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ABSTRACT

The CLIP model has become a cornerstone of large-scale retrieval systems by
aligning text and image data in a unified embedding space. Despite its simplic-
ity and efficiency, CLIP struggles when applied to tasks whose input distribu-
tions diverge from its training corpus, such as queries with multilingual, long-
form, or multimodal differences. To avoid costly retraining, existing methods
mainly adopt query-rewriting strategies with large language models (LLMs), aim-
ing to mitigate distribution gaps at the query level. However, due to the lack
of supervision signals, LLMs fail to generate the optimal one that fits the train-
ing distribution. We address this challenge with GRAPE (Grouped Ranking-
Aware Policy Optimization Enhancement), a plug-and-play enhancement ap-
proach that incorporates ranking signals into retrieval-guided query rewriting with
LLMs. Intuitively, GRAPE proposes to leverage GRPO to bridge distributional
differences—including length, multilingual, and modality shifts—by transform-
ing queries into forms better aligned with the retriever’s training distribution.
However, our preliminary experiment finds that naively finetuning LLM with
similarity scores can lead to score inflation, where nearly all candidates are as-
signed unexpectedly high scores regardless of their true relevance. To address
score inflation, we propose a corpus-relative ranking-based reward, which explic-
itly aligns optimization with ranking metrics while suppressing spurious score
inflation. Extensive experiments demonstrate that GRAPE consistently improves
retrieval performance under distributional shifts—including multilingual differ-
ences (Flickr30k-CN, CVLUE, XM3600), length differences (Wikipedia), and
multimodal differences (CIRR)—achieving an average improvement of 4.9% in
Recall@10.

1 INTRODUCTION

The CLIP (Contrastive Language–Image Pretraining) model (Radford et al., 2021) learns a uni-
fied semantic space that aligns images and text. Owing to its simplicity and efficiency, tens-of-
billions–scale vector indexes (Chuang et al.; Wang et al., 2025a) have been deployed in industry,
with CLIP serving as a foundational encoder for downstream retrieval tasks (Stevens et al., 2024), as
well as related applications such as zero-shot classification (Qu et al., 2025b; Martin et al., 2024; Wu
et al., 2025) and clustering (Islam et al.; Qu et al., 2025a; Lowe et al., 2023). However, as retrieval-
oriented downstream tasks continue to expand, tasks whose input distributions diverge substantially
from CLIP’s training corpus distribution often exhibit degraded performance.

The most straightforward approach is to expand the training corpus distribution to cover the distri-
bution of downstream tasks (Fan et al., 2023; Huang et al., 2024; Yuksekgonul et al., 2022; Chen
et al., 2022; Zhang et al., 2024; Wu et al., 2024; Sam et al., 2024), and then finetune the model on
domain-specific datasets to yield notable performance improvements. However, a clear side effect
of retraining is that it alters the learned embedding distribution, forcing costly re-embedding of all
existing data and redeployment of downstream applications. Given the massive scale of vectorized
data, such re-embedding is prohibitively expensive and disruptive. Consequently, how to enhance
existing CLIP models without redeployment has become a critical and practical challenge.

A promising direction is to keep the retrieval pipeline unchanged while mitigating distribution gaps
from the query side by leveraging large language models (LLMs) for query rewriting. In particular,
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these methods typically design prompts that guide LLMs to rewrite downstream queries into forms
that better match the retriever’s original training distribution, thereby improving retrieval perfor-
mance. However, such direct rewriting is often ineffective because LLMs lack awareness of CLIP’s
training distribution and thus cannot consistently generate high-quality rewrites. As an alterna-
tive, some subsequent works attempt to bypass this alignment issue—for example, by decomposing
queries and images into sub-parts before retrieval to achieve finer-grained alignment (Jiang et al.,
2022), or by incorporating feedback from LLM–user interaction to enrich queries and improve per-
formance (Lee et al., 2024). Yet these approaches only partially address distribution mismatches
between downstream tasks and CLIP’s training data; the range of tasks they can handle is limited,
and the hand-crafted rules they rely on are often inefficient. Therefore, we argue that it is neces-
sary to design an approach that can effectively capture feedback signals from the retriever’s training
distribution and use them as supervision to guide query rewriting in a more reliable direction.

Inspired by Group Relative Policy Optimization (GRPO) (Shao et al., 2024), we address this chal-
lenge with GRAPE (Grouped Ranking-Aware Policy Optimization Enhancement), a plug-and-play
and efficient enhancement approach that incorporates ranking signals into retrieval-guided query
rewriting with LLMs. Intuitively, GRAPE proposes to leverage GRPO to bridge distributional dif-
ferences—including language, length, and modality shifts—by transforming queries into forms bet-
ter aligned with the retriever’s training distribution. However, our preliminary experiment shows
that directly finetuning LLM through similarity scores can lead to score inflation, where nearly all
candidates are assigned unexpectedly high scores regardless of their true relevance. To address score
inflation, we propose a corpus-relative ranking-based reward, which explicitly aligns optimization
with ranking metrics while suppressing spurious score inflation. Extensive experiments demonstrate
that GRAPE consistently improves retrieval performance under distributional shifts—including mul-
tilingual differences (Flickr30k-CN, CVLUE, XM3600), length differences (Wikipedia), and multi-
modal differences (CIRR)—achieving an average improvement of 4.9% in Recall@10. Our contri-
butions are summarized as follows:

• We propose GRAPE, a plug-and-play retrieval enhancement approach that keeps the re-
triever frozen and improves retrieval through retrieval-guided query rewriting with LLMs,
thereby avoiding costly re-embedding and redeployment.

• We introduce a corpus-relative ranking-based reward that explicitly aligns optimization
with ranking objectives while effectively suppressing score inflation, a pitfall of similarity-
based finetuning.

• We demonstrate that GRAPE achieves consistent and significant improvements across
multiple distributional shifts—including multilingual, length, and multimodal differ-
ences—achieving an average 4.9% gain in Recall@10 on five representative benchmarks
(Flickr30k-CN, CVLUE, XM3600, Wikipedia, CIRR) 1 .

2 RELATED WORKS

2.1 TRAINING-BASED RETRIEVAL

Training-based methods address the issue of input distributions diverging substantially from CLIP’s
training corpus by expanding the training data and subsequently finetuning the model. These meth-
ods generally fall into two categories: data-centric approaches, which focus on scaling or refining
the training corpus, and model-centric approaches, which develop more sophisticated architectures
to improve representation learning and cross-modal alignment.

Data-centric approaches. These methods focus on expanding or refining the training corpus.
Large-scale efforts such as MetaCLIP-2 (Chuang et al.) and 100B-scale pre-training (Wang et al.,
2025a) achieve notable gains in cross-lingual retrieval but demand massive resources. Other studies
emphasize data quality, such as rewriting captions for richer supervision (Fan et al., 2023) or intro-
ducing composition-aware hard negatives to mitigate bag-of-words bias (Yuksekgonul et al., 2022).
Although effective, these approaches are costly to construct and preprocess, and their improvements
often remain confined to limited downstream tasks.

1The reproducible code and results are provided in the attachment and will be open-sourced after double-
blind review.
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Query: 两个人在把
很多木板堆在一起

LLM
Query Rewriter

…

Image Database

Query Retrieval  with Frozen CLIP

<think> <\think>… <\answer><answer> Two people stacking many 
pieces of wood together

<think> <\think>… <\answer><answer> Two people stacking many
wooden planks together

<think> <\think>… <\answer><answer> Two people stacking
 many wood 

Rewritten Queries

Frozen CLIP

Text
Encoder

Image
Encoder…

Format
Reward …

1.0
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Group Advantage Computation
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Figure 1: Overview of GRAPE. The framework operates in two phases: (i) Query Rewriting and
Retrieval, where an LLM generates K rewrites for a query, each encoded by a frozen CLIP retriever
to produce target ranks; and (ii) Relative Reward Computation and Optimization, where a format
reward and a rank reward are combined into a unified feedback signal, which is normalized within
group to compute relative advantages and then used to update the LLM.

Model-centric approaches. These methods focus on optimizing internal representations or ad-
dressing structural constraints. Representative examples include BLIP-2 (Li et al., 2023), which
introduces a trainable Q-Former to bridge frozen encoders with LLMs; finetuning strategies for pair-
wise reasoning (Sam et al., 2024) or compositional retrieval (Baldrati et al., 2023); and parameter-
efficient tuning techniques such as adapters and LoRA (Wang et al., 2023). Other lines of work
explore prompt learning (Zheng et al., 2025), long-text handling (Long-CLIP (Zhang et al., 2024),
LoTLIP (Wu et al., 2024), FineLIP (Asokan et al., 2025)), multilingual adaptation (mCLIP (Chen
et al., 2023), AltCLIP (Chen et al., 2022)), and multimodal fusion (CIR (Baldrati et al., 2023)).
While these approaches achieve strong task-specific improvements, they inevitably incur retraining
overhead and require re-generating large-scale pre-computed embedding databases.

2.2 TRAINING-FREE RETRIEVAL

Training-free methods aim to enhance CLIP’s retrieval capability without modifying the encoder or
regenerating large-scale embeddings, instead relying on external strategies that can be seamlessly
integrated into existing systems. A representative direction focuses on query rewriting and augmen-
tation. ComCLIP (Jiang et al., 2022) adopts a framework that decomposes both images and texts
into semantic sub-parts and then aligns these components to achieve fine-grained alignment, but it
is limited to queries and images whose semantics can be effectively decomposed. More recently,
PlugIR (Lee et al., 2024) employs LLMs to iteratively refine user queries through dialogue and
candidate context. However, owing to the lack of supervision, this approach relies on substantial
hand-crafted constraints, which in turn limits its practicality in real-world deployments.

To overcome these limitations, we propose GRAPE, a plug-and-play enhancement approach that
integrates ranking signals into retrieval-guided query rewriting with LLMs, enabling more effective
and generalizable distribution adaptation without retriever retraining.

3 METHOD

In this section, we first introduce the problem formulation for enhancing retrieval systems (Sec-
tion 3.1). We then present GRAPE (Section 3.2), a plug-and-play approach that employs GRPO
to optimize query rewriting with ranking-based supervision. Finally, in Section 3.3, we explain the
rationale for using ranking rather than similarity scores as the supervision signal in GRPO.
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3.1 PROBLEM FORMULATION.

In CLIP-based retrieval tasks, given a query q ∼ Dquery, the system embeds the query and each
candidate item i ∈ I = {i1, . . . , iN} into a shared semantic space and ranks candidates by similarity
scores.

For text-to-image retrieval, let
zq = ftext(q), zi = fimg(i) (1)

where f(·) denotes the CLIP encoder, zq and zi are ℓ2-normalized embeddings. The top-ranked
item is selected by

i⋆ = argmax
i∈I

s(zq, zi) (2)

where s(·, ·) denotes the similarity function (e.g., cosine similarity). While CLIP achieves strong
performance when queries follow its training distribution Dtrain, it struggles under distributional
shifts between the query distribution Dquery and Dtrain (e.g., query length, multilingual inputs, or
modality differences).

To address this issue, one approach is to expand Dtrain and finetune the retriever, but this incurs
prohibitively high costs due to re-embedding and redeployment. An alternative is to leverage LLM
knowledge to transform a query q into a rewritten query q̃ that better matches Dtrain. However, under
the absence of supervision signals, such rewriting cannot fully align Dquery with Dtrain.

Therefore, our objective is to incorporate supervision signals into the distribution adaptation process,
thereby enabling more effective query rewriting and bridge the distributional shifts.

3.2 GRAPE: GROUPED RANKING-AWARE POLICY OPTIMIZATION ENHANCEMENT

To address these challenges, we introduce GRAPE, a plug-and-play enhancement approach that
incorporates ranking signals through retrieval-guided query rewriting with LLMs. Specifically,
GRAPE rewrites a query q into a group of queries q̃1, . . . , q̃k using an LLM, and leverages the
relative ranking of the target image obtained from this group to update subsequent rewrites. The
overall architecture is illustrated in Figure 1.

GRAPE operates in two phases: (i) Query Rewriting and Retrieval, where each query is rewritten
into a group of queries and the frozen retriever yields the rankings of the target image; and (ii)
Relative Reward Computation and Policy Optimization, where ranking results are used to compute
relative rewards within the group and to optimize the rewriting LLM.

Query Rewriting and Retrieval. Given a raw query q, an LLM policy πθ samples K constrained
rewrites {q̃k}Kk=1. After format validation, each rewrite is embedded by the frozen CLIP text en-
coder, zq̃k = ftext(q̃k); we then compute s(zq̃k , zi)i∈I against the precomputed candidate embed-
dings, rank all items accordingly, and obtain the target image rankings {rk}Kk=1.

Relative Reward Computation and Optimization. For every rewrite, GRAPE constructs two
complementary reward. Format reward: Reasoning must be inside <think>...</think> and
the final rewrite must be inside <answer>...</answer>. Non-conforming outputs receive
Rf = −1 and are skipped (no CLIP retrieval); conforming outputs receive Rf = 1 and proceed to
retrieval. Ranking reward: Rr measures retrieval effectiveness using the rankings {rk}Kk=1. It is
assigned after retrieval and increases monotonically with ranking quality (details in Section 3.3)

We integrate the two rewards into a unified feedback signal:

Rk = Rf
k + Rr

k,

and compute group-wise statistics over the K rewrites of the same query q:

µq =
1

K

K∑
k=1

Rk, σ2
q =

1

K

K∑
k=1

(
Rk − µq

)2
.

The relative advantage is

Ãk =
(Rf

k +Rr
k)− µq√
σ2
q

,
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which emphasizes within-group improvements while stabilizing scale. The policy is updated with
an advantage-weighted objective regularized toward a reference model πref :

J (θ) = Eq∼D

[
1

K

K∑
k=1

Ãk log πθ(rk | q, C)

]
− λEq∼D

[
KL

(
πθ(· | q, C) ∥πref(· | q, C)

)]
, (3)

where only πθ is updated; the CLIP encoders and corpus embeddings remain frozen.

3.3 WHY RANKING BEATS SCORE: RELATIVE RANKING REVEALS TRUE RELEVANCE

The ranking of the target image is the most direct indicator of retrieval quality, making it a natu-
ral signal for evaluating the effectiveness of LLM-based query rewrites. We therefore propose a
ranking-based reward function to guide the rewriting process:

Rr
k = 1 − 2 (rk − 1)

N − 1
, (4)

where rk ∈ {1, . . . , N} denotes the ranking of the target among N candidates.

As illustrated in Figure 1, for multiple rewrites {q̃k}Kk=1 generated from a single query q, those
rewrites that better capture retrieval-relevant semantic details achieve higher ranking rewards. These
true relevance encourage the model to update its rewriting policy toward improving retrieval perfor-
mance. Moreover, Eq. 4 linearly maps rankings to rewards, directly reflecting changes in ranking
through relative position. A detailed derivation is provided in the Appendix.

Comparison with similarity-based rewards. Similarity scores provide the most direct measure
of the relationship between a query and the target image. However, a higher similarity score does
not necessarily correspond to a higher ranking. For example, generic tokens such as “real-world”
or “environment” can increase the similarity not only to the target image but also to many other
real-world images. As a result, under the similarity-based reward

Rs
k = s(zq̃k , zt) , (5)

the trained LLM often suffers from score inflation: nearly all candidates are assigned unexpectedly
high scores regardless of their true relevance. In practice, the model can exploit this by injecting
high-frequency but weakly discriminative tokens, which increase semantic relation without improv-
ing visual separability. Consequently, the model receives positive rewards, yet these signals do not
guide it toward the correct optimization direction.

Direct effect on optimization. After within-group relative advantage computation, the effective
driving signal is the ranking difference rather than the raw score gap. This guides the policy to
generate rewrites that deliver genuine improvements in ranking order, rather than simply inflating
similarity scores.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our approach in addressing three major distributional
differences commonly induced by queries in retrieval tasks: (1) multilingual differences—queries
in languages that are underrepresented in CLIP’s pretraining corpus; (2) length differences—query
styles (e.g., long-form or complex phrasing) that deviate from the training distribution; and (3)
modality differences—multimodal or compositional queries requiring reasoning beyond text-only
inputs. Furthermore, to demonstrate the data efficiency of our method, we conduct experiments
under varying proportions of training data. We also analyze the impact of similarity-based score
inflation, verifying that our proposed ranking-based reward effectively suppresses this artifact.

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the effectiveness of our method, we conduct experiments on five represen-
tative benchmarks, each designed to target one or more of the core challenges discussed above:
multilingual differences, length differences, and modality differences.

5
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• Flickr30k-CN (Lan et al., 2017): A Chinese extension of Flickr30k, designed for cross-
lingual image–text retrieval.

• CVLUE (Wang et al., 2025b): A large-scale Chinese multilingual benchmark . It primarily
addresses multilingual difference and Chinese culture understanding.

• XM3600 (Thapliyal et al., 2022): A multilingual benchmark covering 36 languages, aimed
at testing cross-lingual generalization and robustness.

• Wikipedia (Rasiwasia et al., 2010): An English text-to-image retrieval dataset featuring
long and complex queries, making it suitable for evaluating length differences.

• CIRR (Liu et al., 2021): A fine-grained, compositional retrieval benchmark where both
image and text serve as queries. It emphasizes modality discrepancies and requires nuanced
semantic understanding. We follow an 80%/20% train/validation split for our experiments.

Comparison Methods. We validate the scalability of our method across three CLIP variants: ViT-
B/32, ViT-B/16, and ViT-L/14. For each backbone and dataset, we horizontally compare the perfor-
mance of:

• CLIP (baseline): frozen pretrained CLIP without query rewriting.

• CLIP+LLM: frozen CLIP with queries rewritten by a frozen LLM without retrieval feed-
back.

• CLIP+GRPO-LLM: frozen CLIP with queries rewritten by an LLM finetuned with
GRPO, where training is conducted on the training set of the corresponding dataset us-
ing retrieval-based rewards.

Evaluation Metrics. To achieve a more accurate evaluation, we calculate two key metrics respec-
tively: the proportions of cases where the target image is included in the top-1 and top-10 retrieved
results (i.e., R@1 and R@10).

Implementation Details. Unless otherwise specified, we use Qwen2.5-3B-Instruct (Yang
et al., 2024) as the query–rewriting model across the four datasets. For CIRR that requires multi-
modal query understanding, we adopt the vision–multilingual model Qwen2-VL-7B (Wang et al.,
2024) as the rewriter. We employ three task-specific prompt templates, and we keep the prompts
identical for training and validation. More details are presented in the Appendix.

4.2 MAIN RESULTS

Table 1: R@1 and R@10 for different CLIP model scales and methods. “+LLM” indicates frozen
LLM rewriting, while “+GRAPE” denotes GRPO-finetuned rewriting (ours). GRAPE consistently
achieves notable improvements over both vanilla CLIP and CLIP+LLM across all benchmarks and
model sizes, delivering significant gains in R@1 and R@10. A dash (“–”) indicates that the corre-
sponding model is not capable of handling the task directly.

Model
Flickr30k-CN

T2I
CVLUE

T2I
XM3600

T2I
Wikipedia

T2I
CIRR
TI2I Average

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

ViT-B/32 — — — — 11.4 25.5 28.4 65.8 — — 19.9 45.6
+LLM 49.8 84.4 10.6 38.5 49.5 77.8 30.4 67.1 29.5 70.5 34.0 67.7
+GRAPE(↑) 53.3 87.3 13.1 44.4 56.0 83.1 36.1 78.4 34.3 77.8 38.6 74.2
ViT-B/16 — — — — 12.3 26.8 33.5 71.9 — — 22.9 49.4
+LLM 52.1 86.0 12.1 42.0 52.9 78.9 34.3 69.3 30.7 73.3 36.4 69.9
+GRAPE(↑) 58.0 90.0 14.6 48.7 58.4 83.1 43.7 82.8 35.7 77.8 42.1 76.5
ViT-L/14 — — — — 14.2 29.0 40.4 80.2 — — 27.3 54.6
+LLM 57.6 89.5 13.7 43.6 51.7 78.1 42.0 77.6 29.7 70.1 38.9 71.9
+GRAPE(↑) 62.6 92.6 15.3 48.9 58.1 82.6 47.8 83.5 33.2 76.3 43.4 76.8

As shown in Table 1, the distribution gap between training data and queries limits CLIP’s ability to
handle cross-lingual and multimodal inputs, and even for long-text queries the recall rate remains

6
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• Query：在他⼈眼中，棒球受到的反冲⼒
来⾃于训练场上的投掷。

• LLM : The recoil force attributed to
baseball, in the eyes of others, originates
from pitching on the practice field.

• GRAPE : A baseball player throwing the 
ball and the resulting recoil force observed 
by spectators on the sidelines.

• Query：两个⼈在把很多⽊
板堆在⼀起。

• LLM : two people stacking 
many pieces of wood 
together

• GRAPE : Two people stacking 
many wooden planks 
together.

• Query： … Kenneth Turan wrote that 'Mom and Dad' did not "flourish because of its birth footage or 
because of its puerile plot, which Babb himself disparages success flowed, rather, from Babb's 
extraordinary promotional abilities.” …(674 words)

• LLM : … the image should depict a bustling town hall or theater setting. The scene features multiple 
screens displaying the film 'Mom and Dad' in various formats (adults-only, gender-segregated, with a 
lecturer), surrounded by promotional materials like posters, pamphlets, and books …(79 words)

• GRAPE : In 1950s, 'Mom and Dad' by Babb toured US with over 300 prints. Local promoters used fake 
letters to generate controversy. Promotional strategy involved saturating small towns with ads and 
screenings, including lectures by “Elliot Forbes” and nurses. Modern Film Distributors sold related 
books, earning $31k. Followed strict theater contracts. (46 words)

(a) (b)

(c)

Figure 2: Case study of query rewriting, where Figures (a) and (b) illustrate multilingual query
cases, and Figure (c) shows a case with a long-form query. The key concepts in the original query
are marked blue; literal or incomplete rewrites generated by a vanilla LLM are marked red; retrieval-
friendly expressions produced by GRAPE are marked green.

relatively low. While query rewriting with LLMs can partially mitigate this gap, the absence of opti-
mization guidance often leads to suboptimal rewrites. In contrast, our proposed GRAPE framework
effectively aligns query distributions with the retriever, yielding consistent improvements across all
settings. On average, GRAPE achieves gains of more than 4.5% in R@1 and 4.9% in R@10 over
CLIP+LLM, and these improvements hold across different CLIP variants, with stronger models
achieving higher absolute recall under GRAPE enhancement.

4.3 CRITICAL ANALYSIS

Why can GRAPE address the three major distributional differences commonly induced by queries
in retrieval tasks? To answer this, we conduct analytical experiments on how GRAPE overcomes
the challenges that arise when adapting query distributions: multilingual differences, by perform-
ing cross-lingual translation and semantic enrichment; length differences, by conducting long-text
distillation and expansion; and modality differences, by enabling cross-modal understanding and
generating retrieval-friendly expressions.

Cross-Lingual Query Translation and Semantic Enrichment. This challenge arises not only
from the difficulty of accurate translation, but also because direct translations often overlook im-
plicit semantics required for retrieval, resulting in literal yet incomplete queries. As illustrated in
Fig. 2(a), the original query implicitly refers to a “baseball player,” yet a vanilla LLM produces only
a literal translation that misses this hidden entity. Similarly, in Fig. 2(b), “wooden planks” is sim-
plified to “wood,” discarding crucial descriptive details. In contrast, GRAPE generates a retrieval-
oriented rewrite that explicitly recover latent entities and enrich semantic details (e.g., “baseball
player throwing a ball,” “wooden planks”), thereby strengthening cross-lingual rewrite.

Long-Text Expression Distillation and Expansion. This challenge arises because long-text
queries often contain excessive redundancy that buries the salient concepts, making it difficult for
CLIP to capture the true retrieval intent. At the same time, such inputs may also lack explicit empha-
sis on key entities, leaving gaps in semantic coverage. As shown in Fig. 2(c), a 674-word Wikipedia
passage about the film Mom and Dad leads a vanilla LLM to generate a verbose 79-word rewrite
that even hallucinates additional screening details. In contrast, GRAPE performs both distillation,
by removing redundant descriptions, and enrichment, by expanding essential concepts (e.g., Mom
and Dad, prints, ads), thus producing concise yet sufficiently informative queries. This synergy
between distillation and enrichment enhances retrieval performance on long-text benchmarks.

Multimodal Understanding and Efficient Expression. This challenge arises because multi-
modal queries—which CLIP alone struggles to handle—require the integration of both image and

7
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• VLM : the back side of a 
similar car with darker 
blue paint 

• GRAPE: back side of a 
Mini Convertible with 
darker blue paint

Query: Show the backside of a 
similar car with darker blue paint

Target Image

• VLM : A person snorkeling … In the 
distance, there are tall, lush trees, 
creating a natural and serene 
environment.

• GRAPE: Underwater scene with a 
person snorkeling … In the 
background, there is a forest with 
trees.

Query: Add trees 
to the background.(a) (b)

Rewritten Query Rewritten Query Target Image

Figure 3: Case study of multimodal query rewriting. Since CLIP does not natively support multi-
modal inputs, image information must first be extracted and then integrated into the text according
to the instruction.
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Figure 4: R@1 and R@10 performance across different training data scales for Flickr30k-CN and
CVLUE. GRAPE demonstrates data efficiency, where performance with fewer training samples
approaches that of larger datasets, and consistently outperforms the untrained LLM.

text information. Combining visual and textual inputs demands accurate cross-modal understand-
ing and the generation of efficient representations. However, vanilla VLMs often fail to capture the
key cross-modal signals and thus struggle to produce retrieval-friendly expressions. As shown in
Fig. 3(a), a vanilla VLM cannot correctly resolve that the textual phrase “similar car” refers to the
“Mini Convertible” in the image. As shown in Fig. 3(b), though fusion occurs, the generated de-
scription of “tree” is overly complicated and deviates from the retrieval intent. In contrast, GRAPE
learns to effectively integrate multimodal information into unified, retrieval-friendly queries, captur-
ing complementary semantics and thereby enhancing retrieval performance in multimodal scenarios.

4.4 ABLATION STUDY

Data Efficiency of GRAPE. GRAPE supervises the LLM to rewrite queries using ranking signals.
Unlike conventional supervised finetuning, which often requires the LLM to acquire additional do-
main knowledge, GRAPE only requires the model to learn how to generate retrieval-friendly rewrites
for the target retrieval task. To validate the data efficiency of GRAPE, we conduct experiments on
Flickr30k-CN and CVLUE using the ViT-B/16 backbone with training subsets of different sizes. As
shown in Fig. 4, GRAPE consistently outperforms pretrained LLMs (with zero additional training
data) across all data scales. Specifically, on Flickr30k-CN (Fig. 4(a)), GRAPE achieves R@1 that
reaches 94% of the full 100k-sample performance with only 10k samples. Similarly, on CVLUE
(Fig. 4(c)), GRAPE achieves 88% of the full-data performance with 10k samples.

Limitations of Similarity-Based Supervision. Directly finetuning LLMs with similarity scores
often leads to score inflation. This issue is primarily caused by sample-wise isolated measurement,
which overlooks the influence of other images in the retrieval corpus. To validate this issue, we
conducted experiments on Flickr30k-CN using ViT-B/16 as the backbone, where similarity scores
defined in Eq. 5 were used as the reward. As shown in Fig. 5, the average similarity between
rewritten queries and target images steadily increases with training steps, while R@1 decreases
correspondingly. In practice, the model tends to output generic words such as “environment” or
“image,” which increase similarity with the target image but simultaneously with many irrelevant
images. A detailed comparison between similarity-based and ranking-based rewards is provided in
Appendix A.4.
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A person… The image should capture this action in a real-
world setting… This description will assist users in finding…

… The image should capture the environment, 
atmosphere, and mood… This will aid users in finding…

An image of a person …. The image should capture the environment, 
atmosphere, and mood to…images that match the described scenario

Query: 戴着红帽子的正斜
靠在栏杆上

Wearing a red hat, leaning against 
a railing with a slight forward tilt

Figure 5: Using similarity scores as the reward leads to score inflation. As training epochs increase,
the similarity between the query and the target image improves, but Recall@1 steadily decreases.
The boxed text shown in the figure corresponds to the rewritten queries generated at the indicated
training steps. Due to the lack of supervision signals, the LLM tends to generate generic or irrelevant
words that raise similarity scores without improving retrieval quality.

5 DISCUSSION

Coverage of Downstream Tasks. GRAPE enhances retrieval by relying on the LLM’s knowledge
to rewrite queries into forms closer to CLIP’s training distribution. This design inherently limits its
effectiveness to the knowledge capacity of the LLM. When downstream tasks require knowledge
beyond the LLM’s coverage, the model may fail to produce meaningful rewrites, ultimately con-
straining GRAPE’s effectiveness. For example, in multilingual retrieval, the LLM exhibits weaker
capability for low-resource languages, which in turn restricts the benefits of GRAPE; detailed results
are provided in the Appendix.

Upper Bound by the Retriever. GRAPE leverages ranking signals from a frozen retriever as
optimization feedback. This design enables our method to adapt queries without modifying the
embedding space, but it also implies that the performance ceiling is constrained by the capacity of
the underlying retriever. As a result, if CLIP lacks sufficient expressiveness for certain tasks, GRAPE
can help close the gap but cannot surpass the retriever’s intrinsic upper bound. Nevertheless, as the
representational power of CLIP improves, GRAPE shows consistent gains in performance.

Time and Efficiency Considerations. Since all query are rewritten by the LLM before retrieval,
our approach inevitably introduces additional inference latency. While the extra cost is modest in
controlled benchmarks, scaling to large-scale industrial retrieval systems raises practical concerns.
Balancing retrieval accuracy gains with computational overhead and latency constraints remains an
important direction for future work.

6 CONCLUSION

In this work, we address the critical challenge of enhancing CLIP-based retrieval systems under
distributional shifts without costly re-embedding or redeployment. We introduce GRAPE, a plug-
and-play approach that leverages LLM-based query rewriting guided by retrieval feedback. By
incorporating a corpus-relative ranking-based reward, GRAPE explicitly aligns optimization with
ranking objectives and, importantly, avoids the pitfall of similarity-based supervision—score infla-
tion, where nearly all candidates receive high scores regardless of true relevance. Extensive ex-
periments across five representative benchmarks demonstrate that GRAPE consistently improves
retrieval performance under multilingual, length, and multimodal shifts, yielding an average gain of
4.9% in Recall@10. These results highlight the effectiveness of ranking-aware supervision in bridg-
ing distributional gaps while preserving compatibility with frozen retrievers. We believe our findings
provide a promising direction for building adaptable retrieval enhancement methods at scale, without
requiring retriever retraining or re-embedding.

9
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A APPENDIX

A.1 USE OF LLMS

Large language models (LLMs) are used as query rewriters in our experiments. They are also used
to assist in manuscript preparation, such as polishing the text and suggesting references during the
literature review. No part of the core methodology, reward design, evaluation protocol, or experi-
mental results is generated or influenced by LLMs.

A.2 ETHICS STATEMENT

Our study investigates retrieval enhancement under distributional shifts by leveraging supervised
query rewriting guided by ranking signals. No human subject or private data is involved. All datasets
used are from publicly available benchmarks, and all evaluated models (CLIP and LLM backbones)
are publicly released. While our analysis reveals potential weaknesses of existing retrieval systems,
our intent is solely to advance research toward more reliable and equitable retrieval methods, rather
than to exploit such weaknesses.

A.3 REPRODUCIBILITY STATEMENT

We provide code and data to reproduce all major results. Our supplementary materials include: (1)
code for training and evaluation with ranking-based rewards, (2) the full prompt templates used in
different tasks, and (3) detailed training configurations and dataset splits. Complete implementation
details and extended results will be released upon acceptance.

A.4 ANALYSIS OF THE RANKING-BASED REWARD FUNCTION

We prove that the relative advantage computation in GRPO is affine-invariant with respect to the
reward scale. Even if rankings are linearly mapped to scores, the final normalized signal depends
only on relative ordering.

Ranking-to-Reward Mapping. Given a ranking rk ∈ {1, . . . , N}, consider a general affine map-
ping:

Rk = ark + b, a ̸= 0.

Our specific reward Rr
k = 1− 2(rk−1)

N−1 is a special case.

Relative Advantage Normalization. For a query q with K rewrites {Rk}Kk=1, GRPO computes

Ãk =
Rk − µq

σq
, µq =

1

K

K∑
j=1

Rj , σ2
q = 1

K

K∑
j=1

(Rj − µq)
2.

Affine Invariance. Substituting Rk = ark + b gives
µq = aµr + b, σq = |a|σr,

where µr and σr are the mean and std of {rj}. Thus,

Ãk =
a(rk − µr)

|a|σr
= sign(a) · rk − µr

σr
.

Conclusion. The normalized advantage Ãk is invariant under affine transformations of Rk, up to
a global sign flip. Hence, the optimization depends only on ranking order, ensuring robustness of
our ranking-based reward formulation.

Empirical Comparison with Similarity-based Rewards. To complement the above proof, we
conduct experiments comparing ranking-based and similarity-based rewards as training progresses.
Figure 6 shows that similarity-based rewards exhibit score inflation (average similarity increases
but Recall@1 decreases), ranking-based rewards yield stable improvements in retrieval recall with
training steps. This demonstrates that our ranking-based reward not only has desirable theoretical
properties but also provides practical stability during optimization.
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Figure 6: Comparison of similarity-based and ranking-based rewards during training. Ranking-
based rewards avoid score inflation and align with improvements in retrieval recall.

A.5 EXPERIMENTAL SETUP DETAILS

Datasets. Table 2 summarizes the training and validation splits of all datasets used in our experi-
ments, including the number of images and queries for each split.

Table 2: Training and validation statistics of the datasets used in our experiments.

Dataset Train Queries Train Images Val Queries Val Images

Flickr30k-CN 148,915 29,783 5,000 1,000
CVLUE 89,600 17,920 15,580 3,116
Wikipedia 2,173 2,173 693 693
XM3600 126,341 1,745 33,218 456
CIRR 3,336 1,951 834 723

Training Setup. GRAPE is trained on each dataset using 1.5k or 2.5k optimization steps, where
training with smaller datasets typically converges within 1.5k steps and training with larger ones
requires up to 2.5k steps. We adopt a batch size of 8 with gradient accumulation, and optimize the
model using AdamW with a learning rate of 5 × 10−7 under a cosine schedule and a warmup ratio
of 0.03. The frozen retrievers include ViT-B/32, ViT-B/16, and ViT-L/14. To ensure fairness, the
same prompt templates are used consistently across both training and validation.

Prompt Templates. We designed task-specific prompts for different scenarios: multilingual re-
trieval, multimodal fusion, and long-form text queries. These templates guide the LLM rewriter to
generate retrieval-friendly inputs for CLIP.

A.6 EXTENDED EXPERIMENTAL RESULTS AND ANALYSIS

Effect of Knowledge Coverage. We provide per-language retrieval performance on XM3600 us-
ing radar plots in Figure 7, reporting Recall@1 and Recall@10 across 36 languages. The plots
highlight variation between high-resource and low-resource languages: GRAPE yields strong im-
provements when the LLM has sufficient knowledge coverage (e.g., English, Chinese, Spanish), but
the gains diminish for underrepresented languages. This further demonstrates that the coverage of
downstream tasks by GRAPE is ultimately bounded by the knowledge reserves of the LLM. Never-
theless, as LLM capabilities continue to improve, the range of downstream tasks that GRAPE can
effectively cover is expected to expand accordingly.
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Table 3: Prompt templates used for different retrieval scenarios.

Task Prompt Template
Multilingual You’re an image retrieval assistant. Translate

search queries: {text} into optimized English text
for vector-based image search. Show your work in
<think></think> tags. And return the final text in
<answer></answer> tags.

Multimodal You’re an image retrieval assistant. You need
to use the information in the image, generate
a text based on the description in the text:
{text}. This generated text will be used by CLIP
to retrieve the corresponding image. Show your work
in <think></think> tags. And return the final text
in <answer></answer> tags.

Length You are an image retrieval assistant. Summarize the
given Wikipedia text content: {text} into a concise
visual description suitable for CLIP model input
to retrieve corresponding images of the described
subject. Show your work in <think></think> tags.
And return the final text in <answer></answer> tags.
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Figure 7: Radar plots of Recall@1 (top) and Recall@10 (bottom) for GRAPE on XM3600 across
36 languages. Performance is stronger in high-resource languages and weaker in low-resource ones,
reflecting the limitations imposed by LLM knowledge coverage.
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