𝑂𝑃𝑠 Additional 𝐹𝐿𝑂𝑃𝑠(%𝐹𝐿𝑂𝑃𝑠) in TEEs
Serdab SOTER ShadowNet DarkneTZ OLG TransLinkGuard

RoBERTa 2.236E+10 1.8633E+09
(8.3422%)

4.486E+09
(20.0615%)

7.793E+09
(30.0983%)

1.863E+09
(8.3422%)

1.278E+06
(0.0057%)

1.534E+07
(0.0686%)

BART 2.539E+10 2.1158E+09
(8.4151%)

5.209E+09
(20.5164%)

9.649E+09
(38.0071%)

2.116E+09
(8.4151%)

1.278E+06
(0.0050%)

1.534E+07
(0.0604%)

GPT-2 2.236E+10 1.8633E+09
(8.3422%)

4.445E+09
(19.8792%)

7.793E+09
(30.0983%)

1.863E+09
(8.3422%)

1.278E+06
(0.0057%)

1.534E+07
(0.0686%)

ChatGLM-6B 1.598E+12 5.510E+10
(3.4482%)

3.119E+11
(19.5154%)

5.101E+11
(31.9212%)

5.537E+10
(3.4650%)

6.816E+06
(0.0004%)

1.908E+08
(0.0119%)

LLaMA2-7B 1.700E+12 5.1573E+10
(3.0337%)

3.641E+11
(21.4197%)

4.566E+11
(26.8588%)

5.170E+10
(3.0414%)

6.127E+06
(0.0004%)

1.961E+08
(0.0115%)

Table 4: The results of additional inference overhead. The table includes the original model’s FLOPs (“Original FLOPs"), the
additional overhead in TEE, and its proportion to the original model’s FLOPs.

SQuAD SST-2 MNLI QQP GSM8k Spider PubMedQA

RoBERTa 81.66%/81.66% 94.03%/94.01% 87.77%/87.78% 91.14%/91.14% - - -
BART 78.28%/78.28% 93.10%/93.10% 84.10%/84.10% 91.47%/91.47% - - -
GPT-2 55.60%/55.58% 91.63%/91.63% 81.04%/81.04% 88.55%/88.55% - - -
ChatGLM-6B 76.00%/76.00% - - - 34.91%/34.91% 19.24%/19.24% 69.50%/69.50%
LLaMA2-7B 68.34%/68.34% - - - 42.68%/42.68% 35.81%/35.81% 71.00%/71.00%

Table 5: The accuracy comparison between the original model (𝑀𝑜𝑟𝑖 ) and the protected model (𝑀𝑣𝑖𝑐 ). The accuracy is presented
in the form of𝑀𝑜𝑟𝑖 /𝑀𝑣𝑖𝑐 . Cells showing changes in accuracy are highlighted in blue.

minor decrease of 0.02% in accuracy. Interestingly, despite these
fluctuations, we observe an improvement of 0.01% on the MNLI.
Therefore, we consider that the minor accuracy fluctuations are
caused by data precision limitations rather than by the defense
itself, which is inevitable.

Answer to RQ3:While significantly outperforming existing de-
fenses in terms of both security and efficiency, TransLinkGuard
maintains the model’s accuracy without compromise.

5 LIMITATION AND DISCUSSION
Runtime Efficiency. Although FLOPs, as a platform-irrelevant

metric, demonstrate that TransLinkGuard incurs minimal addi-
tional overhead, the diversity of hardware and variations in testing
environments prevent us from systematically evaluating the actual
overhead. Future research could conduct extensive performance
tests across various hardware platforms and environments to ensure
a comprehensive efficiency analysis.

MoreModels andTasks. Thiswork demonstrates that TransLink-
Guard is exceptionally effective in the most commonly used tasks,
such as text generation, text classification, and reading comprehen-
sion. However, other tasks, such as relation extraction and language
modeling, remain to be evaluated in further investigation.

6 OTHER RELATEDWORK
TEE in GPUs. Recent work explored implementing trusted

architectures directly inside GPUs to achieve black-box protec-
tion [18, 38, 57]. Such solutions require customizing hardware and
are designed for server centers. However, our solution is primarily
for users’ end devices, where it is impractical and costly for model
providers to modify hardware or ship firmware. Thus, this paper
employs commercial GPUs as a generic solution.

Whole Model Execution by TEE. In addition to PTSE solutions,
there are also existing works exploring the placement of entire

models into TEEs [15, 26, 27, 29, 50]. However, these works have
significant limitations as they often unacceptably sacrifice the effi-
ciency of the protected models.

Privacy-centric Weights Protection. Privacy-centric weight
protection strategies [64] specifically train privacy-related data onto
additional parameters and only target these privacy-centric weights
for protection. However, this strategy is unsuitable for intellectual
property protection as it focuses solely on privacy-sensitive parts,
thus neglecting other critical parameters that are equally important
for the functionality of the model. This is precisely the main goal
that TransLinkGuard addresses.

Secure Computation Methods. Prior secure computation ap-
proaches use either homomorphic encryption (HE) [13] or multi-
party computation (MPC) [24, 46, 63]. However, HE-based tech-
niques are orders of magnitude slower than the state-of-the-art
(nonsecure) model inference. MPC-based approaches involve multi-
ple participants requiring network connectivity, which is unsuitable
for real-time tasks or offline usage.

7 CONCLUSIONS
In this paper, we introduce a protection method named TransLink-
Guard for edge-deployed LLMs. Unlike existing methods, we utilize
a request-level authorization mechanism to safeguard these models.
Importantly, through this authorization mechanism, TransLink-
Guard achieves comprehensive protection throughout the entire
model edge deployment process (before and during the inference
stage). The derivation of formulas and experiments across various
tasks demonstrate that only with appropriate authorization the
TransLinkGuard-protect model can operate normally. Furthermore,
comprehensive experiments indicate that TransLinkGuard exhibits
exceptional security and efficiency compared to the existing PTSE
approaches. In conclusion, TransLinkGuard is a solution for the
edge deployment of proprietary LLMs, providing model owners
with the means to safeguard their valuable intellectual property.
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