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ABSTRACT

Graph Neural Networks (GNNs) with Differential Privacy (DP) guarantees have
been proposed to preserve privacy when nodes contain sensitive information that
needs to be kept private but is critical for training. Existing methods deploy a fixed
uniform noise generation mechanism that lacks the flexibility to adjust between
nodes, leading to increasing the risk of graph information leakage and decreas-
ing the model’s overall performance. To address the above challenges, we pro-
pose NIP-GNN, a Node-level Individual Private GNN with DP guarantee based
on the adaptive perturbation over sensitive components to safeguard node infor-
mation. First, we propose a Topology-based Node Influence Estimation (TNIE)
method to infer unknown node influence with neighborhood and centrality aware-
ness. Second, given the obtained node influence rank, an adaptive private ag-
gregation method is proposed to perturb neighborhood embeddings directed by
node-wise influence. Third, we propose to privately train the graph learning al-
gorithm over perturbed aggregations in adaptive residual connection mode over
multi-layer convolution for node-wise tasks. Theoretically, analysis ensures that
NIP-GNN satisfies DP guarantee. Empirical experiments over real-world graph
datasets show that NIP-GNN presents a better resistance over node inference at-
tacks and achieves a better trade-off between privacy and accuracy.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have achieved outstanding performance in several
domains, such as social analysis (Yang et al., 2021b), financial anomaly detection (Chen et al.,
2020), time series analysis (Wang et al., 2021), and molecule synthesis (Gasteiger et al., 2021).
Through aggregating the feature of neighboring nodes and fully mining and fusing the topological
associations in graph, GNNs yield state-of-art performance in tasks such as link prediction (Zhao
et al., 2021), node classification (Guan et al., 2022), and sub-graph classification (Yang et al., 2021a).
However, graph data in the real world usually contain private information (Li et al., 2023). For
example, in social network graphs where nodes denote users, and edges indicate the existence of
social attributes like being friends. Node features carry sensitive information, such as the average
online time of users per week.

Necessity and motivation of private GNN. Directly training over the graph contains sensitive in-
formation may lead to unignorable privacy leakage. Attackers have the ability to infer the existence
of arbitrary node, attribute or link, or specific graph-level statistic information like average degree,
by accessing GNN immediately (like GNN embedding) or final result (like GNN output), as shown
in membership inference attack (Wang & Wang, 2022; Zhang et al., 2022b), attribute inference at-
tack Olatunji et al. (2023a), edge stealing attack (Wu et al., 2022), and graph reconstruction attack
(Zhang et al., 2022b). This raises the necessity of protecting graph data privacy in GNN.

Among all the privacy-preserving technologies, Differential Privacy (DP) (Dwork et al., 2014)
emerges to be a widely used method for its advantage of strict theoretical guarantee (Zhang et al.,
2021) and flexible control of protection strength by adjusting privacy budget (Sala et al., 2011). Ex-
isting graph neural networks under DP guarantee can be divided into edge-level (Wu et al., 2022;
Zhu et al., 2023) and node-level (Daigavane et al., 2021; Sajadmanesh et al., 2022; Sajadmanesh &
Gatica-Perez, 2023) protection, where the former add the non-trivial calibrated noise into edges to
prevent adversary from inferring edge existence (Wu et al., 2022; Zhu et al., 2023), and the latter
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add calibrated noise into loss gradients (Daigavane et al., 2021) or message-passing aggregations
(Sajadmanesh et al., 2022; Sajadmanesh & Gatica-Perez, 2023) to prevent adversary from inferring
node existence, including node feature, edges and label. We focus on the node-level DP on graph in
this paper considering it protects the more comprehensive information and is more challenging.

However, existing GNNs under DP guarantee deploy a uniform noise generation mechanism that
lacks the flexibility to adjust between nodes, leading to two problems: First, difficulty in adequately
protecting high-influence nodes, increasing the risk of graph information leakage. Second, the in-
ability to meet the diverse privacy needs among nodes makes it hard to balance the trade-off between
graph privacy and model utility, ultimately affecting the model’s overall performance.

Technical Challenges of Individualized Private GNN under DP. To the best of our knowledge, no
existing fine-grained DP technologies specifically address the flexible privacy needs among nodes. It
is non-trivial to satisfy the desired protection level from both the theoretical and practical aspects for
GNNs with DP constraints. We contend that individualized differentially private GNN poses three
significant challenges, rendering other private learning over structure and graph data. (1). Typical
DP Stochastic Gradient Descent (DPSGD) based privacy technology is not directly suitable for
GNN. As a widely used technology, DPSGD (Abadi et al., 2016) adds noise over the clipped gra-
dient of data in the randomly selected batch. Notice that the calibrated noise is proportion to query
sensitivity over data, where sensitivity measures the largest impact of arbitrary sample (Dwork et al.,
2014). However, due to the complexity of topology links, the node-level query sensitivity of GNNs
is high since each node influences its neighbors in message-passing and aggregation. When ap-
plying DPSGD with GNN optimization, sensitivity escalates from the clipped norm to the batch
size. (2). Complexity of individualized noise calibration and injection. Nodes’ various roles
and influence (Scripps et al., 2007; Lawyer, 2015) in the graph complicate the individualized noise
calibration. The proposed fine-grained privacy assessment and noise generation scheme needs to
consider features such as node degree, and centrality. (3). Optimize the negative effect of injected
noise on private GNN utility. Private GNNs inevitably sacrifice utility to ensure model privacy
(Sajadmanesh & Gatica-Perez, 2023), which poses the effort to better balance the trade-off between
GNN utility and graph data privacy. Fine-grained noise injection leads to differentiated noise accu-
mulating and propagating through multiple layers and neighbor aggregations. Therefore, gradually
mitigating the noise’s negative impact on model utility during the neighbor message-passing layers
is a key direction.

Our Solutions and Contributions. To address these challenges, we propose a Node-level Indi-
vidual Private Graph Neural Network (NIP-GNN) with DP guarantee, which flexibly adjusts node
protection level based on learnable influence and independent of the training epoch. Our goal is to
develop a fine-grained and adaptive differentially private GNN that distributes a more granular pri-
vacy budget and achieves a better trade-off between utility and privacy. First, Topology-based Node
Impact Estimation (TNIE) method is proposed to capture node influence with neighborhood and
centrality awareness adjustments. Second, we propose an influence-awareness fine-grained permu-
tation method to realize node-diverse privacy-preserving distribution in GNN by injecting diversity-
calibrated noise into immediate aggregations. Third, an adaptive message-passing layer with resid-
ual selective cooperation is proposed to improve model utility by optimizing the negative effect of
previously injected noise. We show theoretically that NIP-GNN satisfies the DP guarantee. Experi-
ments on real graph datasets show that the proposed method achieves a better trade-off between the
utility-privacy, compared with existing private GNNs. The main contributions are summarized as:

• We study a new solution of differentially private GNN, Node-level Individual Private Graph
Neural Network (NIP-GNN), with flexible privacy calibration and adaptive aggregation
layer to achieve better utility. To the best of our knowledge, this is the first work to focus
on the fine-grained DP mechanism for GNN.

• We propose the Topology-based Node Influence Estimation (TNIE) method to infer nodes’
impact over local and global structures directly by neighborhood and centrality awareness.
Differentially private graph embedding is obtained by calibrating fine-grained noise among
nodes, which is determined by influence rank, and injecting it into immediate embeddings.
The adaptive layer is proposed to improve utility by mitigating noise’s impact during neigh-
bor message-passing and update by selective optimization.

• Theoretical analysis proves that NIP-GNN satisfies DP requirement. The experimental
results on four benchmark graph datasets demonstrate the prior utility of NIP-GNN.
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2 RELATED WORKS

Recently, there have been several attempts to use DP to provide node-level and edge-level privacy
guarantees in GNNs. For node-level protection, existing methods can be divided into two types:
gradient-based and aggregation-based perturbation. For gradient-based methods, Daigavane et al.
Daigavane et al. (2021) proposed a one-layer node-level private GNN by extending the DPSGD al-
gorithm to a degree-bounded graph. But Daigavane et al. (2021) is limited to one-layer GNN and can
not preserve privacy for high-layer aggregations. Zhang et al. (2022a) proposes to convert the aggre-
gation over the edge into aggregation over approximate personalized PageRank vectors to achieve
edge-level protection. The node-level protection in the training process is achieved with DPSGD.
For aggregation-based perturbation methods, Sajadmanesh et al. (2022) provides a private GNN by
injecting uniform noise on the neighbor aggregation vectors. ProGAP proposed in Sajadmanesh
& Gatica-Perez (2023) proposes to split the GNN training process into overlapping sub-models to
achieve node-level and edge-level protection. The other edge-level protection methods over GNN,
privacy attacks in GNNs, and existing privacy budget allocation methods over traditional deep learn-
ing are shown in Appendix A.1.

Despite the presence of uniform noise injection methods in differentially private GNNs and fine-
grained noise allocation schemes in differentially private DL, such considerations are still missing in
differentially private GNNs. The graph structure poses new challenges of noise complex calibration
to DP technologies, existing fine-grained DP methods can not be directly used in GNN.

3 PROBLEM FORMULATION

In this section, we first revisit the definition of GNN and DP. Then we define the problem of private
learning GNN with node privacy concerns.

3.1 GRAPH NEURAL NETWORK

Let G = {V, E} be an unweighted undirected graph, where V and E denote the nodes set and edges
set. The adjacency matrix A ∈ {0, 1}N×N represents the link among edges, |N | denotes the node
number. For ∀vi, vj ∈ V , if there exists an edge between vi, vj , then Aij = 1, for else Aij = 0.
Node feature of vi is a d-dimension vector, and the N × d matrix X represents the stack of all nodes’
feature, where Xi ∈ X denotes the feature of vi. Y ∈ {0, 1}N×M represents the label of nodes, Yi

is a M-dimension one-hot vector, where M is the class number.

The typical message-passing-based GNN consists of two phases: message aggregation and updating.
In the message aggregation phase of i-th layer, every node shares and receives neighbors embedding
of the former i-1-th layer and outputs a new embedding after applying a transformation, which can
be defined as:

Ei
j = fagg({hi−1

u , u ∈ N (vj)}), (1)
where N (vj) denotes the adjacent node set of node vj , and hi−1

u represents the embedding output
of node u at i-1-th layer. fagg is the aggregation linear function like SUM, MEAN, MAX, etc. Ei

j
is the aggregate output of node vj in i-th layer after the aggregation transformation of all adjacent
nodes. Update transformation is employed on the Ei

j , which is shown as:

hi
j = fupd(E

i
j , h

i−1
j ; θj), (2)

where fupd denotes the learnable function that takes the aggregate vector Ei
j and last layers’ em-

bedding hi−1
j as input, and outputs the updated embedding of vj at i-th layer. fupd is determined

by parameter θj . The input h0
j of GNN’s first layer is Xj , and the last layer generates embed-

ding vectors hL
j , which can be used in downstream tasks. L represents the total layer. A softmax

layer is employed on the final embedding vectors hL
v to get the class probability of vj . Following

(Sajadmanesh et al., 2022; Chien et al., 2023), we focus on the node classification task.

3.2 PROBLEM DEFINITION

The goal of this paper is to preserve the adaptive privacy of the graph nodes, ensuring that the
training and inference of GNN by following DP constraint, which quantifies the privacy-preserving
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level by setting a privacy budget to measure the attack success probability. Different from previous
work in (Daigavane et al., 2021), we aim to propose an epoch-independent method considering
node influence from topology without losing much utility of GNN. We first define the notion of a
Node-level adjacent graph as follows:

Definition 1 (Node-level adjacent graph (Sajadmanesh et al., 2022)). Graphs G and G′ are node-
level adjacent graphs if at most one node is different, including node features, links, and labels.
Without loss of generality, let G can be obtained by altering a node in G′.

Then the ϵ-Node-level differential privacy is defined as:

Definition 2 (ϵ-Node-level differential privacy (Sajadmanesh et al., 2022)). Let G and G′ be two
node-level adjacent graph, given ϵ > 0, the random algorithm A is ϵ-Node-level differential privacy
if for any set of outputs S ∈ Range(A), satisfies:

Pr[A(G) ∈ S] ≤ eϵ Pr[A(G′) ∈ S]. (3)

Here, ϵ is called the privacy budget, which is used to measure the protection extent. A higher ϵ
means a higher protection level and more noise injection is needed.

Based on Definition 2, the global graph sensitivity can be defined as:

Definition 3 (Graph L1 sensitivity). The global graph L1 sensitivity of function f on two node-level
adjacent graphs G and G′ is:

∆gG = max||f(G)− f(G′)||1 (4)

DP has the following classic properties which support us in building complex algorithms over graph:

Theorem 1 (Post-processing (Dwork & Lei, 2009)). Post-processing to any ϵ-DP algorithm’s output
remains (ϵ)-DP.

Theorem 2 (Sequential composition (Dwork & Lei, 2009)). If an ϵ2-DP algorithm is applied to
ϵ1-DP algorithm’s output, then the result is at most (ϵ1 + ϵ2)-DP.

Based on the above definition, the problem of private GNN under DP constraints can be defined as:

Definition 4 (ϵ-Node-level Differentially Private Graph Neural Network). Give a graph G with
nodes containing sensitive information, a well-trained GNN model F is a ϵ-Node-level Differentially
Private Graph Neural Network if for any Node-level adjacent graph G′ of G and any outputs S of
F , we have:

Pr[F(G) ∈ S] ≤ eϵ Pr[F(G′) ∈ S] (5)

Therefore, the key of this paper is to propose a specific GNN model and design DP mechanisms,
then consider how to incorporate the proposed DP mechanisms into the GNN training and inference
phase to protect the training graph data from being theft, while keeping the private GNN model
utility to satisfy downstream task requirements.

Remark 1. We focus on the transductive learning in this paper for it considers more challenging
privacy risk in the inference phase (Sajadmanesh et al., 2022), where the test nodes can still access
train nodes features. The proposed method is suitable for inductive learning.

4 PROPOSED METHOD: NIP-GNN

We propose our NIP-GNN composing Topology-based Node Influence Estimation (TNIE), Node-
Influence-Grained Adaptive Permutation (NAP) and Adaptive Calibrated Aggregation (ACA). TNIE
measures node influence in the graph directed by topology-related and feature-related awareness.
NAP proposes to calibrate adaptive noise tailored for estimated node influence sequence constraint
and permutes the propagation layer by adding generated node-wise adaptive noise. The analysis
shows that NAP satisfies the DP definition. ACA proposes an adaptive aggregation layer with resid-
ual connection to balance and smooth the protective noise introduced by NAP. We also present an
analysis on the total privacy level of the whole process.
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4.1 TOPOLOGY-BASED NODE IMPORTANCE ESTIMATION (TNIE)

To estimate node influence in a given graph, considering that the known information of a specific
node is its original feature and edges, we formulate the evaluation from two aspects: feature-related
and topology-related mining. For feature-related awareness mining, TNIE maps the original node
features to an immediate space to extract influence-driven embedding by a score computing function:

h0
u = Score Computing(Xju; vu ∈ V), (6)

where vu is a node in G. The score computing function takes node’s original feature as input and out-
put encoded embedding. Considering Multi-Layer Perception (MLP) is a general and foundational
neural network, we use it in the paper. Other complex neural networks can also be used.

For topology-related awareness mining, we propose neighborhood and centrality sensing. Neigh-
borhood sensing is based on the intuition that a node and its neighbors have mutual influence, so
the neighbors’ impact serves as an effective proxy for the node’s significance. Centrality sensing
suggests that nodes with higher centrality exert more influence than those with lower centrality, as
they propagate messages to more nodes. For neighborhood sensing, TNIE builds a weighted ag-
gregation from node vu and its neighbors for the t-th layer (t = 1, 2, ...T ) to generate normalized
representation:

ht
u =

∑
v∈N(u)

1√
Du

1√
Dv

ht−1
v , (7)

where Du denotes degree of u. After T layers aggregation, ∀u ∈ V gets neighborhood sensing
embedding hT

u . For centrality sensing, considering node degree is commonly used as a proxy for
centrality, we construct a centrality-driven embedding by integrating an adjustable centrality metric
with the neighborhood sensing embedding. It seems natural to directly use the transformation of
degree in fusion, however, the absolute value of the degree does not always accurately represent
the nodes influence rank (Liao et al., 2017; Ibnoulouafi et al., 2018). Therefore, instead of initial
degree log(Du) of node vu, TNIE adopts a shifting degree λ(log(Du)) + ϕ) to allow the possible
discrepancy between degree and influence rank, where λ and ϕ are learnable parameters. Then the
shifting degree is used to adjust the neighborhood awareness-based embedding hT

u of node vu from
centrality sensing consideration, which is as follows:

s(u)∗ = σ(λ(log(Du) + ϕ) · hT
u ), (8)

where σ is a non-linear activation function, s(u)∗ denotes estimated influence score.

4.2 NODE-INFLUENCE-GRAINED ADAPTIVE PERMUTATION (NAP)

NAP aims to privately generate and release nodes aggregation embedding by perturbing embedding
via adaptive noise proportion to sensitivity and calculated node influence. Motivated by the fact
that perturbing a node vu’s edges in the graph can be seen as changing neighborhood aggregation
of vu’s adjacent nodes ∀v ∈ N(u), we propose to calibrate noise generated by Laplace Mechanism
(Definition 5) and inject it on the first layer aggregation embedding. In particular, we use the sum
aggregation function as the first layer, which is equivalent to the multiplication of the adjacent matrix
and the input row-normalized feature. The permutation process can be presented as follows:

H0(A,V,X) = {H0
u}vu∈V s.t. H0

u =

|N |∑
j=1

AujXjj + Lap(
∆H0

ϵu
), (9)

where H0
u =

∑|N |
j=1 AujXjj denotes the sum aggregation process of node vu, Auj ∈ A, Xjj is the

row-normalized feature of node vj , Lap(∆H0

ϵu
) is the perturbed noise, ∆H0 denotes the sensitivity

of aggregation function, ϵu is the privacy budget of vu. Note that our designed NAP is based on the
widely-used Laplace Mechanism:

Definition 5 (Laplace Mechanism (Dwork & Lei, 2009)). Given an algorithm A → Dd, the Laplace
mechanism outputs M(G) = A(G) + γ, where γ ∼ Lap(α)d and Lap(α)d is a length of d vector
samples from a Laplace distribution with scale α. If α =

∆gG

ϵ , then the Laplace mechanism satisfies
ϵ-Node-level differential privacy.

5
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Lemma 1. Let G = {V, E} and G′ = {V ′, E ′} be two adjacent graph. The global L1 graph
sensitivity of first sum aggregation layer ∆H0 ≤ 2Dmax, where Dmax is the maximum node degree.

Proof of Lemma 1 is shown in Appendix A.2.1. Denote the estimated influence rank of node vu as
R NI(u), which is gained through the rank of estimated score s(u)∗. C(u) represents the privacy
protection level of node vu. For node vm and vn, if s(m)∗ > s(n)∗, we aim to realize C(m) >
C(n). Then let ϵA denotes the total privacy cost of first aggregation layer, the assigned privacy
budget ϵu of vu is proportional to C(u), which is ϵu = ϵA · βu, where βu is a weight coefficient.
From definition 5 and lemma 1, we know that injected noise is proportional to the maximal node
degree. However, many real-world graphs follow power-law distribution (Clauset et al., 2009).
When node degree distribution is extremely imbalanced, the maximum node degree is obviously
higher than most nodes, Laplace-based noise generation mechanism may yield high noise. To tackle
this challenge, we propose to leverage the potential wasted privacy budget generated by the node
degree gap of adjacent graph nodes.

For arbitrary node vu ∈ V , it receives a potential reusable privacy budget from neighboring node
vk ∈ N(u). Total reusable privacy ratio of vk is Dmax − Dk, for each neighbor node of vk, the
assigned ratio r(u, k) is

r(u, k) =
R NI(u)∑

vj∈N(k) R NI(j)
, (10)

which is in proportion to node influence rank. Then the weight coefficient of vu is the minimum of
all reusable budget ratios:

βu = min
vk∈N(u)

{ R NI(u)∑
vj∈N(k) R NI(j)

(Dmax −Dk) + 1,
Dmax

Dk
}. (11)

Then based on node-wise privacy budget computed via equ.(11), differentially private aggregation
is obtained by equ.(9). The generated private embedding is unbiased. Theoretical analysis of the
following theorem and proposition is shown in Appendix A.2.1.
Theorem 3. Algorithm 1 preserves ϵA-DP in the first differential private aggregation layer H0.

Proposition 1. The sum aggregator defined in (9) for the first layer is unbiased.

4.3 ADAPTIVE CALIBRATED AGGREGATION (ACA)

Laplace noise introduced by previous modules inevitably affects GNN performance. To achieve
a better privacy-utility trade-off, we propose ACA, which adaptively aggregates noisy embeddings
using residual connections across layers. ACA smooths the noise by iteratively and selectively align-
ing noisy neighbor aggregations with the node’s own private sum embedding, based on the intuition
that consistent information flow can mitigate noise impact while preserving essential features. ACA
takes the H0 as input and outputs the final embeddings Compared with equally aggregating neigh-
bors embedding, ACA allows each node to learn from different neighbors with different weights.

To keep edges and node labels private, we perturb them before the further message passing and
updating steps. For edges perturbation, we propose a degree-preserving edge randomization method,
which reduces the impact of adding or removing edges on the graph by unbiasedly sampling the
edges before and after edge randomization. First initializes an all-zero matrix Ã as the output
matrix. Then, for each edges (vi, vj), samples a value x ∼ Bern(1− s) using the privacy parameter
s to decide whether to preserve the original edge. If the sampled result is x = 1, the original edge
is preserved, setting Ãij = Aij and Ãji = Aij . Otherwise, a value y ∼ Bern(1/2) is drawn from
the Bernoulli distribution, and both Ãij and Ãji are set to y, effectively randomizing the edge’s
state. To reduce the impact of adding or removing edges on the graph, an unbiased sample method
is proposed at the end with the sampling probability of:

psample
u =

2Du

Du +N −Ns+Dus
(12)

for node vu, where Du is the degree of vu before permutation, s is a parameter satisfying s ≥
2

eϵB/2Dmax+1
, ϵB is the privacy budget (the constraint of parameter s in shown in Theorem 4). The

6
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expectation of sampled node degree E(D′
u) equals E(Du) for ∀vu ∈ V . The final noisy adjacent

matrix is the unbiased A. The proposed sampled matrix perturbation satisfies DP guarantee.
Theorem 4. Let Du denote the degree of vu in the original matrix A, D′

u denotes the degree
after perturbation and sampling. Then E(D′

u) = E(Du). When the privacy parameter s satisfies
s ≥ 2

eϵB/2Dmax+1
, the sampled perturbation over graph matrix satisfies ϵB-DP.

The proof is shown in Appendix A.2.2. For label perturbation, node vi’s label yi is encoded via
Random Response for it outperforms other oracles in low dimensions. The transformation is:

p(y′i|yi) =


eϵC

eϵC +M − 1
, if y′i = yi

1

eϵC +M − 1
, otherwise,

(13)

where ϵC is the privacy budget, and M is the class number. We obtain the differentially private label
matrix Ỹ.

For the adaptive calibrated aggregation, a node-wise adaptive embedding aggregation and the
residual connection cooperate to balance the smoothness of different perturbed embeddings be-
tween neighbors and the node itself. The process includes two steps: neighbor aggregation,
and residual combination. First, for k-th layer, ACA aggregates neighbors equally based on the
normalized perturbed adjacent matrix and previous layers outputs as Mk−1

u = ÂHk−1
u , where

Â = D̂− 1
2 (A′ + I)D̂− 1

2 , A′ + I is the sampled noisy adjacent matrix with self-loop, D is the de-
gree matrix, H0

u = H0
u. Then, for the residual combination, the intuition is to use the node’s initial

noisy embedding as a baseline. Larger changes in neighbor features suggest more irrelevance noise,
thus their influence should be reduced, and vice versa. Specially, the residual weight γu for vu is
computed as:

γu = max(1− τ · 1

Dist(Mk−1
u −H0

u)
, 0), (14)

where τ is a learnable parameter that controls the smoothing, max(·) is used to ensure weight is not
smaller than zero, Dist(·) is the distance measure method. We use the widely used euclidean norm.
Finally, the residual aggregation output of vu is the cooperation of H0

u and Mk
u weighted by βu as:

Hk
u = (1− γu)H0

u + γuM
k−1
u . (15)

After K hops adaptive aggregation, the final output of ACA is HK
u for ∀vu ∈ V , which is used to

the classification layer. Since both the generation of HK and the perturbed label matrix Ỹ satisfy
DP guarantees, the training of the classification layer, which takes HK and Ỹ as inputs, does not
require additional noise. Now we have theorem 5. The proof is shown in Appendix A.2.3.
Theorem 5. With the aid of proposed private NAP and ACA, the whole training and inference
process of our NIP-GNN preserves (ϵA + ϵB + ϵC)-DP.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENT SETTINGS

Datasets. Four publicly available datasets are used, Cora, Citeseer (Yang et al., 2016), Lastfm
(Rozemberczki & Sarkar, 2020), and Facebook (Rozemberczki et al., 2021). Cora and Citeseer are
typical citation networks, representing two sparse graphs. Lastfm and Facebook are social networks,
representing dense graphs. Detailed information is shown in Appendix A.3.

Compared Methods. We compare our proposed NIP-GNN with three state-of-the-art methods
achieving node-level DP for GNN and one feature-based baseline method: 1) DP-SAGE Daigavane
et al. (2021) is a one-layer GNN based on GraphSAGE Hamilton et al. (2017) that samples 1-hop
neighbors and ensures DP by perturbing the gradient using DP-SGD. 2) DPDGC Chien et al. (2023)
decouples the protection of topology and features by encoding them separately with DP-encoders on
a bounded graph, then combines them using residual connections and trains with a DP-based clas-
sifier. 3) GAP Sajadmanesh et al. (2022) uniformly perturbs the aggregation on a bounded graph

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and uses a DP-classifier to train on the perturbed embeddings. 5) DP-MLP is a feature-based base-
line that only considers node features as input for training the private GNN, without incorporating
any graph topology information. DP-MLP utilizes DP-SGD, ensuring DP by perturbing the gradi-
ents. This baseline is included to analyze whether noise affects the benefit of using graph structural
information in GNN training. Our NIP-GNN is referred to as Ours in the following sections.

Training and Evaluation Settings. Following (Sajadmanesh et al., 2022), we split the nodes into
a training set (75%), validation set (10%), and test set (15%) in a transductive setting. Since the
original Lastfm is highly imbalanced, we choose the top 10 classes that have the most samples
(Sajadmanesh & Gatica-Perez, 2021). Notably, unlike Sajadmanesh et al. (2022); Sajadmanesh &
Gatica-Perez (2023); Chien et al. (2023), we do not preprocess the graph to bound the maximum
degree to prevent information loss from edges and nodes. We use the same 2-layer neural network
with a hidden embedding size of 64 as in Sajadmanesh et al. (2022). The training epochs are set
as 100 with batch sizes of 64 across all datasets. All models are trained based on Adam optimizer
(Kingma & Ba, 2014). The initial value of the learning rate is 1e-3, and the decay mechanism is
used with a patience of 20 and a decay rate of 0.5. We measure the model performance by training
10 consecutive rounds on the test set and taking the average value with a 95% confidence interval
under bootstrapping with 2000 samples. All experiments are implemented by using Pytorch and
PyTorch-Geometric (PyG).

5.2 RESULTS AND ANALYSIS

5.2.1 EVALUATION ON MODEL UTILITY OVER DIFFERENT ϵ

Table 1: Utility (Mean Accuracy ± 95% Confidence Intervals) comparisons with baselines on each
graph datasets under ϵ=4. The best performing private method is highlighted.

Dataset DP-MLP DP-SAGE DPDGC GAP NIP-GNN
Cora 46.35±1.74 13.54±2.33 40.71±2.35 31.50±0.72 53.21±1.16

Citeseer 21.41±1.52 19.94±4.82 36.52±1.26 31.60±4.63 48.33±2.02
Lastfm 25.27±2.37 26.72±1.74 41.25±1.63 37.27±4.63 48.33±2.02

Facebook 48.35±1.74 33.52±2.62 37.81±2.35 43.50±0.73 51.11±1.48

Compare with existing private GNNs. We first compare the utility between the NIP-GNN and
competitors under ϵ=4. The results are shown in Table 1. Similar to previous studies Sajadmanesh
et al. (2022); Sajadmanesh & Gatica-Perez (2023); Chien et al. (2023), the widely-used metric test
accuracy is used to quantify the model utility. Ours achieves better utility under the same privacy
level compared to GAP, DPDGC, DP-SAGE, and DP-MLP. These demonstrate the effectiveness of
our NIP-GNN in balancing privacy and utility under the same level of DP guarantee.

5.2.2 ABLATION STUDIES OF PROPOSED MODULES

To study the impact of adaptive privacy budget allocation, degree-preserving sampling, and adaptive
residual aggregation on model utility, we compared the effects of removing adaptive privacy budget
allocation and replacing it with uniform allocation (Ours w/o A-a), removing degree-preserving
sampling (Ours w/o D-s), and removing adaptive residual aggregation and replacing into SAGE
(Ours w/o A-r) in Table 2 and 3. The experiments were conducted under two privacy budget settings
(ϵ = 7 and ϵ = 12). Removing either proposed module leads to a decrease in utility, indicating
that proposed adaptive privacy budget allocation, degree-preserving sampling, and adaptive residual
aggregation significantly enhance utility.

5.2.3 EVALUATION ON RESILIENCE AGAINST MEMBERSHIP INFERENCE ATTACK

We empirically measure the privacy guarantee of Ours and other node-level private baselines and
Ours w/o A-a (removing adaptive privacy budget allocation and replacing into uniform allocation)
by conducting node-level Member Inference Attack (MIA). We follow the TSTF approach (train
on subgraph and test on full graph) Olatunji et al. (2021) as MIA and use the same architecture and
settings as the target model. We use accuracy as the metric as the attack goal can be modeled as a
balanced binary problem: whether the arbitrary node exists in the training graph. Table 4 reports
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Table 2: Ablation studies under ϵ=7.
Dataset Cora Citeseer Lastfm Facebook
Ours w/o A-r 44.3±0.36 31.5±0.48 51.6±0.69 50.1±0.91
Ours w/o A-a 63.4±0.26 42.4±0.17 65.3±0.15 65.5±1.10
Ours w/o D-s 64.5±1.30 43.9±2.07 64.9±0.14 67.1±0.09
Ours 64.9±1.75 44.6±0.26 65.9±0.15 67.8±0.17

Table 3: Ablation studies under ϵ=12.
Dataset Cora Citeseer Lastfm Facebook
Ours w/o A-r 67.2±0.27 58.9±0.50 73.3±0.50 86.0±1.44
Ours w/o A-a 83.1±0.11 64.5±0.21 84.5±0.10 89.8±0.07
Ours w/o D-s 81.5±0.15 63.8±1.14 85.4±1.87 90.0±1.07
Ours 83.5±1.84 65.0±0.16 86.3±0.84 91.3±0.64

the mean accuracy with 95% confidence intervals of MIA attacks under four different privacy levels
on all datasets. For private models, we can see that private GNNs can effectively defend against the
attack, reducing the accuracy to around 50%, which is a nearly random selection. Ours and baselines
have similar noise resilience across different privacy budgets, while Ours achieves a better trade-off
between privacy and utility as shown in Table 1 before. The resilience gap between Ours and Ours
w/o A-a shows the priority of the proposed adaptive budget scheme in the privacy leakage defense.

Table 4: Membership Inference Attack accuracy (Mean ± 95% Confidence Intervals) comparisons
with baselines on each graph datasets under ϵ=4.

Dataset DP-MLP DP-SAGE DPDGC GAP Ours w/o A-a Ours
Cora 49.78±3.03 50.09±1.06 49.58±1.44 50.12±2.17 50.21±1.91 49.95±1.30

Citeseer 51.18±0.77 49.15±1.45 50.76±0.57 48.04±1.41 49.98±1.32 49.01±0.25
Lastfm 50.67±0.57 49.42±0.36 49.50±0.89 48.99±0.69 50.25±1.39 48.23±0.33

Facebook 51.32±1.26 50.09±2.03 49.58±1.44 50.12±2.17 49.18±1.14 48.01±1.30

5.2.4 EVALUATION ON ADAPTIVE BUDGET OVER DIFFERENT ϵ

Under the same global privacy budget, we also compare different noise scale ratios between differ-
ential private aggregation layer H0, the degree-preserving adjacent matrix Ã and noised label Ỹ.
The result is shown in Figure 1. With noise on Ã be constant, we add more noise on H0 (decline
ϵA). Compared with the equal distribution method, the accuracy improvement represents adaptive
DP on H0 mitigates the noise waste problem caused by node uniform privacy distribution. The
scheme that assigns less ϵ on H0 converges faster. As ϵ increases (noise decreases), the model’s
utility tends to be the same for the two compared schemes.

Figure 1: Evaluation on Different Privacy Budget.

5.2.5 EVALUATION ON MAXIMUM DEGREE Dmax OF GRAPH

We analyze the impact of the maximum node degree of the graph on model performance. The
performance variation of the adaptive differential privacy mechanism is shown in Figure 2(a)-(d).
The accuracy of the model increases to a peak and then decreases as Dmax increases. The maximum
degree of the sub-graphs taken at the peak differs on data with different degree average values.
When Dmax increases, the neighbor information that nodes can aggregate grows, but at the same
time, more noise is received, thus affecting the accuracy of the model. Meanwhile, the Laplace
mechanism is affected by data sensitivity. When Dmax increases, the data sensitivity increases, and
thus the noise added to each node on average increases, reducing the utility of the model.
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Figure 2: Evaluation on Maximum Degree Dmax of Graph (a-d) and Hop K of ACA (e-g).

5.2.6 EVALUATION ON MULTI-ADAPTIVE-LAYER K

We investigate the effect of different hops on the model performance. The results are shown in
Figure 2(e)-(g). As can be seen, both NIP-GNN and its competitors can aggregate more information
from neighbors when K increases. However, there is a trade-off between K and accuracy. When the
value of K increases, the accuracy of both NIP-GNN and its competitors increases first, then reaches
a peak and decreases. This is because when more layers of neighbor information are aggregated, the
noise data collected from the neighbors also increases, affecting the behavior of the model. Besides,
when ϵ is small, the noise scale of the joined data is larger, and the model needs higher K to reach
the peak.

6 CONCLUSION

In this work, we proposed a Node-level Individual Private Graph Neural Network (NIP-GNN) that
flexibly adjusts node protection levels based on learnable influence, independent of the training
epoch, to address the privacy-utility trade-off in GNNs. We introduced the Topology-based Node
Impact Estimation (TNIE) method to capture node influence through neighborhood and centrality
awareness. Additionally, we developed an influence-aware fine-grained permutation method that
injects diversity-calibrated noise to achieve node-level privacy-preserving distributions. To further
mitigate the negative impact of noise on model utility, we designed an adaptive message-passing
layer with residual selective cooperation. Our theoretical analysis confirms that NIP-GNN satisfies
differential privacy guarantees, and experimental results on real-world graph datasets demonstrate
that our approach achieves a better utility-privacy trade-off compared to existing private GNN meth-
ods. Notably, this work is the first to demonstrate the applicability of differentiated noise addition
in GNNs, providing a new direction for future research in privacy-preserving graph learning.
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A APPENDIX

A.1 OTHER RELATED WORKS

A.1.1 OTHER DIFFERENTIALLY PRIVATE GNNS

The Locally Private Graph Neural Network (LPGNN) Sajadmanesh & Gatica-Perez (2021) realizes
the GNN model framework under Local Differential Privacy (LDP) guarantee in a decentralized
setting. Solitude Lin et al. (2022) preserves edge-level and node-level simultaneously under LDP
by calibrating the added noise on the graph. Another edge-level differential privacy GNN algorithm
was proposed in Wu et al. (2022) by perturbing the adjacency matrix of the graph through the
Laplace mechanism. Blink in Zhu et al. (2023) provides edge-level LDP via spending the privacy
budget separately on links and degrees of the graph and denoising the topology using Bayesian
estimation. PrivGNN Olatunji et al. (2023b) provides node-level DP by adapting the framework of
PATE Papernot et al. (2016). The student GNN model is trained using public graph data, where each
node is privately labeled by teacher GNN models. These teacher models are exclusively trained for
their respective query nodes. However, PrivGNN is dependent on the availability of public graph
data. DPDGC Chien et al. (2023) proposed a unified notation, Graph Differential Privacy (GDP), in
GNN. It points out that topology and nodes may need multi-granular protection.

A.1.2 PRIVACY ATTACKS IN GNNS

Several studies have explored the privacy leakage in GNNs, involving membership inference attacks
Wang & Wang (2022); Zhang et al. (2022b), attribute inference attacks Olatunji et al. (2023a), model
stealing attacks Shen et al. (2022), edge stealing attacks Wu et al. (2022); He et al. (2021) and graph
reconstruction attacks Zhang et al. (2022b). Authors in Wang & Wang (2022) infer the node & link
group distribution under both white-box and black-box settings. Attribute inference attacks aim to
infer the node attribute of the graph with only access to GNN output or embedding. The Study in
Olatunji et al. (2023a) shows that even under the black-box setting, the attacker is able to infer the
sensitive attribute by some public attributes and graph structure. Work in Zhang et al. (2022b) aims
to infer the basic group properties like node and edge number, and graph density and determine
whether the subgraph exists in the original graph and graph reconstruction attacks with only black-
box access. A study in Shen et al. (2022) shows that pure GNNs face model stealing risks. Edge
stealing attack aims to infer whether there exists a link between any pair of nodes with only access
to GNN outputs. Experiment results in Wu et al. (2022); He et al. (2021) show that the existence of
edges is vulnerable due to graph attributes like heterogeneous.

A.1.3 PRIVACY BUDGET ALLOCATION

For traditional differentially private DL methods, several works have proposed privacy bud-
get allocation strategies to address specific scenarios. It can be broadly categorized into three
types: Preference-based Allocation, Sensitivity-based Allocation, and Utility-based Allocation. In
preference-based allocation, Li et al. (2017) introduces a sensitivity-based differential privacy bud-
get partitioning mechanism to meet the different privacy preferences of data owners. Boenisch
et al. (2024) focuses on grouping and allocating according to each user’s privacy needs, proposing a
demand-based sampling and scaling mechanism that ensures data points with higher privacy budgets
are sampled more frequently during training and adjusts the scale of noise accordingly. In utility-
based allocation, Niu et al. (2020) proposes the Utility-aware Personalized Exponential Mechanism
(UPEM), which considers the quantitative changes of the Personalized Exponential Mechanism to
enhance the overall utility of the model. Feldman & Zrnic (2021) introduces individualized privacy
accounting, where privacy budgets are allocated based on the privacy loss of each data point dur-
ing training. In risk-based allocation, Jorgensen et al. (2015) proposes a personalized differential
privacy budget allocation method based on individualized risk levels.
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A.2 THEORETICAL ANALYSIS

A.2.1 PRIVACY ANALYSIS OF NAP OVER SUM AGGREGATION

Lemma 1. Let G = {V, E} and G′ = {V ′, E ′} be two adjacent graph. The global L1 graph
sensitivity of first sum aggregation layer ∆H0 ≤ 2Dmax, where Dmax is the maximum node degree.

Proof. Assume adjacent graph datasets G and G′ differ in node vk. Then we have:

∆H0 = max
nu∈V

||
∑

H0(A,V,X)−
∑

H0(A′,V ′,X′)||1 = max
∑
vu∈V

||
|N |∑
j=1

(AujXj −A′
ujX

′
j)||1

(16)
Without loss of generality, in G′, we assume that node vk is removed from G. Therefore, for nodes
vi and vj , we have A′

ij = 0, if i = k or j = k, otherwise A′
ij = Aij . Then we have:

∆H0 = ||
|N |∑
j=1

AkjXj +

|N |∑
i=1

AikXk||1 ≤
|N |∑
j=1

Akj +

|N |∑
i=1

Aik ≤ Dk +Dk ≤ 2Dmax, (17)

where Dk is the degree of vk. The lemma is proved.

Theorem 3. Algorithm 1 preserves ϵA-DP in the first differential private aggregation layer H0.

Proof. All nodes’ aggregation embedding in G are perturbed, therefore we have:

Pr(H0(A,V,X)) =

N∏
i=1

exp(
ϵi

∆H0
||

N∑
j=1

AijXjj −H0
i ||1). (18)

∆H0 is set to 2Dmax, as proved in Lemma 1. Assume adjacent graph datasets G and G′ differ in
node vk. We have:

Pr(H0(A,V,X))

Pr(H0(A′,V ′,X′))
≤

N∏
i=1

exp(
ϵi

∆H0
||

N∑
j=1

AijXjj −
N∑
j=1

A′
ijX

′
j ||1)

= exp(

N∑
i=1

N∑
j=1

ϵi
∆H0

||AijXj −A′
ijX

′
j ||1) = exp(

∑
vj∈N(k)

Akj
ϵk

∆H0
+

∑
vi∈N(k)

Aik
ϵi

∆H0
).

(19)
Let f(k) =

∑
vj∈N(k) Akjϵk +

∑
vi∈N(k) Aikϵi. Then we have:

f(k) = Dkϵk +
∑

vi∈N(k)

ϵi = ϵA(Dkβk +
∑

vi∈N(k)

βi)

≤ ϵA(Dkβk +
∑

vi∈N(k)

(
R NI(u)∑

vj∈N(k) R NI(j)
(Dmax −Dk + 1))

≤ ϵA(Dk
Dmax

Dk
+Dmax −Dk +Dk) ≤ 2ϵADmax.

(20)

Substitute equation (20) into (19), we can get:
Pr(H0(A,V,X))

Pr(H0(A′,V ′,X′))
≤ exp(

2ϵADmax

∆H0
) = exp(ϵA). (21)

Proposition 2. The sum aggregator function defined in (9) for the first layer is unbiased.

Proof. The expectation of noised embedding for node vu is:

E[H0
u] = E[

|N |∑
j=1

AujXj + Lap(
∆H0

ϵu
)] = E[

|N |∑
j=1

AujXj ] + E[Lap(
∆H0

ϵu
)] = E[H0

u]. (22)

Proposition 2 is proved.
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A.2.2 PRIVACY ANALYSIS OF EDGE PERTURBATION

Theorem 4. Let Du denote the degree of vu in the original matrix A, D′
u denotes the degree

after perturbation and sampling. Then E(D′
u) = E(Du). When the privacy parameter s satisfies

s ≥ 2
eϵB/2Dmax+1

, the sampled perturbation over graph matrix satisfies ϵB-DP.

Proof. In the original adjacent matrix A, there are Du 1s and (N − Du) 0s for node vu. The
expectation of vu’s degree after edge perturbation is:

E(Du) = Dus+Du(1− s) + 0.5(N −Du)(1− s)

= 0.5Du + 0.5N − 0.5Ns+ 0.5Dus,
(23)

where s is the Bernoulli sample probability. Then we have:

E(D′
u) = E(Du) ∗ psample

u = E(Du). (24)

Assume adjacent graph G and G′ differ in node vk. Denote the edge perturbation function as P ,
then we have:

P(A)

P(A′)
=

∏
vi∈N(k)

P(Aik)

P(A′
ik)

P(Aki)

P(A′
ki)

= (
1− s/2

s/2
)Dk+Dk ≤ (

1− s/2

s/2
)2Dmax . (25)

When s ≥ 2
eϵB/2Dmax+1

, we have P(A)/P(A′) ≤ exp(ϵB). The theorem is proved.

A.2.3 PRIVATE ANALYSIS OF WHOLE NIP-GNN

Theorem 5. With the aid of the proposed private NAP and ACA, the whole training and inference
process of our NIP-GNN preserves (ϵA + ϵB + ϵC)-DP.

Proof. From theorem 3 and 4, we know that the first aggregation layer satisfies ϵA-DP and the sam-
pled adjacent matrix perturbation guarantees ϵB-DP. Random response mechanism on node label
guarantees ϵC-DP under equation (13). Node-level DP preserves all information of one node, in-
cluding features, edges, and labels. Differential aggregation layer H0 process node feature and edge
privately. The following ACA does not expose node features and edges for it only post-processing
the noised aggregation embedding and perturbed adjacent matrix without access to private features
and links. Therefore, following the post-processing and sequential composition theorem (refer to
Theorem 1 and 2), the training and inference phase also guarantees DP because node label is per-
turbed former, ensuring that every sensitivity component (node features, edges, labels) is protected.
The total privacy cost is (ϵA + ϵB + ϵC)-DP.

A.3 DETAILS OF USED DATASETS

Detailed information on experimental datasets is shown in Table 5.

Table 5: Detailed Statistic of Used Datasets
Datasets Nodes Edges Features Avg Deg

Cora 2708 5278 1433 3.89
Citeseer 3327 4552 3703 3.73
Lastfm 7083 25814 7842 8.28

Facebook 22470 170912 4717 15.21
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