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Abstract

Federated Learning (FL) allows the training of deep neural networks in a distributed and
privacy-preserving manner. However, this concept suffers from malfunctioning updates
sent by the attending clients that cause global model performance degradation. Reasons
for this malfunctioning might be technical issues, disadvantageous training data, or mali-
cious attacks. Most of the current defense mechanisms are meant to require impractical
prerequisites like knowledge about the number of malfunctioning updates, which makes
them unsuitable for real-world applications. To counteract these problems, we introduce a
novel method called Angular Support for Malfunctioning Client Resilience (ASMR), that
dynamically excludes malfunctioning clients based on their angular distance. Our novel
method does not require any hyperparameters or knowledge about the number of mal-
functioning clients. Our experiments showcase the detection capabilities of ASMR in an
image classification task on a histopathological dataset, while also presenting findings on
the significance of dynamically adapting decision boundaries.
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1. Introduction

Federated Learning (FL) has become an emerging research topic in the last few years
(Mammen, 2021). Due to the concept of training models in a distributed manner, FL
comes with a bunch of applications in various fields (Yang et al., 2019), such as medical
imaging (Rieke et al., 2020). Apart from dealing with data regulations (Truong et al.,
2021), access to annotated and heterogeneous data is a major challenge in medical imaging
(Willemink et al., 2020), as model robustness depends on it. FL addresses the challenge
of extending training data across multiple institutions (Guo et al., 2021), mitigating the
need for extensive annotations per institution and thereby reducing the associated costs
(Tajbakhsh et al., 2021).

However, there is no guarantee about the utility of these updates (Ma et al.,
2021a). Local models trained under unfavorable conditions can negatively affect the aggre-
gated global model (Wagner et al., 2022). Updates leading to a degradation in global model
performance are termed malfunctioning and can be categorized into two distinct categories,
as demonstrated in Figure 1. As demonstrated by (Jere et al., 2021), clients may exhibit
malicious behavior to intentionally corrupt the global model performance by tampering
with the updates before transmission. Furthermore, unreliable clients, as indicated by
(Foucart et al., 2018), may unintentionally send malfunctioning updates, facing challenges
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like broken devices, transmission errors, or faulty image acquisition (Kanwal et al., 2022).
The unpredictable nature of these issues renders knowledge about the precise number of
malfunctioning updates impractical. Corruptions do not necessarily mean that the global
model diverges immediately, but have a significant impact on model performance in the
long term. This makes malfunctioning updates hard to detect without knowledge about
the baseline performance (Shejwalkar et al., 2022). To overcome this challenge, an algo-
rithmic solution is required. In the past, several works have been published to detect and
exclude malfunctioning updates from aggregation (Blanchard et al., 2017) (Shejwalkar and
Houmansadr, 2021) (Sattler et al., 2020) (Li et al., 2023). These approaches frequently
entail impractical prerequisites. Certain methodologies necessitate access to a pub-
licly available dataset (Li et al., 2020) for generating reference updates used in training a
classification model designed to identify malfunctioning updates. Conversely, others require
knowledge about the constant number of malfunctioning updates per round (Blanchard et al.,
2017; Shejwalkar and Houmansadr, 2021). Recognizing these research gaps, we introduce
the novel concept of angular client support. This concept allows us to propose an out-
of-the-box solution called Angular Support for Malfunctioning Client Resilience (ASMR)
that can reliably detect malfunctioning updates. The number of excluded updates is
adapted dynamically each round, without required knowledge about the population
of malfunctioning clients. Furthermore, knowledge about the test data or the evaluation
protocol is not required. The principle of angular client support introduces a novel
perspective emphasizing the interconnectedness between clients based on their nature.

Figure 1: The leftmost FL system exemplifies an ideal scenario, showcasing optimal perfor-
mance. In the middle system, an unreliable client grapples with technical issues,
resulting in the degradation of the global model performance due to its updates.
Meanwhile, the system on the right features a malicious client intentionally cor-
rupting its updates.

This concept underscores the importance of fostering collaborative relationships among
benign clients to enhance collective resilience against malfunctioning counterparts. The
closer clients are in angular distance, the more robust their collaborative support becomes.
In this work, we assume the malfunctioning updates to be independent. In particular,
malicious clients do not exchange knowledge with each other to improve the effectiveness of
their attacks. Furthermore, we assume that malicious clients do not have knowledge about
the other clients in terms of a number of malicious, unreliable, or benign clients. This
indicates that even a majority of malfunctioning clients do not mean, that malfunctioning
updates support each other. In this case, a supportive minority of benign updates
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enables ASMR to detect malfunctioning updates and maintain a steady convergence
during training. To demonstrate the detection capabilities of ASMR, we applied it to three
cases. First, we consider the case of malicious clients. We selected a subset of clients
that perform untargeted attacks, such as Additive Noise Attacks (ANA) and Sign
Flipping Attacks (SFA). Second, we apply ASMR to the case of unreliable clients.
The selected subset of clients train their local model on data, for which we simulate device
failure and acquisition errors by augmenting the data with pathology-specific artifacts, that
significantly degrade the accuracy. Ultimately, the combination of both previous cases is
considered. The selected group of clients is either a malicious or an unreliable client. Our
novel approach is compared to three other state-of-the-art (SOTA) detection algorithms on
an image classification task in the field of digital pathology. The code is available at:
https://github.com/MECLabTUDA/ASMR.

2. Background

Federated Learning became a serious asset in medical imaging in recent years (Rieke et al.,
2020) (Ng et al., 2021) (Nguyen et al., 2022). Locally trained models are sent to a central
server and aggregated with algorithms like FedAvg (Khan et al., 2021) (Ye et al., 2020) or
FedAvgM (Hsu et al., 2019). Federated learning systems are vulnerable to malicious clients
that perform attacks to corrupt the global model performance though.

Malicious Client Detection: To overcome this vulnerability against the aforemen-
tioned attacks, defense mechanisms were introduced. In 2017 (Blanchard et al., 2017)
proposed Multi-Krum (MKrum). MKrum chooses the updates that minimize the squared
distance to its nearest neighbors. However, this technique requires an estimated number of
malicious clients. Later, (Shejwalkar and Houmansadr, 2021) proposed Divide-and-Conquer
(DnC), which deals with determining principal components and computing the projections
of the updates. Afterward, the updates with the largest projections are excluded from ag-
gregation. Like MKrum, DnC requires a number of malicious clients. Meanwhile, (Sattler
et al., 2020) implemented a clustering approach known as CFL, aimed at uncovering hidden
clustering among clients in FL systems to differentiate between benign and malicious clients.
Due to its inherent clustering mechanism, CFL does not necessitate prior knowledge about
the number of malicious clients. Likewise,(Li et al., 2021) utilize k-means clustering for the
detection of malfunctioning clients, which, however, exhibits less resilience to noise and is
incapable of effectively handling clusters of varying sizes according to (Sisodia et al., 2012).
Approaches like ShieldFL (Ma et al., 2022) or SFAP (Ma et al., 2021b) rely on access to
training data, stored by the server. Nonetheless, in the domain of medical imaging, where
centralized data storage is often unfeasible. FLTrust, as proposed by (Cao et al., 2020),
operates under the assumption of a trusted round phase devoid of malfunctioning clients.
This assumption may not always hold, e.g. if certain clients have inherently flawed data
acquisition processes from the beginning.

Histopathology: Computational Histopathology has the promise of elevating the work-
load from pathologists and accelerating the process of delivering accurate diagnosis and
prognosis to patients (Couture et al., 2018; Griem et al., 2023). For this process to be
applicable, tissues require tissue fixation, processing, cutting, staining, and digitization,
which are subject to many different kinds of artifacts (Kanwal et al., 2022). Even though
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the heterogeneity in tumor tissues can still be limiting, the heterogeneity intensifies across
multiple institutions, thereby underscoring the value of federated learning (Wagner et al.,
2022). Respectively, a centralized system, holding just the local data, might not generalize
and be robust to different stainings and artifacts (Faryna et al., 2021), even when they are
synthetic (Babendererde et al., 2023), as these cause silent failures in many models.

3. Methodology

In this paper, we introduce the concept of angular client support for malfunctioning
client detection in federated learning systems. Based on this concept, a new detection tech-
nique, called ASMR, is proposed that aims to protect the system against malfunctioning
updates. Moreover, ASMR establishes a dynamic decision boundary, selectively excluding
updates from aggregation, thereby eliminating the requirement for additional hyperparam-
eters. This leads to automatic adaption in terms of a changing number of malicious clients.

Figure 2: The first image shows an image without artifacts while the other demonstrates
the artifacts that are used in this work.

Malfunctioning Updates: Malicious clients, that aim to degrade the global model
performance intentionally, may send corrupt their updates before sending them to the server.
Such kinds of attacks are called untargeted attacks, which can go undetected for a long
time (Shejwalkar et al., 2022). To achieve the attackers’ goal, they may change the labels
of their local training data to make the model inaccurate (Bhagoji et al., 2019), or they
send a random update, which is not aligned to the task at all (Fang et al., 2020). The two
common baseline attacks that are considered in this work are the ANA (Li et al., 2019) (Wu
et al., 2020) and SFA (Li et al., 2019) (Wu et al., 2020). In our implementation, for the
ANA, we introduced noise resulting in a global model performance decrease ranging from
20% to 30%. For the SFA, we multiplied the update by a negative constant to invert the
direction of the gradients. The incorporation of even a minimal number of SFAs has the
potential to induce divergence in the global model. This renders SFAs unforgiving towards
uncertainties in detection, yet they are anticipated to be more easily detected. The third
type of malfunctioning we consider is pathology-specific artifacts, which we simulate by the
FrOoDo (Stieber et al., 2022) framework adding artifacts to local training data. Figure 2
demonstrates the selected artifacts, e.g. blood cells that cover the tissues or grease spots on
the probes. The artifacts were chosen such that the global model performance is affected
by 50% - 60%. A table has been included in Appendix B, outlining the details of the
malfunctioning updates to provide a comprehensive overview.

Angular Client Support: The notion of angular client support describes how clients
are connected based on their angles, as depicted in Figure 3. The close angular proximity
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Figure 3: This figure demonstrates the idea behind client support. The clients labeled with
M hold malfunctioning updates, while the others denoted with B hold benign
updates. The angles between the update, denoted with the blue arrow, to all
other updates are visualized. The green angles are the supporting ones.

among benign clients signifies mutual support, contrasting with malfunctioning clients that
lack such support. Additionally, it is noteworthy that smaller angles between benign updates
indicate stronger support among them. This concept draws inspiration from the research of
(Geiping et al., 2020), who asserted that the angle between gradients conveys information
about the prediction change. Hence, we posit that the angular distance of a malfunctioning
update must be significantly distant from benign ones in order to exert a detrimental impact
on the global model performance.

ASMR: This method identifies malfunctioning clients based on their local model
parameters. Initially, all received updates undergo normalization by dividing the vectors
by their magnitude. Subsequently, the pairwise cosine distance (cosDist) between local
model parameters is computed. Then the outlier factor (OF ) is determined for each update,
by calculating it inspired by (Breunig et al., 2000). The reachability density (rd(•) in Eq
1) is computed for each update, representing the inverse of the average cosDist, and taking
into consideration all updates.

rd(p) = 1/(

∑
o∈N(p) cosDist(p, o)

|N(p)|
) (1)

where N(p) is the set of all clients except p, and | • | defines the cardinality of the set •.
Using the reachability density (rd(•)), the outlier factor is determined by:

OF (p) =

∑
o∈N(p)

rd(o)
rd(p)

|N(p)|
(2)

Subsequently, the updates undergo ordering based on their outlier factors, following
which the decision boundary is established as the most substantial gap between two suc-
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cessive updates. The subset of updates exhibiting higher outlier factors is consequently
identified as malfunctioning and is thereby excluded from the pool. Finally, any aggrega-
tion algorithm of choice can be applied to the set of benign updates. This characteristic has
the potential to hold even in scenarios of a majority of malfunctioning clients that support
each other less than the benign ones. As long as benign clients maintain superior sup-
port, ASMR is anticipated to exhibit robust protective capabilities, encompassing precise
detection and automated adjustment to the prevalence of malfunctioning updates.

4. Experiments

In this section, we commence by presenting the dataset, metrics, and training particulars
employed in this study. Subsequently, we conduct a comprehensive evaluation of ASMR,
juxtaposed with three alternative methods.

Dataset: We used one dataset of the histopathology domain to evaluate our approach.
The colorectal cancer dataset (CRC) (Kather et al., 2018) contains 100,000 images with
a resolution of 224 × 224 extracted from 86 human cancer tissue slides. The correspond-
ing classification task covers nine different classes. Those are adipose(ADI), background
(BACK), debris (DEB), ymphocytes (LYM), mucus (MUC), smooth muscle (MUS), nor-
mal colon mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma
epithelicum (TUM). We applied a random 0.7 / 0.3 train test split. Each client gets an
equally sized portion of the training data. For this classification task, a Resnet50 (He et al.,
2016) architecture was chosen, with pretrained weights from ImageNet (Deng et al., 2009).

Evaluation: In our analysis, the False Positive Rate (FPR) and True Positive Rate
(TPR) were utilized to gauge the efficacy of malfunctioning update detection. Ultimately,
we analyze the final test accuracy of the global model after twelve training rounds. The
metrics are assessed over ten seeds for experiments with a fixed number of clients and five
seeds for scenarios involving a dynamically changing number of clients.

Training details: In this work, we consider a scenario of ten clients, where a subset
of clients is selected to send malfunctioning updates. In our experimental setup, clients
transmit their local model parameters as updates. The server utilizes FedAvg for aggre-
gation to derive the global model. Prior to sending an update to the server, each client
undergoes training for one local epoch. To illustrate the serious adverse effects of three
malfunctioning clients, we put a figure in the Appendix C. It is expected that the severity
of the malfunctioning updates correlates with the difficulty of detecting them. Therefore,
SFAs are expected to be easier to detect than ANAs. To prevent the global model from
negative effects, detection algorithms are applied to the system. ASMR is compared to
MKrum (Blanchard et al., 2017), DnC (Shejwalkar and Houmansadr, 2021), and CFL (Sat-
tler et al., 2020) to demonstrate the effectiveness. As mentioned earlier, DnC and MKrum
require a parameter that specifies how many updates should be excluded from each round.
For this scenario, we set the parameter to three, such that MKrum and DnC match their
optimal prerequisites. Consequently, we establish a predetermined count of three malicious
clients for our evaluations and set the number of excluded clients in MKrum and DnC to
three. To underscore the significance of a dynamically adapting decision boundary, we ex-
plored one more scenario involving a variable count of malfunctioning clients. Specifically,
we set the malfunctioning clients to four, each sending a malfunctioning update with a 75%
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probability. Notably, MKrum and DnC persistently exclude three clients per round, main-
taining prior knowledge of the expected number of malfunctioning clients. We aim to show
that ASMR is robust against this scenario. We put a table with these details in Appendix
A. The experimental framework is developed using PyTorch (Paszke et al., 2019), and all
experiments were carried out on Nvidia A100 GPUs.

4.1. Results

In our experiments, our objective is to demonstrate that ASMR attains comparable re-
sults, even if MKrum and DnC operate in their comfort zone, relying on the impractical
knowledge about the number of malfunctioning clients. Additionally, our goal is to demon-
strate that ASMR surpasses CFL, a method that also autonomously establishes the decision
boundary.

Figure 4: The left plots depict a fixed number of malicious updates, while the right ones
illustrate a dynamically changing count. Bar plots represent TPRs in the positive
direction and FPRs in the negative. The distribution of the final global model
performance is shown through a boxplot.

Malicious Clients - Untargeted Attacks: This experiment investigates malicious
clients in the context of two distinct attacks: ANA and SFA. Each attack is examined
independently, and the outcomes are visually presented in Figure 4. We present compre-
hensive results in a table in the Appendix C. ASMR demonstrates superior performance in
detecting ANA compared to CFL and DnC, even when the number of ANA per round is
fixed. Notably, our method exhibits robustness across both scenarios, seamlessly adapting
to dynamic changes in the number of malicious clients without performance degradation.

Unreliable Clients - Pathology Specific Data Artifacts: In the second scenario,
we analyze the impact of unreliable clients that train on data containing artifacts. The
results are visualized in Figure 5 and comprehensive results are provided in a table in the
Appendix C. Notably, only our method and CFL exhibit an effective detection rate in both
scenarios. The absence of detection of MKrum and DnC in the case of a dynamically
changing number of unreliable clients significantly impairs the global model performance.

Malfunctioning Clients - Untargeted Attacks combined with Artifacts: In
the final case, we assessed the general scenario of malfunctioning clients, encompassing
those employing an ANA, SFA, or training on data with artifacts. The results are pre-
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Figure 5: The left plots depict a fixed number of malfunctioning updates, while the right
ones illustrate a dynamically changing count. Bar plots represent TPRs in the
positive direction and FPRs in the negative. The distribution of the final global
model performance is shown through a boxplot.

sented in Figure 5 and comprehensive results are in Appendix C. In scenarios with full but
impractical knowledge about the number of malfunctioning clients, MKrum demonstrates
slightly superior performance, leading to an average accuracy difference of 2.8% compared
to ASMR. However, ASMR is the only method that exhibits robustness against scenarios
with a dynamically changing number of malfunctioning clients.

5. Conclusion

In this work, we systematically explore various instances of malfunctioning updates that can
compromise the integrity of the global aggregated model within a federated learning system.
Malicious clients may intentionally degrade the global model, while unreliable clients may
train on disadvantageous data. Our findings underscore the deleterious impact of incorpo-
rating malfunctioning clients into the aggregation process. To mitigate these negative effects
on the global model, we propose an out-of-the-box solution named ASMR that circumvents
the need for hyperparameters or prerequisites, while setting an automatically adapting de-
cision boundary for excluding clients from aggregation. This method effectively detects and
excludes malfunctioning updates from the aggregation process. Our results demonstrate
that our approach offers protection capabilities comparable to or better than state-of-the-
art methods, even when those methods rely on unrealistic but necessary knowledge about
the number of malfunctioning clients. We additionally presented findings highlighting the
significance of an automatically adapting decision boundary, demonstrating the robustness
of our method in the face of a dynamically changing number of malfunctioning updates. In
summary, our experiments were conducted on a homogenous dataset featuring significant
cases relevant to medical imaging. Moving forward, it is imperative to explore additional
cases, particularly those involving heterogeneous datasets.
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Appendix A. Training Details

We put two tables here to give a structured overview about the classification of malfunc-
tioning updates 1 and the details of our training setup 2

Appendix B. Impact of Malfunctioning Clients

Figure 6 demonstrates the impact if no defense mechanism is applied to a FL system con-
taining three malfunctioning clients.
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Table 1: Malfunctioning Clients

Malfunction Type Severity Global Model Decrease Implementation

Malicious SFA Strong random performance Changes direction of vectors

Malicious ANA Low 20-30% Adds Gaussian noise

Unreliable Artifacts Middle 50-60% Artifacts on training data

Table 2: Experimental Setup

Fixed Dynamic

Total clients 10 10

Malfunctioning clients 3 4

Malfunctioning probability 100% 75%

Local epochs 1 1

Aggregation method FedAvg FedAvg

Data split random 0.7 / 0.3 train test split

Appendix C. Results

The subsequent tables present exhaustive results from the conducted experiments. In
the notation, Fixed signifies experiments involving a consistent number of malfunctioning
clients, while Dynamic indicates experiments where the number of malfunctioning clients
varies dynamically. The reported values represent averages across the assessed seeds.

Table 3: Malicious Clients

Fixed Dynamic

ANA SFA ANA SFA

Methods TPR FPR Acc TPR FPR Acc TPR FPR Acc TPR FPR Acc

DnC .872 .055 .885 1. .0 .928 .789 .099 .868 .835 .091 .185

CFL .514 .0 .832 1. .0 .926 .542 .019 .852 1. .007 .934

MKrum 1. .0 .926 1. .0 .933 .842 .084 .902 .877 .096 .138

ASMR. 1. .001 .924 1. .0 .932 1. .024 .925 1. .0 .931
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Figure 6: These graphs showcase the deleterious effects on the test accuracy of the global
model over twelve rounds, underscoring the impact of three (out of ten) malfunc-
tioning clients, operating without safeguards.

Table 4: Unreliable and Malfunctining Clients

Fixed Dynamic

Artifacts Combined Artifacts Combined

Methods TPR FPR Acc TPR FPR Acc TPR FPR Acc TPR FPR Acc

DnC .908 .039 .8 .678 .14 .321 .771 .078 .772 .59 .184 .296

CFL 1. .0 .929 .675 .0 .674 1. .005 .937 .685 .039 .46

MKrum 1. .0 .931 1. .0 .928 .833 .071 .621 .868 .095 .798

ASMR. 1. .0 .931 .956 .006 .9 1. .0 .934 .98 .04 .901
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