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Abstract

We demonstrate that strong video representations can be
learned without natural videos. A simple progression of
eight synthetic datasets—adding motion, acceleration, and
shape/textural complexity—gradually boosts downstream
accuracy: a VideoMAE model pre-trained on the final
synthetic set closes 97.2 % of the UCF-101 gap between
scratch and natural-video SSL and surpasses that base-
line on HMDB-51. Adding static ImageNet crops dur-
ing pre-training fully matches UCF-101 performance and
beats the UCF-101-pre-trained model on 11 / 14 UCF-
101-P corruption variants. Our results show controllable,
privacy-preserving synthetic data can rival large-scale nat-
ural videos for self-supervised learning'.

1. Introduction

Self-supervised pre-training on web-scale corpora has rev-
olutionised NLP, yet comparable gains in video remain lim-
ited: even after ingesting millions of clips, current methods
still trail supervised baselines on action recognition. We
therefore ask a sharper question: are real videos actually
required to learn strong representations?

To find out, we propose a progression of simple syn-
thetic video generators that model a gradually growing set
of video data properties — starting from static frames with
solid-color circles and introducing additional shapes, dy-
namics, temporal shape changes, acceleration, and other
textures. We show that adding each of the different proper-
ties improves the downstream video understanding perfor-
mance; the final dataset—accelerating, transforming Ima-
geNet crops—matches or surpasses UCF-101 pre-training
and beats the UCF-101 baseline on 11/14 UCF-101-P cor-
ruptions.

By comparing the accuracy of models pre-trained on the
generated data in the progression, we identify different data
properties that correspond with improved downstream per-
formance. We find that high velocities and accelerations of
moving shapes in the video, as well as similarity in the color
space to natural videos and high frame diversity, correlate to
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better action recognition accuracy. We believe that these ob-
servations can help to guide future practices for large-scale
self-supervised video learning.

2. Learning Video Representations without
Natural Videos

To close the gap between training from scratch and natu-
ral video pre-training, we provide a progression of datasets.
The datasets gradually introduce different aspects that ap-
pear in video data (e.g. transforming shapes, accelerating
shapes). We provide the pre-training and downstream eval-
uation suit in appendix (Section 6.2).

2.1. Progression of video generation processes

We start by describing the progression of generative models
{G,} we use to generate our training datasets. Each model
uses a random number generator to sample latent parame-
ters. The latent parameters are used for generating videos -
sequences of T frames f; € RE*Wx3 ¢ ¢ {1 .. T}. Each
consecutive model is built on top of the previous model, by
modifying one aspect of it and adding additional calls to
the random number generator. Examples of frames sam-
pled from videos in the progression are shown in Figure 1.
The models in the progression are described next (see Sec-
tion 6.6 for additional hyper-parameters, and the supple-
mentary material for videos).

Static circles. Our first video model is of static synthetic
images of multiple circles that are copied 7" times (e.g. f; =
fix1)- The color and location of the circles are sampled
uniformly at random. Following the Dead Leaves [5], the
radius is sampled from an exponential distribution.

Moving circles. Starting from randomly positioned cir-
cles in the first frame, each assigned a velocity to derive the
next frames by modeling the dynamics. Each circle is as-
signed a random direction and a velocity magnitude that is
sampled uniformly from a fixed range.

Moving shapes. We replace the circles sampled for the
first frame with different shapes, including circles, quadri-
laterals, and triangles. The shape types are sampled uni-
formly at random, and velocities are applied to them to sim-
ulate the next frames, similarly to the previous model.

Moving and transforming shapes. We introduce tem-
poral transformations to the sampled shapes and apply them
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Figure 1. Samples from our progression of video generation models and additionally included image datasets. We present 4 frames
from timestamps ¢ € {0, 10, 20, 30} of a randomly sampled video from each of our generated datasets, and UCF101 (left to right).

together with the velocities to derive the next frames. Each
shape is assigned two scaling factors (one for each spatial
dimension), a rotation speed, and two sheer factors.

Accelerating transforming shapes. To introduce more
complex dynamics, each temporally transforming shape is
accelerated during the video by a random factor. The accel-
eration value is sampled uniformly from a fixed range that
includes both positive and negative values.

Accelerating transforming textures. We replace the
solid-colored shapes with textures from the statistical image
dataset [2]. The dataset mimics color distribution, spectral
components, and wavelet distribution of natural images and
was shown to be useful for image pre-training.

Accelerating transforming StyleGAN crops. We re-
place the statistical textures with texture crops from the
StyleGAN-Oriented dataset [2], which contains texture im-
ages that were sampled from an untrained StyleGAN [14]
initialized to have the same wavelets for all output channels
in the convolution layers.

Accelerating transforming image crops. We substitute
the synthetic textures sampled for the previous Oriented-
StyleGAN dataset with natural image crops, taken from Im-
ageNet [7]. We do not parse or segment the images; instead,
we sample random crops in the shapes mentioned above.

3. Experimental Results

We analyze how pre-training on data sampled from the gen-
erative models presented in Sec. 2 affects the downstream
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Figure 2. Action recognition accuracy on UCF101. We present
the UCF101 classification accuracy of the progression of models
{M,}, after fine-tuning each of them on UCF101. The accuracy
increases along the progression.

performance. We show results for fine-tuned models on
in-distribution and out-of-distribution datasets (Sections 3.1
and 3.2) and for linear-probed models (Section 3.3).

3.1. Fine-tuning

We fine-tune the pre-trained models for two different model
scales, ViT-B and ViT-L, and evaluate the action recognition
accuracy on UCF101, HMDB51, and Kinetics-400. We fol-
low the protocol and hyper-parameters of [24] and tune only
the learning rate and batch size.

UCF101 action classification. The results are presented
in Figure 2. The final model in the progression, accelerat-
ing and transforming shapes with ImageNet crops, performs
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Figure 3. Distribution Shift results on UCF101-P [20] (ViT-
B) The last model in our progression outperforms pre-training on

natural videos for 11 out of 14 corruption datasets.

similarly to the model that was pre-trained on the UCF101
dataset (ViT-B), or outperforms it (ViT-L). Each fine-tuned
model M; in the progression improves over its predecessor
for both model scales. A large increase in performance hap-
pens when dynamics are introduced to the generated data
(e.g., from static circles to moving circles).

HMDBS51 action classification. We evaluate the pre-
trained models by fine-tuning them on the HMDBS51 and
present the results for ViT-B in Table 1. As shown, the order
of the progression for the classification accuracy is similar.
The two last models in our progression are more accurate
than the model that was pre-trained on UCF101.

3.2. Distribution shift

We fine-tune the pre-trained models { A£;} on UCF-101, and
evaluate on corrupted datasets from UCF101-P [20]. The
results for the last two models in the progression are pre-
sented in Figure 3. The last model in the progression out-
performs the UCF101 pre-trained model on 11 out of 14
tasks and performs comparably on the rest. This suggests
that the current pre-train recipe fails to generalize to out-of-
distribution datasets. Additionally, the second to last model
in our progression, which does not use real images, per-
forms better only on 6 out of the 14 datasets. This sug-
gests that differently from StyleGAN textures, the natural
image crops unlock generalization capabilities to out-of-
distribution video corruptions.

3.3. Linear-probing

We probe the progression of pre-trained models on
UCF101. The results are presented in Table 1. The differ-
ence in performance between the last model in the progres-
sion and the model trained on UCF101 is more significant (a
gap of 23.2%). Compared to the best model of [2] that was
trained on synthetic image data, which closes 56.5% of the
gap between linear probing on randomly initialized weights
and linear probing on a pre-trained model, the last model in
our progression closes only 40.6% of the gap. We suspect

HMDBS51 | UCF101 | UCF101

fine-tune | lin. prob | fine-tune
Random initialization 18.2 8.9 514
Static circles 29.2 13.2 67.8
Moving circles 52.0 15.5 85.2
Moving shapes 56.1 20.4 86.9
Moving and transforming shapes 57.6 18.8 87.7
Acc. and transforming shapes 58.9 18.9 88.1
Acc. and transforming textures 62.4 20.9 89.4
Acc. and transforming StyleGAN crops 64.1 25.2 90.2
Acc. and transforming image crops 64.1 24.8 91.3
UCF101 | 630 | 480 | 913

Table 1. Additional action recognition results (ViT-B). We
present the classification accuracy on HMDBS51 after fine-tuning
and on UCF101 after linear probing/fine-tuning for all the pre-
training datasets in our progression and the two baselines.

that the difference in the gap between fine-tuning and linear
probing is due to large differences between low-level char-
acteristics of natural images and our datasets, which can be
mitigated by fine-tuning the full model. We analyze these
low-level properties in Section 4.3.

4. Datasets Analysis

We analyze in depth different characteristics of the synthetic
datasets that were shown to be useful for video pre-training.
We start by evaluating the effect of incorporating natural
images during training. Then, we analyze the effects of dif-
ferent types of synthetic textures. Finally, we compare the
videos statistical properties to downstream performance.

4.1. Incorporating static images

Following the improvement when natural image crops are
used, we ask: 1) how does the size of the static image affect
the downstream performance, 2) can the pre-training benefit
from both synthetic and natural crops.

Image dataset size. We evaluate the effect of the image
data size on the downstream task. Our initial pool of images
includes all the images from ImageNet (1.3M). We provide
additional results with 300k images while keeping the size
of the pre-training video dataset fixed. The results are pre-
sented in Table 2. An increase in the static images dataset
results in a better performance on the downstream task.

Combining natural images and synthetic textures. To
evaluate if useful pre-training can be achieved by combining
natural images and synthetic textures, we create a dataset
that incorporates crops from half of the images and crops
from half of the synthetic textures from the StyleGAN tex-
tures [2]. As shown in Table 2, the performance of the
new dataset (“150k images & 150k StyleGAN”) is slightly
higher than the performance of the two datasets that use
solely one type of data. This suggests that mixing datasets
can lead to improved performance in other cases as well.
We leave this approach to future work.
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Figure 4. Dataset properties compared to downstream performance. We compare the downstream classification accuracy on UCF101
after fine-tuning to frame and video properties of all the dataset variants we used in our analysis (see datasets list in Section 6.6).

Configuration Accuracy (%)
300k images 90.5
150k images & 150k StyleGAN 90.6
300k StyleGAN 90.2
300k statistical textures 89.4
1.3M images ‘ 91.3

Table 2. Incorporating natural images into training (ViT-B).
We ablate different approaches for incorporating natural images
during training, and evaluate them on UCF101.

Configuration (ViT-B) ‘ Accuracy (%)
Static StyleGAN crops 90.2
Dynamic StyleGAN crops 89.2
Dynamic StyleGAN videos 68.7

Table 3. Using synthetic textures during training. Introducing
dynamic StyleGAN textures does not improve performance.

4.2. Incorporating dynamic textures

We evaluate additional synthetic dynamics that can be in-
corporated in our progression. Specifically, we replace the
static StyleGAN textures with a dynamic version.

Dynamic StyleGAN textures. Starting from a latent 2,
each frame is rendered as G’(z;) where z; = 2z;_1 +02; and
§2; ~N(0,0?%). We evaluate two uses: (i) standalone clips
(Dynamic StyleGAN videos) and (ii) replacing the solid-
colour shapes in the “accelerating + transforming shapes”
set with frame-wise updated texture crops (Dynamic Style-
GAN crops).

UCF101 fine-tune. Table 3 presents the action classifi-
cation accuracy after incorporating the dynamic textures in
the pre-training stage and fine-tuning on UCF101. Both re-
sults suggest that the simple hand-crafted dynamics of ran-
domly moving Dead-Leaves models are sufficient for pre-
training, without additional dynamics modeling.

4.3. Similarity and static property analysis

During our experiments, we generated 28 datasets and
trained ViT-B VideoMAE on each (see Section 6.8). We
plot the models’ UCF101 fine-tuning accuracies as a func-
tion of their similarity to UCF101. Following [2], we also
analyze low-level statistics of generated data.

FID. As shown in Figure 4.a There is a strong nega-
tive correlation between the frame similarity to the accuracy
(r = —0.72). This suggests that improving frame similarity
can lead to better performance.

FVD. Differently from the frame similarity, there is less
significant negative correlation between the FVD metric and
the performance (r = —0.27). This suggests that this metric
is less indicative of downstream performance.

Diversity. We utilize inception features [23] and plot
the determinant of their covariance matrix. As shown in
Figure 4.c, the datasets that include synthetic textures and
image crops are more diverse than the other datasets. This
suggests that investing in more diverse datasets can improve
performance even further.

Image spectrum. Following [25], that showed that the
spectrum of natural images resembles the function A/|f|,
with an exponent « ranging in [0.5, 2.0], we estimate the ex-
ponent for frames in our datasets. The datasets that result in
the best downstream performance have an « that lies close
to the middle of the range.

Color statistics. We model the color distributions as
three-dimensional Gaussian that correspond to the three
color channels in L*a*b space and compute the symmet-
ric KL divergence between the color distributions of each
dataset.There is a relatively weak negative correlation of
7 = —0.42 between the color distance to UCF101 and the
accuracy.

5. Discussion

Learning from synthetic data offers a key advantage: full
control over content, eliminating the risk of hidden ma-
licious, private, or biased samples that plague web-scale
video corpora. In this paper, we show that simple,
well-understood generators already rival natural-video pre-
training, suggesting a principled path toward ever better
synthetic datasets. We believe that our synthetic data study
can be utilized to create better datasets for learning video
representations without natural videos. Guided by the anal-
ysis, we plan to explore other well-understood data sources
and generation processes to continue improving video rep-
resentation learning, in large-scale training regimes.
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