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Abstract
We consider the problem of online learning where
the sequence of actions played by the learner must
adhere to an unknown safety constraint at every
round. The goal is to minimize regret with re-
spect to the best safe action in hindsight while si-
multaneously satisfying the safety constraint with
high probability on each round. We provide a
general meta-algorithm that leverages an online
regression oracle to estimate the unknown safety
constraint, and converts the predictions of an on-
line learning oracle to predictions that adhere to
the unknown safety constraint. On the theoretical
side, our algorithm’s regret can be bounded by the
regret of the online regression and online learning
oracles, the eluder dimension of the model class
containing the unknown safety constraint, and a
novel complexity measure that characterizes the
difficulty of safe learning. We complement our
result with an asymptotic lower bound that shows
that the aforementioned complexity measure is
necessary. When the constraints are linear, we in-
stantiate our result to provide a concrete algorithm
with
√
T regret using a scaling transformation that

balances optimistic exploration with pessimistic
constraint satisfaction.

1. Introduction
Online learning is a key tool for many sequential decision
making paradigms. From a practical view point, it is often
the case that either due to safety concerns (Dobbe et al.,
2020), to guarantee fairness or privacy properties (Zafar
et al., 2019), (Levy et al., 2021), or in many cases, simply
due to physical restrictions in the real world (Atawnih et al.,
2016), the agent or learner often must pick actions that
are not only effective but also strictly adhering to some
constraints on every round. Often, the safety constraint

1Department of Computer Science, Cornell University, Ithaca
NY, United States. Correspondence to: Seung Won Wilson Yoo
<sy536@cornell.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

is determined by parameters of the environment that are
unknown to the learner. For example individual fairness
constraints may be defined by an unknown similarity metric
(Gillen et al., 2018), or in robotics applications, safety may
hinge on uncertainties such as an unknown payload weight
(Brunke et al., 2022). Thus in such situations, the learner
must learn the unknown parameters that characterize the
safety constraint.

In this work, we study the general problem of online learning
with unknown constraints, where the learner only observes
noisy feedback of the safety constraints. We consider ar-
bitrary decision spaces and loss functions. Our goal is to
design algorithms that can simultaneously minimize regret
while strictly adhering to the safety constraint at all time
steps. Naturally, regret is measured w.r.t. the best deci-
sion in hindsight that also satisfies the constraint on every
round. The learner only has access to an initial safe-set of
actions/decisions to begin, and must gain more information
about the safety constraint.

To solve this problem, we assume access to a general on-
line learning oracle that has low regret (without explicit
regard to safety) and a general online regression oracle that
provides us with increasingly accurate estimations of the
unknown constraint function. The key technical insight in
this work is in exploring what complexity or geometry al-
lows us to play actions within guaranteed safe-sets while
expanding the safe-sets and simultaneously ensuring regret
is small. We introduce a complexity measure that precisely
characterizes this inherent per-step tension between regret
minimization and information acquisition with respect to
the safety constraint (with the key challenge of remaining
within the safe set). We complement our results with a
lower bound that shows that asymptotically, whenever this
complexity measure is large, regret is also large. Our results
yield an analysis that non-constructively shows the existence
of algorithms for the general setting with arbitrary decision
sets, loss functions, and classes of safety constraints. Fur-
thermore, we instantiate these results explicitly for various
settings, and give explicit algorithms for unknown linear
constraints and online linear optimization - obtaining the
first algorithm with O(

√
T ) regret.
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Key Contributions

• We introduce a novel complexity measure Vκ(t) de-
fined in eq. 5, that characterizes the difficulty of safe
learning. On a high level, it captures the per-timestep
trade off between loss minimization and information
gain w.r.t. unknown constraint with κ serving as the
weight placed on information gain.

• We provide a new safe learning algorithm under an un-
known constraint (Algorithm 1) that utilizes an online
regression oracle w.r.t. F , where F is the model class
to which the unknown safety constraint belongs, and
an online learning oracle that guarantees good perfor-
mance w.r.t. Π, where Π is a benchmark policy class.
Notably, our algorithm is able to handle adversarial
contexts drawn from X , arbitrary action set A, safety
model class F , benchmark class Π, operates under gen-
eral modeling assumptions, and enjoys the following
regret bound:

RegretT ≤

inf
κ

{
T∑
t=1

Vκ(t) + κ inf
α

{
αT +

RegOR(T, δ,F)E(F , α)

α

}}
+ RegOL(T, δ,Π)

where RegOR(T, δ,F) denotes the regret bound
guaranteed by the online regression oracle on F ,
E(F , α) denotes the eluder dimension of F , and
RegOL(T, δ,Π) denotes the regret bound guaranteed
by the online learning algorithm w.r.t. Π.

• Via a lower bound, we show that asymptotically, if
there exists a κ for which

lim
T→∞

1/T

T∑
t=1

Vκ(t) ≥ c0 > 0 ,

no safe algorithm is able to obtain diminishing regret.

• If per-timestep constraint satisfaction is relaxed to
long term constraint satisfaction, we show a modified
version of our main algorithm yields bounds without
Vκ(t).

• For several settings including finite action spaces, lin-
ear & generalized linear, and polytopic settings we give
an instantiation of κ = κ∗ that satisfies Vκ(t) ≤ 0 and,

RegretT ≤ κ
∗ inf
α

{
αT +

RegOR(T, δ,F)E(F , α)

α

}
+ RegOL(T, δ,Π)

For linear settings we instantiate this result to give an
algorithm with O(

√
T ) regret. We extend our main

algorithm to handle vector-valued constraints

2. Related Works
Online Convex Optimization and Long Term Con-
straints: (Mahdavi et al., 2012) initiated the problem of
online convex optimization with long term constraints, a
variant of online convex optimization where the learner is
given a set of functional constraints {fi(·) ≤ 0}mi=1 and
is required to ensure that the sum of constraint violations∑T
t=1

∑m
i=1 fi(xt) is bounded rather than ensuring that the

constraints are satisfied at every time step. For the case of
known and fixed constraints, (Mahdavi et al., 2012) obtain
O(T 1/2) regret and O(T 3/4) constraint violation. This was
recently improved in (Yu & Neely, 2020) to be O(T 1/2)
regret and O(1) constraint violation. Furthermore, (Neely
& Yu, 2017) study a variant with time varying constraints
{fi,t(·) ≤ 0}mi=1 and and achieve O(T 1/2) regret and long
term constraint violation. (Sun et al., 2017), (Jenatton et al.,
2016), and (Yi et al., 2020) study variations of this problem.

Bandits with Unknown Linear Constraint: The area of
work most similar to ours is the study of safe bandits with
unknown linear constraints. Initiated by (Moradipari et al.,
2021), this line of works studies a linear bandit setting,
where a linear constraint is imposed on every action at of
the form of 〈f, at〉 − b ≤ 0 with unknown f and known
b. Similar settings involving linear bandit problems with
uncertain and per-round constraints have been studied by
(Amani & Thrampoulidis, 2021), (Pacchiano et al., 2021),
(Hutchinson et al., 2024). (Pacchiano et al., 2021) study
the a setting where constraints are satisfied in expectation,
and (Pacchiano et al., 2024) and (Hutchinson et al., 2024)
improves this to high probability satisfaction.
Safe Convex Optimization with Unknown Constraint(s):
Safe convex optimization with unknown linear constraints
and noisy feedback was studied in (Usmanova et al., 2019).
(Fereydounian et al., 2020) seeks to optimize a fixed convex
function given unknown linear constraints, and focuses on
sample complexity. Closest to our work is that of (Chaud-
hary & Kalathil, 2022), where the authors study time vary-
ing cost functions and achieve O(T 2/3) regret. A recent
concurrent work due to (Hutchinson et al., 2025) improves
this to O(

√
T ). (Hutchinson & Alizadeh, 2024a) studies a

variant with non-linear constraints and first order feedback,
and (Hutchinson & Alizadeh, 2024b) studies a variant with
d+ 1 points of feedback.
Per Timestep Tradeoff Between Loss Minimization and
Constraint Information Gain : The SO-PGD algorithm
due to (Chaudhary & Kalathil, 2022) adopts an explore-
first then exploit strategy which results in a O(T 2/3) regret
bound, whereas the ROFUL algorithm due to (Hutchinson
et al., 2024) strikes a better balance between regret mini-
mization and conservative exploration of the constraint set.
The Decision Estimation Coefficient (DEC) due to (Foster
et al., 2023), (Foster et al., 2022) explicitly strikes a balance
loss minimization and the information gained due to obser-
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vation. Our proposed algorithm seeks to similarly balance
loss minimization and exploration of the constraint set.

3. Setup and Preliminary
We consider the problem of online learning with unknown
constraints imposed on actions the learner is allowed to
play from. The learning problem proceeds for T rounds as
follows.

For t = 1, . . . , T :

– Nature selects a context xt ∈ X
– The learner selects a safe action at ∈ A
– Nature selects an outcome yt ∈ Y
– The learner receives safety feedback zt ∈ Z

where X is the context space, A is the action space, Y
is the outcome space and Z is the safety feedback space.
Here, the context chosen by nature x ∈ X , action chosen by
learner a ∈ A, and outcome chosen by nature y ∈ Y define
the loss suffered by the learner `(a, x, y), for a bounded
loss function ` : A × X × Y → [0, 1]. We assume a full
information feedback setting with respect to the losses - the
learner observes yt ∈ Y .

Given a context x ∈ X , an action chosen by the learner
a ∈ A is considered safe if f?(a, x) ≤ 0 for an unknown
function f? ∈ F ⊆ A × X → [−1, 1]. While f? is un-
known to the learner, the safety function class F is known
and encodes prior knowledge about the safety constraint. F
may be parameterized by linear models, neural networks, or
other rich function approximators depending on the problem
setting. At every timestep t, the learner receives feedback
on unknown safety function f? through safety feedback
zt ∼ psignal(f

?(at, xt)), where psignal : [−1, 1] → Ω(Z)
and Ω(Z) denotes the set of distributions over Z . We high-
light the fact that given at and xt, zt is conditionally in-
dependent of the history. This captures a wide variety
of feedback settings, including those where Z = R and
zt = f?(at, xt)+ξt for a noise variable ξt, and those where
Z = {0, 1} and zt is the result of a coin flip with suc-
cess probability determined by f?(at, xt). Whenever the
feedback function is not made explicit, we assume that the
feedback is given by zt = f?(at, xt) + ξt. Throughout the
paper, we will compare the performance of our algorithm
against a known policy class Π ⊆ X → A. The goal of the
learner is to minimize the regret defined as:

RegretT :=

T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t

f?(π(xt),xt)≤0

T∑
t=1

`(π(xt), xt, yt)

which is the regret with respect to the optimal policy
π in hindsight that is safe on every round, i.e. ∀t ∈

[T ], f?(π(xt), xt) ≤ 0. The learner in turn is also only
allowed to take actions at s.t. f?(at, xt) ≤ 0. Since we are
interested in making no constraint violations while taking
our actions, learning is impossible unless we are at least
given an initial set of safe actions. For any context x ∈ X ,
we assume that we are given a non-empty set A0(x) ⊆ A
that is guaranteed to be safe. For settings with no context
(i.e. X = ∅), we denote the initial safe set as A0.

3.1. Additional Notation

We use the notation ΠS(x) to denote the projection of a
vector x ∈ Rd onto some convex set S ⊆ Rd. For a
positive definite matrix M ∈ Rd×d and vector x ∈ Rd
we denote the norm induced by M as ‖x‖M :=

√
xᵀMx.

We denote the convex hull of a set S as Conv(S). Let
{xs}ts=1 := x1, . . . , xt be shorthand for a sequence. For
a scalar-valued function class F ⊆ A × X → [0, 1], we
denote ∆F (a, x) := supf,f ′∈F f(a, x) − f ′(a, x). For a
vector-valued function class F ⊆ A× X → [−1, 1]m, de-
note ∆∞F (a, x) := supf,f ′∈F ‖f(a, x)−f ′(a, x)‖∞, where
‖·‖∞ is the `∞ norm. For a set G, we denote Ω(G) as the set
of distributions over G. For a vector x ∈ Rd and i ∈ [d], let
x[i] be the i’th coordinate of x. We adopt a non-asymptotic
big-oh notation: for functions f, g : X → R+, f = O(g) if
there exists some constant C > 0 such that f(x) ≤ Cg(x)
for all x ∈ X . We write f = o(g) if for every constant c,
there exists a x0 such that f(x) ≤ cg(x) for all x ≥ x0.

3.2. Online Regression Oracles and Signal Functions

Similar to prior works concerned with estimation of function
classes (Foster et al., 2018a), (Foster & Rakhlin, 2020),
(Foster et al., 2021), (Sekhari et al., 2023a), (Sekhari et al.,
2023b), we assume our algorithms have access to an online
regression oracle, OracleOR. However, unlike these prior
works that assume that the provided online regression oracle
enjoys a sublinear regret bound, we require that our oracle
satisfy a slightly weaker condition that allows for algorithms
geared towards realizability.
Assumption 3.1 (Online Regression Oracle). The algo-
rithm OracleOR guarantees that for any (possibly adversar-
ially chosen) sequence {at, xt, zt}Tt=1, for any δ ∈ (0, 1),
with probability at least 1−δ, generates predictions {ẑt}Tt=1

satisfying:
T∑
t=1

(ẑt − f∗(at, xt))2 ≤ RegOR(T, δ,F)

Assumption 3.1 is closely linked with the model psignal that
produces feedback about constraint value, and any regret-
minimizing oracle for strongly convex losses can be con-
verted into an oracle that satisfies the assumption with high
probability. We formalize this in Lemma C.6 in the ap-
pendix. For instance, if zt ∼ psignal(f

?(at, xt)) is given
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by zt = f?(at, xt) + ξt where ξt is any sub-gaussian dis-
tributed random variable, then any online square loss regres-
sion algorithm on class F that uses zt as corresponding out-
comes will satisfy Assumption 3.1. Similarly, if zt ∈ {0, 1}
is drawn as P (zt = 1|f?(at, xt)) ∝ exp(f?(at, xt)) =
psignal(f

?(at, xt)) (ie. the Boltzman distribution), then one
can show that Assumption 3.1 is satisfied by running any
online logistic regression algorithm over class F with zt as
labels.

(Rakhlin & Sridharan, 2014) characterized the minimax
rates for online square loss regression in terms of the
offset sequential Rademacher complexity for arbitrary F .
This for example, leads to regret bounds of the form,
RegOR(T,F) = O(log |F|) for finite function classes
F , and RegOR(T,F) = O(d log(T )) when F is a d-
dimensional linear class. More examples can be found in
(Rakhlin & Sridharan, 2014) (Section 4) and efficient im-
plementations can be found in (Krishnamurthy et al., 2017)
and (Foster et al., 2018a).

3.3. Online Learning Oracles with Given Constraints

Next, we consider the following online learning problem
with given constraints, which will be instrumental in solving
our problem of online learning with unknown constraints.
On every round t, nature first announces a context xt ∈ X
and constraint set corresponding to this contextAt(xt) ⊆ A.
Because the context is fixed on every timestep, we drop the
dependence on xt and abbreviate the constraint set as At.
The learner responds with a distribution pt ∈ Ω(At) and
draws at ∼ pt. Nature then produces a loss function yt ∈ Y .
The learner suffers loss `(at, yt).

Let Π ⊆ X → A be some given policy class the learner is
benchmarked against. A policy π ∈ Π satisfies the given
constraint at time t if π(xt) ∈ At. Let us denote the set of
policies that satisfy all given constraints (in hindsight) as
ΠT := {π ∈ Π : ∀t, π(xt) ∈ At}.

The goal of the learner is to minimize regret w.r.t. the best
policy in ΠT . We assume access to an online learning oracle,
OracleOL that has bounded regret for the problem of online
learning with given constraints:
Assumption 3.2 (Online Learning Oracle). For any se-
quence of adversarially chosen sets, contexts and outcomes
{At, xt, yt}Tt=1 and any δ ∈ (0, 1) with probability at least
1− δ, the algorithm OracleOL produces a sequence of distri-
butions {pt}Tt=1 satisfying pt ∈ Ω(At) for all t ∈ [T ] with
expected regret bounded as:

T∑
t=1

E
at∼pt

[`(at, xt, yt)]− min
π∈ΠT

T∑
t=1

`(π(xt), xt, yt)

≤ RegOL(T, δ,Π)

In our application to online learning with unknown con-

straints, we will pass increasingly accurate approximations
of the true set of safe actions for a given context xt (i.e.
{a ∈ A | f∗(a, xt) ≤ 0}) in place of At to OracleOL. The
complexity of the unconstrained variant of Assumption 3.2
is well understood ((Rakhlin et al., 2010)). On a first glance,
it may appear that the adversarially chosen constraint sets
At may pose a significant challenge to learnability. We show
that this is not the case using online symmetrization argu-
ments developed in ((Rakhlin et al., 2010)) and a minimax
analysis:
Proposition 3.3. There exists an algorithm satisfying As-
sumption 3.2 with

RegOL(T, δ,Π) ≤ 2 Radseq
`◦Π(T )

where Radseq
`◦Π(T ) is the sequential Rademacher complexity

of the loss class, defined as:

Radseq
`◦Π(T ) :=

sup
y,x

Eε

[
sup
π∈Π

T∑
t=1

εt` (π(xt(ε1:t−1)),xt(ε1:t−1),yt(ε1:t−1))

]

where in the above supremum over y and x are taken over
all mappings of the form y :

⋃T−1
t=0 {±1}t 7→ Y and x :⋃T−1

t=0 {±1}t 7→ X respectively.

Various properties and examples of bounds on Radseq
`◦Π(T )

can be found in (Rakhlin et al., 2010). Notably, this result
is non-constructive and only guarantees the existence of
such regret minimizing oracles. In section 5 we provide a
constructive gradient-descent based algorithm in the online
linear optimization setting.

3.4. Eluder Dimension

Before delving into our main results, we recall the following
definition of ε-dependence and eluder dimension (Russo &
Roy, 2013), (Foster et al., 2021), (Foster et al., 2023).
Definition 3.4.

• An action, context pair (a, x) ∈ A×X is ε-dependent
on {ai, xi}ti=1 ⊆ A × X w.r.t. F if every f, f ′ ∈ F
satisfying

√∑t
i=1(f(ai, xi)− f ′(ai, xi))2 ≤ ε also

satisfies f(a, x)−f ′(a, x) ≤ ε. (a, x) is ε-independent
w.r.t. F if a is not ε-dependent on {(ai, xi)}ti=1.

• The eluder dimension E(F , ε) is the length of the
longest sequence of pairs in A×X such that for some
ε′ > ε, each pair is ε′-independent of its predecessors.

The eluder dimension is bounded for a variety of function
classes. For example, when F is finite, E(F , ε) ≤ |F| −
1, and when F the class of linear functions, E(F , ε) ≤
O(d log(1/ε)). The eluder dimension of function class F
will be a component of our regret bounds.
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4. Main Results
We first propose our complexity measure Vκ(·) that captures
the per timestep trade-off between loss minimization and in-
formation gain w.r.t safety function set F . We show that this
complexity characterizes the difficulty of online learning
with unknown constraints by showing an upper bound fea-
turing Vκ(·) and a lower bound that demonstrates a bounded
Vκ(·) is asymptotically necessary. Finally, we supplement
our results by slightly modifying our algorithm to attain
long term constraint satisfaction allowing us to contribute to
the literature on online learning with long term constraints.
Notably, Vκ(·) does not appear in this bound, suggesting this
complexity measure is inherent to per-timestep constraint
satisfaction.

4.1. Complexity Measure and Main Theorem

Given the oracle assumptions, we introduce a few building
blocks, define our complexity measure Vκ, and provide our
main theorem. We first introduce sets of functions likely to
contain our true safety function f∗, and from these sets of
functions, build a pair of sets approximating the true safe
action set.

Suppose up until some timestep t we have played ac-
tions {as}t−1

s=1 and seen contexts and noisy observations
{xs, zs}t−1

s=1 so far. Given the history {as, xs, zs}t−1
s=1 sup-

pose OracleOR produces a sequence {ẑt}t−1
s=1. Let us define

a version space Ft ⊂ F0 defined as:

Ft :=

{f ∈ F0 :

t−1∑
s=1

(f(as, xs)− ẑs)2 ≤ RegOR(T, δ,F0)}
(1)

By Assumption 3.1, the sum of squares deviations
∑
t(ẑt −

f?(at, xt))
2 ≤ RegOR(T, δ,F0) with high probability.

Therefore, the version spaces Ft contain f∗ with high prob-
ability. Now suppose we have some set G ⊆ F containing
the true safety function f∗. Given a context x ∈ X , we de-
fine the optimistic action set O(G, x), and pessimistic action
set P (G, x) as:

O(G, x) = {a ∈ A | ∃f ∈ G, f(a, x) ≤ 0}
P (G, x) = {a ∈ A | ∀f ∈ G, f(a, x) ≤ 0}

(2)

As shorthand, we denote Ot := O(Ft, xt), Pt :=
P (Ft, xt). The optimistic set represents the set of all ac-
tions that could be safe, and the pessimistic set represents
the set of all actions that are guaranteed to be safe. We
capture this notion in the following proposition:
Proposition 4.1. Suppose f∗ ∈ G ⊆ F . Then:

P (G, x) ⊆ {a ∈ A : f?(a, x) ≤ 0} ⊆ O(G, x)

Intuitively, this proposition suggests an algorithm playing
from P (Ft, xt) is always safe, and competitiveness with

respect to O(Ft, xt) implies competitiveness with all safe
actions. We will delve further into this intuition later in this
section.

For a set G ⊆ F , we recall the definition of the width of G
with respect to action a and context x introduced in (Russo
& Roy, 2013):

∆G(a, x) := sup
g,g′∈G

g(a, x)− g′(a, x) (3)

For any action a ∈ O(G, x) and g ∈ G, g(a, x) ≤ ∆G(a, x)
- hence the width captures a notion of how far an optimistic
action is from being pessimistic. Simultaneously if ∆G(a, x)
is small, all functions in G have similar values on a, indi-
cating that a provides little information if our goal is to
differentiate members of G. These two facts will be instru-
mental in our analysis.

We now utilize the regret-minimizing properties of OracleOL

to be competitive w.r.t. Ot = O(Ft, xt). Suppose we pass
given context xt and optimistic setOt as inputs to the online
learning oracle OracleOL. Denote p̃t ∈ Ω(Ot) as the dis-
tribution recommended by OracleOL. Because Ot contains
all constraint-satisfying actions with high probability, com-
bined with the regret guarantee of OracleOL in Assumption
3.2, this guarantees that actions drawn from p̃t will have
good performance in regret.

As Proposition 4.1 suggests, playing actions from Pt en-
sures constraint satisfaction. Motivated by this fact, we
aim to play actions drawn from Ω(Pt) optimizing a certain
objective striking a balance between matching the perfor-
mance of (potentially unsafe) p̃t ∈ Ω(Ot) and information
acquisition captured by width. To this end, let M be any
mapping Ω(Ot) → Ω(Pt) parameterized by the function
class Ft and context xt. 1 We will show that when we draw
actions at ∼ pt = M(p̃t;Ft, xt), we can bound regret by
quantities involving the eluder dimension, RegOR, RegOL,
and a novel complexity measure VM

κ defined as:

VM
κ (p̃t,Ft, xt) :=

sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼M(p̃t;Ft,xt)
[∆Ft(at, xt)]

Consequently for a given κ, the optimal mapping M∗ is to
optimize for this complexity measure through a saddle-point
optimization:

M∗κ(p̃t,Ft, xt) :=

argmin
pt∈Ω(Pt)

sup
y∈Y

{
E

at∼pt
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼pt
[∆Ft(at, xt)]

(4)

1Wherever it is clear what the arguments to the mapping are
we may drop them e.g. in a non-contextual setting, the context
argument is dropped.
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We note that the above optimization can be (inefficiently)
solved to desired accuracy through standard techniques
by treating it as a two-player game where the min-player
chooses p and the max-player choses f, f ′, y and we form
an ε-net over the set of actions. Later in section 5, we will
give examples of efficient mappings that can be used instead
of this optimal mapping. Let us define the complexity mea-
sure Vκ(·) := VM∗

κ (·) as the value attained by the optimal
mapping:

Vκ(p̃t,Ft, xt) :=

inf
pt∈Ω(Pt)

sup
y∈Y

{
E

at∼pt
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼pt
[∆Ft(at, xt)]

(5)

Vκ is similar in spirit to the Decision Estimation Coefficient
(DEC) of (Foster et al., 2023) in that it balances a notion of
worst-case loss with one of information gain. Specifically,
Vκ captures the per-step tension between loss minimization
with respect to ãt ∼ p̃t produced by OracleOL and informa-
tion gain with respect to safety function set Ft, measured
by the width of action at on Ft. We now present our main
theorem:

Theorem 4.2. For any δ ∈ (0, 1) there exists an algorithm
that with probability at least 1− 3δ, produces a sequence
of actions {at}Tt=1 that are safe and enjoys the following
bound on regret:

RegretT ≤ inf
κ>0

{
T∑
t=1

Vκ(p̃t,Ft, xt)

+κ inf
α

{
αT + 20

α
RegOR(T, δ,F0)E(F0, α)

}}
+ RegOL(T, δ,Π) +

√
2T log( 1

δ
)

Moreover, there exists a problem setting such that if there
exists κ > 0 satisfying

lim
T→∞

1

T

T∑
t=1

Vκ(p̃t,Ft, x) > 0,

then, no safe algorithm (with high probability) can ensure
that RegretT = o(T ).

Theorem 4.2 follows by combining the upper bound (Theo-
rem 4.3) with the lower bound (Theorem 4.4), presented in
the following subsections.

4.2. Algorithm and Upper Bound

We now present an algorithm that attains the upper bound in
Theorem 4.2. While using the optimal mapping M∗ gives
us the best upper bound, solving the optimization involved
(eq. 4) may be difficult. To address this, we allow the use of
any (potentially efficient) mapping M.

Algorithm 1 General Constrained Online Learning

1: Input: OracleOL, OracleOR, A0(·), δ ∈ (0, 1), κ, M
2: F0 = {f ∈ F : ∀x ∈ X ,∀a ∈ A0(x), f(a, x) ≤ 0}
3: for t = 1, . . . , T do
4: Receive context xt

Ft = {f ∈ F0 :

t−1∑
s=1

(f(as, xs)− ẑs)2 ≤ RegOR(T, δ,F0)}

5: Ot = O(Ft, xt) , Pt = P (Ft, xt)
6: p̃t = OracleOLt(xt, Ot)
7: pt = M(p̃t;Ft, xt)
8: Draw at ∼ pt
9: Receive noisy feedback zt

10: Update ẑt = OracleORt(at, xt, zt)
11: Play at and receive yt
12: end for

Theorem 4.3. For any δ ∈ (0, 1) with probability at least
1 − 3δ, Algorithm 1 when using mapping M produces a
sequence of actions {at}Tt=1 that are safe and enjoys the
following bound on regret:

RegretT ≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t,Ft, xt)

+κ inf
α

{
αT + 20

α
RegOR(T, δ,F0)E(F0, α)

}}
+ RegOL(T, δ,Π) +

√
2T log( 1

δ
)

Furthermore, using κ∗ = κ∗(F ,M) defined as

sup
F̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y

E
a∼M(p̃;F̂,x)

[`(a,x,y)]−Eã∼p̃[`(ã,x,y)]

E
a∼M(p̃;F̂,x)[∆F̂ (a,x)]

we have

RegretT ≤ κ
∗ inf
α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

The proof follows by leveraging the low-regret guarantee
of OracleOL, manipulating the definition of VM

κ on a per-
timestep basis, and bounding the sum of information gain
terms ∆Ft(at, xt) by an extension of techniques first pre-
sented in (Russo & Roy, 2013). In the next section, we give
concrete examples of efficient M which yield bounded κ∗

for a few important settings.

4.3. Lower Bound

Assuming the existence of OracleOL with bounded RegOL

is reasonable as f∗ could potentially be the always-safe zero
function f0 : A 7→ 0, reducing the problem down to exactly
the unconstrainted online learning problem as Ot = A.
Being able to perform regression on F using a OracleOR

with bounded RegOR and assumption that eluder dimension
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of F is well behaved are also commonplace. However, the
reader may question if the sum

∑T
t=1 Vκ(p̃t,Ft, xt) must

necessarily be small for safe learnability. We show that at
least asymptotically,

∑T
t=1 Vκ(p̃t,Ft, xt) indeed must be

small to guarantee sublinear regret. We capture this notion
in the following theorem:

Theorem 4.4. Suppose we are given some A0, X = {},
Y = {}, f? ∈ F and losses ` : A 7→ R are fixed
such that for any a ∈ A satisfying f?(a) > 0, `(a) =
mina∗∈A:f?(a∗)≤0 `(a

∗). Furthermore suppose ∀ε, E(F , ε)
is finite. Then, if there exists κ > 0 such that

lim
T→∞

1

T

T∑
t=1

Vκ(p̃t,Ft) > 0,

then, safe learning is impossible, i.e. no algorithm that is
safe on every round (with high probability) can ensure that
RegretT = o(T ).

On a high level, we show that if κ is such that
limT→∞

1
T

∑T
t=1 Vκ(p̃t,Ft) ≥ c∗ > 0, then there must

be a P ∗ ⊃ A0 that is is guaranteed to be safe and ∀a ∈ P ∗
we can estimate f?(a) to arbitrary accuracy. Simultaneously
we show that this P ∗ has the property that all actions within
it are sub-optimal in loss by at least c∗ when compared to
best safe action. Further, this set P ∗ is non-expandable,
meaning that we cannot find more actions that are guaran-
teed to be safe based on playing a ∈ P ∗. Once we show
the existence of P ∗ satisfying the aforementioned proper-
ties, we can simply announce to any learning algorithm
A0 = P ∗. Because the set is non-expandable, and since the
learning algorithm must be safe, we conclude any algorithm
is doomed to only play actions within P ∗ - which is known
to be c∗ sub-optimal.

4.4. Per-Timestep Constraints vs Long Term
Constraints

Suppose we are only interested in ensuring that the sum
of constraint violations

∑T
t=1 f

?(at, xt) is o(T ), as is the
goal in the line of works studying online learning with long
term constraints (Mahdavi et al., 2012), (Yu & Neely, 2020),
(Sun et al., 2017). We show that this can be done without
use of the mapping M present in the main algorithm - the
idea will be to simply play the output of the online learning
algorithm given sets {Ot}Tt=1. Algorithm 2 defined in the
appendix guarantees:

Lemma 4.5. For any δ ∈ (0, 1) with probability at least
1−2δ, Algorithm 2 produces a sequence of actions {at}Tt=1

that satisfies:

RegretT ≤ RegOL(T, δ,Π) and
T∑
t=1

f∗(at, xt) ≤ inf
α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}

Notably, Vκ(·) does not appear in either bound. This moti-
vates the question: is assuming access to an online learning
oracle and online regression oracle and that the eluder di-
mension of F is small enough for us to create algorithms
that make no constraint violations with high probability?

Unfortunately the answer is no. We need more assumptions
on the initial safe set - which is what the mapping is utilizes.
Specifically consider the case where `(a, x, y) = y>a, the
constraint set is F = {(a, x) 7→ f>a : ‖f‖2 ≤ 1} and
suppose A0 = {0}. In this case E(F , ε) = d log(1/ε),
and both the online learning oracle and online regression
oracle are readily available and satisfy Assumptions 3.1 and
3.2 (e.g. use gradient descent and online linear regression
algorithm). However, sinceA0 = {0} the initial pessimistic
set is P1 = {0}. However since we are forced to play in
this set, we don’t gain any information about f? and hence
in the subsequent rounds Ft = F and Pt = P1. Thus
we cannot hope to play anything other than the single safe
choice a0 = 0 which prevents us from achieving low regret.

5. Examples
In this section, we will give examples of function classes
F where we can construct mappings M that have bounded
κ∗(F ,M). Consequently, this results in concrete regret
bounds from Theorem 4.2 if these mappings are used in
Algorithm 1.

5.1. Finite Action Spaces

We first consider the setting of finite action spaces, where
A = [K], X is arbitrary, FFAS ⊆ A × X → [−1, 1], and
losses are functions ` : A× X × Y → [0, 1]. Suppose we
make the following assumption that promises some separa-
tion between function values:

Assumption 5.1. ∀F ⊆ FFAS s.t. f∗ ∈ F and P (F , x) 6=
O(F , x), maxa∈P (F,x) ∆F (a, x) ≥ ∆0 > 0

This assumption is in fact necessary for safe learning
for large T . To see this, suppose F∗ ⊆ FFAS satisfies
P (F∗, x) 6= O(F∗, x) but ∀a ∈ P (F∗, x),∆F∗(a, x) = 0.
Then, we have no hope of shrinking F∗, and consequently
expanding P (F∗, x). If the adversarial losses have values of
1 for all a ∈ P (F∗, x), and values of 0 for all a /∈ P (F∗, x),
we’d suffer constant loss for all subsequent rounds.
Now, for a set of functions F ⊆ FFAS and context x,
let a∆(F , x) := argmaxa∈P (F,x) ∆F (a, x) be the width-
maximizing action in the pessimistic set. We define a map-
ping for this setting as:

MFAS(p̃;F , x) :=

{
ea∆(F,x) if P (F , x) 6= O(F , x)

p̃ otherwise

Where ea is the distribution that places all its mass on a. The
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above mapping leads to an explore then exploit algorithm
with respect to FFAS that plays the maximum width safe ac-
tion until no uncertainty remains w.r.t FFAS. We show that
MFAS as defined above has bounded κ∗(FFAS,MFAS).

Lemma 5.2. Suppose Assumption 5.1 holds. Then,
κ∗(FFAS,MFAS) ≤ 2

∆0
.

Remark 5.3. We note that we only require the existence
of ∆0 and not knowledge of it. ∆0 is only required to
set κ∗ = κ∗(FFAS,MFAS). In appendix section C.1, we
describe a procedure of adaptively selecting time-varing κt
at every timestep such that Vκt(t) < 0 and maxt κt ≤ 2κ∗.

5.2. Linear Constraints

Next, we consider the setting of linear constraints where
A ⊆ Rd, X = ∅, Π = {· 7→ a | a ∈ A} and losses are
functions ` : A×Y → [0, 1]. We show a randomized variant
of the scaling-based doubly-optimistic method presented
in (Hutchinson et al., 2024) (Hutchinson et al., 2025) has
bounded κ∗. Suppose we make the following assumption
on A and `:

Assumption 5.4. The action set A ⊆ Rd is convex, com-
pact, and bounded, maxa∈A ‖a‖2 ≤ Da. The losses are
lipschitz with constant D`, ∀y ∈ Y,∀a, a′ ∈ A, |`(a, y)−
`(a′, y)| ≤ D`‖a − a′‖. The constants Da, D` are known
to the learner.

Let us consider the following function class: FLin =
{(a, x) 7→ 〈f, a〉− b|f ∈ Rd} where b > 0 is fixed, and the
unknown constraint is 〈f∗, a〉 − b ≤ 0. Suppose the initial
safe given to the learner is A0 = {a ∈ A : ‖a‖ ≤ b}. Then,
any F0 = {f ∈ Rd : ‖f‖ ≤ 1}, since f with ‖f‖ > 1 has
〈f, b f

||f || 〉 − b > 0, yet b f
||f || ∈ A0 violating the promised

initial safe set.
Remark 5.5. Suppose that A0 is the `1 ball of diameter b
instead of the `2 ball of diameter b. Then F0 becomes the
unit `∞ ball - and the eluder dimension E(F0, ε) increases
by a factor of log(d).

Now, for a set of functions F and ã ∈ O(F), let γ(ã;F) :=
max {γ ∈ [0, 1] : γã ∈ P (F)}. Define MLin(p̃;F) as the
distribution induced by drawing ã ∼ p̃ and outputting
γ(ã;F)ã. In other words, we scale down each action to
ensure that it is safe. We show that this scaling-based map-
ping MLin has bounded κ∗(FLin,MLin).

Lemma 5.6. Suppose Assumption 5.4 holds. Then,
κ∗(FLin,MLin) ≤ D`Da

b .

Using the mapping MLin, we can get concrete algorithms
for the setting of linear constraints, no contexts, and
linear losses. Specifically, we set OracleOR to be the
Vovk-Azoury-Warmuth forecaster (Vovk, 1997), (Azoury
& Warmuth, 2001) which satisfies Assumption 3.1 with
RegOR(T, δ,F) ≤ O(d log( Tdδ )). In the case of linear

losses, where `(at, ·, yt) = 〈`t, at〉, `t ∈ Rd we provide
an online gradient descent based algorithm satisfying As-
sumption 3.2 (Algorithm 3). It is a randomized algorithm
that plays elements of the convex hull ofO(Ft) and is stated
in the appendix.

Lemma 5.7. Suppose Assumption 5.4 holds. Then Algo-
rithm 3 satisfies Assumption 3.2 with:

RegOL(T, δ,Π) ≤ 4D`Da

√
T log(2/δ)

Finally, (Russo & Roy, 2013) show that the Eluder di-
mension of the linear function class is E(FLinear, ε) =
O(d log(1/ε)). Combining these facts with our main re-
gret bound, we have:

Corollary 5.8. In linear case, for any δ > 0, with prob-
ability at least 1 − δ Algorithm 1 satisfies: RegretT =

O
(
d
b log(Td )

√
T log(δ−1)

)
5.3. Composing an Activation Function

Suppose we know that some function class G ⊆ A× X →
[−1, 1] has bounded κ∗(G,MG) for some mapping MG .
Consider a fixed activation function σ : [−1, 1] → [−1, 1]
satisfying the following:

Assumption 5.9. σ : [−1, 1] → [−1, 1] is a fixed, dif-
ferentiable non-decreasing function such that σ(0) = 0.
Furthermore, there exists c such that for all x ∈ [−1, 1],
0 < c ≤ σ′(x), where σ′ is the derivative of σ.

Consider the following function class formed by composing
G with σ: σ(G) = {(a, x) 7→ σ (g(a, x)) |g ∈ G} The un-
known constraint is then σ(g∗(a, x)) ≤ 0 for some g∗ ∈ G.
We show that if κ∗(G,MG) is bounded for some mapping
MG , κ∗(σ(G),MG) is also bounded. As a consequence of
Lemma 5.6 for FLin and the below lemma for compositions
with activation functions, generalized linear function classes
((Kakade et al., 2011)) have bounded κ∗.

Lemma 5.10. Let G be a function class with bounded
κ∗(G,MG) for some mapping MG . Suppose assumption
5.4 holds. Then κ∗(σ(G),MG) ≤ κ∗(G,MG)

c .

5.4. Vector-Valued Constraints

Our algorithms naturally generalize to settings where the
learner must satisfy vector-valued constraints. Specifically,
given a context x ∈ X , an action a ∈ A is now considered
safe if ‖f̊(a, x)‖∞ ≤ 0 for unknown vector-valued function
f̊ ∈ F ⊆ A × X → [−1, 1]m. We formalize this notion
in the appendix subsection C.4 - it is a straightforward ex-
tension of our main results. Notably, for the setting of m
linear constraints, with probability at least 1− δ, regret is
O
(
md
b log(Td )

√
T log(δ−1)

)
.
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Interestingly, we can interpret each of the m coordinates as
an independent safety feature, all of which must adhere to
safety. Consequently, |f̊(a)[i]| denotes how unsafe action a
is on safety feature i, and the constraint is that it cannot ex-
ceed b. In this scenario, suppose the safety feedback space is
Z = [m] and let the safety feedback function psignal(f̊(a))

be given by: P (z = i | a) = exp(|f̊(a)[i]|)∑
j∈[m] exp(|f̊(a)[j]|)

as per

the Boltzmann distribution on |f̊(a)[1]| . . . |f̊(a)[j]|. This
is a natural form of feedback known as the Bradley-Luce-
Shepherd rule ((Christiano et al., 2017), (Bradley & Terry,
1952)) that outputs which constraint is most likely to be
violated - when given m options of varying magnitudes,
human-generated feedback has been shown to follow such a
distribution ((Ghosal et al., 2023)). In this setting, we can
use the logistic regression oracle w.r.t F as OracleOR. When
learning linear predictors, (Foster et al., 2018b) provide an
efficient algorithm with RegOR ≤ d log T .

5.4.1. POLYTOPIC CONSTRAINTS WITH SCALAR
FEEDBACK

Suppose the safety function class is polytopic: FPoly =
{(a, x) 7→ Fa− b|F ∈ Rd×m}

Furthermore, suppose the unknown constraint is
‖f̊(a)‖∞ ≤ 0 ∈ R, for some f̊ ∈ FPoly. In this
setting, MLin as defined in Lemma 5.6 has bounded κ∗ for
FPoly:

Lemma 5.11. Suppose Assumption 5.4 holds. Then,
κ∗(FPoly,MLin) ≤ D`Da

b .
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A. Proofs from Section 3: Setup
Definition A.1. A function Φ : [−1, 1]→ R is λ-strongly convex if for all z, z′ ∈ [−1, 1], it satisfies

λ

2
(z′ − z)2 ≤ Φ(z′)− Φ(z) + φ(z)(z − z′)s

where φ(·) is the derivative of Φ.

The following formulation of link functions is standard in the literature (Sekhari et al., 2023a)

Definition A.2. For a link function φ that is the derivative of a λ-strongly convex function Φ, we define the associated loss:

`φ(z, z′) := Φ(z)− z(z′ + 1)

2

Assumption A.3 (Online Regression Oracle, Regret Version). The algorithm OracleOR guarantees that for any (possibly
adversarially chosen) sequence {at, xt}Tt=1 generates predictions {ẑt}Tt=1 satisfying:

T∑
t=1

`φ(ẑt, zt)− inf
f∈F

T∑
t=1

`φ(f(at, xt), zt) ≤ RegφOR(T,F)

where zt ∼ φ(f∗(at, xt)).

The following lemma is adapted from (Sekhari et al., 2023a), Lemma 9 and related to (Agarwal, 2013), Lemma 2

Lemma A.4. Suppose that zt is generated with a link function φ that is λ-strongly convex. Suppose that the regression
oracle satisfies assumption A.3. Then for any δ ∈ (0, 1) and T ≥ 3, with probability at least 1− δ, the regression oracle
satisfies assumption 3.1 with:

RegOR(T, δ,F) ≤ 4

λ
RegφOR(T,F) +

16 + 24λ

λ2
log
(
4δ−1 log(T )

)
.

Proof. The proof is an application of (Sekhari et al., 2023a) Lemma 9.

Proposition (Proposition 3.3 restated). There exists an algorithm satisfying Assumption 3.2 with

RegOL(T, δ,Π) ≤ 2 Radseq
`◦Π(T )

where Radseq
`◦Π(T ) is the sequential Rademacher complexity of the loss class, defined as:

Radseq
`◦Π(T ) := sup

y,x
Eε

[
sup
π∈Π

T∑
t=1

εt` (π(xt(ε1:t−1)),xt(ε1:t−1),yt(ε1:t−1))

]

where in the above supremum over y and x are taken over all mappings of the form y :
⋃T−1
t=0 {±1}t 7→ Y and x :⋃T−1

t=0 {±1}t 7→ X respectively.

Proof. We show that expected regret is bounded by 2Radseq
`◦Π(T ) through a minimax analysis with sequential sym-

metrization techniques that are now standard from (Rakhlin et al., 2010). We use the notation 〈Operatort〉
T
t=1 [A] to

denote Operator1{Operator2{. . .OperatorT {A} . . .}}. Furthermore, we denote the set of safe policies in hindsight as
ΠT := {π ∈ Π : ∀t, π(xt) ∈ At}. We view our online learning setting as a repeated game between adversary and learner
where on each round t adversary picks a context and a set At learner picks a (randomized) action from this set and finally
adversary picks yt for that round. The value of this game can we written as:

ValT =

〈
sup
xt,At

inf
pt∈Ω(At)

sup
yt∈Y

Eat∼pt
〉T
t=1

[
T∑
t=1

`(at, xt, yt)− min
π∈ΠT

T∑
t=1

`(π(xt), xt, yt)

]

=

〈
sup
xt,At

sup
qt∈Ω(Y)

inf
at∈At

Eyt∼qt

〉T
t=1

[
T∑
t=1

`(at, xt, yt)− min
π∈ΠT

T∑
t=1

`(π(xt), xt, yt)

]

12
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=

〈
sup
xt,At

sup
qt∈Ω(Y)

Eyt∼qt

〉T
t=1

[
T∑
t=1

inf
at∈At

Eyt∼qt [`(at, xt, yt)]− min
π∈ΠT

T∑
t=1

`(π(xt), xt, yt)

]

≤

〈
sup
xt,At

sup
qt∈Ω(Y)

Eyt∼qt

〉T
t=1

[
max
π∈ΠT

{
T∑
t=1

Eyt∼qt [`(π(xt), xt, yt)]− `(π(xt), xt, yt)

}]

≤

〈
sup
xt,At

sup
qt∈Ω(Y)

Eyt,y′t∼qt

〉T
t=1

[
max
π∈ΠT

{
T∑
t=1

(`(π(xt), xt, y
′
t)− `(π(xt), xt, yt))

}]

=

〈
sup
xt,At

sup
qt∈Ω(Y)

Eyt,y′t∼qtEεt

〉T
t=1

[
max
π∈ΠT

{
T∑
t=1

εt (`(π(xt), xt, y
′
t)− `(π(xt), xt, yt))

}]

≤

〈
sup
xt,At

sup
yt,y′t∈Y

Eεt

〉T
t=1

[
max
π∈ΠT

{
T∑
t=1

εt (`(π(xt), xt, y
′
t)− `(π(xt), xt, yt))

}]

≤

〈
sup
xt,At

sup
yt,y′t∈Y

Eεt

〉T
t=1

[
max
π∈Π

{
T∑
t=1

εt (`(π(xt), xt, y
′
t)− `(π(xt), xt, yt))

}]

where first line is obtained using repeated application of minimax theorem (which holds with minor assumptions on action
sets and context set etc. that can be found in (Rakhlin et al., 2010)). Second line is a rearrangement. The next line is
by noting that each loss-minimizing action at ∈ At has smaller losses than π(xt) ∈ At. The rest of the steps above are
standard sequential symmetrization arguments. The key step is the last inequality above where we use the fact that ΠT ⊆ Π.
But once this is done, the inner terms are devoid of At’s and so we drop them in the supremums and this results in two times
the sequential Rademacher complexity of the loss class yielding:

ValT ≤ 2 Radseq
`◦Π(T )

Since the minmax value ValT is bounded, there exists a regret minimizing algorithm with required bound and this concludes
the proof.

B. Proofs from Section 4: Main Results
Proposition (Proposition 4.1 restated). Suppose f∗ ∈ G ⊆ F . Then:

P (G, x) ⊆ {a ∈ A : f?(a, x) ≤ 0} ⊆ O(G, x)

Proof. First suppose a is such that f∗(a, xt) ≤ 0. Since f∗ ∈ G, a ∈ O(G, x). Hence, {a ∈ A : f?(a, xt) ≤ 0} ⊆
O(G, xt). Now suppose a ∈ P (F , xt). Then, ∀f ∈ G, f(a, xt) ≤ 0. Since f∗ ∈ G, f∗(a, xt) ≤ 0, and hence
P (G, xt) ⊆ {a ∈ A : f?(a, xt) ≤ 0}

Theorem (Theorem 4.2 restated). For any δ ∈ (0, 1) there exists an algorithm that with probability at least 1− 3δ, produces
a sequence of actions {at}Tt=1 that are safe and enjoys the following bound on regret:

RegretT ≤ inf
κ>0

{
T∑
t=1

Vκ(p̃t,Ft, xt) + κ inf
α

{
αT + 20

α RegOR(T, δ,F0)E(F0, α)
}}

+ RegOL(T, δ,Π) +
√

2T log( 1
δ )

Moreover, there exists a problem setting such that if there exists κ > 0 satisfying

lim
T→∞

1

T

T∑
t=1

Vκ(p̃t,Ft, x) > 0,

then, safe learning is impossible, i.e. no algorithm that is safe on every round (with high probability) can ensure that
RegretT = o(T ).

Proof. The first statement follows by applying Theorem 4.3 using the optimal mapping M = M∗ (defined in eq. 4). The
second statement follows from Theorem 4.4.
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B.1. Proofs of Upper Bounds

Lemma B.1. With probability at least 1− δ, for all t ∈ [T ], f∗ ∈ Ft.

Proof. This follows immediately from Assumption 3.1 which guarantees with probability at least 1− δ.

T∑
s=1

(f∗(as, xs)− ẑs)2 ≤ RegOR(T, δ,F0)

and hence for any t ∈ [T ],

t−1∑
s=1

(f∗(as, xs)− ẑs)2 ≤ RegOR(T, δ,F0)

which shows f∗ ∈ Ft.

Proposition B.2. Let {Ft}Tt=1 be the sequence of version spaces generated by Algorithm 1. For any δ ∈ (0, 1) with
probability at least (1− δ) we have for any t ∈ [T ]

P (Ft, xt) ⊆ {a ∈ A : f?(a, xt) ≤ 0} ⊆ O(Ft, xt)

Proof. By Lemma B.1, we have with probability at least 1 − δ that f∗ ∈ Ft simultaneously for all t ∈ [T ]. Applying
Proposition 4.1 immediately yields the result.

The following lemma bounds the number of times the width of the set Ft can exceed some threshold, and is a variant of
Proposition 3 of (Russo & Roy, 2013). It is slightly different as our Ft are constructed around the predictions produced by
OracleOR. We state it for completeness.

Lemma B.3. Let the sequence {Ft, at, ẑt}Tt=1 be generated by Algorithm 1. Then, for any sequence of adversarial contexts
{xt}Tt=1, and ε > 0, it holds that

T∑
t=1

1{∆Ft(at, xt) > ε} ≤
(

4RegOR(T, δ,F0)

ε2
+ 1

)
E(F0, ε)

Proof. First we claim that for t ∈ [T ] if ∆Ft(at, xt) ≥ ε, then (at, xt) must be ε-dependent on at most 4RegOR(T,δ,F0)
ε2 dis-

joint subsequences of (a1, x1) · · · (at−1, xt−1). Since ∆Ft(at, xt) > ε, there must exist two functions f, f ′ ∈ Ft satisfying
f(at, xt)−f ′(at, xt) > ε. By the definition of ε-dependence, if (at, xt) is ε-dependent on a sequence (ai1 , xi1) · · · (aiτ , xiτ )
of its predecessors, we must have

∑τ
j=1(f(aij , xij )− f ′(aij , xij ))2 > ε2. Therefore, if (at, xt) is ε-dependent on N such

subsequences it follows that
∑t−1
j=1(f(aj , xj)− f ′(aj , xj))2 > Nε2. Therefore:

Nε2 <

t−1∑
j=1

(f(aj , xj)− f ′(aj , xj))2

=

t−1∑
j=1

(f(aj , xj)− ẑj + ẑj − f ′(aj , xj))2

≤ 2

t−1∑
j=1

(f(aj , xj)− ẑj)2 + 2

t−1∑
j=1

(f ′(aj , xj)− ẑj)2

≤ 4RegOR(T, δ,F0)

where the second inequality follows from (a+ b)2 ≤ 2a2 + 2b2 and the third follows from f, f ′ ∈ Ft.

14
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Second, we claim that for any k ∈ [T ] and any sequence (a1, x1) · · · (ak, xk), there must be a j ≤ k such that (aj , xj) is
ε-dependent on at least N = dk/E(F0, ε)− 1e disjoint subsequences of its predecessors. We will show an iterative process
of finding such an index j. Let S1 · · ·SN be N subsequences initialized as Si = {(ai, xi)} for i ∈ [N ]. For j ∈ [N + 1, k]
first check if (aj , xj) is ε-dependent of all Si, i ∈ [N ]. If it is, we have found the index j satisfying our condition. Otherwise,
pick a Si such that xj is ε-independent of Sj , and add xj to that Si. By the definition of eluder dimension, the maximum
size of each Si, i ∈ [N ] is E(F0, ε), and because N ∗ E(F0, ε) ≤ k − 1, the process will terminate.

Now, let (ai1 , xi1) · · · (aik , xik) be the subsequence such that for j ∈ [k], ∆Ft(aij , xij ) > ε. By the first claim, each
element of this subsequence is ε-dependent on at most 4RegOR(T,δ,F0)

ε2 disjoint subsequences. By the second claim, there is
some element that is ε-dependent on at least b(k− 1)/E(F0, ε)c disjoint subsequences. It follows that d(k/E(F0, ε)− 1e ≤
4RegOR(T,δ,F0)

ε2 , and hence k ≤
(

4RegOR(T,δ,F0)
ε2 + 1

)
E(F0, ε)

The following Lemma utilizes Lemma B.3 to upper bound the sum of ∆Ft . It is similar in spirit to Lemma 2 of (Russo &
Roy, 2013), but our analysis is different and captures a trade-off between T and RegOR(T, δ,F0)E(F0, ·).

Lemma B.4. Let the sequence {Ft, pt}Tt=1 be generated by Algorithm 1. Then, for any sequence of adversarial contexts
{xt}Tt=1,

T∑
t=1

E
at∼pt

[∆Ft(at, xt)] ≤ inf
α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}

Proof. For a run of Algorithm 1, let {at}Tt=1 be any sequence of actions drawn at ∼ pt for all t ∈ [T ]. Furthermore, to
simplify the notation, let us denote ∆t := ∆Ft(at, xt). Let us consider some arbitrary α > 0. Then, for this sequence of
actions and contexts,

T∑
t=1

∆Ft(at, xt) :=

T∑
t=1

∆t

(i)
=

∑
t:∆t≤α

∆t +

log(2/α)−1∑
i=0

 ∑
t:2iα<∆t≤2i+1α

∆t


≤ αT +

log(2/α)−1∑
i=0

 ∑
t:2iα<∆t≤2i+1α

2i+1α


(ii)

≤ αT +

log(2/α)−1∑
i=0

(
2i+1α

(
4RegOR(T, δ,F0)

22iα2
+ 1

)
E(F0, 2

iα)

)
(iii)

≤ αT +

log(2/α)−1∑
i=0

(
2i+1α

(
5RegOR(T, δ,F0)

22iα2

)
E(F0, 2

iα)

)

≤ αT +

log(2/α)−1∑
i=0

(
10RegOR(T, δ,F0)

2iα

)
E(F0, 2

iα)

(iv)

≤ αT + E(F , α)

∞∑
i=0

10RegOR(T, δ,F0)

2iα

(v)

≤ αT +
20RegOR(T, δ,F0)

α
E(F0, α)

In (i) we set the upper bound to the sum as log(2/α)− 1 since all functions f ∈ F map to [−1, 1], hence ∆t ≤ 2 so it is
enough to consider i : 2i+1α ≤ 2 and (ii) follows from Lemma B.3, (iii) follows from the fact that 1 ≤ RegOR(T,δ,F)

(2iα)2 for
i ∈ [log(2/α)− 1] if T > 1, (iv) follows from the fact that E(F , ·) is nonincreasing in its second argument, and (v) is an
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upper bound from the sum of an infinite series. Therefore, for any sequence {Ft, at, xt}Tt=1 generated by Algorithm 1 we
have

T∑
t=1

∆Ft(at, xt) ≤ αT +
20RegOR(T, δ,F0)

α
E(F0, α)

Now, since this holds for any sequence {Ft, at}Tt=1 generated by the algorithm and adversarial contexts {xt}Tt=1, it holds in
expectation over the algorithm’s draws.

Theorem (Theorem 4.2 restated). For any δ ∈ (0, 1) with probability at least 1− 3δ, Algorithm 1 when using mapping M
produces a sequence of actions {at}Tt=1 that are safe and enjoys the following bound on regret:

RegretT ≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t,Ft, xt) + κ inf

α

{
αT + 20

α RegOR(T, δ,F0)E(F0, α)
}}

+ RegOL(T, δ,Π) +
√

2T log( 1
δ )

where,

VM
κ (p̃t;Ft, xt) = sup

y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼M(p̃t;Ft,xt)
[∆Ft(at, xt)]

Furthermore, using κ∗ = κ∗(F ,M) := supF̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y
Ea∼M(p̃;F̂,x)[`(a,x,y)]−Eã∼p̃[`(ã,x,y)]

Ea∼M(p̃;F̂,x)[∆F̂ (a,x)]
:

RegretT ≤ κ∗ inf
α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

Proof. By Proposition B.2, with probability at least 1−δ, if we play actions from Pt, we can guarantee the all the constraints
are satisfied. On the other hand, to bound the regret of our algorithm w.r.t. the optimal action in hindsight that also satisfies
constraint on every round, note that

RegretT :=

T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t

f?(π(xt),xt)≤0

T∑
t=1

`(π(xt), xt, yt)

(i)

≤
T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t
π(xt)∈Ot

T∑
t=1

`(a, xt, yt)

≤
T∑
t=1

(
`(at, xt, yt)− E

ãt∼pt
[`(ãt, xt, yt)]

)
+

T∑
t=1

E
ãt∼pt

[`(ãt, xt, yt)]− min
π∈Π:∀t
π(xt)∈Ot

`(a, xt, yt)

≤
T∑
t=1

(
`(at, xt, yt)− E

ãt∼pt
[`(ãt, xt, yt)]

)
+ RegOL(T, δ,Π)

(ii)

≤
T∑
t=1

(
E

at∼pt
[`(at, xt, yt)]− E

ãt∼p̃t
[`(ãt, xt, yt)]

)
+ RegOL(T, δ,Π) +

√
T log(δ−1)

≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t;Pt,Ft, xt) + κ

T∑
t=1

E
at∼pt

[∆Ft(at, xt)]

}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

where (i) follows from the fact that by Proposition B.2, a policy π satisfying ∀t, f?(π(xt), xt) ≤ 0 satisfies ∀t, π(xt) ∈ Ot,
(ii) is an application of Hoeffding Azuma to bound

∑T
t=1 `(at, xt, yt)−

∑T
t=1 Eat∼pt [`(at, xt, yt)] and:

VM
κ (p̃t;Ft, xt) = sup

y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼M(p̃t;Ft,xt)
[∆Ft(at, xt)]
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by Lemma B.4 we can bound the
∑T
t=1 κEat∼pt [∆Ft(at, xt)] term, hence,

RegretT ≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t;Ft, xt) + κ inf

α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

This concludes the first bound - which holds with probability at least 1 − 3δ as we take a union bound over the online
regression oracle guarantee, the online learning oracle guarantee, and the application of Hoeffding Azuma. To conclude the
second part of the statement, we need to show that for

κ∗ = κ∗(F ,M) := sup
F̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y

Ea∼M(p̃;F̂,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼M(p̃;F̂,x)

[
∆F̂ (a, x)

]
we have that VM

κ∗ (p̃t;Ft, xt) ≤ 0. To this end, note that

VM
κ∗ (p̃t;Ft, xt)

= sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ∗ E

at∼M(p̃t;Ft,xt)
[∆Ft(at, xt)]

= sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
−

(
sup

F̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y

Ea∼M(p̃;F̂,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼M(p̃;F̂,x)

[
∆F̂ (a, x)

] )
E

at∼M(p̃t;Ft,xt)
[∆Ft(at, xt)]

≤ sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}

−
(

supy∈Y{Eat∼M(p̃t;Ft,xt)[`(at,xt,y)]−Eãt∼p̃t [`(ãt,xt,y)]}
Eat∼M(p̃t;Ft,xt)[∆Ft (at,xt)]

)
E

at∼M(p̃t;Pt,Ft,xt)
[∆Ft(at, xt)]

= 0

B.2. Proofs of Lower Bounds

We formalize the notion of P ∗ ⊃ A0 with the properties described in subsection 4.3 with the following lemma, and show its
existence.

Lemma B.5. Assume that we have a fixed loss function ` : A 7→ R such that for any a ∈ A satisfying f?(a) > 0,
`(a) = mina∗∈A:f?(a∗)≤0 `(a

∗). Furthermore, assume that the eluder dimension of F at any scale ε > 0, (with input space
A) is bounded. If for some c∗ > 0, κ ≥ 0, any regret minimizing oracles OracleOL and OracleOR (assuming regret in both
cases is o(T )) limT→∞

1
T

∑T
t=1 Vκ(p̃t,Ft) ≥ c∗ then, there exists a set P ∗ ⊇ A0 with the following properties,

1. Set P ∗ satisfies constraints, i.e. ∀a ∈ P ∗, f?(a) ≤ 0

2. Define F∗ = {f : ∀a ∈ P ∗, f(a) = f?(a)}. For every action a ∈ A \ P ∗, ∃f ∈ F∗ such that f(a) > 0. That is, P ∗

cannot be expanded to a larger set guaranteed to satisfy constraint.

3. P ∗ is such that infa∈P∗ `(a)− infa∈A:f?(a)≤0 `(a) ≥ c?

Proof. First, since loss is fixed and using the property of the loss assumed, any online learning oracle that minimizes regret
would have to return distributions over actions p̃t’s such that limT

1
T

∑T
t=1 Eãt∼p̃t [`(ãt)] = infa∈A `(a). We have from the

premise that limT→∞
1
T

∑T
t=1 Vκ(p̃t,Ft) ≥ c∗ and by the definition of Vκ(·) = infM VM

κ (·), every mapping M satisfies
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limT→∞
1
T

∑T
t=1 VM

κ (p̃t;Ft) ≥ c∗. Hence this means that for any mapping giving us distributions pt, we have that

lim
T→∞

1

T

T∑
t=1

E
at∼pt

[`(at)]− inf
a∈A:f?(a)≤0

`(a) ≥ c∗

since Ea∼pt [∆Ft(at)] ≥ 0. Further, note that since the loss is fixed, if at some point we are able to find distribution
pt such that Eat∼pt [`(at)] − infa∈A:f?(a) `(a) < c∗ then by returning this distribution we would violate the premise
that limT→∞

1
T

∑T
t=1 Vκ(p̃t,Ft) ≥ c∗. Hence we have that for any mapping, and any t, Eat∼M(p̃t;Pt,Ft) [`(at)] −

infa∈A:f?(a)≤0 `(a) ≥ c∗. Since this holds for all mappings, let us consider the following mapping

M(p̃t;Pt,Ft) =

{
δ
(
argmina∈Pt `(a)

)
if mina∈Pt `(a) < infa∈A:f?(a)≤0 `(a) + c∗

δ
(
argmaxa∈Pt ∆Ft(a)

)
otherwise

where δ(·) is the point mass distribution. In the above we assume the argmin and argmax exists otherwise we can
do a limiting argument. The above mapping is a valid one since loss is fixed and given. Now note that since we
already showed that any valid mapping satisfies Eat∼M(p̃t;Pt,Ft) [`(at)] − infa∈A:f?(a)≤0 `(a) ≥ c∗ we can conclude
mina∈Pt `(a) ≥ infa∈A:f?(a)≤0 `(a) + c∗. Now define the set

P ∗ =
⋃
t≥1

Pt

Since Pt’s are all guaranteed to be safe, we have that P ∗ is also safe, satisfying property 1. Second, since for every
t, mina∈Pt `(a) ≥ infa∈A:f?(a)≤0 `(a) + c∗ we have that infa∈P∗ `(a) − infa∈A:f?(a)≤0 `(a) ≥ c?. Thus, P ∗ satisfies
property 3 as well. Finally, to prove property 2, we use the assumption that eluder dimension for any scale ε is finite and
that the regression oracle ensures that regret is sub-linear. Specifically, assume that online regression oracle guarantees an
anytime regret guarantee of φδ(t) with probability 1− δ for any t rounds. In this case, using Lemma B.3 we have that with
probability at least 1− δ, for all T ≥ 1 and all ε > 0,

T∑
t=1

1{∆Ft(at) > ε} ≤
(

4φδ(T )

ε2
+ 1

)
E(F , ε)

for at’s produced by the above mapping. However, since we are picking at’s that maximize ∆Ft(at) on every round and
because the Pt’s are nested, the indicators are in descending order. Hence, with probability at least 1− δ, for any ε ∈ (0, 1],
let Tε be the smallest integer such that

Tε
φδ(Tε)

>
5E(F , ε)

ε2
,

This is where the condition that regret bound φδ(Tε) is o(Tε) is needed so that the above yields a valid lower bound on Tε.
We have that for any t, for every action a ∈ Pt, Ft+Tε is such that supf∈Ft+Tε |f(a) − f?(a)| ≤ ε. The reason we take
Ft+Tε is because t is the first round in which actions in Pt not in earlier sets come into consideration and so we need Tε
more rounds to ensure that for all actions in this set, estimation error is smaller than ε. Thus if we consider the set

⋂
t≥1 Ft,

this set corresponds to the set F∗ = {f : ∀a ∈ P ∗, f(a) = f?(a)}. Further, by definition of Pt’s we have that if there
were some action a such that ∀f ∈ F∗ f(a) ≤ 0, then this action would be contained in P ∗. Thus we conclude that every
action not in P ∗ is such that it evaluates to a positive number for some function f ∈ F∗. Thus we have shown property 2 as
well.

Once we have the existence of P ∗ ⊃ A0 with the properties described in subsection 4.3 we show that learning is impossible.

Proposition B.6. If there exists a set P ∗ that has the following properties,

1. Set P ∗ satisfies constraints, i.e. ∀a ∈ P ∗, f?(a) ≤ 0

2. Define F∗ = {f : ∀a ∈ P ∗, f(a) = f?(a)}. For every action a ∈ A \ P ∗, ∃f ∈ F∗ such that f(a) > 0. That is, P ∗

cannot be expanded to a larger set guaranteed to satisfy constraint.

3. P ∗ is such that infa∈P∗ `(a)− infa∈A:f?(a)≤0 `(a) ≥ c?
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Then, safe learning is impossible, and any learning algorithm that is guaranteed to satisfy constraints on every round (with
high probability) has a regret lower bounded by RegretT ≥ Tc∗.

Proof. By property 1, we are guaranteed that P ∗ is safe so we can start any algorithm with initial safe set A0 = P ∗. Since
any safe algorithm must play actions that it can guarantee are safe with high probability, initially any algorithm initialized
with P ∗ has to play from within this set till it can verify some action outside of this set is safe. However by property 3, any
action within P ∗ is at least c∗ suboptimal. Any feedback zt we obtain in the process of playing actions at ∈ P ∗ would
certainly help us evaluate f?(at) more accurately. However, property 2 implies that even if we were given the values of f?

for every action in the set P ∗, we still would not be able to find another action outside of this set that we can conclude is
safe unless we make further assumptions on f?. This is because, each probe/feedback by playing action at yields value of
f?(at) + ξt. Since the noise ξt is a standard normal variable, at best we might be able to learn only f?(a) for every a ∈ P ∗.
However, even if we had this information, the best we could conclude is that f? is one of the functions in F∗. However,
property 2 ensures that for every a ∈ A \ P ∗, there is a function in f ∈ F∗ that matches the value of f? on on every action
in P ∗ but has f(a) > 0. Since we have no information about which f ∈ F∗ is the true f?, no learning algorithm will be
able to safely try any action outside of P ∗ and so any safe learning algorithm will suffer a sub-optimality of at least c∗ on
every round and thus RegretT ≥ Tc∗

Theorem (Theorem 4.4 Restated). Suppose we are given some A0, X = {}, Y = {}, f? ∈ F and losses ` : A 7→ R are
fixed such that for any a ∈ A satisfying f?(a) > 0, `(a) = mina∗∈A:f?(a∗)≤0 `(a

∗). Furthermore suppose ∀ε, E(F , ε) is
finite. Then, if there exists κ > 0 such that

lim
T→∞

1

T

T∑
t=1

Vκ(p̃t,Ft) > 0,

then, safe learning is impossible, i.e. no algorithm that is safe on every round (with high probability) can ensure that
RegretT = o(T ).

Proof. Combining Lemma B.5 and Proposition B.6 trivially yields the statement of the theorem.

B.3. Proofs of Per-Timestep Constraints vs Long Term Constraints

Lemma (Lemma 4.5 restated). For any δ ∈ (0, 1), there exists an algorithm that with probability at least 1− 2δ produces a
sequence of actions {at}Tt=1 that satisfies:

RegretT ≤ RegOL(T, δ,Π) and
T∑
t=1

f∗(at, xt) ≤ inf
α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}

We provide a modified version of Algorithm 1, stated in Algorithm 2, where we do not maintain an pessimistic set, and
directly play the output of the OracleOL.We claim that Algorithm 2 satisfies the guarantee from Lemma 4.5.

Algorithm 2 Online Learning with Long Term Constraints

1: Input: OracleOL, OracleOR, A0(·), δ ∈ (0, 1)
2: Initialize F0 = {f ∈ F : ∀x ∈ X ,∀a ∈ A0(x), f(a, x) ≤ 0}
3: for t = 1, · · · , T do
4: Receive context xt
5: Ft = {f ∈ F0 :

∑t−1
s=1(f(as, xs)− ẑs)2 ≤ RegOR(T, δ,F0)}

6: Ot = O(Ft, xt) // Optimistic set; cf. eq (2)
7: pt = OracleOLt(xt, Ot)
8: Draw at ∼ pt
9: Receivenoisy feedback zt

10: Update ẑt = OracleORt(at, xt, zt)
11: Play at and receive yt
12: end for
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Proof. By Lemma B.1, we know that with probability at least 1− δ, for every T simultaneously, f∗ ∈ Ft. Now for a given
timestep t ∈ [T ] consider the action played by the algorithm at. Because at was generated by OracleOL, at ∈ Ot. For this
action, let ft := argminf∈F̂t f(at, xt). Then

ft(at, xt) ≤ 0

ft(at, xt)− ft(at, xt) + f∗(at, xt) ≤ ∆Ft(at, xt)

f∗(at, xt) ≤ ∆Ft(at, xt)

Summing up all terms, we get

T∑
t=1

f∗(at, xt) ≤
T∑
t=1

∆Ft(at, xt)

Now, using Lemma B.4 with each pt defined as point distributions putting all its mass on at, we can further bound the above
as:

T∑
t=1

f∗(at, xt) ≤ inf
α

{
αT +

20RegOR(T, δ,F0)E(F0, α)

α

}
Finally, since we are just playing the output of our oracle OracleOL, the regret bound is simply

RegretT :=

T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t

f?(π(xt),xt)≤0

T∑
t=1

`(π(xt), xt, yt)

≤
T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t
π(xt)∈Ot

T∑
t=1

`(a, xt, yt)

≤ RegOL(T, δ,Π)

where the second inequality follows from the fact that by Proposition B.2, a policy π satisfying ∀t, f?(π(xt), xt) ≤ 0
satisfies ∀t, π(xt) ∈ Ot. The theorem statement holds with probability at least 1− 2δ as we apply a union bound over the
online regression oracle guarantee and the online learning oracle guarantee

C. Proofs from Section 5: Examples
C.1. Proofs for Finite Action Spaces

Procedure for selecting adaptive κt : Let us define κ∗ : κ∗(FFAS,MFAS) (defined in Theorem 4.3 statement). κ∗ need to
be known - but we will show we can attain similar as or potentially much better results than κ∗ nonetheless. For timestep t,
given context xt and Ft, Pt, p̃t generated by the algorithm, let Vt(κ) be the value of the saddle-point optimization in eq
5, which is monotonically decreasing in κ. Observe that since infα

{
αT +

20RegOR(T,δ,F0)E(F0,α)
α

}
≥
√
T , κ ranges from

(0,
√
T ] in order for the regret bounds to be o(T ). Therefore, starting with κt =

√
T , repeatedly halve κt while Vt(κt) < 0.

Set κt to be the last κt satisfying Vt(κt) < 0, and play pt as the minimizer of Vt(κt). By definition, κ∗ satisfies Vt(κ∗) < 0,
and therefore at worst κt < 2κ∗ while simultaneously κt may be be much smaller as we are adapting to xt,Ft, Pt, p̃t.
Consequently, our final regret bound would depend on maxt κt ≤ 2κ∗. Thus we can easily obtain the result competing
with κ∗∗ corresponding to the best mapping. As a further note, we can relax the condition Vt(κt) < 0 by Vt(κt) < T−p for
some appropriate p to get more general rates.
Lemma (Lemma 5.2 restated). Suppose Assumption 5.1 holds. Then, κ∗(FFAS,MFAS) ≤ 2

∆0
.

Proof. First suppose Pt 6= Ot. Then we have MFAS(p̃;F , x) = ea∆(F,x). Let F∗ be the maximizer of κ∗(FFAS,MFAS).
Then:

κ∗(FFAS,MFAS) = sup
x∈X ,p̃∈∆(O(F∗,x)),y∈Y

Ea∼MFAS(p̃;F∗,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼MFAS(p̃;F∗,x) [∆F∗(a, x)]
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= sup
x∈X ,p̃∈∆(O(F∗,x)),`∈[0,1]K

〈`, ea∆(F∗,x) − p̃〉
∆F∗(a∆(F∗, x), x)

≤ sup
x∈X ,p̃∈∆(O(F∗,x)),`∈[0,1]K

‖`‖∞‖ea∆(F∗,x) − p̃‖1
∆0

≤ 2

∆0

where the first inequality follows from the fact that given a context x, a∆(F∗, x) maximizes ∆F∗(·, x), and hence by
Assumption 5.1 ∆F∗(a

∆(F∗, x), x) ≥ ∆0.

Now if Pt = Ot, MFAS(p̃t, Pt,Ft) = p̃t. Clearly, by definition, κ∗(FFAS,MFAS) = 0.

C.2. Proofs for Linear Constraints

Lemma (Lemma 5.6 restated). Suppose Assumption 5.4 holds. Then, κ∗(FLin,MLin) ≤ D`Da
b .

We first introduce a lemma that lower bounds γ(ã;F).

Lemma C.1. Let F be an arbitrary subset of FLin and consider some ã ∈ O(F). γ(ã;F) :=
max {γ ∈ [0, 1] : γã ∈ P (F)} is lower bounded as:

γ(ã;F) ≥ b

b+ ∆F (ã)

Proof. Recall that F ⊆ FLin := {(a, x) 7→ 〈f, a〉 − b|f ∈ Rd}. Define f := argminf∈F f(ã), and let f be some arbitrary
function in F . From the definition of ã ∈ O(F), we have f(ã) ≤ 0. Then:

f(ã) ≤ 0

f(ã) + b ≤ b
f(ã) + f(ã)− f(ã) + b ≤ b+ ∆F (ã)

f(ã) + b ≤ b+ ∆F (ã)

where the third inequality follows from the definition of ∆F (·). Let α = b
b+∆F (ã) . Notice that f(ã) + b is a linear function

〈w, ã〉 for some w ∈ Rd. It follows that α(f(ã) + b) = α〈w, ã〉 = 〈w,αã〉 = f(αã) + b. Using this fact,

f(ã) + b ≤ b+ ∆F (ã)

α
(
f(ã) + b

)
≤ α(b+ ∆F (ã))

f(αã) + b ≤ b
f(αã) ≤ 0

Since f was an arbitrary function in F , this shows that αã ∈ P (F). Since we defined γ(ã;F) =
max {γ ∈ [0, 1] : γã ∈ P (F)}

γ(ã;F) ≥ α =
b

b+ ∆F (ã)

We now prove Lemma 5.6.
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Proof. Let F∗ be the maximizer of κ∗(FLin,MLin). Using the definition of κ∗,

κ∗(FLin,MLin) = sup
x∈X ,p̃∈∆(O(F∗,x)),y∈Y

Ea∼MLin(p̃;F∗,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼MLin(p̃;F∗,x) [∆F∗(a, x)]

= sup
ã∈O(F∗),y∈Y

`(MLin(ã;F∗), y)− `(ã, y)

∆F∗(MLin(ã;F∗))

= sup
ã∈O(F∗),y∈Y

`(γ(ã;F∗)ã, y)− `(ã, y)

∆F∗(γ(ã;F∗)ã)

= sup
ã∈O(F∗),y∈Y

D`‖γ(ã;F∗)ã− ã‖
∆F∗(γ(ã;F∗)ã)

= sup
ã∈O(F∗),y∈Y

D`Da(1− γ(ã;F∗))
γ(ã;F∗)∆F∗(ã)

Now Lemma C.1 implies

1− γ(ã;F∗)
γ(ã;F∗)

≤
(

1− b

b+ ∆F∗(ã)

)
b+ ∆F∗(ã)

b
=

(
∆F∗(ã)

b+ ∆F∗(ã)

)
b+ ∆F∗(ã)

b
=

∆F∗(ã)

b

and hence

κ∗(FLin,MLin) ≤ D`Da

b

C.2.1. PROOF OF LEMMA 5.7

We present a constructive online learning oracle OracleOL for the case of linear cost functions. Recall that OracleOL must
satisfy Assumption 3.2 restated below:
Assumption (Online Learning Oracle). For any sequence of adversarially chosen sets {At}Tt=1 and any δ ∈ (0, 1) with
probability at least 1− δ, the algorithm OracleOL produces a sequence of distributions {pt}Tt=1 satisfying pt ∈ Ω(At) for
all t ∈ [T ] with expected regret bounded as:

T∑
t=1

E
at∼pt

[`(at, xt, yt)]− min
a∈∩Tt=1At

T∑
t=1

`(a, xt, yt) ≤ RegOL(T, δ,Π)

Algorithm 3 is stated below, and it is a projected online gradient descent based algorithm. Let the losses encountered at
timesteps t ∈ [T ] be denoted by `(at, ·, yt) = 〈`t, at〉.

Algorithm 3 OracleOL for Linear Losses

1: Input: A, Da, D`, δ ∈ (0, 1), η
2: for timesteps t = 1, · · · , T do
3: Receive At = Ot
4: āt ← ΠConv(At) (āt−1 − η`t−1)

5: Decompose āt =
∑d+1
i=1 pt,iat,i, ∀i, at,i ∈ At

6: Sample ãt ∼ pt
7: Receive∇t = `t
8: end for

We briefly describe the the steps in Algorithm 3.
Convex Hulls of At (line 4)
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Because the action sets At = Ot are sublevel sets of a minimum of affine functions, they are not necessarily convex, making
them incompatible with projection based online learning algorithms. In order to address this, we take the convex hull of At,
Conv(At), as our projection set.
Projected Online Gradient Descent (line 4)
Our algorithm then performs projected online gradient descent in sets Conv(At), generating a sequence of vectors
{ā1 · · · āT } produced by āt = ΠConv(At) (āt−1 − η`t−1). We note that while we use projected online gradient descent,
because the vectors {ā1 · · · āT } are maintained and updated independently, we could alternatively use a projected variant of
any other online convex optimization algorithm that guarantees low regret instead.
Sampling a Point in At (line 5)
Due to Carathéodory’s theorem, we know that can write any āt ∈ Conv(At) as a linear combination of at most d+ 1 vectors
in At, āt =

∑d+1
i=1 pt,iat,i,∀i, at,i ∈ At. In line 4, we perform this decomposition, and in line 5, we sample the vector ãt

according to this distribution pt. Notably, the point ãt satisfies E[ãt] = āt.

Lemma (Lemma 5.7 restated). Suppose Assumption 5.4 holds. Then Algorithm 3 satisfies Assumption 3.2 with:

RegOL(T, δ,Π) ≤ 4D`Da

√
T log(2/δ)

Proof. At every timestep t ∈ [T ], Algorithm 3 receives a set At = Ot, and produces a āt by:

āt ← ΠConv(At) (āt−1 − η`t−1)

then, it decomposes each āt as:

āt =

d+1∑
i=1

pt,iat,i∀i, at,i ∈ At

and then ãt is produced by sampling: ãt ∼ pt. We analyze the regret of Algorithm 3 by decomposing it into two terms:

RegOL(T, δ,Π) =

T∑
t=1

〈`t, ãt〉 − min
a∈

⋂T
t=1At

〈`t, a〉

=

T∑
t=1

〈`t, ãt〉 − 〈`t, āt〉︸ ︷︷ ︸
Term I

+

T∑
t=1

〈`t, āt〉 − min
a∈

⋂T
t=1 ãt

〈`t, a〉︸ ︷︷ ︸
Term II

Bounding Term I
We show that Term I is a difference between a bounded random variable and its expectation, and use Hoeffding’s inequality
to bound it. Let ST :=

∑T
t=1〈`t, ãt〉. Then:

E[ST ] = E[

T∑
t=1

〈`t, ãt〉] =

T∑
t=1

〈`t,E[ãt]〉 =

T∑
t=1

〈`t, āt〉

where the second equality follows by linearity of expectation. Note that each summand in ST satisfies |〈`t, ãt〉| ≤
‖`t‖‖ãt‖ ≤ D`Da. Hence, by Hoeffding’s inequality, with probability at least 1− δ,

Term I =

T∑
t=1

〈`t, ãt〉 − 〈`t, āt〉 ≤ |ST − E[ST ]| ≤
√

2TD2
`D

2
a log(2/δ) (6)

Bounding Term II
Term II captures the performance of the online gradient descent portion, line 4, of Algorithm 3. A difference is that the
projection set is time-varying - yet this does not pose a problem for us since we only need to guarantee performance w.r.t. a
a∗ in the intersection of all the sets. Let a∗ := argmina∈∩Tt=1At〈`t, a〉. with this,

Term II =

T∑
t=1

〈`t, āt〉 − min
a∈

⋂T
t=1 ãt

〈`t, a〉 =

T∑
t=1

〈`t, āt − a∗〉
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Therefore, it is sufficient to bound the terms 〈`t, āt − a∗〉. For any timestep t, we have:

‖āt+1 − a∗‖22 = ‖ΠAt (āt − η`t)− a∗‖22
≤ ‖āt − η`t − a∗‖22
= ‖āt − a∗‖22 + η2 ‖`t‖22 − 2η 〈`t, āt − a∗〉

where the inequality follows from the fact that a∗ ∈ ∩Tt=1At ⊆ At, so projection to At only decreases the distance.
Rearranging,

〈`t, āt − a∗〉 ≤
1

2η

(
‖āt − a∗‖22 − ‖āt+1 − a∗‖22

)
+
η

2
‖`t‖22

Summing up the terms t ∈ [T ], we get:

T∑
t=1

〈`t, āt − a∗〉 ≤
1

2η

T∑
t=1

(
‖āt − a∗‖22 − ‖āt+1 − a∗‖22

)
+
η

2

T∑
t=1

‖`t‖22

=
1

2η
(‖ā1 − a∗‖22 − ‖āT+1 − a∗‖22) +

η

2
TD2

`

≤ 4D2
a

2η
+
η

2
TD2

`

Setting η = 2Da
D`
√
T

, we get

Term II =

T∑
t=1

〈`t, āt − a∗〉 ≤ 2DaD`

√
T (7)

Combining the bounds from equations 6 and 7, we get

T∑
t=1

〈`t, ãt〉 − min
a∈

⋂T
t=1 at

〈`t, a〉 = Term I + Term II ≤ 4DaD`

√
T log(2/δ)

C.3. Proofs for Composing an Activation Function

Lemma (Lemma 5.10 restated). Let G be a function class with bounded κ∗(G,MG) for some mapping MG . Suppose
assumption 5.4 holds. Then κ∗(σ(G),MG) ≤ κ∗(G,MG)

c .

Proof. For any set F ⊆ σ(G) let GF be the set for which F = σ(GF ). Since σ(0) = 0 and σ is non decreasing, for
any x ∈ X we have P (F , x) = P (GF , x) and O(F , x) = O(GF , x). Given a context x ∈ X , notice that MG is a
mapping from distributions over optimistic sets to pessimistic sets. It follows that MG is a valid mapping satisfying
MG(·;GF , x) = MG(·;F , x). Let F∗ be the maximizer of κ∗(σ(G),MG). Using the definition of κ∗,

κ∗(σ(G),MG) = sup
x∈X ,p̃∈∆(O(F∗,x)),y∈Y

Ea∼MG(p̃;F∗,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼MG(p̃;F∗,x) [∆F∗(a, x)]

= sup
x∈X ,ã∈O(F∗,x),y∈Y

`(MG(ã;F∗, x), x, y)− `(ã, x, y)

∆F∗(MG(ã;F∗, x))

= sup
x∈X ,ã∈O(F∗,x),y∈Y

`(MG(ã;GF∗ , x), x, y)− `(ã, x, y)

∆F∗(MG(ã;F∗, x))

= sup
x∈X ,ã∈O(F∗,x),y∈Y

∆GF∗ (MG(ã;GF∗ , x))

∆F∗(MG(ã;F∗, x))

`(MG(ã;GF∗ , x), x, y)− `(ã, x, y)

∆GF∗ (MG(ã;GF∗ , x))
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≤ κ∗(G,MG)
∆GF∗ (MG(ã;GF∗ , x))

∆F∗(MG(ã;F∗, x))

Now, for any a ∈ A, x ∈ X and F let g := argmaxg∈GF g(a, x) and g := argming∈GF g(a, x)

∆GF (a)

∆F (a)
=

g(a, x)− g(a, x)

σ(g(a, x))− σ(g(a, x))

≤
g(a, x)− g(a, x)

c(g(a, x)− g(a, x))

≤ 1

c

where the second inequality follows from σ(0) = 0 and for any x ∈ [−1, 1], σ′(x) is bounded below by c. Therefore
κ∗(σ(G),MG) ≤ κ∗(G,MG)

c

C.4. Proofs for Vector-Valued Constraints

Recall that given a context x ∈ X , an action a ∈ A is considered safe if ‖f̊(a, x)‖∞ ≤ 0 for unknown vector-valued
function f̊ ∈ F ⊆ A × X → [−1, 1]m. Notably, Proposition 3.2 continues hold - guaranteeing the existence of an
oracle OracleOL. We recall that for a vector-valued function class F ⊆ A × X → [−1, 1]m, we denote ∆∞F (a, x) :=
supf,f ′∈F ‖f(a, x) − f ′(a, x)‖∞, where ‖ · ‖∞ is the `∞ norm. We define the following vector valued analogues of
optimistic and pessimistic sets:

O(G, x) = {a ∈ A | ∃f ∈ G, ‖f(a, x)‖∞ ≤ 0}
P (G, x) = {a ∈ A | ∀f ∈ G, ‖f(a, x)‖∞ ≤ 0}

(8)

Algorithm 4 General Online Learning with Vector-Valued Constraints

1: Input: OracleOL, OracleOR, Initial safe set A0, δ ∈ (0, 1)
2: F i0 = {(a, x) 7→ f(a, x)[i] : f ∈ F : ∀a ∈ A0,∀x ∈ X , |f(a, x)[i]| ≤ 0}
3: F0 = F1

0 × . . .Fm0
4: for t = 1, . . . , T do
5: Receive context xt
6: Ft = {f ∈ F0 :

∑t−1
s=1(‖f(as, xs)− ẑs‖∞)2 ≤ RegOR(T, δ,F0)}

7: Ot = O(Ft, xt) , Pt = P (Ft, xt) // Optimistic/Pessimistic; cf. eq (8)
8: p̃t = OracleOLt(xt, Ot)
9: pt = M(p̃t;Ft, xt)

10: Draw at ∼ pt
11: Receive noisy feedback zt
12: Update ẑt = OracleORt(at, xt, zt)
13: Play at and receive yt
14: end for

The following assumption is a variant of Assumption 3.1 that applies to multiple constraints.

Assumption C.2 (Online Regression Oracle with Vector Valued Constraints). The algorithm OracleOR guarantees that
for any (possibly adversarially chosen) sequence {at, xt}Tt=1, for any δ ∈ (0, 1), with probability at least 1− δ, generates
predictions {ẑt}Tt=1 with each ẑt ∈ [−1, 1]m satisfying:

T∑
t=1

‖ẑt − f̊(at, xt)‖2∞ ≤ RegOR(T, δ,F)

The following formulation of link functions is standard in the literature (Sekhari et al., 2023b).
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Definition C.3. A function Φ : [−1, 1]m → R is λ-strongly convex if for all v, v′ ∈ [−1, 1]m, it satisfies

λ

2
‖v′ − v‖22 ≤ Φ(v′)− Φ(v) + 〈φ(v), v − v′〉

where φ(·) = ∇Φ(·).

Definition C.4. For a link function φ(·) = ∇Φ(·) for a λ-strongly convex function Φ, we define the associated loss:

`φ(v, z) := Φ(v)− v[z]

Assumption C.5 (Online Regression Oracle with Vector Valued Constraints, Regret Version). The algorithm OracleOR

guarantees that for any (possibly adversarially chosen) sequence {at, xt}Tt=1 generates predictions {ẑt}Tt=1 satisfying:

T∑
t=1

`φ(ẑt, zt)− inf
f̊∈F

T∑
t=1

`φ(f̊(at, xt), zt) ≤ RegφOR(T,F)

where zt ∼ φ(f̊(at, xt)).

The following lemma is adapted from (Sekhari et al., 2023b), Lemma 5 and related to (Agarwal, 2013), Lemma 2

Lemma C.6. Suppose that zt is generated with a link function φ that is the gradient of a λ-strongly convex function.
Suppose that the regression oracle satisfies assumption C.5. Then for any δ ∈ (0, 1) and T ≥ 3, with probability at least
1− δ, the regression oracle satisfies assumption C.2 with:

RegOR(T, δ,F) ≤ 4

λ
RegφOR(T,F) +

112

λ2
log
(
4δ−1 log(T )

)
.

Proof. The proof is an application of (Sekhari et al., 2023b) Lemma 5.

Lemma C.7 (Variant of Lemma B.1 for Vector Valued Constraints). With probability at least 1− δ, for all t ∈ [T ], f̊ ∈ Ft.

Proof. First, notice that as f̊ is safe for all actions inA0, f̊ ∈ F0. Assumption C.2 guarantees with probability at least 1− δ.

T∑
s=1

‖f̊(as, xs)− ẑs‖2∞ ≤ RegOR(T, δ,F0)

and hence for any t ∈ [T ],

t−1∑
s=1

‖f̊(as, xs)− ẑs‖2∞ ≤ RegOR(T, δ,F0)

which shows f̊ ∈ Ft.

Proposition C.8 (Variant of Proposition B.2 for Vector Valued Constraints). Let {Ft}Tt=1 be the sequence of version spaces
generated by Algorithm 4. For any δ ∈ (0, 1) with probability at least (1− δ) we have for any t ∈ [T ]

P (Ft, xt) ⊆ {a ∈ A : ‖f̊(a, xt)‖∞ ≤ 0} ⊆ O(Ft, xt)

Proof. By Lemma C.7, we have with probability at least 1−δ that f̊ ∈ Ft simultaneously for all t ∈ [T ]. Take some arbitrary
t ∈ [T ]. First suppose a is such that ‖f̊(a, xt)‖∞ ≤ 0. Since f̊ ∈ Ft, a ∈ O(Ft, x). Hence, {a ∈ A : ‖f̊(a, xt)‖ ≤ 0} ⊆
O(Ft, xt). Now suppose a ∈ P (F , xt). Then, ∀f ∈ Ft, ‖f(a, xt)‖∞ ≤ 0. Since f̊ ∈ Ft, ‖f̊(a, xt)‖∞ ≤ 0, and hence
P (Ft, xt) ⊆ {a ∈ A : ‖f̊(a, xt)‖∞ ≤ 0}

Lemma C.9 (Variant of Lemma B.3 for Vector Valued Constraints). Let the sequence {Ft, at, ẑt}Tt=1 be generated by
Algorithm 4. Then, for any sequence of adversarial contexts {xt}Tt=1, and ε > 0, it holds that

T∑
t=1

1
{

∆∞Ft(at, xt) > ε
}
≤

T∑
t=1

(
4RegOR(T, δ,F0)

ε2
+ 1

)∑
i∈[m]

E(F i0, ε)


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Proof. For all i ∈ [m], let F it := {f i ∈ F i0 |
∑t−1
s=1(f i(as, xs)− ẑis)2 ≤ RegOR(T, δ,F0)}We appeal directly to Lemma

B.3.
T∑
t=1

1
{

∆∞Ft(at, xt) > ε
}

=

T∑
t=1

1

{
max
i∈m

∆Fit (at, xt) > ε

}

≤
∑
i∈[m]

T∑
t=1

1

{
∆Fit (at, xt) > ε

}

≤
∑
i∈[m]

T∑
t=1

(
4RegOR(T, δ,F0)

ε2
+ 1

)
E(F i0, ε)

≤
T∑
t=1

(
4RegOR(T, δ,F0)

ε2
+ 1

)∑
i∈[m]

E(F i0, ε)



where the third line follows from Lemma B.3.

The following lemma is similar to Lemma B.4 - we state it for completeness.
Lemma C.10 (Variant of Lemma B.4 for Vector Valued Constraints). Let the sequence {Ft, pt}Tt=1 be generated by
Algorithm 4. Then, for any sequence of adversarial contexts {xt}Tt=1,

T∑
t=1

E
at∼pt

[
∆∞Ft(at, xt)

]
≤ inf

α

{
αT +

20RegOR(T, δ,F0)
∑m
i=1 E(F i0, α)

α

}

Proof. For a run of Algorithm 1, let {at}Tt=1 be any sequence of actions drawn at ∼ pt for all t ∈ [T ]. Furthermore, to
simplify the notation, let us denote ∆t := ∆Ft(at, xt). Let us consider some arbitrary α > 0. Then, for this sequence of
actions and contexts,

T∑
t=1

∆Ft(at, xt) :=

T∑
t=1

∆t

(i)
=

∑
t:∆t≤α

∆t +

log(2/α)−1∑
i=0

 ∑
t:2iα<∆t≤2i+1α

∆t


≤ αT +

log(2/α)−1∑
i=0

 ∑
t:2iα<∆t≤2i+1α

2i+1α


(ii)

≤ αT +

log(2/α)−1∑
i=0

2i+1α

(
4RegOR(T, δ,F0)

22iα2
+ 1

)∑
j∈[m]

E(F j0 , 2iα)


(iii)

≤ αT +

log(2/α)−1∑
i=0

2i+1α

(
5RegOR(T, δ,F0)

22iα2

)∑
j∈[m]

E(F j0 , 2iα)


≤ αT +

log(2/α)−1∑
i=0

(
10RegOR(T, δ,F0)

2iα

)∑
j∈[m]

E(F j0 , 2iα)


(iv)

≤ αT +

∑
j∈[m]

E(F j0 , α)

 ∞∑
i=0

10RegOR(T, δ,F0)

2iα

(v)

≤ αT +
20RegOR(T, δ,F0)

∑
j∈[m] E(F j0 , α)

α

27



Online Learning with Unknown Constraints

In (i) we set the upper bound to the sum as log(2/α)− 1 since all functions f ∈ F map to [−1, 1], hence ∆t ≤ 2 so it is
enough to consider i : 2i+1α ≤ 2 and (ii) follows from Lemma B.3, (iii) follows from the fact that 1 ≤ RegOR(T,δ,F)

(2iα)2 for
i ∈ [log(2/α)− 1] if T > 1, (iv) follows from the fact that E(F , ·) is nonincreasing in its second argument, and (v) is an
upper bound from the sum of an infinite series. Therefore, for any sequence {Ft, at, xt}Tt=1 generated by Algorithm 1 we
have

T∑
t=1

∆Ft(at, xt)αT +
20RegOR(T, δ,F0)

∑
j∈[m] E(F j0 , α)

α

Now, since this holds for any sequence {Ft, at}Tt=1 generated by the algorithm and adversarial contexts {xt}Tt=1, it holds in
expectation over the algorithm’s draws.

The following is an analogue of Theorem 4.2 for multiple constraints.

Corollary C.11. For any δ ∈ (0, 1) with probability at least 1− 3δ, Algorithm 4 produces a sequence of actions {at}Tt=1

that are safe, and enjoys the following bound on regret:

RegretT ≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t;Ft, xt) + κ inf

α

{
αT +

20RegOR(T, δ,F0)
∑
i∈[m] E(F i0, α)

α

}}
+ RegOL(T, δ,Π) +

√
2T log(δ−1)

where,

VM
κ (p̃t;Ft, xt) = sup

y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼M(p̃t;Ft,xt)

[
∆∞Ft(at, xt)

]
Further, if we use κ∗ = κ∗(F ,M) := supF̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y

Ea∼M(p̃;F̂,x)[`(a,x,y)]−Eã∼p̃[`(ã,x,y)]

Ea∼M(p̃;F̂,x)[∆∞F̂ (a,x)]
, then in the above,

VM
κ (p̃t;Ft, xt) ≤ 0 and so we can conclude that:

RegretT ≤ κ∗ inf
α

{
αT +

20RegOR(T, δ,F0)
∑
i∈[m] E(F i0, α)

α

}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

Proof. By Proposition C.8, with probability at least 1−δ, if we play actions from Pt, we can guarantee the all the constraints
are satisfied. On the other hand, to bound the regret of our algorithm w.r.t. the optimal action in hindsight that also satisfies
constraint on every round, note that

RegretT :=

T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t

‖f̊(π(xt),xt)‖∞≤0

T∑
t=1

`(π(xt), xt, yt)

(i)

≤
T∑
t=1

`(at, xt, yt)− min
π∈Π:∀t
π(xt)∈Ot

T∑
t=1

`(a, xt, yt)

≤
T∑
t=1

(
`(at, xt, yt)− E

ãt∼pt
[`(ãt, xt, yt)]

)
+

T∑
t=1

E
ãt∼pt

[`(ãt, xt, yt)]− min
π∈Π:∀t
π(xt)∈Ot

`(a, xt, yt)

≤
T∑
t=1

(
`(at, xt, yt)− E

ãt∼pt
[`(ãt, xt, yt)]

)
+ RegOL(T, δ,Π)

(ii)

≤
T∑
t=1

(
E

at∼pt
[`(at, xt, yt)]− E

ãt∼p̃t
[`(ãt, xt, yt)]

)
+ RegOL(T, δ,Π) +

√
T log(δ−1)
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≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t;Ft, xt) + κ

T∑
t=1

E
at∼pt

[
∆∞Ft(at, xt)

]}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

where (i) follows from the fact that by Proposition C.8, a policy π satisfying ∀t, ‖f̊(π(xt), xt)‖∞ ≤ 0 satisfies ∀t, π(xt) ∈
Ot, (ii) is an application of Hoeffding Azuma to bound

∑T
t=1 `(at, xt, yt)−

∑T
t=1 Eat∼pt [`(at, xt, yt)] and:

VM
κ (p̃t;Ft, xt) = sup

y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ E

at∼M(p̃t;Ft,xt)

[
∆∞Ft(at, xt)

]
by Lemma C.10 we can bound the

∑T
t=1 κEat∼pt [∆Ft(at, xt)] term, hence,

RegretT ≤ inf
κ>0

{
T∑
t=1

VM
κ (p̃t;Ft, xt) + κ inf

α

{
αT +

20RegOR(T, δ,F0)
∑m
i=1 E(F i0, α)

α

}}
+ RegOL(T, δ,Π) +

√
T log(δ−1)

This concludes the first bound - which holds with probability at least 1 − 3δ as we take a union bound over the online
regression oracle guarantee, the online learning oracle guarantee, and the application of Hoeffding Azuma. To conclude the
second part of the statement, we need to show that for

κ∗ = κ∗(F ,M) := sup
F̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y

Ea∼M(p̃;F̂,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼M(p̃;F̂,x)

[
∆∞
F̂

(a, x)
]

we have that VM
κ∗ (p̃t;Ft, xt) ≤ 0. To this end, note that

VM
κ∗ (p̃t;Ft, xt)

= sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}
− κ∗ E

at∼M(p̃t;Ft,xt)

[
∆∞Ft(at, xt)

]
= sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}

−

 sup
F̂⊆F,x∈X ,p̃∈∆(O(F̂,x)),y∈Y

Ea∼M(p̃;F̂,x) [`(a, x, y)]− Eã∼p̃ [`(ã, x, y)]

Ea∼M(p̃;F̂,x)

[
∆∞
F̂

(a, x)
]

 E
at∼M(p̃t;Ft,xt)

[
∆∞Ft(at, xt)

]
≤ sup
y∈Y

{
E

at∼M(p̃t;Ft,xt)
[`(at, xt, y)]− E

ãt∼p̃t
[`(ãt, xt, y)]

}

−
(

supy∈Y{Eat∼M(p̃t;Ft,xt)[`(at,xt,y)]−Eãt∼p̃t [`(ãt,xt,y)]}
Eat∼M(p̃t;Ft,xt)[∆

∞
Ft

(at,xt)]

)
E

at∼M(p̃t;Pt,Ft,xt)

[
∆∞Ft(at, xt)

]
= 0

C.4.1. PROOFS FOR POLYTOPIC CONSTRAINTS WITH SCALAR FEEDBACK

Recall that MLin(p̃;F) is defined as the distribution induced by drawing ã ∼ p̃ and outputting γ(ã;F)ã, where γ(ã;F) :=
max {γ ∈ [0, 1] : γã ∈ P (F)}. First we show a lemma that lower bounds γ(ã;F).

Lemma C.12. Let F be an arbitrary subset of FPoly and consider some ã ∈ O(F). γ(ã;F) :=
max {γ ∈ [0, 1] : γã ∈ P (F)} is lower bounded as:

γ(ã;F) ≥ b

b+ ∆F (ã)
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Proof. From the definition of ã ∈ O(F), we know ‖f(ã)‖∞ ≤ b for some f ∈ F . Let f be some arbitrary function in F .
Let α = b

b+∆F (ã) . Then:

‖f(αã)‖∞ = ‖f(αã) + f(αã)− f(αã)‖∞
≤ ‖f(αã)‖∞ + ‖f(αã)− f(αã)‖∞
≤ α(b+ ∆F (ã))

≤ b

This shows that αã ∈ P (F) as f was arbitrary. Since we defined γ(ã;F) = max {γ ∈ [0, 1] : γã ∈ P (F)}, it follows that

γ(ã;F) ≥ α =
b

b+ ∆F (ã)

Lemma. (Lemma 5.11 Restated) Suppose Assumption 5.4 holds. Then, κ∗(FPoly,MLin) ≤ D`Da
b .

Proof. Given Lemma C.12, the proof is analogous to that of Lemma 5.6.
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