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Abstract

Since visual perception can give rich information beyond text descriptions for world
understanding, there has been increasing interest in leveraging visual grounding
for language learning. Recently, vokenization [68] has attracted attention by using
the predictions of a text-to-image retrieval model as labels for language model
supervision. Despite its success, the method suffers from approximation error of
using finite image labels and the lack of vocabulary diversity of a small image-text
dataset. To overcome these limitations, we present VIDLANKD, a video-language
knowledge distillation method for improving language understanding. We train a
multi-modal teacher model on a video-text dataset, and then transfer its knowledge
to a student language model with a text dataset. To avoid approximation error,
we propose to use different knowledge distillation objectives. In addition, the use
of a large-scale video-text dataset helps learn diverse and richer vocabularies. In
our experiments, VIDLANKD achieves consistent improvements over text-only
language models and vokenization models, on several downstream language un-
derstanding tasks including GLUE, SQuAD, and SWAG. We also demonstrate the
improved world knowledge, physical reasoning, and temporal reasoning capabil-
ities of our model by evaluating on the GLUE-diagnostics, PIQA, and TRACIE
datasets. Lastly, we present comprehensive ablation studies as well as visualiza-
tions of the learned text-to-video grounding results of our teacher and student
language models.1

1 Introduction

Language learning can be aided by grounded visual cues, as they provide powerful signals for
modeling a vastness of experiences in the world that cannot be documented by text alone [5; 29; 4].
While the recent trend of large-scale language model pretraining indirectly provides some world
knowledge from text, most large text corpora (e.g., Wikipedia) do not provide enough multi-modal
grounding information. Previous works have explored multiple ways of grounding language to
visual information such as constructing a common vector space [38; 7] and supervising the model
with token-wise generated vision labels [68]. However, the widely-used image-text datasets (e.g.,
MS COCO [48]) are much smaller than text-only corpora in terms of word counts and vocabulary
diversity for language learning.

The recent method of ‘vokenization’ [68] is a promising initial step towards addressing this problem
by supervising language models with weakly-aligned vision-language groundings. Firstly, an image-
text matching model retrieves a corresponding image to each text token in a sentence. Then a language
model learns to predict the selected image (called ‘voken’) for each text token. This can be seen as
a knowledge distillation (KD) process [33] from a vision-language grounding model to a language

1Code and models: https://github.com/zinengtang/VidLanKD
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Figure 1: Overview of the proposed VIDLANKD method. We first pretrain a teacher language model
on a multi-modal dataset (Sec. 3.2). Then we distill the knowledge of the teacher model (weights
frozen) to a student language model on a text dataset (Sec. 3.3).

model. Although the voken classification task helps the language model to improve on natural
language understanding (NLU) tasks, there exist several limitations: (1) images cannot faithfully
convey word meanings that require more activity-based and physical commonsense knowledge. (2)
the voken supervision suffers from approximation/quantization error of the text-to-image retrieval.

To address these problems, we propose a novel Video-and-Language Knowledge Distillation method,
named VIDLANKD. Our teacher model consists of a video encoder and a language encoder. They
are jointly trained with a video-language contrastive learning objective and a masked language
modeling (MLM) objective on a multi-modal dataset (see Fig. 1). Then, we transfer the knowledge
of the frozen teacher language encoder to a student language model by minimizing the distance
between contextualized text representations of two models on a text dataset. For this, we propose
to use different KD objectives including neuron selectivity transfer (NST) [34] and contrastive
representation distillation (CRD) [71] that avoid the approximation error from voken assignments
[68]. For cross-modal pretraining of our teacher model, we use HowTo100M [54], a large-scale
video dataset which has more diverse vocabulary and richer world commonsense (e.g., physical and
temporal) knowledge compared to MS COCO image dataset.

In our experiments, student language models learned with the proposed video-language KD objectives
outperform the baseline text-pretrained language models and the models distilled with vokeniza-
tion, on several diverse natural language understanding benchmarks including GLUE [73], SQuAD
[61], and SWAG [79]. We also show comprehensive ablation studies on video encoders, student
KD objectives, teacher pretraining objectives, and video vs. image-based pretraining. Further-
more, we empirically illustrate that our model successfully learns linguistic world knowledge and
physical/temporal commonsense abilities from video, by showing improved performances on the
GLUE-diagnostics [73], PIQA [6], and TRACIE [82] datasets.

Overall, our contributions are: (1) a novel cross-modal knowledge distillation method for improving
natural language understanding, (2) using rich video-text data which can overcome the limitations of
image vokenization, (3) empirical improvements on several language understanding benchmarks and
studying different knowledge distillation methods, and (4) analysis on linguistic/physical/temporal
knowledge learned from videos and ablation studies on the effectiveness of proposed components.

2 Related Work

2.1 Knowledge Distillation

Knowledge distillation (KD) [33] is the process of transferring knowledge from a teacher model
to a student model. It has been successfully used in a wide range of applications, such as machine
translation [40], visual recognition [31], speech recognition [10], and recommendation systems
[69]. Recent works advanced the field of knowledge distillation by proposing new architectures
[77; 80; 1; 55] and objectives [34; 14].

While many KD works study the problem of knowledge transfer within the same modality, cross-
modal knowledge distillation [27; 20; 71] tackles the knowledge transfer across different modalities.
Gupta et al. [27] transfers the knowledge of a model trained with RGB images to another model for
depth maps and optical flow. Do et al. [20] proposes a KD method for visual question answering

2



[2], where the trilinear (image-question-answer) relational representation of a teacher model is
transferred to a bilinear (image-question) student model. Tian et al. [71] combines contrastive
learning and knowledge distillation to improve the knowledge transfer between different modalities.
Our VIDLANKD transfers the knowledge of a multi-modal teacher model learned from a video
dataset to a student language model that tackles natural language understanding tasks.

2.2 Language Pretraining

Large-scale pretraining of contextualized language models has seen huge success in natural language
processing in recent years. ELMo [57] proposes to pretrain and fine-tune a large recurrent language
model, which improves performance on a diverse set of downstream natural language processing tasks.
BERT [19] improves the scalability of the pretrain/fine-tune framework by using a transformer [72]
language model with a masked language modeling objective. Since then, pretraining of transformer
language models has been extensively explored [49; 78; 44; 22; 64; 59; 16] for various natural
language understanding [61; 74; 79; 73] and generation tasks [24; 62; 61; 63].

2.3 Multi-modal Pretraining

Following the success of language pretraining with transformer models, pretraining of image-text [67;
51; 13; 47; 83; 45] and video-text [66; 54; 85; 53; 46; 70] multi-modal transformers have achieved
improvements on numerous multi-modal downstream tasks [2; 76; 84]. The multi-modal transformers
take both visual and textual inputs and are pretrained on image-text or video-text pairs with multi-
modal masked language modeling objectives. Despite the success on multi-modal downstream tasks,
Tan and Bansal [68] finds that the multi-modal pretraining does not improve (and sometimes even
harms) the language understanding performance. This is because the scale and diversity of text
vocabulary of image-text and video-text datasets are usually smaller than those of text datasets. To
utilize the rich vocabulary of text dataset, our VIDLANKD transfers the knowledge of pretrained
multi-modal model to a student language model with a large text dataset.

2.4 Visually-Grounded Language Learning

A series of works explore using visual information to aid language understanding and generation
tasks including co-reference resolution [42; 15], machine translation [81], bilingual lexicon learning
[39], and multi-modal contrastive learning [47]. Vokenization [68] proposes the visually-supervised
language model, which is closest to our work. Vokenization proposes to supervise a language model
to predict a visualized token, called ‘voken’ for each input text token. Vokens are obtained by a
contextualized token-to-image matching model, pretrained on a MS COCO image captioning dataset
[12]. In this work, we experiment with alternative objectives which avoid the approximation error
from finite voken assignments. In addition, we use HowTo100M [54] video dataset, which provides a
more diverse vocabulary as well as richer world commonsense and physical reasoning knowledge.

3 Video-Language Knowledge Distillation

3.1 Method Overview

We aim to learn a better language representation with the knowledge distilled from visual information.
For this, we leverage two kinds of datasets: the aligned muti-modal dataset, DVL: {(x,v)} (e.g.,
HowTo100M [54]); and the text dataset, DL: {x} (e.g., Wikipedia), where x is a sentence and v is a
video paired with x. Our knowledge transfer is done in two stages: (1) cross-modal pretraining of a
teacher model, MT , on multi-modal data DVL (Eq. 1) (2) distilling the knowledge of teacher model
to a student model, MS , on text data DL (Eq. 2). We illustrate our two-stage knowledge transfer
method in Fig. 1.

min
θT

E
x,v∼DVL

LT (MT ,x,v) (1)

min
θS

E
x∼DL

LKD(MT ,MS ,x) (2)

Our teacher model MT consists a language model LMT and a visual encoder VT . Both LMT and
VT have transformer [72] architectures, where LMT takes text tokens x and VT takes video frame

3



Teacher Visual Encoder Teacher 
LM Teacher LM

(a) Video-Language Contrastive Learning (b) Masked Language Modeling

Video frame features
𝑣

Paired caption
𝑥

Masked Text
𝑥!"#$%&

· · ·· · ·· · ·

Negative
Log-likelihood

Triplet Margin Loss

Average Pool

Random caption 
𝑥'

Teacher 
LM

· · ·

Positive pair
→ Pull

Negative pair
→ Push

· · ·· · · · · ·

ℎ(

ℎ) ℎ)!ℎ(

Figure 2: Cross-modal pretraining of our teacher model on a multi-modal dataset (Sec. 3.2). We train
our teacher model with (a) video-language contrastive learning and (b) masked language modeling.
For video-language contrastive learning, we only illustrate the negative text samples for brevity.

features v as inputs. Our student model MS is a transformer language model LMS sharing the same
architecture with teacher language model LMT . As illustrated in Fig. 1(a), we first train teacher
models LMT and VT with contrastive learning and masked language modeling. Then, we distill the
knowledge of teacher models to student model LMS as in Fig. 1(b). In the following subsections,
we discuss the detailed training procedure of teacher (Sec. 3.2, Fig. 2) and student models (Sec. 3.3,
Fig. 3).

3.2 Teacher Model

We train our teacher model on a multi-modal dataset with two objectives, i.e., video-language
contrastive learning (Fig. 2(a)) and masked language modeling (Fig. 2(b)): LT = LCT + LMLM

2

Architecture. As shown in Figure 2, our teacher model MT consists of a language encoder LMT

and a visual encoder VT . Both LMT and VT have similar transformer architecture.3 For each sen-
tence x, we tokenize it and append a special token [CLS] that represents the entire sentence following
Devlin et al. [19]. LMT takes x and outputs contextualized representation hx = {hx

[CLS],h
x
1 · · ·hx

|x|}.
For each video v, we extract frame-level features ev with an off-the-shelf image encoder (see more
details in Sec. 4.2). Note that the parameters of the image encoder are not updated to save computation.
We feed the frame features ev = {ev1 · · · ev|v|} to our visual encoder VT to get contextualized video
frame features hv = {hv

1 · · ·hv
|v|}. We get the final video representation hv by temporally averaging

frame-level features: hv = 1
|v|

∑|v|
i=1 h

v
i . Different from Tan and Bansal [68], both LMT and VT

parameters are trained from scratch.

Video-Language Contrastive Learning. To learn multi-modal grounding, we use a contrastive
learning objective that encourages a closer distance between representations of aligned video-text
pairs than unaligned pairs, as shown in Fig. 2 (a). For each x, we randomly sample another text x′

from its batch with x′ ̸= x. Similarly, for each v, we randomly sample another video v′ from its

2In our experiments, different weights over the objectives did not significantly change the results.
3In our experiments, we use the BERT architecture with two different configurations: 12 layers/768 hidden

dimensions (BERT12L/768H = BERTBASE) and 6 layers/512 hidden dimensions (BERT6L/512H).
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Figure 3: Illustration of our knowledge distillation from teacher language model LMT to student
language model LMS on a text dataset (Sec. 3.3). We train our student model with (a) knowledge
distillation objectives and (b) masked language modeling.

batch with v′ ̸= v. Then, we use hinge loss max{0, α− pos + neg} on cosine similarities:

LCT (x,x
′,v,v′) =

|x|∑
i

[ max{0, α− cos(hx
i ,h

v) + cos(hx′

i ,hv)} (3)

+max{0, α− cos(hx
i ,h

v) + cos(hx
i ,h

v′)}]

where α is the margin between the similarities of a positive pair and a negative pair. Different from
previous methods [7; 32] that exploit sentence-level contrastive loss, we follow [68] to construct
a token-level contrastive loss (triplet margin loss) that grounds the visual information to each
contextualized token output. This fine-grained contrastive loss will help the token-level knowledge
distillation in Sec. 3.4.

Masked Language Modeling. For better language understanding in our teacher model, we follow
BERT [19] to use masked language modeling (MLM) objective (Fig. 2(b)). By replacing 15% of
tokens in x with a special token [MASK], we obtain a masked text xmasked with the same length.
The model takes xmasked as input and learns to predict the tokens by minimizing the negative log-
likelihoods: LMLM(x,xmasked) = −

∑
i∈Mask log p(xi | xmasked), where Mask refers to the indices

of masked tokens.

3.3 Student Model

After we train a teacher model on a multi-modal dataset, we transfer its knowledge to a student model
on a text dataset. Following Kim and Rush [40], we train our student model with a sum of masked
language modeling and two knowledge distillation objectives, NST and CRD (see Sec. 3.4):

LS = LMLM + LKD
NST + LKD

CRD (4)

Architecture. As shown in Fig. 3 (a), our student model MS is a language model LMS with the
same transformer architecture as the teacher language model LMT . We train LMS from scratch.
Following previous works [11; 26], we introduce a multi-layer perceptron (MLP) distillation head
on top of the last hidden states of LMS . In our ablation study in appendix, we find that adding a
distillation head slightly improves the distillation performance.

3.4 Knowledge Distillation Objectives

We next describe the knowledge distillation (KD) objectives used in transferring knowledge from the
teacher model LMT (Sec. 3.2) to this student model LMS . Note that the weights of the teacher model
LMT are frozen during the knowledge distillation process since the teacher model should not be
affected by the student model’s performance. Following Kim and Rush [40], we use the knowledge
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distillation objective combined with the MLM objective (Fig. 3 (b)). Concretely, we use the same
input text mask for MLM and KD objectives. While we calculate the MLM loss only on masked
positions, we calculate KD losses using all hidden states following Clark et al. [16] (Fig. 3).

We study the following KD objectives: Soft-label [33], L2 Regression [3], Neuron Selectivity
Transfer (NST) [34], Contrastive Representation Distillation (CRD) [71], and Vokenization [68]. In
our experiments comparing different KD objectives (Table 5), NST and CRD perform best, while the
combination of them improved the performance even further. Therefore, we propose NST+CRD for
our cross-modal knowledge distillation objective.

Soft Label: Hinton et al. [33] proposed a knowledge transfer method by taking a teacher model
prediction with temperature scaling as a ‘soft label’. We minimize cross-entropy between PT (y|x)
and PS(y|x), i.e., the word output probabilities of LMT and LMS given the input text x respectively:

LKD
soft-label(x) = −

|x|∑
i=1

∑
z∈Z

PT (yi = z|x) logPS(yi = z|x) (5)

where Z is the word vocabulary. Following Hinton et al. [33], we divide the softmax logits of LMT

and LMS by a temperature parameter τ = 2.0. Note that for soft-label KD, we reuse the LM head,
instead of learning an additional distillation head.

L2 Regression: Following Ba and Caruana [3] which uses feature regression for KD, we minimize
the squared L2 distance between s(x) and t(x), the last hidden states of LMT and LMS given input
text x:

LKD
Regression(x) =

|x|∑
i=1

∥s(x)i − t(x)i∥22 (6)

Neuron Selectivity Transfer (NST): NST [34] is a KD method that transfers heatmap like spatial
activation patterns of teacher neurons to student neurons. We transfer the sequential activation
patterns of t(x) ∈ R|x|×d to s(x) ∈ R|x|×d, where t(x) and s(x) are the last hidden states of LMT

and LMS given input text x, and d is the hidden state dimension (# neurons). Following Huang
and Wang [34], we use the squared maximum mean discrepancy (MMD) [25] with kernel trick to
measure the distance between the activation patterns of student neurons {s(x)∗,i}di=1 and teacher
neurons {t(x)∗,j}dj=1:

MMD2(x) =
1

d2

d∑
i=1

d∑
i′=1

k [s(x)∗,i; s(x)∗,i′ ] +
1

d2

d∑
j=1

d∑
j′=1

k [t(x)∗,j ; t(x)∗,j′ ]

− 2

d2

d∑
i=1

d∑
j=1

k [s(x)∗,i; t(x)∗,j ] (7)

where we use Gaussian kernel k[s; t] = exp
(
−∥s−t∥2

2

2σ2

)
with σ = 1. We transfer the teacher

activation patterns to the student by minimizing squared MMD: LKD
NST(x) = MMD2(x)

Contrastive Representation Distillation (CRD): CRD [71] is a KD objective which maximizes the
mutual information between the teacher and student representations with contrastive learning. Let’s
denote s ∈ S and t ∈ T as student and teacher representations given x. We are given 1 positive pair
(drawn from the joint distribution) for every N (batch size) negative pairs (drawn from the product of
marginals; independent randomly drawn inputs from T and S). Following [71], we maximize the
lower bound of mutual information between s and t by minimizing the following term:

LKD
CRD(x) = −Eq(s,t|postive)[log h(s, t)]−N · Eq(s,t|negative)[log(1− h(s, t))] (8)

h(s, t) =
exp (f1(s)

⊤f2(t))

exp (f1(s)⊤f2(t)) +
N
M

where M is the cardinality of the dataset, f1, f2 are learned linear layers followed by L2 normalization,
which map the student and teacher representations into a same feature space. Since a large N leads
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to a tight mutual information lower bound, following [71], we implement a memory buffer that stores
the latent features of each data sample computed from previous batches. Therefore, during training
we can efficiently retrieve a large number of negative samples from the memory buffer. Note that
since CRD is based on contrastive learning, it is the only KD objective where student and teacher
language models can take different inputs.

Vokenization: Vokenization [68] could be viewed as a knowledge distillation method, where token-
level text-to-image retrieval results (called ‘vokens’) of a multi-modal matching model are used
as labels for a student language model. For the i-th input token xi, we calculate cosine similarity
between the i-th teacher language model hidden state t(x)i and a video feature v. Out of 30K
pre-selected videos, we select a video that maximizes cosine similarity and use it as the voken for xi.
By denoting the voken of xi as vokeni, we formulate our vokenization-based KD objetive as:

LKD
Voken(x) = −

|x|∑
i=1

logPS
voken(yi = vokeni|x) (9)

where PS
voken(y|x) is the voken classification probabilities of LMS given input text x. We experiment

with vokenization-based KD by retrieving vokens from images and videos (see Table 6 of Sec. 5.2).
Note that vokenization suffers from approximation error; it’s hard to cover diverse textual concepts
with 30K vokens. This motivates us to experiment with different ‘soft’ KD objectives described in
this section (see Table 5 of Sec. 5.2).

4 Experimental Setup

4.1 Datasets

Video-Text Dataset. We use HowTo100M [54] for cross-modal pretraining of our teacher model
(Sec. 3.2). HowTo100M has 1.22M videos totaling 136M video clips with total duration of 134,472
hours describing over 23K different visual tasks. There are 138M captions, 568M tokens with 633K
distinct tokens.

Text Pretraining Dataset. To transfer the knowledge from our teacher language models to student
language models (Sec. 3.3), we follow Tan and Bansal [68] to use English Wikipedia. For ablation
studies (Sec. 5.2), we use Wiki103 [52], a widely used subset of English Wikipedia. There are 2.9B
tokens and 120M sentences in English Wikipedia, and 111M tokens and 4.2M sentences in Wiki103.

Text Downstream Dataset. Following Tan and Bansal [68], we finetune our models on GLUE
[73], SQuAD [61] 1.0 and SQuAD2.0 [60], and SWAG [79] to assess the pretraining performance.
Since some smaller tasks in GLUE are reported as unstable in recent papers [21], we evaluate on the
four largest datasets of GLUE: SST-2 [9], QNLI [61], QQP [35], and MNLI [74]. In addition, we
also evaluate our models on the GLUE diagnostics [73], PIQA [6], and TRACIE [82] to measure its
linguistic knowledge, physical reasoning, and temporal reasoning abilities.

4.2 Video Feature Representations

Following Miech et al. [54], we encode video features by concatenating features from a 2D frame-
level image encoder and a 3D video encoder in channel dimension. Note that the parameters for 2D
image encoder and 3D video encoder are not updated.

For the 2D image encoder, we sample video frames by 1fps (frame/second). The 2D image encoder
outputs features for each frame individually. We experiment with ResNet-152 [30] pretrained on
ImageNet-1K [18] and CLIP [58] image encoder (ViT-B/32 [23]). In contrast to conventional image
encoders trained with image label classification, the CLIP image encoder is trained to match a
corresponding natural language description by large-scale contrastive learning. We discuss if this
natural language supervision can help our cross-modal KD in Sec. 5.1.

For the 3D video encoder, we use 3D-ResNeXt-1524 [75; 28; 36] trained from a combination of
publicly available datasets: ActivityNet [8], Kinetics [37], UCF-101 [65], and HMDB-51 [43]. The
3D video encoder processes 24fps videos with 3D convolution and yields features at 1.5fps. Then we
sub-sample the features to 1fps to match the frame rate of 2D image encoder.

4https://github.com/kenshohara/3D-ResNets-PyTorch
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Table 1: Cross-modal knowledge distillation results of BERT12L/768H student language model on 7
downstream NLU tasks. In the first block, we include the image-based vokenization (Img-Voken)
and its text-only pretrained baseline performance from Tan and Bansal [68]. In the second block, we
compare our cross-modal KD method (NST+CRD) to video-based vokenization (Vid-Voken) and a
text-only pretrained baseline. †EM refers to ‘Exact Match’.

SST-2 QNLI QQP MNLI SQuAD v1.1 SQuAD v2.0 SWAG Avg.
Acc Acc Acc Acc EM† EM Acc

BERT12L/768H [68] 89.3 87.9 83.2 79.4 77.0 67.7 65.7 78.6
+ KD (Img-Voken) [68] 92.2 88.6 88.6 82.6 78.8 68.1 70.6 81.4

BERT12L/768H 89.0 88.0 86.2 79.2 77.2 68.0 65.0 78.9
+ KD (Vid-Voken) w/ ResNet 93.4 89.2 88.7 83.0 78.9 68.7 70.0 81.7
+ KD (Vid-Voken) w/ CLIP 94.1 89.8 89.0 83.9 79.2 68.6 71.6 82.3
+ KD (NST+CRD) w/ ResNet 94.2 89.3 89.7 84.0 79.0 68.9 71.8 82.4
+ KD (NST+CRD) w/ CLIP 94.5 89.6 89.8 84.2 79.6 68.7 72.0 82.6

4.3 Implementation Details

For the student distillation head, we use a two-layer MLP with ReLU activation. For both student
and teacher language models, following previous works [49; 17; 68], we truncate input text that
is longer than 128 tokens. We truncate videos features that are longer than 512 frames. We use
an AdamW [41] optimizer with learning rate 2e-4 and weight decay [50] of 0.01. We reserve 10K
samples of the HowTo100M dataset as validation data. We train the teacher model until it converges
on validation data. For downstream tasks, we report the results on the validation sets. We train 3
epochs with a learning rate of 1e-4 and a batch-size of 32 for all downstream tasks. We use hinge loss
margin α = 1.0 for LCT (Eq. 3). We implement our models with PyTorch 1.5 [56] and train them
with Nvidia GeForce RTX 2080ti GPUs. For teacher pretraining, we use 4 GPUs for BERT12L/768H
and BERT6L/512H models for 7 days and 2.5 days respectively. For knowledge distillation, we use 4
GPUs for BERT12L/768H and BERT6L/512H models for 10 days and 3 days respectively.

5 Results and Analysis

5.1 Primary Downstream Task Results

In the first block of Table 1, we include the image-based vokenization (Img-Voken) and their text-only
pretrained baseline from Tan and Bansal [68].5 Given our reproduced text-only baseline shows a
similar average performance (78.9 vs 78.6), our student models distilled from NST+CRD are much
better (82.6 vs 81.4). We discuss the comparison between video-based and image-based KD in detail
in the following ablation study in comparison to vokenization (Table 6).

In the second block of Table 1, we compare our proposed cross-modal KD method (NST+CRD)
to video-based vokenization (Vid-Voken) and a non-KD baseline (BERT12L/768H) which is only
pretrained on text. We can see both cross-modal KD methods (i.e., KD and Vid-Voken) significantly
outperform the text-only baseline across all 7 downstream tasks. We also experiment with different
2D frame encoders (Sec. 4.2): ResNet and CLIP. For both Vid-Voken and NST+CRD, we observe
CLIP further improves the performance results over ResNet, indicating using a strong visual encoder
helps the teacher training and thus benefits the knowledge distillation.

5.2 Ablation Studies

In this section, we conduct a comprehensive ablation study to show the effectiveness of our proposed
methods. For all ablation experiments, we use BERT6L/512H architecture for student and teacher
language models. We use ResNet-152 for 2D frame encoder and 3D-ResNeXt-152 for 3D frame
encoder (Sec. 4.2). Wiki103 [52] is used for student model training. We also perform ablation
experiments on the effect of additional distillation head in appendix.

5Vokenization uses pretrained BERT checkpoint for its ‘teacher’ (vokenizer) model but we train our teacher
language model fully from scratch.
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Table 2: Text-only pretraining results of BERT6L/512H
pretrained on Wiki103, HowTo100M captions, and no-
pretrain baseline.

Pretrained on SST-2 QNLI QQP MNLI

No-Pretrain 79.6 61.5 72.7 61.6
Wiki103 (Formal language) 88.8 84.9 85.3 77.4
HowTo100M (ASR captions) 83.3 78.5 83.7 71.5

Text-only Pretraining. Our cross-
modal KD improves the performance
on downstream NLU tasks significantly
(Sec. 5.1). Where does the improvement
come from, video or text? To answer
this question, we conduct text-only pre-
training of BERT6L/512H on Wiki103 text
(111M tokens), HowTo100M captions
(568M tokens) and compare them to a
no-pretrain baseline. In Table 2, while both pretrained models improve the performance over the
no-pretrain baseline, Wiki103-trained model outperforms HowTo100M-trained model (which has
more tokens) significantly. This indicates that our KD methods improve NLU performance because
of multimodal grounding, instead of just the larger corpus.

Table 3: Ablation results showing the effect of the
teacher model’s training objectives. NST is used for
knowledge distillation.

SST-2 QNLI QQP MNLI

BERT6L/512H 88.8 84.9 85.3 77.4
+KD from TMLM 88.1 83.1 85.6 77.4
+KD from TCT 88.9 85.2 86.2 77.5
+KD from TMLM+CT 91.1 85.0 87.4 78.4

Effect of Teacher Training Objectives.
We here analyze the teacher training objec-
tives by comparing the corresponding dis-
tilled student model results. In Table 3,
the teacher model trained solely with MLM
(+KD from TMLM ) does not significantly
change the student model performance. At
the same time, the teacher model trained
with only visual supervision, i.e., contrastive
objective (+KD from TCT ), improves the
result. This illustrates the motivation to perform knowledge transfer from a visually supervised MLM
model. Lastly, combining the MLM and the contrastive objective (+KD from TMLM+CT ) in teacher
model training shows the best student results.

Table 4: Comparison of pretraining on text, video,
both (Two-stage PT), and our VidLanKD.

Model SST-2 QNLI QQP MNLI

Text PT 88.8 84.9 85.3 77.4
Video PT 84.0 78.9 84.2 73.1
Two-Stage PT 90.3 85.0 87.2 76.9
VIDLANKD 91.1 85.0 87.4 78.4

Two-stage PT vs. Cross-modal KD. In
Table 4, we compare two-stage pretraining
with a single model to our proposed cross-
modal KD approach. For single model base-
lines, we use text-only (MLM on Wiki103),
video-only (MLM+CT on HowTo100M),
and two-stage (video-then-text) pretraining.
While the two-stage pretraining shows better
results than the text/video-only pretraining,
our VIDLANKD outperforms all baselines on GLUE tasks, especially on SST-2 and MNLI.

Table 5: Ablation of knowledge distillation objectives.

SST-2 QNLI QQP MNLI

BERT6L/512H 88.8 84.9 85.3 77.4
+KD-Soft label 87.2 84.4 86.4 76.6
+KD-Regression 88.8 84.8 87.1 78.1
+KD-Vid Voken 89.7 85.5 86.5 77.8
+KD-NST 91.1 85.0 87.4 78.4
+KD-CRD 90.0 85.5 87.3 78.3

+KD-NST+CRD 91.5 85.8 87.4 78.7

KD Objectives Comparison. In Table 5,
we compare different knowledge distillation
objectives introduced in Sec. 3.4. The stu-
dent models trained with NST [34] and CRD
[71] show the best finetuning performance
on downstream tasks. When combining NST
and CRD, performance further improves
with marginal additional computation cost,
hence we propose to use NST+CRD for our
cross-modal knowledge distillation.

Table 6: Comparison between vokenization (Voken)
and NST with image and video-level supervision.

SST-2 QNLI QQP MNLI

BERT6L/512H 88.8 84.9 85.3 77.4
+KD-Voken (Image) 89.3 84.4 86.0 77.5
+KD-NST (Image) 88.9 85.0 86.3 77.2

+KD-Voken (Video) 89.7 85.5 86.5 77.8
+KD-NST (Video) 91.1 85.0 87.4 78.4

Comparison to Vokenization. In Table 6,
we compare NST [34] and Vokenization [68]
in both image and video-level teacher model
supervision. For video-level supervision, we
provide our visual encoder with the whole
video features (Sec. 4.2). For image-level
supervision, we provide our visual encoder
only with 2D features of the middle frame
for each video clip. With image-level super-
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vision (first block), Vokenization and NST show comparable performance. However, with video-level
supervision (second block), NST outperforms Vokenization on 3 out of 4 tasks. The gap in the
video domain might come from voken approximation error, where each image or video input is
approximated with one of 30K predefined vokens. Since videos usually contain more diverse contents
than images, the voken approximation error would be amplified in video-level supervision, whereas
our NST distillation avoids this issue.

5.3 Analyzing the Knowledge Learned from Video

In this subsection, we analyze the knowledge that our language models learn from video via cross-
modal knowledge distillation. To measure linguistic knowledge and physical/temporal reasoning
ability, we show results of our models on the GLUE diagnostics [73], the Physical Interaction
Question Answering (PIQA) [6], and TRACIE [82]. In addition, we visualize the learned multi-
modal grounding ability of our model with text-to-video retrieval.

Table 7: Finetuning performance on GLUE diagnostics [73], PIQA [6] and TRACIE [82] datasets,
which measure the linguistic knowledge, physical and temporal reasoning capabilities of language
models, respectively.

GLUE diagnostics PIQA TRACIE
Lexicon Predicate Logic Knowledge

BERT6L/512H 53.0 64.2 44.5 44.0 56.9 63.4
+ KD-NST 53.3 (+0.3) 63.7 (-0.5) 44.8 (+0.3) 48.6 (+4.6) 60.0 (+3.1) 66.7 (+3.3)

Linguistic Knowledge. GLUE diagnostics dataset [73] evaluates sentence understanding through
natural language inference (NLI) problems. The dataset consists of sentence pairs labeled with their
entailment relations (entailment, contradiction, or neutral) in both directions and tagged with a set of
entailment labels. Each example in the dataset is labeled with 4 categories of linguistic phenomena:
(1) lexical semantics, (2) predicate-argument structure, (3) logic, and (4) knowledge (including
common sense). In Table 7, we compare the baseline language model (BERT6L/512H pretrained on
Wiki103) to our NST-distilled model. We finetune the models on MNLI [74] that has the same format
and test on GLUE diagnostics. We observe a large gain on the knowledge category (which involves
common sense and external world knowledge) while there are no significant differences on other
categories. This suggests that our student model learns the external, grounded world knowledge in
the teacher model and the video-text dataset.

Physical and Temporal Reasoning. PIQA [6] is a question answering dataset evaluating physical
interactions and commonsense reasoning. TRACIE [82] is a temporal reasoning benchmark on
implicit events, which are not mentioned explicitly in natural language text but can be inferred from
it. In Table 7, our BERT6L/512H distilled with NST significantly outperform the text-only pretrained
baseline on both benchmarks. The finding suggests (consistent with the GLUE diagnostics findings
above) that video knowledge distillation also helps improve the physical and temporal reasoning
capabilities of the language model. See appendix for the more detailed discussion on the PIQA and
TRACIE experiment.

6 Conclusion

We introduce VIDLANKD, a novel cross-modal knowledge distillation method to help general
language understanding. Our teacher model is first trained on a video-text dataset, and then we
transfer its knowledge to a student language model with a text dataset. Via the distillation objectives
and video-text datasets, our method overcomes the limitations of the recent vokenization method. We
empirically demonstrate that our VIDLANKD improves on several NLU tasks over models trained by
pure-text or vokenization. We conduct comprehensive ablation analysis to show the effectiveness
of each proposed component. We also illustrate the linguistic knowledge and physical/temporal
commonsense reasoning learned from videos, and visualize our model’s multi-modal grounding
ability.
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