
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MGRADE: MINIMAL RECURRENT GATING MEETS
DELAY CONVOLUTIONS FOR LIGHTWEIGHT SE-
QUENCE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Processing temporal data directly at the sensor source demands models that cap-
ture both short- and long-range dynamics under tight memory constraints. While
State-of-the-Art (SotA) sequence models such as Transformers excel at these
tasks, their quadratic memory scaling with sequence length makes them impracti-
cal for edge settings. Recurrent Neural Networks (RNNs) offer constant memory
scaling, but train sequentially and slowly, and Temporal Convolutional Networks
(TCNs), though efficiently trainable, also scale memory with kernel length. For
more memory-efficient sequence modeling, we propose mGRADE (minimally
Gated Recurrent Architecture with Delay Embedding), a hybrid-memory system
that integrates a temporal convolution with learnable spacings with a gated re-
current component. The convolution with learnable spacings can express a flexi-
ble delay embedding that captures rapid temporal variations, while the recurrent
component efficiently maintains global context with minimal memory overhead.
We theoretically ground and empirically validate our approach on two types of
synthetic tasks, demonstrating that mGRADE effectively separates and preserves
temporal features across multiple timescales. Furthermore, on the challenging
Long-Range Arena (LRA) benchmark, mGRADE reduces the memory footprint
by up to a factor of 8, while maintaining competitive performance compared to
SotA models.

1 INTRODUCTION

Embedded systems show great promise for temporal processing at the edge, enabling low-latency
and energy-efficient inference for real-time tasks such as sensor data processing and autonomous
control. However, the tight memory constraints of these systems make it difficult to process real-time
streaming data, while also causally modeling dependencies across multiple timescales. Capturing
long-range dependencies in sequence data requires storing information over large time horizons,
whereas short-range dynamics demand high temporal resolution. Combining these multi-timescale
dependencies strains the limited memory budgets of embedded systems, highlighting the need for
more memory-efficient sequence models.

While State-of-the-Art (SotA) sequence models, such as Transformers (Vaswani et al., 2017) and
Temporal Convolutional Networks (TCNs) (Waibel et al., 1989), can capture multi-timescale de-
pendencies, they are ill-suited to embedded systems. This is mainly because their memory footprint
grows with the sequence length, which impedes real-time processing of long sequences within a
fixed memory size. In contrast, Recurrent Neural Networks (RNNs), particularly gated variants like
the Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Gers et al., 2000) and the
Gated Recurrent Unit (GRU) (Cho et al., 2014; Chung et al., 2014), offer constant inference-time
memory over input sequences of arbitrary length. However, since they are not parallelizable, they are
inefficient to train. Although linear time-invariant State-Space Models (SSMs) (Gu et al., 2022b)
combine constant inference-time memory with efficient training, they lack selectivity over long-
range dependencies (Gu & Dao, 2024) and require high precision parameters (Zhao et al., 2025),
making them ill-suited for modeling multi-timescale data on limited-precision embedded systems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Given the gap between the tight memory requirements of embedded systems and current capabilities
of SotA sequence models, we ask:

Can we design a memory-efficient sequence model that can capture both long- and short-term
dependencies for advanced temporal signal processing in embedded systems?

To achieve this goal, we investigate a hybrid-memory model that synergistically combines the
strengths of TCNs and gated RNNs. We fuse a causal temporal convolution with learnable spac-
ings, capable of expressing a delay embedding, and a parallelizable gated recurrent unit into a single
stackable layer. This combined model is called minimal Gated Recurrent Architecture with Delay
Embeddings (mGRADE). mGRADE is effectively a hybrid-memory model where the temporal con-
volution acts as a fixed-size cache for short-term dependencies and the gated recurrence provides an
efficient compression of the signal’s long-term history. Its design satisfies the requirements of multi-
timescale processing on embedded systems since it (1) maintains constant memory complexity with
respect to the sequence length at inference time, (2) can be efficiently trained in parallel regardless
of the sequence length, and (3) can selectively capture both long- and short-range dependencies over
arbitrary sequence lengths.

We employ two types of synthetic tasks to theoretically demonstrate the functional contributions of
mGRADE’s two core components and how they complement each other. The first task, next-step
prediction of a single dimension from the Lorenz system (Lorenz, 1963), shows how the temporal
convolution caches delayed input copies, enabling the internal recurrent representation to generalize
better to unobserved input-coupled dynamics over short timescales (Section 3.1). With the second
set of tasks, Flip-Flop predictive modeling and selective copy (Liu et al., 2023; Gu & Dao, 2024), we
show how the gated recurrence selectively models long-range dependencies by recursively maintain-
ing a fixed-size hidden state, enabling recall over arbitrarily long sequences (Section 3.2). Finally,
we demonstrate that these theoretical capabilities translate to real-world performance by benchmark-
ing mGRADE on the Long-Range Arena (LRA) tasks (Tay et al., 2021), where we show competitive
results with a memory footprint that is up to 8× smaller than previously published SotA models.

Our theoretical arguments offer insight into the modeling capabilities of the combination of gated
recurrence and temporal convolutions. The competitive empirical results of our hybrid-memory
approach position mGRADE as a compelling solution for high-performance sequence modeling in
resource-constrained embedded systems.

2 MODEL SPECIFICATION

The mGRADE architecture consists of an encoder (linear projection), a stack of L mGRADE layers,
and finally a decoder (non-linear projection) (Fig. 1A). The input sequence is streamed element
by element, causally producing an output at every timestep t. The mGRADE layers are the core
architectural feature, combining a depthwise 1D convolution with learnable spacings (equivalent
to delays) and a parallelizable gated recurrence, followed by an Multi-layer Perceptron (MLP) and
layer normalization (Fig. 1B). Fig. 1C illustrates mGRADE’s computational graph unrolled in time,
demonstrating how the output at any given timestep t depends on past and current inputs.

Convolution component To enable mGRADE to capture short-term dynamics and high-
frequency patterns (Section 3.1), we first pass the input to each mGRADE layer through its temporal
convolution component. To maximize expressivity without expanding the number of convolution
kernel elements, we learn the spacings between each kernel element using the Dilated Convolutions
with Learnable Spacings (DCLS) framework from Hassani et al. (2023). For our temporal convolu-
tions, this is equivalent to learning transmission delays over the input (Hammouamri et al., 2024).
This choice is inspired by how tunable delays enrich the computational expressivity of spiking neural
networks (Maass & Schmitt, 1999; D’agostino et al., 2024; Göltz et al., 2025).

Like classical TCNs, DCLS applies a discrete 1D convolution xd,t = (ud ∗kd)[t] over every channel
d ≤ D of the input u ∈ RD×T (with T being the input sequence length). Each convolution kernel kd
is parameterized by two sets Ωd = {w0, w1, ..., wK−1 | wi ∈ R} and Ψd = {p0, p1, ..., pK−1 | pi ∈
R, pi ≤ pmax} of K elements each, representing the weights and positions in time of the trainable
kernel elements. Each position in time is relative to the current timestep, making it equivalent to a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Network architecture and spatio-temporal computational graph of mGRADE. A)
Network architecture composed of an encoder, L mGRADE layers stacked on each other and a final
decoder. B) A mGRADE layer is composed of four consecutive elements: a depthwise 1D convo-
lution, a gated RNN, a 2-layer MLP, and a layer normalization. It also employs skip connections
around the gated RNN and the MLP. C) mGRADE’s computational graph unrolled in time for the
first two layers (time increasing from left to right). Bold colored arrows represent the flow of data
that is being processed at timestep t. Light gray arrows represent past computations. Skip connec-
tions were omitted for simplicity. Here, the kernel count K is 3 and the kernel length Γ is 6.

transmission delay. The maximum position, pmax = Γ, defines the longest possible transmission
delay applied to the input, thus indicating the total number of discrete timesteps that kd spans.
Following Hassani et al. (2023), we will refer to Γ as the kernel length and K as the kernel count.
Both kernel length and count are fixed across all channels. Notably, the real-valued positions within
the kernel can be trained, equivalent to learnable delays (see Appendix A.1).

The DCLS convolution’s output xd,t for each channel d at timestep t is computed as follows:

xd,t = (ud ∗ kd)[t] =
Γ−1∑
n=0

kd[n]⊙ ud[t− n] (1)

We stack all D kernels kd into a kernel matrix K ∈ RD×Γ, yielding a final output vector xt ∈ RD.

Gated recurrent component To enable mGRADE to selectively model long-range dependen-
cies (Section 3.2), we include a gated recurrent component after the temporal convolution in the
mGRADE layer. To this end, we simplify the GRU (Cho et al., 2014) by removing the dependency
of the update gate, zt ∈ RH , and candidate activation, h̃t ∈ RH , on the previous hidden state,
ht−1 ∈ RH . The hidden state dimensionality H is equal to D times an expansion factor. Thus,
given the output of the DCLS convolution xt ∈ RD and a linear activation function on h̃t, the
hidden state ht ∈ RH is updated as follows,

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t with zt = σ(Wzxt) , h̃t = Whxt, (2)

where σ is the sigmoid function, ⊙ is the Hadamard product, and Wz and Wh ∈ RD×H are the
weights of the projections for zt and h̃t, respectively. This simplified and parallelizable recurrence
was initially proposed by Martin & Cundy (2018) and is also known as minimal Gated Recurrent
Unit (minGRU) (Feng et al., 2025).

The specific choice of a minGRU-style gated recurrence is motivated by its training efficiency and
hardware compatibility. Since the update gate and candidate activation only depend on the current
xt, the hidden states for every timestep can be computed in parallel using a prefix scan (Blelloch,
1990), enabling efficient training in logarithmic time with respect to the sequence length (Feng
et al., 2025). In addition, this architecture is well-suited to heavily quantized, low-power hardware
implementations, as shown by (Billaudelle et al., 2025).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: mGRADE reconstructs a diffeomorphic mapping of the input dynamics. A) Repre-
sentative trajectories (n = 4) on the Lorenz attractor manifold with 5% Gaussian time-independent
noise. The task is to predict dimension 1 at the next timestep. B) Representative trajectories in the
hidden state space of a single-layer mGRADE projected to the first 3 Principal Components (PC).
C) Trajectories in the hidden state space of a 2-layer minGRU projected to the first 3 Principal Com-
ponents (PC). See Fig. A2 for all PCs compared individually.

MLP and Layer Normalization Following the gated recurrent component, the hidden state ht

is passed through an MLP with WMLP,in ∈ RH×2D, WMLP,out ∈ R2D×D, and a non-linearity in
between. Afterwards, layer normalization is applied. Since D represents the dimensionality of the
activations passed between layers, we will call it the model dimensionality.

Memory Complexity During inference, mGRADE requires memory for both the model parame-
ters and for the activation buffer, which stores all past and current activations needed to produce an
output for the current timestep. The number of model parameters scales primarily with the model
dimensionality D. Regarding the activation buffer, the gated recurrent component utilizes only a
fixed-size hidden state vector. Thus, it can operate over arbitrary sequence lengths without scaling
the activation buffer size, allowing us to fix the kernel length Γ of the convolutional component
while maintaining a theoretically unbounded temporal receptive field1. Accordingly, mGRADE’s
memory complexity is independent of the input sequence length over which it operates, in marked
contrast to architectures like Transformers and TCNs, where memory requirements scale linearly
with the sequence length or temporal receptive field. For a detailed analysis of the memory scaling
of mGRADE’s components, see Appendix A.2.

3 THEORETICAL CAPABILITIES OF MGRADE

We now develop a theoretical understanding of how mGRADE’s temporal convolution and gated
recurrent components complement each other. To this end, we first investigate how the temporal
convolution enhances mGRADE beyond purely recurrent architectures by strengthening its struc-
tural inductive bias towards the reconstruction of short-term dynamics. We then show how the gated
recurrent component enables long-range dependency learning by showing that a single mGRADE
layer can formally model the Flip-Flop language and empirically solve the selective copying task,
both of which require selectively remembering long-range dependencies that cannot be modeled by
purely convolutional or non-gated recurrent architectures like TCNs or linear time-invariant SSMs.

3.1 TEMPORAL CONVOLUTIONS ENABLE SHORT-TERM PREDICTION OF DYNAMICS

mGRADE’s temporal convolution component can be reframed as computing weighted sums of time-
delayed inputs stored in cache memory at every timestep, with learnable positions controlling the
durations of the delays (Hammouamri et al., 2024). This operation mirrors delay embeddings, a
classical technique for time-series prediction and dynamical state-space reconstruction (Strogatz,
2015). Delay embeddings map an input sequence to a higher-dimensional vector consisting of m
time-delayed copies of the original input. Takens’ Embedding Theorem (Takens, 1981) guarantees
that, for a d-dimensional dynamical system, any delay embedding of even a single observed di-

1range of past inputs that can influence the output at any given timestep t

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Next-step prediction on 3D-Lorenz attractor.

Model MASE (observed dim.) MASE (unobserved dim.) Near. Neigh. Overl. % Params.

mGRADE 0.38 ± 0.02 0.86 ± 0.11 32.7 ± 0.7 281
minGRU 0.63 ± 0.01 1.01 ± 0.01 28.8 ± 2.2 471

mension can diffeomorphically reconstruct the underlying manifold along which the system moves,
using at most m = 2d+1 delays in noise-free conditions. Intuitively, this means that given a vector
with at least m = 2d + 1 different delays as input, the hidden state will trace out trajectories in
m-dimensional space that resemble the underlying original dynamical system’s trajectories – up to
a smooth, invertible transformation.

Theorem 1 (Informal). A single-layer mGRADE can express a delay embedding of a d-dimensional
dynamical system in the sense of Takens (1981), using only an m-dimensional projection of a single
observed dimension as input. Its m-dimensional hidden state can thus learn to diffeomorphically
reconstruct the system’s full geometry over time.

The full theorem and its proof are provided in Appendix B.1.1. It relies on the fact that mGRADE
can learn distinct delays for each of the m projections of the observed dimension, and then embed
them directly into its hidden state. This internal representation captures the full geometry of the
underlying dynamical system, allowing mGRADE to generalize to dimensions that were unobserved
during training, specifically thanks to the temporal convolution component.

We evaluate this claim on a next-step prediction task using the chaotic 3D-Lorenz attractor, training
a single-layer mGRADE and a 2-layer minGRU2 on 2000 noisy trajectories (Fig. 2A; Lorenz, 1963).
To quantify the quality of the next-step predictions, we use the Mean Absolute Standardized Error
(MASE) (Hyndman & Koehler, 2006). Note that MASE > 1 indicates that a model has no predictive
power relative to naively predicting the current state’s persistence (see Appendix B.1.2).

Visualizing the top three Principal Components of the 10 hidden states (Fig. 2B,C; Fig. A2),
mGRADE’s embedding reconstructs the Lorenz system’s characteristic two-lobe structure, while
the minGRU’s embedding lacks similar visual correspondence. mGRADE also achieves a MASE
that is 1.6× lower than minGRU when predicting the next timestep on observed dimensions (Ta-
ble 1; Fig. A1). When predicting the dimensions unobserved during training, mGRADE outper-
forms the 2-layer minGRU, which shows no predictive power given a MASE > 1. We also quan-
tify how smoothly the geometry of the original attractor maps to the geometry of the hidden state
space by measuring Nearest neighbor Overlap following (Ostrow et al., 2024) (for details see Ap-
pendix B.1.2). A high overlap percentage indicates that locally the two manifolds are smooth invert-
ible mappings of each other, i.e., that the hidden space is a faithful diffeomorphic reconstruction of
the original. Consistent with our visual check, mGRADE exceeds the minGRU by 4%.

This experiment highlights how adding the temporal convolution component, essentially a short-
term cache memory of delayed inputs, implements a useful representation for reconstructing dy-
namical state spaces from partial observations. Over short time horizons, this enables mGRADE to
generalize on even partially dynamical systems data.

Additional experiments in Appendix B.3 show that the temporal convolution component also enables
mGRADE to recognize and respond to high-frequency features far better than purely gated recurrent
architectures, overcoming their bias towards low-frequency information (Rahaman et al., 2019).

3.2 GATED RECURRENCE ENABLES LONG-RANGE DEPENDENCY LEARNING

To probe mGRADE’s ability to selectively remember long-range dependencies, we analyze its abil-
ity to predictively model Flip-Flop languages, a formal language family designed to test sequence
models’ long-range capabilities. (Fig. 3A; Liu et al., 2023).

2For a fair comparison, we give the minGRU an additional layer to provide its update gate and candidate ac-
tivation in the second layer with temporal information. This means that the only significant difference between
the mGRADE and minGRU models is the fact that mGRADE’s uses a convolution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of Flip-Flop and selective copying tasks. A) Flip-Flop modeling consists
of predicting the prediction set Pi of next possible symbols in the given Flip-Flop string at every
timestep. For r symbols, this is equivalent to recalling the value after the most recent w. B) Selec-
tive copying requires storing and recalling (after the marker symbol m) randomly distributed value
symbols ai in the order they are presented in while ignoring the distractor symbols d in between.

Definition 1 (Flip-Flop Language). Let the alphabet be Σ = {w, r, i, 0, 1}, where w, r, and
i represent the instruction symbols for “write”, “read”, “ignore”, and 0, 1 represent value symbols.
Flip-Flop languages Lff consist of sets of strings over Σ that alternate between instructions and
values (e.g., w 0 r 0 i 1), satisfying the condition that after every r symbol, the subsequent
symbol is equal to the value following the previous w. All valid strings begin with w.
Definition 2 (Predictive Modeling). For a string s ∈ Lff and a prefix s[1 : t] ending at position
t with symbol at, predictive modeling requires outputting the prediction set Pi ⊆ Σ of valid next
symbols at+1 such that s[1 : t] at+1 remains a prefix of a string in Lff . We say that a model
predictively models Lff iff its output at each timestep t encodes all the information needed for a
linear classifier to return the next prediction set with no errors.

Predictive modeling of Flip-Flop languages is interesting for multiple reasons. First, a model’s suc-
cess on Flip-Flop modeling implies a broad computational expressivity on multiple formal languages
and algorithmic simulation tasks (Liu et al., 2023). Second, Flip-Flop modeling requires maintain-
ing the last w-paired value over arbitrarily long sequences. Accordingly, models with fixed-length
context windows or sequence-length dependent memory scaling, such as TCNs and Transformers,
cannot model Flip-Flop over arbitrary lengths with a fixed memory size (Sarrof et al., 2024; Liu
et al., 2023, for proof see Appendix B.4.1). Finally, since any r is typically separated from the most
recent w by an arbitrarily long string of irrelevant i-paired values, Flip-Flop modeling requires se-
lectively remembering and ignoring value symbols based on the content of the preceding instruction.
This content-aware selectivity across time factors into many real-world challenges, such as tracking
filler-gap dependencies in natural language (Wilcox et al., 2018; Howitt et al., 2024) or ignoring
irrelevant inputs during arithmetic reasoning (Shi et al., 2023). Notably, linear time-invariant SSMs
without input-dependent gating, such as the Hungry Hungry Hippo (H3) (Dao et al., 2022) or Linear
Recurrent Unit (LRU) (Orvieto et al., 2023), lack selectivity (Gu & Dao, 2024).

In contrast to TCNs, Transformers, and linear time-invariant SSMs, a single-layer mGRADE can
predictively model Flip-Flop languages due to its gated recurrent component.
Theorem 2 (Flip-Flop Modeling with mGRADE). A single-layer mGRADE with at least 2 delays
can predictively model a Flip-Flop language, Lff , at arbitrary length.

Proof Sketch. (Full proof in Appendix B.4.1) mGRADE stores the value after the last w in one part
of its hidden state, while the other merely reproduces the input. Learnable delays trigger the update
gate of the storage hidden state only after a w (selectively), which then preserves the value over
arbitrary sequence lengths via its recurrence until the next w. A linear classifier can then trivially
extract the prediction set by reading the current input symbol from the reproducing hidden state,
and, if the current input is r, reading out the stored value from the storage hidden state.

To evaluate this claim, we train a single-layer mGRADE, a single-layer linear time-invariant SSM,
the LRU augmented with the DCLS convolution, and a 5-layer TCN on the Flip-Flop dataset from
Liu et al. (2023). The training data consists of 1.6M Flip-Flop strings of 512 timesteps, where the
expected distance between w and r is 10 timesteps. For testing, we used out-of-distribution data of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Flip-Flop and selective copying tasks. H3 results are from Gu & Dao (2024).

Flip-Flop Selective Copying

Test Acc. % Params. Buff. Activ. Test Acc. % Params. Buff. Activ.

mGRADE 99.6 ± 0.3 3K 96 87.1 ± 2.2 65K 17K
LRU + DCLS 88.5 ± 3.5 5K 96 16.7 ± 3.5 81K 17K
TCN 60.6 ± 0.1 3K 16K – – –
H3 – – – 57.0 166K 512

the same length with sparse w and r (expected distance around 100 timesteps) to stress long-range
dependency learning. Furthermore, we only report the recall accuracy, i.e., how often the model
predicted the value following any given r symbol correctly. mGRADE solves the task to nearly
100%, substantially outperforming both the TCN and the SSM despite using less parameters and a
smaller activation buffer, even at longer distances between successive w and r symbols (Fig. A5).

In addition to Flip-Flop language modeling, we further evaluate mGRADE’s selectivity relative
to linear time-invariant SSMs by comparing the performance of mGRADE and LRU on the well-
established selective copying task (Fig. 3B; Jing et al., 2019; Gu & Dao, 2024). Selective copying is
related to Flip-Flop modeling, but instead of providing an explicit instruction ahead of the sequence
elements that contain relevant content (i.e. the w symbol used in Lff), the content of the sequence
element itself defines its relevance. For further details, we refer to Appendix B.5.

Our results in Table 2 show that mGRADE clearly outperforms our LRU implementation by more
than 70%, despite using 1.3× less parameters. These results on LRUs are consistent with the re-
sults achieved by Gu & Dao (2024) with H3 (Dao et al., 2022), another linear time-invariant SSM
extending Structured State Space Model (S4) (Gu et al., 2022b). This emphasizes the importance of
mGRADE’s input-dependent gating over its hidden state transition, which the SSMs lack.

Overall, the Flip-Flop modeling and selective copying tasks confirm that mGRADE’s recurrent
components enable robust and selective long-range dependency modeling, outperforming purely
convolutional and non-gated recurrent models without having to scale the memory size with input
sequence length. These long-range learning capabilities combined with the ability of the tempo-
ral convolution component to model short-term dynamics Section 3.1 underpin mGRADE’s strong
performance on real-world sequence tasks, as explored in the following section.

4 EMPIRICAL VERIFICATION

We test the proposed mGRADE architecture on sequence modeling tasks that require handling both
long- and short-range dependencies. We choose the LRA benchmark as it is specifically designed to
evaluate the performance and test the inductive biases of sequence learning architectures. The tasks
in the LRA span different modalities (text and flattened images), and feature sequences of lengths
1024 to 16384. When evaluating the results, we do not solely focus on the achieved accuracy, but
also consider the memory footprints of both parameters and activation buffer, which indicate how
suitable the model is for deployment on embedded systems.

Experimental setup Since mGRADE is designed for real-time signal processing on embedded
systems, it processes its inputs in a streamed and causal fashion. Therefore, we deliberately avoid
using the (acausal) bidirectional processing used by S5 (Smith et al., 2023), S4-LegS (Gu et al.,
2022a), and HGRN (Qin et al., 2023), although its inclusion leads to significant performance im-
provements on LRA, as shown by comparing S4-LegS to the causal S4 (Gu et al., 2022b) on Re-
trieval, Image, and Pathfinder (row 1 vs row 2 in Table 3). Additionally, we process the raw inputs
directly, consistent with all baselines, except for HGRN (Qin et al., 2023) which applies positional
encoding to all tasks except Pathfinder. Additional experimental details can be found in Appendix C.

Results In Table 3 we compare mGRADE’s performance on LRA to current SotA RNN- and
convolution-based architectures. Compared to the best-performing models, mGRADE reduces
the memory footprint significantly, while still achieving comparable accuracies: for example, on
ListOps, it achieves an accuracy within 0.9% of Liquid-S4’s performance (Hasani et al., 2023),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance Comparison on the Long Range Arena benchmark. We differentiate the
parameter count (“Params.”) from the activation buffers (“Buff.”) as explained in Appendix A.2. Pa-
rameter counts and accuracies not made available in the publications or official code are denoted by
a dash. The calculations of the activity buffer sizes are detailed in Appendix C.2, with Appendix C.3
outlining additional considerations regarding the actual instantiation on embedded platforms.

ListOps Text Retrieval Image Pathfinder

Model Acc. Params. / Buff. Acc. Params. / Buff. Acc. Params. / Buff. Acc. Params. / Buff. Acc. Params. / Buff.

RNN-based architectures
S4 (Gu et al., 2022b)5 58.4 255K / 49K 76.0 184k / 16K 87.1 1.2M / 98K 87.3 3.4M / 197K 86.1 896K / 98K
S4-LegS (Gu et al., 2022a)1,5 59.6 599K / 131K 86.8 1.3M / 197K 90.9 1.6M / 197K 88.7 3.6M / 393K 94.2 1.3M / 197K
DSSSOFTMAX (Gupta et al., 2022)5 60.6 206K / 49K 84.8 152K / 16K 87.8 888K / 98K 85.7 2.0M / 197K 84.6 601K / 98K
DSSEXP

5 59.7 206K / 49K 84.6 152K / 16K 87.6 888K / 98K 84.9 2.0M / 197K 84.7 601K / 98K
DSSEXP-NO-SCALE

5 59.3 206K / 49K 82.4 152K / 16K 86.0 888K / 98K 81.2 2.0M / 197K 81.3 601K / 98K
Liquid-S4 (Hasani et al., 2023)5 62.8 333K / 8K 89.0 164K / 4K 91.2 1.5M / 98K 89.5 11M / 1.6M 94.8 1.2M / 98K
S5 (Smith et al., 2023)1,5 62.2 190K / 0.1K 89.3 1.3M / 1.1K 91.4 772K / 1.5K 88.0 5.1M / 2.3K 95.3 1.1M / 1.5K
LRU (Orvieto et al., 2023)3 60.2 190K / 1.5K 89.4 1.3M / 1.1K 89.9 772K / 1.5K − − / − 95.11 1.1M / 1.5K
HGRN (Qin et al., 2023)1, 2, 5 60.0 84K / 0.4K 88.1 878K / 1.0K 94.2 115K / 0.3K 88.7 20.6M / 6.1K 92.9 1.3M / 1.5K

Convolution-based architectures
SGConv (Li et al., 2023)4 61.5 − / ∼ 1.5M 89.2 − / ∼ 1M 91.1 − / ∼ 6.3M 88.0 − / ∼ 3.1M 95.5 − / ∼ 1.6M
MRConv-L (Cunningham et al., 2024)4 62.4 661K / ∼ 1.5M 89.4 − / ∼ 1M 91.5 − / ∼ 6.3M 90.6 7.7M / ∼ 3.1M 96.7 − / ∼ 1.6M

mGRADE 61.9 40K / 3K 87.3 44K / 1.5K 88.1 104K / 1.7K 87.1 712K / 197K 94.9 612K / 197K
1 Bi-directional input processing.
2 Uses positional encoding of the input.
3 Assuming same hyperparameters as in S5 (Smith et al., 2023) as mentioned in (Orvieto et al., 2023) (code not available).
4 Buffer sizes calculated assuming same hyperparameters as in S4 (Gu et al., 2022b) as mentioned in (Li et al., 2023) and (Cunningham et al., 2024) (code not available).
5 Parameter numbers extracted from the official GitHub repositories.

while using 7× fewer parameters; on Pathfinder, it remains within 1.8% of MRConv-L’s perfor-
mance, while using 8× smaller activation buffers. Compared to the models that are closest in size,
mGRADE delivers higher performance: 1.9% higher accuracy than HGRN (Qin et al., 2023) on
ListOps and 8% higher accuracy than S4 on Pathfinder (while still using 1.5-2× fewer parameters).
Due to the compute-intensive nature of training on PathfinderX, we leave this task for future work.

These results confirm that our proposed architecture is capable of tackling large-scale tasks, thereby
validating our theoretical predictions and demonstrating clear advantages in memory footprint and
performance at comparable network sizes. In addition to the results summarized in Table 3, we
perform an ablation study to estimate the impact of mGRADE’s two architectural components. Ap-
pendix D.1 shows that while convolutions and recurrent components perform well on their own on
Image or ListOps, respectively, only full mGRADE can tackle both tasks successfully. Addition-
ally, both components are needed to solve Pathfinder above chance level. Finally, we analyze the
learned delays in Appendix D.2 and show that mGRADE flexibly learns task-specific convolution
strategies, with spatially local information aggregation emerging in the temporal convolution kernel
for sequential image classification and distributed aggregation when detecting sparser structures.

5 RELATED WORKS

This section surveys previous work that informs our hybrid-memory architecture. We proceed as fol-
lows: first, we review gated and linear recurrent networks, then convolution-based sequence models,
and finally, the effects of combining recurrent models with convolutions.

Gated Recurrent Models For many years, RNNs were virtually synonymous with sequence mod-
eling. Gated RNNs, notably the LSTMs and GRUs, alleviate vanishing-gradient effects (Bengio
et al., 1994; Hochreiter & Schmidhuber, 1997) through learned gating mechanisms that selectively
control the flow of information and neuron state updates. Although effective, these models train
sequentially and are therefore inefficient for training on very long sequences. Bradbury et al. (2017)
and Martin & Cundy (2018) mitigate this bottleneck by removing the hidden-state dependency of
the gate and candidate activation vectors, enabling parallel training through a prefix scan (Blelloch,
1990). In fact, the Gated Impulse Linear Recurrent (GILR) layer proposed by Martin & Cundy
(2018) is equivalent to the minGRU-style gated recurrence used for mGRADE (see Section 2).
Hierarchically Gated Recurrent Networks (HGRNs) adds complex-valued parameters and a hierar-
chical gating bias to a parallelizable gated RNN, setting an upper bound for the update gate and
encouraging hierarchical processing of time scales from fast to slow (Qin et al., 2023). Note that
this enforced low-frequency bias can impede recognizing important high-frequency features, which

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

is already challenging for gated RNNs (see Appendix B.3). mGRADE mitigates this by including
the temporal convolution with learnable delays in each layer.

Linear Recurrent Models Another line of research removes gating from the recurrent core alto-
gether, favoring RNNs which rely on fully linear transitions between hidden states. Early investi-
gations into linear RNNs (Mozer, 1993; Mikolov & Zweig, 2012; Pachitariu & Sahani, 2013) have
converged in linear time-invariant SSMs, such as Structured State-Space Models (S4) (Gu et al.,
2022b)), LRU (Orvieto et al., 2023), and the H3 architecture (Dao et al., 2022). Linear time-invariant
SSMs are not selective, limiting their expressivity over long-range dependencies (see Section 3.2).
Mamba (Gu & Dao, 2024) addresses this by reintroducing input-dependent update gating within the
linear recurrence, effectively returning to the fold of parallelizable gated RNNs. While SSMs can be
parallelized due to their linear recurrence, they use complex-valued parameters and highly specific
initialization schemes, thus reducing their hardware compatibility and quantizability (Zhao et al.,
2025). In contrast, the gated recurrent component of mGRADE has been successfully adapted for
embedded deployment (Billaudelle et al., 2025).

Temporal Convolution Models TCNs were originally proposed in Waibel et al. (1989) to model
temporal dependencies within a fixed-length receptive field using causal convolutions over the in-
put sequence. Dilated convolutions, where the kernel elements are regularly spaced apart in time,
efficiently expand the receptive field, particularly when these spacings increase exponentially with
layer depth as in Wavenet (van den Oord et al., 2016). However, these fixed regular spacings can
miss information in irregular frequencies, common in real-world signals (George & Smith, 1997).
To address this, DCLS (Hassani et al., 2023) replaces fixed spacings with learnable ones, increasing
performance and flexibility in temporal classification with spiking neural networks (Hammouamri
et al., 2024). However, DCLS as well as dilated TCNs still require buffering input activations, scal-
ing memory cost with kernel length. This issue is exacerbated in global convolutional networks,
such as SGConv (Li et al., 2023) and MRConv (Cunningham et al., 2024), where kernel length is
matched to sequence length. Such approaches are impractical for embedded systems, given their
memory constraints. mGRADE instead uses a fixed kernel length, resulting in a constant activa-
tion buffer size, relying on the recurrent component to capture long dependencies. Similar fixed-
length convolutions have been successfully adapted to embedded systems, notably in DenRAM and
Chameleon (D’agostino et al., 2024; den Blanken & Frenkel, 2025).

Combining Convolutions and Recurrence Several modern sequence models combine recurrent,
convolutional, and normalization layers in multi-layered architectures. While this can improve
performance, it complicates our understanding of each component’s functional role. Similar to
mGRADE, recent gated recurrent architectures (Bradbury et al., 2017; Beck et al., 2024; Feng et al.,
2025) as well as some linear RNNs (Dao et al., 2022) combine temporal 1D convolutions (albeit
with far shorter kernel lengths and without learnable spacings) and recurrent components, yielding
consistent empirical performance improvements. However, the distinct functional contributions of
these components, particularly with respect to the timescales they operate on, have remained largely
unexplored prior to this work.

6 CONCLUSION

We present mGRADE, a hybrid-memory architecture engineered for real-time processing of se-
quences with multi-timescale dependencies on resource-constrained embedded systems. Our design
is grounded in formal proofs and experimental evidence that demonstrate mGRADE’s capacity to
model not only short-term dynamics, but also long-range dependencies. We characterize the func-
tional complementarity of each component: the temporal convolution serves as a short-term cache
for delayed inputs, providing effective representations for reconstructing trajectories of dynami-
cal systems from partial observations, while the gated recurrent component maintains a memory-
efficient and selective history of the input sequence.

We support these theoretical arguments with an extensive empirical evaluation of mGRADE across
the multi-timescale sequence modeling tasks of the LRA benchmark. The results show that
mGRADE substantially reduces the memory footprint compared to the SotA models, while main-
taining competitive performance. This highlights the potential of mGRADE for large-scale, real-
time sequence modeling on embedded systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-
tended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ARAxPPIAhq.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

Sebastian Billaudelle, Laura Kriener, Filippo Moro, Tristan Torchet, and Melika Payvand. Mini-
malist: switched-capacitor circuits for efficient in-memory computation of gated recurrent units,
2025. URL https://arxiv.org/abs/2505.08599.

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of
Computer Science, Carnegie Mellon University, November 1990.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=H1zJ-v5xl.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Lin-
guistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179/.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep
Learning, December 2014, 2014.

Harry Jake Cunningham, Giorgio Giannone, Mingtian Zhang, and Marc Peter Deisenroth. Reparam-
eterized multi-resolution convolutions for long sequence modelling. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=RwgNbIpCpk.

Tri Dao, Daniel Y. Fu, Khaled Kamal Saab, Armin W. Thomas, Atri Rudra, and Christopher
Ré. Hungry hungry hippos: Towards language modeling with state space models. CoRR,
abs/2212.14052, 2022. doi: 10.48550/arXiv.2212.14052. URL https://doi.org/10.
48550/arXiv.2212.14052.

Douwe den Blanken and Charlotte Frenkel. Chameleon: A matmul-free temporal convolutional
network accelerator for end-to-end few-shot and continual learning from sequential data, 2025.

Simone D’agostino, Filippo Moro, Tristan Torchet, Yiğit Demirağ, Laurent Grenouillet, Niccolò
Castellani, Giacomo Indiveri, Elisa Vianello, and Melika Payvand. Denram: neuromorphic den-
dritic architecture with rram for efficient temporal processing with delays. Nature communica-
tions, 15(1):3446, 2024.

Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimir-
sadeghi. Were RNNs all we needed?, 2025. URL https://openreview.net/forum?
id=GrmFFxGnOR.

E.B. George and M.J.T. Smith. Speech analysis/synthesis and modification using an analysis-by-
synthesis/overlap-add sinusoidal model. IEEE Transactions on Speech and Audio Processing, 5
(5):389–406, 1997. doi: 10.1109/89.622558.

Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to forget: Continual prediction
with LSTM. Neural Comput., 12(10):2451–2471, 2000. doi: 10.1162/089976600300015015.
URL https://doi.org/10.1162/089976600300015015.

William Gilpin. dysts: A chaotic systems simulation library, 2024. URL https://github.
com/williamgilpin/dysts.

10

https://openreview.net/forum?id=ARAxPPIAhq
https://arxiv.org/abs/2505.08599
https://openreview.net/forum?id=H1zJ-v5xl
https://openreview.net/forum?id=H1zJ-v5xl
https://aclanthology.org/D14-1179/
https://openreview.net/forum?id=RwgNbIpCpk
https://openreview.net/forum?id=RwgNbIpCpk
https://doi.org/10.48550/arXiv.2212.14052
https://doi.org/10.48550/arXiv.2212.14052
https://openreview.net/forum?id=GrmFFxGnOR
https://openreview.net/forum?id=GrmFFxGnOR
https://doi.org/10.1162/089976600300015015
https://github.com/williamgilpin/dysts
https://github.com/williamgilpin/dysts

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Caglar Gulcehre, Tom Paine, Matt Hoffman, and Razvan Pascanu. Improving the gating
mechanism of recurrent neural networks. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initial-
ization of diagonal state space models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022a. URL
https://openreview.net/forum?id=yJE7iQSAep.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=RjS0j6tsSrf.

Julian Göltz, Jimmy Weber, Laura Kriener, Sebastian Billaudelle, Peter Lake, Johannes Schemmel,
Melika Payvand, and Mihai A. Petrovici. Delgrad: exact event-based gradients for training delays
and weights on spiking neuromorphic hardware. Nature Communications, 16:8245, 2025. doi:
10.1038/s41467-025-63120-y.

Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning delays in spik-
ing neural networks using dilated convolutions with learnable spacings. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=4r2ybzJnmN.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
g4OTKRKfS7R.

Ismail Khalfaoui Hassani, Thomas Pellegrini, and Timothée Masquelier. Dilated convolution with
learnable spacings. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Q3-1vRh3HOA.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Katherine Howitt, Sathvik Nair, Allison Dods, and Robert Melvin Hopkins. Generalizations across
filler-gap dependencies in neural language models. In Libby Barak and Malihe Alikhani (eds.),
Proceedings of the 28th Conference on Computational Natural Language Learning, pp. 269–279,
Miami, FL, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.conll-1.21. URL https://aclanthology.org/2024.conll-1.21/.

Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy. Inter-
national Journal of Forecasting, 22(4):679–688, 2006. ISSN 0169-2070. doi: https://doi.org/
10.1016/j.ijforecast.2006.03.001. URL https://www.sciencedirect.com/science/
article/pii/S0169207006000239.

Li Jing, Caglar Gulcehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, and Yoshua
Bengio. Gated orthogonal recurrent units: On learning to forget. Neural Computation, 31(4):
765–783, 04 2019. ISSN 0899-7667. doi: 10.1162/neco a 01174. URL https://doi.org/
10.1162/neco_a_01174.

Ismail Khalfaoui-Hassani, Thomas Pellegrini, and Timothée Masquelier. Dilated convolution with
learnable spacings: beyond bilinear interpolation. In Differentiable Almost Everything Workshop
of the 40-th International Conference on Machine Learning, 2023. URL https://arxiv.
org/abs/2306.00817.

11

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=yJE7iQSAep
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=4r2ybzJnmN
https://openreview.net/forum?id=4r2ybzJnmN
https://openreview.net/forum?id=g4OTKRKfS7R
https://openreview.net/forum?id=g4OTKRKfS7R
https://openreview.net/forum?id=Q3-1vRh3HOA
https://aclanthology.org/2024.conll-1.21/
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://doi.org/10.1162/neco_a_01174
https://doi.org/10.1162/neco_a_01174
https://arxiv.org/abs/2306.00817
https://arxiv.org/abs/2306.00817

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=TGJSPbRpJX-.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing
attention glitches with flip-flop language modeling. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
VzmpXQAn6E.

Edward Norton Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20:
130–141, 1963.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Wolfgang Maass and Michael Schmitt. On the complexity of learning for spiking neurons
with temporal coding. Information and Computation, 153(1):26–46, 1999. ISSN 0890-5401.
doi: https://doi.org/10.1006/inco.1999.2806. URL https://www.sciencedirect.com/
science/article/pii/S0890540199928067.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=HyUNwulC-.

Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language model.
In 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 234–239, 2012. doi: 10.1109/
SLT.2012.6424228.

Michael Mozer. Neural net architectures for temporal sequence processing. Santa Fe Institute
Studies in The Sciences of Complexity, 15:243–243, 03 1993.

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. In Sil-
vio Ricardo Cordeiro, Shereen Oraby, Umashanthi Pavalanathan, and Kyeongmin Rim (eds.),
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Student Research Workshop, pp. 92–99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-4013. URL
https://aclanthology.org/N18-4013/.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Çaglar Gülçehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. CoRR,
abs/2303.06349, 2023. doi: 10.48550/arXiv.2303.06349. URL https://doi.org/10.
48550/arXiv.2303.06349.

Mitchell Ostrow, Adam Eisen, and Ila Fiete. Delay embedding theory of neural sequence models.
2024. URL https://arxiv.org/abs/2406.11993v1.

Marius Pachitariu and Maneesh Sahani. Regularization and nonlinearities for neural language mod-
els: when are they needed?, 2013. URL https://arxiv.org/abs/1301.5650.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neu-
ral network for sequence modeling. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
694be3548697e9cc8999d45e8d16fe1e-Abstract-Conference.html.

12

https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=TGJSPbRpJX-
https://openreview.net/forum?id=VzmpXQAn6E
https://openreview.net/forum?id=VzmpXQAn6E
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/S0890540199928067
https://www.sciencedirect.com/science/article/pii/S0890540199928067
https://openreview.net/forum?id=HyUNwulC-
https://openreview.net/forum?id=HyUNwulC-
https://aclanthology.org/N18-4013/
https://doi.org/10.48550/arXiv.2303.06349
https://doi.org/10.48550/arXiv.2303.06349
https://arxiv.org/abs/2406.11993v1
https://arxiv.org/abs/1301.5650
http://papers.nips.cc/paper_files/paper/2023/hash/694be3548697e9cc8999d45e8d16fe1e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/694be3548697e9cc8999d45e8d16fe1e-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5301–5310. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/rahaman19a.html.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models:
A formal language perspective. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=eV5YIrJPdy.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context. In Pro-
ceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Steven Strogatz. 12.4 Chemical chaos and attractor reconstruction. CRC Press, 2015.

Floris Takens. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence,
Lecture Notes in Mathematics, 898:366–381, 1981.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=qVyeW-grC2k.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio, 2016. URL https://arxiv.org/abs/1609.03499.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme recognition using time-
delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3):
328–339, 1989. doi: 10.1109/29.21701.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard Futrell. What do RNN language models
learn about filler–gap dependencies? In Tal Linzen, Grzegorz Chrupała, and Afra Alishahi (eds.),
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pp. 211–221, Brussels, Belgium, November 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/W18-5423. URL https://aclanthology.org/
W18-5423/.

Leo Zhao, Tristan Torchet, Melika Payvand, Laura Kriener, and Filippo Moro. Quantizing small-
scale state-space models for edge ai, 2025. URL https://arxiv.org/abs/2506.12480.

Nicolas Zucchet. minimal-LRU: Unofficial implementation of the linear recurrent unit (lru, orvi-
eto et al. 2023). https://github.com/NicolasZucchet/minimalLRU, 2024. MIT
License. Accessed: 2025-09-22.

13

https://proceedings.mlr.press/v97/rahaman19a.html
https://openreview.net/forum?id=eV5YIrJPdy
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/1609.03499
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5423/
https://aclanthology.org/W18-5423/
https://arxiv.org/abs/2506.12480
https://github.com/NicolasZucchet/minimal‑LRU

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A MODEL SPECIFICATION DETAILS

A.1 LEARNABLE DCLS KERNELS

DCLS was first introduced by Hassani et al. (2023) and enables the spacings between different
elements of a convolution kernel to be trained. In a temporal setting, this is equivalent to learning
delays. DCLS requires a specific kernel construction parameterized by both a set of weights, Ωd =
{w0, w1, ..., wK−1 | wi ∈ R}, and a set of corresponding positions, Ψd = {p0, p1, ..., pK−1 | pi ∈
R, pi ≤ pmax}, for every channel d ≤ D of the input. These sets have K, the kernel count,
elements each, and a maximum possible position (or in time, a maximum delay) pmax = Γ, called
the kernel length. In time, each position is relative to the current timestep, making it equivalent to a
transmission delay.

To construct the discrete kernel kd for one of the input channels, each real-valued position pi is
mapped to the discrete kernel indices n ≤ Γ via a differentiable interpolation function, c. This
enables both the position and weight of the kernel elements to be learned with gradient descent. The
kernel kd ∈ RΓ for a single channel then becomes:

kd[n] =

K−1∑
i=0

wi · c[n, pi], with kd = [kd[0], kd[1], ..., kd[Γ− 1]] (3)

As in Khalfaoui-Hassani et al. (2023), we use a Gaussian with fixed width v as our interpolation
function:

c[n, pi] = exp

[
−1

2

(
n− pi

v

)2
]

(4)

A.2 MEMORY FOOTPRINT

Scaling The memory requirements of mGRADE during inference consist of (1) the model param-
eters and (2) the activation buffer required for sequential processing. Since these come with distinct
usage patterns and on-chip implementations in embedded systems, we treat them separately as they
might necessitate employing different memory technologies.

In terms of the number of parameters, the temporal convolution component of each mGRADE layer
scales with the number of channels (or model dimensionality) D and the number of kernel elements
K, leading to O(D ×K) complexity. In practice, K is significantly lower than D or Γ. The gated
recurrent component scales with the model dimensionality and the hidden state dimensionality H ,
with O(D ×H), just like the MLP after the gated recurrence. Assuming that H is proportional to
D, the overall parameter memory scales as O(D2).

In terms of activation buffer, the temporal convolution with learnable delays requires storing input
activations for at most Γ timesteps (Eq. (1)). More precisely, the activation buffer size scales linearly
with the model dimensionality D, the number of layers L, and the kernel length Γ, yielding a
memory complexity of O(D × L × Γ). The gated recurrent component only requires a single
hidden state vector per layer (similar to the MLP), so assuming the hidden state dimensionality H
is proportional to D, the overall activation buffer complexity is thus dominated by the temporal
convolution.

Calculation This section presents complete derivations for the memory requirements of each net-
work component during inference. We begin by examining the parameter memory footprint, fol-
lowed by an analysis of buffer memory usage.

The notation MemParamcomponent represents the memory consumption for each component (encoder,
convolution, recurrent, MLP, decoder), with subelements categorized as Weights, Bias, and Po-
sitions. Note that the hidden state dimensionality of the recurrent component, H , is the model
dimensionality scaled by an expansion factor denoted as e.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

MemParamEnc = WeightsEncoder + BiasEncoder = Din ×D (5)

MemParamConv =

{
WeightsConv + PositionsConv = 2(K ×D) for mGRADE,
WeightsConv = K ×D else.

(6)

MemParamRec = Weightsz + Weightsh̃ + Biasz + Biash̃ (7)

= H ×D +H ×D +H +H = 2eD2 + 2D (8)

MemParamMLP = WeightsMLP + BiasMLP (9)

= 2D ×H + 2D +D × 2D +D = 4eD2 + 3D (10)

MemParamNorm = 2D (11)

MemParamDec = WeightsDec = D ×Dout (12)

MemParamnetwork = MemParamEnc + MemParamDec

+ L× (MemParamConv + MemParamRec (13)

+ MemParamMLP + MemParamNorm)

Overall, this yields a memory complexity of O(L× e×D2 + L×K ×D) for parameter storage,
with the model dimensionality D dominating.

As explained in Section 2, any single convolution layer requires the storage of past inputs to produce
an output. The past inputs are stored in an activation buffer whose size scales linearly with the kernel
length Γ. Thus, for an entire network, the buffer requirements for the convolutional components are
determined by D, L, and the kernel length Γ. In addition, recurrent models must maintain hidden
state activations with dimensionality H = eD, further contributing to the required activation buffer.

MemBufferConv = L×D × Γ with Γ =

{
d× (K − 1) TCN with dilation rate d,

pmax mGRADE.
(14)

MemBufferRec = L×H = L× eD (15)

For purely recurrent models, the activation buffer size is determined entirely by MemBufferRec and,
for purely convolutional models, by MemBufferConv. mGRADE’s final required memory is just the
sum of the two:

MemBuffernetwork = MemBufferConv + MemBufferRec (16)
= L×D × Γ + L× eD (17)
= L×D × (Γ + e) (18)

Thus, mGRADE’s activation buffer does not scale with sequence length but instead with layer num-
ber, model dimensionality, and kernel length.

B THEORETICAL CAPABILITIES OF MGRADE

B.1 DYNAMICS RECONSTRUCTION TASK

B.1.1 PROOF FOR MGRADE AS A DELAY EMBEDDING

Here we detail the full proof of Theorem 1, demonstrating how mGRADE can learn to express a
delay embedding.
Theorem 1 (Reconstructing Dynamics through mGRADE’s Delay Embedding). Take a discrete-
time dynamical system f : M → M over a compact manifold M of dimension d, mapping ut ∈ Rd

to ut+1 ∈ Rd according to some differentiable and deterministic rule. Let y : M → R be a

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

generic twice-differentiable observation function that deterministically maps any ut on M to a
single observable yt ∈ R at time t. Let m ≥ 2d+ 1. Let a single mGRADE layer be preceded by a
linear projection mapping the input yt to ŷt ∈ Rm (the encoder) such that D = H = m. Assume
that v → 0, with v being the width of mGRADE’s interpolation function c.

Then, the hidden state ht ∈ Rm of m-dimensional mGRADE layer can learn to express a delay
embedding in the sense of Takens (1981), and accordingly can learn to fully reconstruct the original
dynamics of ut ∈ Rd, differing only by a smooth, invertible change of coordinates (a diffeomor-
phism).

Proof. Let f : M → M be a discrete-time dynamical system over a compact d-dimensional man-
ifold M, and let y : M → R be a generic twice-differentiable observation function, as defined
in Theorem 3. Assume m ≥ 2d + 1. Let the encoder preceding the mGRADE layer map yt to a
m-dimensional vector ŷt = [yt, yt, . . . , yt] ∈ Rm by replication.

Construct a single-layer mGRADE model as follows:

1. Each of the m channels of mGRADE’s temporal convolution kernel is learned to a unique, fixed
delay. Specifically, for the q-th channel, set the kernel’s delay to pq = (q − 1)τ , for some fixed
delay step τ ∈ N, letting the interpolation function width v → 0 and learning unitary weights. This
means that the output of the q-th channel is equal to yt−(q−1)τ .

2. Let the update gate parameter matrix Wz be such that ht = h̃t at every timestep (by setting
Wz → −∞). Let the hidden projection matrix Wh ∈ Rm×m be the identity.

Under this construction, the hidden state at each time t becomes:

ht = h̃t = [yt, yt−τ , yt−2τ , . . . , yt−(m−1)τ],

which corresponds exactly to the delay vector used by Takens as the delay embedding (Takens,
1981).

Because m ≥ 2d+1 and y is twice differentiable, Takens’ Embedding Theorem guarantees that the
map defined by mGRADE, ut 7→ ht, is generically an embedding of the original dynamic manifold
M ∈ Rd into Rm (Takens, 1981). That is, the mGRADE hidden state ht reconstructs the underlying
system dynamics ut up to a smooth, invertible change of coordinates (a diffeomorphism).

B.1.2 TRAINING AND EVALUATION DETAILS

Task Description We train mGRADE to perform autoregressive next-step prediction on the first
dimension of 2000 randomly generated trajectories of 500 timesteps from the 3-dimensional chaotic
Lorenz attractor, using the non-standardized Lorenz flow from the dysts package (Gilpin, 2024). We
add 5% Gaussian time-independent observational noise to every trajectory. We test with randomly
generated sequences of the same length as the training sequences, using either the first dimension or
the 2 unobserved dimensions of the attractor (to evaluate generalization capabilities).

Hyperparameters We compare a single-layer mGRADE to a 2-layer minGRU with the hyperpa-
rameters outlined in Table A1. We choose the 2-layer minGRU as a comparison for fairness, given
that a single-layer minGRU does not provide its update gate or candidate activations with any tem-
poral information (they only depend on the current input). Neither model uses the MLP or layer
normalization. For the learning rate, we use AdamW (Loshchilov & Hutter, 2019) over all weights,
and standard Adam (Kingma & Ba, 2017) for the biases, normalization layers, and DCLS positions.
We use a cosine annealing learning rate scheduler without warmup. For the z gate biases, we use
an ”open” initialization for the (where the gate bias is set such that σ(Wzxt) ≈ 1) for all models,
while using the traditional zero initialization for all other biases. For weights, we initialize with a
truncated normal distribution, with a standard deviation set to

√
1/fan in. Other hyperparameters

are outlined in Table A1. Reported results are averaged over 5 random seeds.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A1: Hyperparameters used for the Dynamics Reconstruction Task. L: number of layers. D/H:
model dimensionality and hidden state size per layer (no hidden state expansion for any of these
models). K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Epochs: max epochs
set for the run. WD: weight decay.

Parameter L D/H K Γ LR B Epochs WD

mGRADE 1 10 1 32 0.004 32 200 0.0
minGRU 2 10 – – 0.004 32 200 0.0

Loss Metric Following (Ostrow et al., 2024), we use MASE as the loss metric. MASE compares
the mean absolute error made by the model across a sequence with the mean absolute error that
would have been incurred had the default prediction been that the next state is equal to the current
state at every timestep (Hyndman & Koehler, 2006). This can be expressed as follows,

MASE =
1
T

∑T
i=1 |yt − ŷt|

1
T−1

∑T
i=2 |yt − yt−1|

,

where ŷ is the model’s prediction, T is the sequence length, and yt is what is being predicted.
Notably, a MASE > 1 means that naive forecasting (using the current yt−1 to predict the next state
yt) works better than the forecasting model. Thus, a model only offers meaningful predictive power
if it can achieve a MASE < 1.

Manifold Similarity Metric The Nearest neighbor Overlap metric is used to evaluate how
smoothly mGRADE maps the original Lorenz attractor manifold to the hidden state ht. It is calcu-
lated following Ostrow et al. (2024). For every point i on every trajectory in the test set, we find the
k-nearest neighbors, i.e., the set of time points Qu(i) where the trajectory gets closest to the selected
point in the original 3 dimensions of the Lorenz system. Then we map the selected point to the
model’s hidden state and evaluate how many of the k-nearest neighbors in the hidden state (Qh(i))
are in fact the same k-nearest neighbors in the original system mapped into the hidden state. The
number of overlapping neighbors relative to the total number of neighbors evaluated then yields the
Nearest neighbor Overlap metric when applied to every point i on every trajectory in the dataset:

Overlap(Original Manifold,Hidden State) =
1

n

n∑
i=1

|Qu(i) ∩Qh(i)|
k

where k is the number of neighbors evaluated (20 in this work), and n is the total number of data-
points available across all trajectories.

Results The MASE over epochs for next-step prediction of the dimension that the models are
trained on is shown for the mGRADE and minGRU models in Fig. A1A. Fig. A1B shows the av-
erage MASE when performing next-step prediction over the 2 dimensions that the models do not
observe during training. mGRADE outperforms the purely recurrent models in both cases. Notably,
the minGRU model does not generalize well to unobserved dimensions resulting in a MASE > 1.
mGRADE also achieves a higher Nearest neighbor Overlap (in %) over epochs for both models in
Fig. A1C.

B.2 HIDDEN STATE PRINCIPAL COMPONENTS

To provide an additional visualization aid on the similarity of the various models’ hidden state
representations of the Lorenz attractor dynamics in Section 3.1, we plot each of the top 3 Principal
Components (PC) against each other in Fig. A2 together with their corresponding explained variance
(EV). Compare to Fig. 2B, C for the corresponding 3D plots.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure A1: mGRADE achieves lower training loss and higher manifold overlap, even on un-
observed dimensions of dynamics. A) Validation MASE loss (mean ± stde) over training epochs
on predicting the observed first dimension. B) Out-of-Distribution MASE loss (mean ± stde) over
training epochs on predicting the dimensions unobserved during training (2 and 3 of the original
attractor). Dotted black line marks MASE = 1 which indicates no predictive power. C) Nearest
neighbor Overlap (mean ± stde) of 20 nearest neighbors to each trajectory point between original
state space and hidden state space over training epochs.

Figure A2: mGRADE reconstructs original dynamics in hidden state principal components. A)
Three top PCs of single-layer mGRADE plotted against each other with corresponding explained
variance (EV). (see Fig. 2B for 3D plot). B) Three top PCs of 2-layer minGRU plotted against each
other with corresponding explained variance (EV). (see Fig. 2C for 3D plot).

B.3 HIGH-FREQUENCY PATTERN RECOGNITION TASK

Task Description We train on sequences with a total length of 165 timesteps, randomly generated
at every training step. Each sequence contains 5 out of 16 possible features. Each feature is l = 32
timesteps long and contains input symbols selected from an alphabet of size n = 16. After each
marker symbol m in the sequence, the goal is to output the associated class label Si of the preceding
feature indexed by i. The feature frequency is adapted by changing how many times r an input
symbol is repeated within the feature before switching to a different input symbol (Figure A3). We
normalize the feature frequency to the sampling rate so that it is equal to 1/r. Thus, a feature
frequency of 1.0 means that the input symbols in the pattern change every timestep, while a feature
frequency of 0.5 means that each input symbol is repeated 2 times before switching. All models
are trained on sequences that contain patterns with increasing normalized feature frequencies (0.07,
0.17, 0.33, 1.00).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure A3: High-frequency pattern recognition task. The task requires classifying several fea-
tures within a sequence, with each feature consisting of randomly ordered input symbols with dif-
ferent feature frequencies (top: low frequency, bottom: high frequency). After being presented a
feature, the model should output the associated class. The number of times that the input symbol
changes within a feature is the inverse of the feature frequency.

Hyperparameters We compare single- and 2-layer mGRADEs with single- and 2-layer min-
GRUs. The 2-layer models were chosen as comparisons to demonstrate that mGRADE can pass
high-frequency feature information through multiple gated layers, while minGRU cannot. None of
the models use an MLP or layer normalization between layers. For the optimization, we use AdamW
(Loshchilov & Hutter, 2019) over weights, and standard Adam (Kingma & Ba, 2017) for the biases,
normalization layers, and DCLS positions. We use a cosine annealing learning rate scheduler with-
out warmup. For biases, we use a standard zero initialization, and for weights, we initialize with a
truncated normal distribution, with a standard deviation set to

√
1/fan in. Other hyperparameters

are outlined in Table A2.

Table A2: Hyperparameters for the High Frequency Recognition Task. L: number of layers. D/H:
model dimensionality and hidden state size per layer (no hidden state expansion for any of these
models). K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Training Steps:
number of batches presented during training. WD: weight decay.

Parameter L D/H K Γ LR B Training Steps WD

mGRADE 1 16 8 16 0.004 64 200 0.1
mGRADE 2 16 8 16 0.004 64 200 0.1
minGRU 1 20 – – 0.004 64 200 0.1
minGRU 2 16 – – 0.004 64 200 0.1

Loss Metric Cross-entropy loss is used over the predicted feature classes, which are set for each
timestep with a marker m in the input. Each model is tested on randomly generated test sequences
using the same feature frequency as during training.

Results Fig. A4A shows the classification validation accuracy over training steps for the models
that were trained on a feature frequency of 0.33. With increasing feature frequency, the test accu-
racy of the mGRADE models remains roughly constant (or even slightly increases) while the 2-layer
minGRU collapses when trying to classify higher-frequency features (Fig. A4B). Notably, adding a
second layer to the minGRU decreases its classification accuracy, implying that high-frequency in-
formation is lost over successive gated recurrent layers as suggested by previous literature (Rahaman
et al., 2019). mGRADE on the other hand maintains performance even with 2 layers, indicating that
the temporal convolution indeed preserves high-frequency information even through the gated re-
current unit.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A4: mGRADE recognizes features with high frequencies better than pure gated RNNs.
A) Validation accuracy (mean ± stde) for high-frequency pattern recognition task with a feature fre-
quency of 0.33. B) Final test accuracy (mean ± stde) after training on different feature frequencies.
1L stands for single-layer and 2L for 2-layer models.

B.4 FLIP-FLOP PREDICTIVE MODELING TASK

B.4.1 PROOFS FOR FLIP-FLOP PREDICTIVE MODELING CAPABILITIES

Here we detail the full proofs associated with Section 3.2. For convenience, we start by reiterating
the definition of a Flip-Flop language.

Definition 1 (Flip-Flop Language). Let the alphabet be Σ = {w, r, i, 0, 1}, where w, r, and
i represent instruction symbols (”write”, ”read”, ”ignore”), and 0, 1 represent value symbols. The
Flip-Flop languages Lff consist of sets of strings over Σ that alternate between instructions and
values (e.g., w 0 r 0 i 1), satisfying the condition that after every r symbol, the subsequent
value equals the value symbol following the most recent w. All valid strings begin with w.

Definition 2 (Predictive Modeling). For a string s ∈ Lff and a prefix s[1 : t] ending at position
t with symbol at, predictive modeling requires outputting the prediction set Pi ⊆ Σ of valid next
symbols at+1 such that s[1 : t] at+1 remains a prefix of some string in Lff . We say that a model
predictively models Lff iff its output at a single timestep t encodes all the information needed such
that a linear classifier can return the next prediction set with 100% accuracy.

mGRADE

Theorem 2 (Flip-Flop Modeling with mGRADE). A single-layer mGRADE with at least 2 delays in
the convolutional component can predictively model a Flip-Flop language, Lff , at arbitrary length.

Proof. We prove the above theorem by construction. For notation, we use to c = [a,b] to denote
stacking column vectors a ∈ RA, b ∈ RB into another column vector c ∈ RA+B . In addition,
we assume all symbols and possible prediction sets are one-hot encoded in the input and output,
respectively.

Consider a single-layer mGRADE with an input sequence of length T , u1:T ∈ R|Σ|×T , where ut is
the one-hot encoded vector of the symbol at position t in the string, and a model dimensionality of
D = 2|Σ|. To match the model dimensionality, pass u1:T at every timestep through a simple linear
projection to match the model dimensionality (as described in the model architecture). Set this
linear projection to simply stack 2 copies of the input u1:T in a single vector û1:T = [u1:T ,u1:T].
Set the convolution component to have 2 different delays to the 2 copies of the input in û1:T at
times t and t − 1 (delay of 0 and 1 respectively) with weights of 1. Set the interpolation function
width v narrow enough such that the convolution kernel elements are zero everywhere besides at t
and t − 1. Given this kernel construction, the output of the temporal convolution at any timestep
xt ∈ R2|Σ| will depend only on the current input ut,ut−1 ∈ R|Σ|. Specifically, given the 2 different
delays to the input copies, xt = [ut,ut−1].

Set the hidden state size H = D = 2|Σ| such that ht ∈ R2|Σ|. Split the hidden state into 2
components ht = [hstored

t ,hcurrent
t] where hstored

t ∈ R|Σ| is parameterized such that it stores the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

value following the most recent w, and hcurrent
t ∈ R|Σ| passes on the current input. Define zt =

[zstored
t , zcurrent

t], and h̃t = [h̃stored
t , h̃current

t] as the corresponding gate and candidate states.

The mGRADE updates ht as follows.

1. Compute zstored
t :

zstored
t = σ(Wstored

z xt) = σ(Wstored
z [ut,ut−1])

where σ is the sigmoid function, and Wstored
z ∈ R|Σ|×2|Σ| is the weight matrix coupling zstored

t and
xt = [ut,ut−1]. Set Wstored

z such that the weight corresponding to the location of the 1 in the one-
hot encoding of w in ut−1 approaches −∞, and weights for all other components to approach +∞.
Thus:

zstored
t =

{
0 if ut−1 = w,

1 otherwise.

2. Compute h̃stored
t :

h̃stored
t = Wstored

h̃
xt = Wstored

h̃
[ut,ut−1]

where Wstored
h ∈ R|Σ|×2|Σ| is the weight matrix coupling h̃stored

t and xt = [ut,ut−1]. Set Wstored
h

as a block matrix containing the identity in the component multiplied with ut and zeros in the
component multiplied with ut−1 to the effect that the ut component gets passed on whereas ut−1

does not. Thus:
h̃stored
t = ut

3. Update hstored
t :

hstored
t = zstored

t ⊙ hstored
t−1 + (1− zstored

t)⊙ h̃stored
t

When ut−1 = w, zt = 0 in the asymptotic limit, so hstored
t = h̃stored

t = ut (a value 0 or 1); otherwise,
zt = 1, so hstored

t = hstored
t−1 .

4. Update hcurrent
t . Let each component of Wcurrent

z ∈ R|Σ|×2|Σ| approach −∞ such that zcurrent
t ≈ 0

always. As above, set Wcurrent
h̃

∈ R|Σ|×2|Σ| such that h̃stored
t = ut. In the asymptotic limit, the

update expression
hcurrent
t = zcurrent

t ⊙ hcurrent
t−1 + (1− zcurrent

t)⊙ h̃current
t

evaluates to hcurrent
t = ut.

Thus, hstored
t retains the one-hot vector of the value following the most recent w, and hcurrent

t passes
on ut.

The possible prediction sets over Lff are P1 = {0, 1}, P2 = {w, r, i}, P3 = {0}, P4 = {1}.
Given the structure of Lff , we can associate each set of possible input symbols to its corresponding
prediction set.

If ut ∈ {0, 1} (a value), then ut+1 is an instruction, so the output should be P2 = {w, r, i}.
If ut ∈ {w, r, i} (an instruction), then ut+1 must be a value. Specifically, if ut = w or ut = i,
then the output should be P1 = {0, 1}, since the following value is arbitrary. On the other
hand, if ut = r, then ut+1 must match the value after the most recent w, which (by the preceding
construction) is stored in hstored

t . Thus, the output at time t should be

hstored
t =

{
p3 if hstored

t = 0,

p4 otherwise.
.

A linear classifier, parameterized by a weight matrix Wc ∈ R4×2|Σ| and bias bc ∈ R4, maps ht to
the correct prediction set Pi:

i = argmax(Wcht + bc),

where i is the index corresponding to one of the four prediction sets. Since ht = [hstored
t ,ut] pro-

vides both the current symbol and the stored value, Wc can be trained (or constructed) to distinguish

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

these cases based on the one-hot encoded positions in hcurrent
t = ut and hstored

t . Specifically, we set
Wc to have a high weight between the one-hot encodings of w and i and the corresponding index
of the prediction set {0,1}. We also set a high weight between the one-hot encodings of 0 and 1
and the corresponding index of the prediction set {w, r, i}. Finally, we set a negative bias term
to the indices of the {0} and {1} prediction sets with a corresponding larger weight between r and
those indices such that r is enough to activate {0} and almost enough to activate {1}. If now the
weight from hstored

t to {0} is negative and to {1} is positive, then a stored 1 will activate {1} (and
suppress {0}) while a stored 0 will allow {0}) to be active while not adding to the activation of {1}.

To conclude, for any prefix s[1 : t] ∈ Lff :

1. hstored
t can correctly store the value symbol after the most recent w (at least in an asymptotic limit

w.r.t. the weight magnitudes of the update gate zstored
t).

2. hcurrent
t = ut encodes the current input symbol.

3. Given mGRADE’s outputs ht, a linear classifier can be constructed to output the correct pre-
diction set classification as required by the language’s rules, handling arbitrary lengths since hstored

t
persists across timesteps.

For initial states or prefixes without w, assume hstored
0 = 0, but since every r in a valid string follows

a w, hstored
t is always defined when needed. Thus, mGRADE can predictively model Lff at arbitrary

length.

Fixed-length Context Models
Theorem 3 (Flip-Flop Modeling with Fixed-length Context Models). A model with a fixed-length
context window for a fixed memory size cannot predictively model a Flip-Flop language, Lff , at
arbitrary lengths.

Proof. Consider a sequence of length Tc + 3, where Tc is the context window given some fixed
memory size. Start with w v, follow with Tc i instructions, and end with r. The correct prediction
after r is v, but v lies outside the context window, forcing chance-level performance. Note that
increasing the context length is the obvious solution to this problem however, the correspondingly
increasing memory costs eventually become prohibitive for very long sequences.

Note that models with fixed-length temporal contexts given some fixed memory size include Trans-
formers and TCNs.

B.4.2 TRAINING AND EVALUATION DETAILS

Task Description We train on the Flip-Flop dataset from Liu et al. (2023), containing 1M valid
Flip-Flop sequences of 512 timesteps, where training data contains i instruction symbols with prob-
ability p(i) = 0.8, such that the expected distance between any w and r symbol is 10 timesteps.
This dataset slightly simplifies the full predictive modeling task to focus on recalling the correct
value symbol after an r as described in Section 3.2. For testing, we use out-of-distribution data with
sparse w and r (expected distance around 100 timesteps) to stress long-range dependencies.

Hyperparameters We compare a single-layer mGRADE to a 5-layer TCN (with an exponentially
increasing receptive field) and a single-layer LRU augmented by DCLS. The LRU is used as a
drop-in replacement for the gated recurrent component of mGRADE, demonstrating the importance
of mGRADE’s update gate relative to a linear time-invariant SSM like the LRU. We use the code
supplied in (Zucchet, 2024) as the basis for our LRU implementation. None of the models use layer
normalization. For the optimization, we use AdamW (Loshchilov & Hutter, 2019) over the weights,
and Adam (Kingma & Ba, 2017) for the biases, the normalization layers, and the DCLS positions.
We also use a cosine annealing learning rate scheduler without warmup. For the z gate biases, we
use a ”closed” initialization (where the gate bias is set such that σ(Wzxt) ≈ 0), while using the
traditional zero initialization for all other biases. For all weights, we initialize with a truncated
normal distribution with a standard deviation set to

√
1/fan in. Other hyperparameters are outlined

in Table A3. Reported results are averaged over 3 random seeds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table A3: Hyperparameters for the Flip-Flop Modeling Task. L: number of layers. D/H: model
dimensionality and hidden state size per layer (no hidden state expansion for any of these models).
K: kernel count (for all layers). Γ: kernel length (per layer from input to output for the TCN). LR:
learning rate. B: batch size. Training Steps: number of batches presented during training. WD:
weight decay.

Parameter L D/H K Γ LR B Training Steps WD

mGRADE 1 32 1 2 0.004 64 250,000 0.1
LRU + DCLS 1 32 1 2 0.004 64 250,000 0.1
TCN 5 32 16 16/32/64/128/256 0.004 64 250,000 0.1

Loss Metric Cross-entropy loss is used as the training loss. The reported accuracy is how often
the model correctly recalls the value symbol after the most recent w when encountering a r. Since
there are 2 possible value symbols, chance level performance lies at 50%.

Results Fig. A5A shows the recall accuracy of each model over training steps.

Figure A5: mGRADE solves Flip-Flop modeling task better than TCNs and non-gated RNNs.
A) Validation accuracy (mean ± stde) over training steps. B) Recall accuracy (mean ± stde) for
different recall distances.

B.4.3 RECALL DISTANCE

In addition to the results reported in Section 3.2, we evaluated how well the model recalls the most
recent value after a w given increasing distances between the w and r (the recall distance). For this,
we construct Flip-Flop strings with one w at the beginning and a r in the middle, with different
numbers of i symbols (with corresponding value symbols) in between. Fig. A5B shows the recall
accuracy of each of the models trained using the setup described above and tested on different recall
distances. Note that the only model consistently performing accurate recall over distances of up
to 100 timesteps is mGRADE. Even the LRU model decreases in accuracy with increasing recall
distance, demonstrating the utility of a gated recurrent component.

B.5 SELECTIVE COPYING TASK

B.5.1 TRAINING AND EVALUATION DETAILS

Task Description Following the training setup in Gu & Dao (2024) and Feng et al. (2025), we
randomly generate sequences of 4096 timesteps at each training step. We train over 300, 000 steps.
Each sequence contains 16 randomly distributed value symbols selected from an alphabet of size
n = 16. After seeing the m symbol at the end of the sequence, the goal is to output the value
symbols in the order they were received. For testing, we generated new sequences of the same
length.

Hyperparameters Following the architecture used in Gu & Dao (2024), we use a 2-layer
mGRADE, comparing it to a 2-layer LRU augmented by DCLS. Just like the Flip-Flop model-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ing task, we use (Zucchet, 2024) as the basis for a drop-in LRU replacement into the mGRADE
architecture. All models use encoders and decoders at the input and output, respectively. For the op-
timization, we use AdamW (Loshchilov & Hutter, 2019) for the weights, and Adam (Kingma & Ba,
2017) for the biases, the normalization layers, and the positions of the DCLS. We also use a cosine
annealing learning rate scheduler without warmup. For the z gate biases, we use the Uniform Gate
Initialization (UGI) initialization from Gu et al. (2020), while using the traditional zero initialization
for all other biases. We initialize the weights with a truncated normal distribution, with a standard
deviation set to

√
1/fan in. Other hyperparameters are outlined in Table A4. Reported results are

averaged over 2 seeds (because of the compute-intensive nature of this task).

Table A4: Hyperparameters for the Selective Copying Task. L: number of layers. D/H: model
dimensionality and hidden state size per layer (no hidden state expansion for any of these models).
K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Training Steps: number of
batches presented during training. WD: weight decay.

Parameter L D/H K Γ LR B Training Steps WD

mGRADE 2 64 128 32 0.001 64 300,000 0.1
LRU + DCLS 2 64 128 32 0.001 64 300,000 0.1

Loss Metrics Cross-entropy loss is used over the final outputs after the m symbols. The final
accuracy is evaluated on randomly generated test sequences of the same length.

Results Fig. A6 shows the accuracy over training steps for each model.

Figure A6: mGRADE solves the Selective Copying Task better than LRU. Validation accuracy
(mean ± stde) over training steps.

C LRA SETUP

C.1 HYPERPARAMETERS

We provide in Table A5 the hyperparameters used for the reported results in Table 3. We use the
encoder and decoder at the input and output, respectively, as well as an MLP and layer normalization
in each mGRADE layer. For the optimization, we use AdamW (Loshchilov & Hutter, 2019) for the
weights, and Adam (Kingma & Ba, 2017) for the biases, normalization layers, and DCLS positions.
In addition, the learning rate was scaled by 5 for the DCLS positions. For all tasks, we use a cosine
annealing with linear warmup learning rate scheduler. We use two initialization schemes for the z
gate biases, the traditional zero initialization and the UGI from Gu et al. (2020). We selected the
zero-initialization for all the other biases. We use a truncated normal distribution for all weights
(except the ones of the temporal convolution block), with a standard deviation set to

√
1/fan in.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

For the temporal convolution block, we set
√

α/K where α is a scaling hyperparameter. We use
gradient clipping for every task except for Pathfinder, with a threshold of 10. For Pathfinder we use
gradient global normalization with a threshold at 2. We did not use dropout. Finally, for the Image
task, we introduced an extra linear layer at the output of the mingru layer and before the addition
with the corresponding skip connection.

Table A5: Hyperparameters used for the reported mGRADE results on LRA. L: number of layers.
D/H: model dimensionality and hidden state size per layer (no hidden state expansion for any of
these models). K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Epochs: max
epochs set for the run. WD: weight decay. ZBI: z gate bias initialization. α: scaling factor for DCLS
weight initialization. WU: number of epochs for the learning rate linear warmup.

Parameter L D/H K Γ LR B Epochs WD ZBI α WU

ListOps 6 32 2 16 0.003 64 100 0.1 UGI 0.05 10
Text 6 32 2 8 0.002 32 100 0.1 zero 0.25 10
Retrieval 3 64 2 8 0.003 32 20 0.1 UGI 0.05 4
Image 6 128 8 256 0.004 64 100 0.1 zero 0.1 10
Pathfinder 6 128 8 256 0.003 64 100 0.02 zero 1 10

C.2 ACTIVITY BUFFER MEMORY FOOTPRINT

In this section, we explain how we compute the total buffer memory used by the baseline models in
Table 3 and Table A6. S4 (Gu et al., 2022b), DSS variants (Gupta et al., 2022), Liquid-S4 (Hasani
et al., 2023) all implement a similar architecture where H single-input, single-output SSM heads of
size N are used in parallel. Thus, the amount of memory used for all recurrent hidden states is given
by the formula L× (H×N). S4-LegS (Gu et al., 2022b) uses H bi-directional SSM heads of size N
in parallel. Thus, the amount of memory used by all states is given by the formula L×(H×2N). S5
(Smith et al., 2023), LRU (Orvieto et al., 2023) use only a single head multi-input, multi-output SSM
of size N. Thus, the amount of memory used by all states is given by the formula L × N . HGRN
(Qin et al., 2023) uses a similar architecture to mGRADE’s gated recurrent block, extended with
complex states. Thus, the amount of memory used by all states is given by the formula L × (2H).
The long-convolution models, SGConv (Li et al., 2023) and MRConv (Cunningham et al., 2024),
need to buffer the activity of each neuron at each timestep, thus the amount of memory used by all
states is given by the formula L×H × T (where T is the sequence length).

C.3 PARAMETER COUNT FOR REAL-TIME PROCESSING ON EDGE DEVICES

In this section, we explain how real-time processing on edge devices impose taking into consid-
eration some aspects that do not apply when running inference on GPUs. When processing in-
puts in real-time, it is too memory-expensive to save the entire sequence before processing it, let
alone buffering the activities of each neuron for the entire sequence length. For this reason, besides
mGRADE, only S4 (Gu et al., 2022b), DSS (Gupta et al., 2022), Liquid-S4 (Hasani et al., 2023),
S5 (Smith et al., 2023), and LRU (Orvieto et al., 2023) could be deployed on an embedded device
and we report the adjusted numbers for these architectures in Table A6. We leave out bi-directional
architectures as we care for causal processing. We also leave out the convolution architectures too
as Table 3 shows that their activity buffers memory footprint is already above 1M for all tasks.
In S4 (Gu et al., 2022b) and Liquid-S4 (Hasani et al., 2023), the recurrent matrix is parametrized as
a Diagonal Plus Low Rank (DPLR) matrix A = Λ−PP ∗. This means that it is parametrized by two
vectors of dimension N (state dimension). However, when running in step-by-step recurrent mode
on an embedded device, A would need to be instantiated into a full N ×N matrix, which increases
the number of effective parameters substantially. For example on the Image task, the number of
parameters of S4 (Gu et al., 2022b) increases from 3.4M to 15.6M (i.e a factor of 4.5). Similarly
to deploy mGRADE on an embedded device, we would need to fully materialize the DCLS kernels
into vectors of dimension Γ. This increases the number of parameters of mGRADE from 712K to

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

896K on the Image task (i.e, a small 25% increase). With these results, we confirm that mGRADE
is the architecture with the smallest memory footprint.

Table A6: Fully Instantiated Memory Footprint for Recurrent Embedded Deployment. Com-
pare to Table 3.

ListOps Text Retrieval Image Pathfinder
Model Params. / Buff. Act. Params. / Buff. Act. Params. / Buff. Act. Params. / Buff. Act. Params. / Buff. Act.

S4 (Gu et al., 2022b) 3.3M / 49K 1.2M / 16K 7.3M / 98K 15.6M / 197K 7M / 98K
DSSSOFTMAX (Gupta et al., 2022) 206K / 49K 152K / 16K 888K / 98K 2.0M / 197K 601K / 98K
DSSEXP 206K / 49K 152K / 16K 888K / 98K 2.0M / 197K 601K / 98K
DSSEXP-NO-SCALE 206K / 49K 152K / 16K 888K / 98K 2.0M / 197K 601K / 98K
Liquid-S4 (Hasani et al., 2023) 373K / 8K 182K / 4K 7.6M / 98K 813M / 1.6M 7.3M / 98K
LRU (Orvieto et al., 2023) 190K / 1.5K 1.3M / 1.1K 772K / 1.5K − / − 1.1M / 1.5K

mGRADE 42K / 3K 45K / 1.5K 105K / 1.7K 896K / 197K 796K / 197K

D MGRADE ANALYSIS

D.1 ABLATION STUDY

In Section 3, we formally motivated the need for the temporal convolution and the gated recurrent
component of mGRADE to tackle long-range dependency tasks. Table A7 compares the perfor-
mance of mGRADE to architectures using only recurrent or convolutional components. The pure
convolution-based models are the TCN, consisting of stacked causal dilated temporal convolution
layers, and the DCLS model, made up of stacked causal temporal DCLS layers, which can be
thought of as mGRADE without the recurrent component. For the pure gated recurrent architec-
ture, we simply remove the convolutional component from the mGRADE layers, leaving us with
the minGRU (Feng et al., 2025). We focus on the ListOps, Image, and Pathfinder tasks from LRA
as (Orvieto et al., 2023) already showed that pure linear RNNs could solve the Text and Retrieval
tasks to around 89%. Both the TCN and the DCLS models achieve good performance on Image
while falling short on ListOps. On the other hand, minGRU achieves a better result than mGRADE
on ListOps, while performing poorly on the Image task. Besides mGRADE, none of these ar-
chitectures learn on Pathfinder. This ablation study validates the theoretical motivations for each
component of an mGRADE layer and showcases the synergy between the temporal convolution and
gated recurrent components.

Table A7: Ablation of mGRADE’s component on the LRA benchmark. The total memory foot-
print (“Total”) at inference time is differentiated from the parameter count (“Params”) as explained
in Section 2. All architectures use the best hyperparameters found for mGRADE, we only scaled
the layer width H to match the number of parameters.

ListOps Image Pathfinder

Model Acc Params. / Buff. Act. Acc Params. / Buff. Act. Acc Params. / Buff. Act.

TCN 39.6 45K / 4K 85.3 727K / 220K × 867K / 230K
DCLS 43.8 41K / 3K 86.2 526K / 220K × 525K / 240K
minGRU 62.5 40K / 192 66.0 697K / 786 × 597K / 786
mGRADE 61.9 40K / 3K 87.1 712K / 197K 94.9 612K / 197K

D.2 LEARNED KERNELS

We analyze the learned positions in the DCLS kernel across layers to understand how mGRADE
adapts its temporal convolution mechanism to different task structures. Figure A7 shows the distri-
bution of learned delay positions across the kernel (x-axis) and across hidden channels (y-axis) for
models trained on the LRA Image, Pathfinder, and ListOps tasks (as done in Appendix D.1).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure A7: Learned DCLS delay positions across layers for LRA benchmark. Each panel shows
the distribution of learned delay positions (x-axis) across hidden channels (y-axis) for all layers (0-5,
top to bottom) of models trained on (A) Image, (B) PathFinder, and (C) ListOps. Color intensity
indicates weight magnitude (red: positive, blue: negative). A) Image (kernel size 256, 8 elements,
128 hidden dims): Positions cluster around vertical bands at positions 32, 64, and 96, which for a
32 × 32 image correspond to the pixels in the same column but one, two, and three rows above
respectively, demonstrating learned preference for local structure. Deeper layers show increasing
dispersion around the vertical bands (offsets ranging from 0-10) while maintaining locality. B)
Pathfinder (kernel size 256, 8 elements, 128 hidden dims): Delays disperse much more across the
full 0-256 range, reflecting the sparse, non-local nature of path detection where relevant features
(blobs and connecting paths) appear at arbitrary locations. Moderate vertical banding suggests some
channels specialize for identifying the blobs at early layers. C) ListOps (kernel size 16, 2 elements,
32 hidden dims): Full utilization of the 0-15 delay range across layers. The sparse sampling (2 of 16
positions per channel) enforces efficient information aggregation for bracket matching and operator
precedence.

D.2.1 LRA IMAGE: EMERGENCE OF SPATIAL LOCAL PROCESSING ON SEQUENTIAL
IMAGES

For the LRA Image task (Fig. A7A), the learned positions reveal a hierarchical local feature ex-
traction pattern. In the early layers (0-2), positions sharply cluster around a delay of 32 timesteps.
When processing the 32 × 32 images used in LRA sequentially, this delay precisely corresponds to
the pixel directly above the current input pixel. This concentration on immediate spatial neighbors
(whether above or below) resembles the local receptive fields of classic 2D Convolutional Neural
Networks (CNN), suggesting that mGRADE, through training, automatically tends towards spatial
locality for image processing despite the sequential presentation of the image. Deeper layers (3-5)
maintain this locality bias, but with increased dispersion in time, effectively expanding the receptive
field and with it the spatial context (while still remaining local). The distinct vertical bands observed
across channels indicate specialized feature detectors, some channels consistently attend to imme-
diate neighbors while others look slightly further with a few specific offsets. This hints towards the
model using its learnable positions to capture irregularly spaced patterns and a larger range of spatial
frequencies within the spatially local receptive field it builds over the image.

D.2.2 LRA PATHFINDER: DISTRIBUTED SEARCH FOR SPARSE STRUCTURE

In contrast, the delays learned by the model trained on the LRA Pathfinder task (Fig. A7B) exhibit
slightly different patterns that reflect the task’s more sparse, less local structure. While still ex-
hibiting some vertical clustering, delays appear more dispersed around the clusters compared to the
Image task. Particularly deeper layers show significantly weaker clustering than the corresponding
layers in the model trained on Image. This distribution suggests that the model cannot rely only on

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

local patterns, as the relevant features (two dots and their connecting path in a 32 × 32 image) can
appear at arbitrary pixel locations across samples. Early layers show moderate clustering at certain
delay values visible as a few strong vertical bands, especially in layers 1 and 2. Later layers maintain
broader delay coverage, suggesting they aggregate evidence across multiple spatial scales to deter-
mine path connectivity. The weaker locality bias in the positions indicates that spatially adjacent
pixels in the Pathfinder images provide less predictive power than is the case for the natural images
in Image.

D.2.3 LRA LISTOPS: ADAPTATION TO NESTED DEPENDENCIES

The learned positions for ListOps (Fig. A7C) reveal a sophisticated strategy for parsing symbolic
structures, which stands in contrast to the patterns seen in the Image task. A key feature is how
mGRADE’s temporal receptive field spans the entire kernel length, all 16 timesteps across all lay-
ers. This reflects the task nature, where meaningful dependencies between operators, operands, and
matching brackets occur at variable distances but remain bounded to a range of around 10 timesteps
on average (Nangia & Bowman, 2018). In the initial layers (0-1), the model establishes a strong
inductive bias by concentrating weights at diverse positions, combining more local information (de-
lays close around 3) with information at the boundaries of the kernel (positions around 14). In
contrast, the deeper layers exhibit a more distributed pattern, with channels dedicating kernel ele-
ments sparsely to specific and non-local delays. This sparse distributed sampling allows the model
to track multiple long- and mid-range dependencies simultaneously and efficiently.

These contrasting solutions demonstrate mGRADE’s ability to adapt its information aggregation
mechanisms to task structure without overpowering inductive biases (given that the kernel length
is large enough). For structured data with strong spatially local correlations (Image), the model
converges to classic 2D CNN-like local processing. For tasks requiring global reasoning over sparse
features (Pathfinder), it maintains broader temporal coverage. Listops, on the contrary, requires a
hybrid of mid-range and long-range aggregation in deeper layers. This adaptive behavior arises
from enabling the delays to be learnable, validating DCLS as a flexible alternative to TCNs with
fixed dilation rates, and further justifying our decision to use it in mGRADE.

28

	Introduction
	Model Specification
	Theoretical Capabilities of mGRADE
	Temporal Convolutions enable Short-Term Prediction of Dynamics
	Gated Recurrence enables Long-Range Dependency Learning

	Empirical Verification
	Related Works
	Conclusion
	Model specification details
	Learnable DCLS kernels
	Memory footprint

	Theoretical Capabilities of mGRADE
	Dynamics Reconstruction Task
	Proof for mGRADE as a Delay Embedding
	Training and Evaluation Details

	Hidden State Principal Components
	High-frequency Pattern Recognition Task
	Flip-Flop Predictive Modeling Task
	Proofs for Flip-Flop Predictive Modeling Capabilities
	Training and Evaluation Details
	Recall Distance

	Selective Copying Task
	Training and Evaluation Details

	LRA setup
	Hyperparameters
	Activity buffer memory footprint
	Parameter count for real-time processing on edge devices

	mgrade Analysis
	Ablation Study
	Learned Kernels
	lra Image: Emergence of Spatial Local Processing on Sequential Images
	lra Pathfinder: Distributed Search for Sparse Structure
	lra Listops: Adaptation to Nested Dependencies

