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ABSTRACT

Processing temporal data directly at the sensor source demands models that cap-
ture both short- and long-range dynamics under tight memory constraints. While
State-of-the-Art (SotA) sequence models such as Transformers excel at these
tasks, their quadratic memory scaling with sequence length makes them impracti-
cal for edge settings. Recurrent Neural Networks (RNNs) offer constant memory
scaling, but train sequentially and slowly, and Temporal Convolutional Networks
(TCNs), though efficiently trainable, also scale memory with kernel length. For
more memory-efficient sequence modeling, we propose mGRADE (minimally
Gated Recurrent Architecture with Delay Embedding), a hybrid-memory system
that integrates a temporal convolution with learnable spacings with a gated re-
current component. The convolution with learnable spacings can express a flexi-
ble delay embedding that captures rapid temporal variations, while the recurrent
component efficiently maintains global context with minimal memory overhead.
We theoretically ground and empirically validate our approach on two types of
synthetic tasks, demonstrating that mGRADE effectively separates and preserves
temporal features across multiple timescales. Furthermore, on the challenging
Long-Range Arena (LRA) benchmark, mGRADE reduces the memory footprint
by up to a factor of 8, while maintaining competitive performance compared to
SotA models.

1 INTRODUCTION

Embedded systems show great promise for temporal processing at the edge, enabling low-latency
and energy-efficient inference for real-time tasks such as sensor data processing and autonomous
control. However, the tight memory constraints of these systems make it difficult to process real-time
streaming data, while also causally modeling dependencies across multiple timescales. Capturing
long-range dependencies in sequence data requires storing information over large time horizons,
whereas short-range dynamics demand high temporal resolution. Combining these multi-timescale
dependencies strains the limited memory budgets of embedded systems, highlighting the need for
more memory-efficient sequence models.

While State-of-the-Art (SotA) sequence models, such as Transformers (Vaswani et al., 2017) and
Temporal Convolutional Networks (TCNs) (Waibel et al., 1989), can capture multi-timescale de-
pendencies, they are ill-suited to embedded systems. This is mainly because their memory footprint
grows with the sequence length, which impedes real-time processing of long sequences within a
fixed memory size. In contrast, Recurrent Neural Networks (RNNs), particularly gated variants like
the Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Gers et al., 2000) and the
Gated Recurrent Unit (GRU) (Cho et al., 2014; Chung et al., 2014), offer constant inference-time
memory over input sequences of arbitrary length. However, since they are not parallelizable, they are
inefficient to train. Although linear time-invariant State-Space Models (SSMs) (Gu et al., 2022b)
combine constant inference-time memory with efficient training, they lack selectivity over long-
range dependencies (Gu & Dao, 2024) and require high precision parameters (Zhao et al., 2025),
making them ill-suited for modeling multi-timescale data on limited-precision embedded systems.
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Given the gap between the tight memory requirements of embedded systems and current capabilities
of SotA sequence models, we ask:

Can we design a memory-efficient sequence model that can capture both long- and short-term
dependencies for advanced temporal signal processing in embedded systems?

To achieve this goal, we investigate a hybrid-memory model that synergistically combines the
strengths of TCNs and gated RNNs. We fuse a causal temporal convolution with learnable spac-
ings, capable of expressing a delay embedding, and a parallelizable gated recurrent unit into a single
stackable layer. This combined model is called minimal Gated Recurrent Architecture with Delay
Embeddings (mGRADE). mGRADE is effectively a hybrid-memory model where the temporal con-
volution acts as a fixed-size cache for short-term dependencies and the gated recurrence provides an
efficient compression of the signal’s long-term history. Its design satisfies the requirements of multi-
timescale processing on embedded systems since it (1) maintains constant memory complexity with
respect to the sequence length at inference time, (2) can be efficiently trained in parallel regardless
of the sequence length, and (3) can selectively capture both long- and short-range dependencies over
arbitrary sequence lengths.

We employ two types of synthetic tasks to theoretically demonstrate the functional contributions of
mGRADE’s two core components and how they complement each other. The first task, next-step
prediction of a single dimension from the Lorenz system (Lorenz, 1963), shows how the temporal
convolution caches delayed input copies, enabling the internal recurrent representation to generalize
better to unobserved input-coupled dynamics over short timescales (Section 3.1). With the second
set of tasks, Flip-Flop predictive modeling and selective copy (Liu et al., 2023; Gu & Dao, 2024), we
show how the gated recurrence selectively models long-range dependencies by recursively maintain-
ing a fixed-size hidden state, enabling recall over arbitrarily long sequences (Section 3.2). Finally,
we demonstrate that these theoretical capabilities translate to real-world performance by benchmark-
ing mGRADE on the Long-Range Arena (LRA) tasks (Tay et al., 2021), where we show competitive
results with a memory footprint that is up to 8× smaller than previously published SotA models.

Our theoretical arguments offer insight into the modeling capabilities of the combination of gated
recurrence and temporal convolutions. The competitive empirical results of our hybrid-memory
approach position mGRADE as a compelling solution for high-performance sequence modeling in
resource-constrained embedded systems.

2 MODEL SPECIFICATION

The mGRADE architecture consists of an encoder (linear projection), a stack of L mGRADE layers,
and finally a decoder (non-linear projection) (Fig. 1A). The input sequence is streamed element
by element, causally producing an output at every timestep t. The mGRADE layers are the core
architectural feature, combining a depthwise 1D convolution with learnable spacings (equivalent
to delays) and a parallelizable gated recurrence, followed by an Multi-layer Perceptron (MLP) and
layer normalization (Fig. 1B). Fig. 1C illustrates mGRADE’s computational graph unrolled in time,
demonstrating how the output at any given timestep t depends on past and current inputs.

Convolution component To enable mGRADE to capture short-term dynamics and high-
frequency patterns (Section 3.1), we first pass the input to each mGRADE layer through its temporal
convolution component. To maximize expressivity without expanding the number of convolution
kernel elements, we learn the spacings between each kernel element using the Dilated Convolutions
with Learnable Spacings (DCLS) framework from Hassani et al. (2023). For our temporal convolu-
tions, this is equivalent to learning transmission delays over the input (Hammouamri et al., 2024).
This choice is inspired by how tunable delays enrich the computational expressivity of spiking neural
networks (Maass & Schmitt, 1999; D’agostino et al., 2024; Göltz et al., 2025).

Like classical TCNs, DCLS applies a discrete 1D convolution xd,t = (ud ∗kd)[t] over every channel
d ≤ D of the input u ∈ RD×T (with T being the input sequence length). Each convolution kernel kd
is parameterized by two sets Ωd = {w0, w1, ..., wK−1 | wi ∈ R} and Ψd = {p0, p1, ..., pK−1 | pi ∈
R, pi ≤ pmax} of K elements each, representing the weights and positions in time of the trainable
kernel elements. Each position in time is relative to the current timestep, making it equivalent to a
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Figure 1: Network architecture and spatio-temporal computational graph of mGRADE. A)
Network architecture composed of an encoder, L mGRADE layers stacked on each other and a final
decoder. B) A mGRADE layer is composed of four consecutive elements: a depthwise 1D convo-
lution, a gated RNN, a 2-layer MLP, and a layer normalization. It also employs skip connections
around the gated RNN and the MLP. C) mGRADE’s computational graph unrolled in time for the
first two layers (time increasing from left to right). Bold colored arrows represent the flow of data
that is being processed at timestep t. Light gray arrows represent past computations. Skip connec-
tions were omitted for simplicity. Here, the kernel count K is 3 and the kernel length Γ is 6.

transmission delay. The maximum position, pmax = Γ, defines the longest possible transmission
delay applied to the input, thus indicating the total number of discrete timesteps that kd spans.
Following Hassani et al. (2023), we will refer to Γ as the kernel length and K as the kernel count.
Both kernel length and count are fixed across all channels. Notably, the real-valued positions within
the kernel can be trained, equivalent to learnable delays (see Appendix A.1).

The DCLS convolution’s output xd,t for each channel d at timestep t is computed as follows:

xd,t = (ud ∗ kd)[t] =
Γ−1∑
n=0

kd[n]⊙ ud[t− n] (1)

We stack all D kernels kd into a kernel matrix K ∈ RD×Γ, yielding a final output vector xt ∈ RD.

Gated recurrent component To enable mGRADE to selectively model long-range dependen-
cies (Section 3.2), we include a gated recurrent component after the temporal convolution in the
mGRADE layer. To this end, we simplify the GRU (Cho et al., 2014) by removing the dependency
of the update gate, zt ∈ RH , and candidate activation, h̃t ∈ RH , on the previous hidden state,
ht−1 ∈ RH . The hidden state dimensionality H is equal to D times an expansion factor. Thus,
given the output of the DCLS convolution xt ∈ RD and a linear activation function on h̃t, the
hidden state ht ∈ RH is updated as follows,

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t with zt = σ(Wzxt) , h̃t = Whxt, (2)

where σ is the sigmoid function, ⊙ is the Hadamard product, and Wz and Wh ∈ RD×H are the
weights of the projections for zt and h̃t, respectively. This simplified and parallelizable recurrence
was initially proposed by Martin & Cundy (2018) and is also known as minimal Gated Recurrent
Unit (minGRU) (Feng et al., 2025).

The specific choice of a minGRU-style gated recurrence is motivated by its training efficiency and
hardware compatibility. Since the update gate and candidate activation only depend on the current
xt, the hidden states for every timestep can be computed in parallel using a prefix scan (Blelloch,
1990), enabling efficient training in logarithmic time with respect to the sequence length (Feng
et al., 2025). In addition, this architecture is well-suited to heavily quantized, low-power hardware
implementations, as shown by (Billaudelle et al., 2025).
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Figure 2: mGRADE reconstructs a diffeomorphic mapping of the input dynamics. A) Repre-
sentative trajectories (n = 4) on the Lorenz attractor manifold with 5% Gaussian time-independent
noise. The task is to predict dimension 1 at the next timestep. B) Representative trajectories in the
hidden state space of a single-layer mGRADE projected to the first 3 Principal Components (PC).
C) Trajectories in the hidden state space of a 2-layer minGRU projected to the first 3 Principal Com-
ponents (PC). See Fig. A2 for all PCs compared individually.

MLP and Layer Normalization Following the gated recurrent component, the hidden state ht

is passed through an MLP with WMLP,in ∈ RH×2D, WMLP,out ∈ R2D×D, and a non-linearity in
between. Afterwards, layer normalization is applied. Since D represents the dimensionality of the
activations passed between layers, we will call it the model dimensionality.

Memory Complexity During inference, mGRADE requires memory for both the model parame-
ters and for the activation buffer, which stores all past and current activations needed to produce an
output for the current timestep. The number of model parameters scales primarily with the model
dimensionality D. Regarding the activation buffer, the gated recurrent component utilizes only a
fixed-size hidden state vector. Thus, it can operate over arbitrary sequence lengths without scaling
the activation buffer size, allowing us to fix the kernel length Γ of the convolutional component
while maintaining a theoretically unbounded temporal receptive field1. Accordingly, mGRADE’s
memory complexity is independent of the input sequence length over which it operates, in marked
contrast to architectures like Transformers and TCNs, where memory requirements scale linearly
with the sequence length or temporal receptive field. For a detailed analysis of the memory scaling
of mGRADE’s components, see Appendix A.2.

3 THEORETICAL CAPABILITIES OF MGRADE

We now develop a theoretical understanding of how mGRADE’s temporal convolution and gated
recurrent components complement each other. To this end, we first investigate how the temporal
convolution enhances mGRADE beyond purely recurrent architectures by strengthening its struc-
tural inductive bias towards the reconstruction of short-term dynamics. We then show how the gated
recurrent component enables long-range dependency learning by showing that a single mGRADE
layer can formally model the Flip-Flop language and empirically solve the selective copying task,
both of which require selectively remembering long-range dependencies that cannot be modeled by
purely convolutional or non-gated recurrent architectures like TCNs or linear time-invariant SSMs.

3.1 TEMPORAL CONVOLUTIONS ENABLE SHORT-TERM PREDICTION OF DYNAMICS

mGRADE’s temporal convolution component can be reframed as computing weighted sums of time-
delayed inputs stored in cache memory at every timestep, with learnable positions controlling the
durations of the delays (Hammouamri et al., 2024). This operation mirrors delay embeddings, a
classical technique for time-series prediction and dynamical state-space reconstruction (Strogatz,
2015). Delay embeddings map an input sequence to a higher-dimensional vector consisting of m
time-delayed copies of the original input. Takens’ Embedding Theorem (Takens, 1981) guarantees
that, for a d-dimensional dynamical system, any delay embedding of even a single observed di-

1range of past inputs that can influence the output at any given timestep t
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Table 1: Next-step prediction on 3D-Lorenz attractor.

Model MASE (observed dim.) MASE (unobserved dim.) Near. Neigh. Overl. % Params.

mGRADE 0.38 ± 0.02 0.86 ± 0.11 32.7 ± 0.7 281
minGRU 0.63 ± 0.01 1.01 ± 0.01 28.8 ± 2.2 471

mension can diffeomorphically reconstruct the underlying manifold along which the system moves,
using at most m = 2d+1 delays in noise-free conditions. Intuitively, this means that given a vector
with at least m = 2d + 1 different delays as input, the hidden state will trace out trajectories in
m-dimensional space that resemble the underlying original dynamical system’s trajectories – up to
a smooth, invertible transformation.

Theorem 1 (Informal). A single-layer mGRADE can express a delay embedding of a d-dimensional
dynamical system in the sense of Takens (1981), using only an m-dimensional projection of a single
observed dimension as input. Its m-dimensional hidden state can thus learn to diffeomorphically
reconstruct the system’s full geometry over time.

The full theorem and its proof are provided in Appendix B.1.1. It relies on the fact that mGRADE
can learn distinct delays for each of the m projections of the observed dimension, and then embed
them directly into its hidden state. This internal representation captures the full geometry of the
underlying dynamical system, allowing mGRADE to generalize to dimensions that were unobserved
during training, specifically thanks to the temporal convolution component.

We evaluate this claim on a next-step prediction task using the chaotic 3D-Lorenz attractor, training
a single-layer mGRADE and a 2-layer minGRU2 on 2000 noisy trajectories (Fig. 2A; Lorenz, 1963).
To quantify the quality of the next-step predictions, we use the Mean Absolute Standardized Error
(MASE) (Hyndman & Koehler, 2006). Note that MASE > 1 indicates that a model has no predictive
power relative to naively predicting the current state’s persistence (see Appendix B.1.2).

Visualizing the top three Principal Components of the 10 hidden states (Fig. 2B,C; Fig. A2),
mGRADE’s embedding reconstructs the Lorenz system’s characteristic two-lobe structure, while
the minGRU’s embedding lacks similar visual correspondence. mGRADE also achieves a MASE
that is 1.6× lower than minGRU when predicting the next timestep on observed dimensions (Ta-
ble 1; Fig. A1). When predicting the dimensions unobserved during training, mGRADE outper-
forms the 2-layer minGRU, which shows no predictive power given a MASE > 1. We also quan-
tify how smoothly the geometry of the original attractor maps to the geometry of the hidden state
space by measuring Nearest neighbor Overlap following (Ostrow et al., 2024) (for details see Ap-
pendix B.1.2). A high overlap percentage indicates that locally the two manifolds are smooth invert-
ible mappings of each other, i.e., that the hidden space is a faithful diffeomorphic reconstruction of
the original. Consistent with our visual check, mGRADE exceeds the minGRU by 4%.

This experiment highlights how adding the temporal convolution component, essentially a short-
term cache memory of delayed inputs, implements a useful representation for reconstructing dy-
namical state spaces from partial observations. Over short time horizons, this enables mGRADE to
generalize on even partially dynamical systems data.

Additional experiments in Appendix B.3 show that the temporal convolution component also enables
mGRADE to recognize and respond to high-frequency features far better than purely gated recurrent
architectures, overcoming their bias towards low-frequency information (Rahaman et al., 2019).

3.2 GATED RECURRENCE ENABLES LONG-RANGE DEPENDENCY LEARNING

To probe mGRADE’s ability to selectively remember long-range dependencies, we analyze its abil-
ity to predictively model Flip-Flop languages, a formal language family designed to test sequence
models’ long-range capabilities. (Fig. 3A; Liu et al., 2023).

2For a fair comparison, we give the minGRU an additional layer to provide its update gate and candidate ac-
tivation in the second layer with temporal information. This means that the only significant difference between
the mGRADE and minGRU models is the fact that mGRADE’s uses a convolution.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of Flip-Flop and selective copying tasks. A) Flip-Flop modeling consists
of predicting the prediction set Pi of next possible symbols in the given Flip-Flop string at every
timestep. For r symbols, this is equivalent to recalling the value after the most recent w. B) Selec-
tive copying requires storing and recalling (after the marker symbol m) randomly distributed value
symbols ai in the order they are presented in while ignoring the distractor symbols d in between.

Definition 1 (Flip-Flop Language). Let the alphabet be Σ = {w, r, i, 0, 1}, where w, r, and
i represent the instruction symbols for “write”, “read”, “ignore”, and 0, 1 represent value symbols.
Flip-Flop languages Lff consist of sets of strings over Σ that alternate between instructions and
values (e.g., w 0 r 0 i 1), satisfying the condition that after every r symbol, the subsequent
symbol is equal to the value following the previous w. All valid strings begin with w.
Definition 2 (Predictive Modeling). For a string s ∈ Lff and a prefix s[1 : t] ending at position
t with symbol at, predictive modeling requires outputting the prediction set Pi ⊆ Σ of valid next
symbols at+1 such that s[1 : t] at+1 remains a prefix of a string in Lff . We say that a model
predictively models Lff iff its output at each timestep t encodes all the information needed for a
linear classifier to return the next prediction set with no errors.

Predictive modeling of Flip-Flop languages is interesting for multiple reasons. First, a model’s suc-
cess on Flip-Flop modeling implies a broad computational expressivity on multiple formal languages
and algorithmic simulation tasks (Liu et al., 2023). Second, Flip-Flop modeling requires maintain-
ing the last w-paired value over arbitrarily long sequences. Accordingly, models with fixed-length
context windows or sequence-length dependent memory scaling, such as TCNs and Transformers,
cannot model Flip-Flop over arbitrary lengths with a fixed memory size (Sarrof et al., 2024; Liu
et al., 2023, for proof see Appendix B.4.1). Finally, since any r is typically separated from the most
recent w by an arbitrarily long string of irrelevant i-paired values, Flip-Flop modeling requires se-
lectively remembering and ignoring value symbols based on the content of the preceding instruction.
This content-aware selectivity across time factors into many real-world challenges, such as tracking
filler-gap dependencies in natural language (Wilcox et al., 2018; Howitt et al., 2024) or ignoring
irrelevant inputs during arithmetic reasoning (Shi et al., 2023). Notably, linear time-invariant SSMs
without input-dependent gating, such as the Hungry Hungry Hippo (H3) (Dao et al., 2022) or Linear
Recurrent Unit (LRU) (Orvieto et al., 2023), lack selectivity (Gu & Dao, 2024).

In contrast to TCNs, Transformers, and linear time-invariant SSMs, a single-layer mGRADE can
predictively model Flip-Flop languages due to its gated recurrent component.
Theorem 2 (Flip-Flop Modeling with mGRADE). A single-layer mGRADE with at least 2 delays
can predictively model a Flip-Flop language, Lff , at arbitrary length.

Proof Sketch. (Full proof in Appendix B.4.1) mGRADE stores the value after the last w in one part
of its hidden state, while the other merely reproduces the input. Learnable delays trigger the update
gate of the storage hidden state only after a w (selectively), which then preserves the value over
arbitrary sequence lengths via its recurrence until the next w. A linear classifier can then trivially
extract the prediction set by reading the current input symbol from the reproducing hidden state,
and, if the current input is r, reading out the stored value from the storage hidden state.

To evaluate this claim, we train a single-layer mGRADE, a single-layer linear time-invariant SSM,
the LRU augmented with the DCLS convolution, and a 5-layer TCN on the Flip-Flop dataset from
Liu et al. (2023). The training data consists of 1.6M Flip-Flop strings of 512 timesteps, where the
expected distance between w and r is 10 timesteps. For testing, we used out-of-distribution data of
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Table 2: Flip-Flop and selective copying tasks. H3 results are from Gu & Dao (2024).

Flip-Flop Selective Copying

Test Acc. % Params. Buff. Activ. Test Acc. % Params. Buff. Activ.

mGRADE 99.6 ± 0.3 3K 96 87.1 ± 2.2 65K 17K
LRU + DCLS 88.5 ± 3.5 5K 96 16.7 ± 3.5 81K 17K
TCN 60.6 ± 0.1 3K 16K – – –
H3 – – – 57.0 166K 512

the same length with sparse w and r (expected distance around 100 timesteps) to stress long-range
dependency learning. Furthermore, we only report the recall accuracy, i.e., how often the model
predicted the value following any given r symbol correctly. mGRADE solves the task to nearly
100%, substantially outperforming both the TCN and the SSM despite using less parameters and a
smaller activation buffer, even at longer distances between successive w and r symbols (Fig. A5).

In addition to Flip-Flop language modeling, we further evaluate mGRADE’s selectivity relative
to linear time-invariant SSMs by comparing the performance of mGRADE and LRU on the well-
established selective copying task (Fig. 3B; Jing et al., 2019; Gu & Dao, 2024). Selective copying is
related to Flip-Flop modeling, but instead of providing an explicit instruction ahead of the sequence
elements that contain relevant content (i.e. the w symbol used in Lff ), the content of the sequence
element itself defines its relevance. For further details, we refer to Appendix B.5.

Our results in Table 2 show that mGRADE clearly outperforms our LRU implementation by more
than 70%, despite using 1.3× less parameters. These results on LRUs are consistent with the re-
sults achieved by Gu & Dao (2024) with H3 (Dao et al., 2022), another linear time-invariant SSM
extending Structured State Space Model (S4) (Gu et al., 2022b). This emphasizes the importance of
mGRADE’s input-dependent gating over its hidden state transition, which the SSMs lack.

Overall, the Flip-Flop modeling and selective copying tasks confirm that mGRADE’s recurrent
components enable robust and selective long-range dependency modeling, outperforming purely
convolutional and non-gated recurrent models without having to scale the memory size with input
sequence length. These long-range learning capabilities combined with the ability of the tempo-
ral convolution component to model short-term dynamics Section 3.1 underpin mGRADE’s strong
performance on real-world sequence tasks, as explored in the following section.

4 EMPIRICAL VERIFICATION

We test the proposed mGRADE architecture on sequence modeling tasks that require handling both
long- and short-range dependencies. We choose the LRA benchmark as it is specifically designed to
evaluate the performance and test the inductive biases of sequence learning architectures. The tasks
in the LRA span different modalities (text and flattened images), and feature sequences of lengths
1024 to 16384. When evaluating the results, we do not solely focus on the achieved accuracy, but
also consider the memory footprints of both parameters and activation buffer, which indicate how
suitable the model is for deployment on embedded systems.

Experimental setup Since mGRADE is designed for real-time signal processing on embedded
systems, it processes its inputs in a streamed and causal fashion. Therefore, we deliberately avoid
using the (acausal) bidirectional processing used by S5 (Smith et al., 2023), S4-LegS (Gu et al.,
2022a), and HGRN (Qin et al., 2023), although its inclusion leads to significant performance im-
provements on LRA, as shown by comparing S4-LegS to the causal S4 (Gu et al., 2022b) on Re-
trieval, Image, and Pathfinder (row 1 vs row 2 in Table 3). Additionally, we process the raw inputs
directly, consistent with all baselines, except for HGRN (Qin et al., 2023) which applies positional
encoding to all tasks except Pathfinder. Additional experimental details can be found in Appendix C.

Results In Table 3 we compare mGRADE’s performance on LRA to current SotA RNN- and
convolution-based architectures. Compared to the best-performing models, mGRADE reduces
the memory footprint significantly, while still achieving comparable accuracies: for example, on
ListOps, it achieves an accuracy within 0.9% of Liquid-S4’s performance (Hasani et al., 2023),
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Table 3: Performance Comparison on the Long Range Arena benchmark. We differentiate the
parameter count (“Params.”) from the activation buffers (“Buff.”) as explained in Appendix A.2. Pa-
rameter counts and accuracies not made available in the publications or official code are denoted by
a dash. The calculations of the activity buffer sizes are detailed in Appendix C.2, with Appendix C.3
outlining additional considerations regarding the actual instantiation on embedded platforms.

ListOps Text Retrieval Image Pathfinder

Model Acc. Params. / Buff. Acc. Params. / Buff. Acc. Params. / Buff. Acc. Params. / Buff. Acc. Params. / Buff.

RNN-based architectures
S4 (Gu et al., 2022b)5 58.4 255K / 49K 76.0 184k / 16K 87.1 1.2M / 98K 87.3 3.4M / 197K 86.1 896K / 98K
S4-LegS (Gu et al., 2022a)1,5 59.6 599K / 131K 86.8 1.3M / 197K 90.9 1.6M / 197K 88.7 3.6M / 393K 94.2 1.3M / 197K
DSSSOFTMAX (Gupta et al., 2022)5 60.6 206K / 49K 84.8 152K / 16K 87.8 888K / 98K 85.7 2.0M / 197K 84.6 601K / 98K
DSSEXP

5 59.7 206K / 49K 84.6 152K / 16K 87.6 888K / 98K 84.9 2.0M / 197K 84.7 601K / 98K
DSSEXP-NO-SCALE

5 59.3 206K / 49K 82.4 152K / 16K 86.0 888K / 98K 81.2 2.0M / 197K 81.3 601K / 98K
Liquid-S4 (Hasani et al., 2023)5 62.8 333K / 8K 89.0 164K / 4K 91.2 1.5M / 98K 89.5 11M / 1.6M 94.8 1.2M / 98K
S5 (Smith et al., 2023)1,5 62.2 190K / 0.1K 89.3 1.3M / 1.1K 91.4 772K / 1.5K 88.0 5.1M / 2.3K 95.3 1.1M / 1.5K
LRU (Orvieto et al., 2023)3 60.2 190K / 1.5K 89.4 1.3M / 1.1K 89.9 772K / 1.5K − − / − 95.11 1.1M / 1.5K
HGRN (Qin et al., 2023)1, 2, 5 60.0 84K / 0.4K 88.1 878K / 1.0K 94.2 115K / 0.3K 88.7 20.6M / 6.1K 92.9 1.3M / 1.5K

Convolution-based architectures
SGConv (Li et al., 2023)4 61.5 − / ∼ 1.5M 89.2 − / ∼ 1M 91.1 − / ∼ 6.3M 88.0 − / ∼ 3.1M 95.5 − / ∼ 1.6M
MRConv-L (Cunningham et al., 2024)4 62.4 661K / ∼ 1.5M 89.4 − / ∼ 1M 91.5 − / ∼ 6.3M 90.6 7.7M / ∼ 3.1M 96.7 − / ∼ 1.6M

mGRADE 61.9 40K / 3K 87.3 44K / 1.5K 88.1 104K / 1.7K 87.1 712K / 197K 94.9 612K / 197K
1 Bi-directional input processing.
2 Uses positional encoding of the input.
3 Assuming same hyperparameters as in S5 (Smith et al., 2023) as mentioned in (Orvieto et al., 2023) (code not available).
4 Buffer sizes calculated assuming same hyperparameters as in S4 (Gu et al., 2022b) as mentioned in (Li et al., 2023) and (Cunningham et al., 2024) (code not available).
5 Parameter numbers extracted from the official GitHub repositories.

while using 7× fewer parameters; on Pathfinder, it remains within 1.8% of MRConv-L’s perfor-
mance, while using 8× smaller activation buffers. Compared to the models that are closest in size,
mGRADE delivers higher performance: 1.9% higher accuracy than HGRN (Qin et al., 2023) on
ListOps and 8% higher accuracy than S4 on Pathfinder (while still using 1.5-2× fewer parameters).
Due to the compute-intensive nature of training on PathfinderX, we leave this task for future work.

These results confirm that our proposed architecture is capable of tackling large-scale tasks, thereby
validating our theoretical predictions and demonstrating clear advantages in memory footprint and
performance at comparable network sizes. In addition to the results summarized in Table 3, we
perform an ablation study to estimate the impact of mGRADE’s two architectural components. Ap-
pendix D.1 shows that while convolutions and recurrent components perform well on their own on
Image or ListOps, respectively, only full mGRADE can tackle both tasks successfully. Addition-
ally, both components are needed to solve Pathfinder above chance level. Finally, we analyze the
learned delays in Appendix D.2 and show that mGRADE flexibly learns task-specific convolution
strategies, with spatially local information aggregation emerging in the temporal convolution kernel
for sequential image classification and distributed aggregation when detecting sparser structures.

5 RELATED WORKS

This section surveys previous work that informs our hybrid-memory architecture. We proceed as fol-
lows: first, we review gated and linear recurrent networks, then convolution-based sequence models,
and finally, the effects of combining recurrent models with convolutions.

Gated Recurrent Models For many years, RNNs were virtually synonymous with sequence mod-
eling. Gated RNNs, notably the LSTMs and GRUs, alleviate vanishing-gradient effects (Bengio
et al., 1994; Hochreiter & Schmidhuber, 1997) through learned gating mechanisms that selectively
control the flow of information and neuron state updates. Although effective, these models train
sequentially and are therefore inefficient for training on very long sequences. Bradbury et al. (2017)
and Martin & Cundy (2018) mitigate this bottleneck by removing the hidden-state dependency of
the gate and candidate activation vectors, enabling parallel training through a prefix scan (Blelloch,
1990). In fact, the Gated Impulse Linear Recurrent (GILR) layer proposed by Martin & Cundy
(2018) is equivalent to the minGRU-style gated recurrence used for mGRADE (see Section 2).
Hierarchically Gated Recurrent Networks (HGRNs) adds complex-valued parameters and a hierar-
chical gating bias to a parallelizable gated RNN, setting an upper bound for the update gate and
encouraging hierarchical processing of time scales from fast to slow (Qin et al., 2023). Note that
this enforced low-frequency bias can impede recognizing important high-frequency features, which
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is already challenging for gated RNNs (see Appendix B.3). mGRADE mitigates this by including
the temporal convolution with learnable delays in each layer.

Linear Recurrent Models Another line of research removes gating from the recurrent core alto-
gether, favoring RNNs which rely on fully linear transitions between hidden states. Early investi-
gations into linear RNNs (Mozer, 1993; Mikolov & Zweig, 2012; Pachitariu & Sahani, 2013) have
converged in linear time-invariant SSMs, such as Structured State-Space Models (S4) (Gu et al.,
2022b)), LRU (Orvieto et al., 2023), and the H3 architecture (Dao et al., 2022). Linear time-invariant
SSMs are not selective, limiting their expressivity over long-range dependencies (see Section 3.2).
Mamba (Gu & Dao, 2024) addresses this by reintroducing input-dependent update gating within the
linear recurrence, effectively returning to the fold of parallelizable gated RNNs. While SSMs can be
parallelized due to their linear recurrence, they use complex-valued parameters and highly specific
initialization schemes, thus reducing their hardware compatibility and quantizability (Zhao et al.,
2025). In contrast, the gated recurrent component of mGRADE has been successfully adapted for
embedded deployment (Billaudelle et al., 2025).

Temporal Convolution Models TCNs were originally proposed in Waibel et al. (1989) to model
temporal dependencies within a fixed-length receptive field using causal convolutions over the in-
put sequence. Dilated convolutions, where the kernel elements are regularly spaced apart in time,
efficiently expand the receptive field, particularly when these spacings increase exponentially with
layer depth as in Wavenet (van den Oord et al., 2016). However, these fixed regular spacings can
miss information in irregular frequencies, common in real-world signals (George & Smith, 1997).
To address this, DCLS (Hassani et al., 2023) replaces fixed spacings with learnable ones, increasing
performance and flexibility in temporal classification with spiking neural networks (Hammouamri
et al., 2024). However, DCLS as well as dilated TCNs still require buffering input activations, scal-
ing memory cost with kernel length. This issue is exacerbated in global convolutional networks,
such as SGConv (Li et al., 2023) and MRConv (Cunningham et al., 2024), where kernel length is
matched to sequence length. Such approaches are impractical for embedded systems, given their
memory constraints. mGRADE instead uses a fixed kernel length, resulting in a constant activa-
tion buffer size, relying on the recurrent component to capture long dependencies. Similar fixed-
length convolutions have been successfully adapted to embedded systems, notably in DenRAM and
Chameleon (D’agostino et al., 2024; den Blanken & Frenkel, 2025).

Combining Convolutions and Recurrence Several modern sequence models combine recurrent,
convolutional, and normalization layers in multi-layered architectures. While this can improve
performance, it complicates our understanding of each component’s functional role. Similar to
mGRADE, recent gated recurrent architectures (Bradbury et al., 2017; Beck et al., 2024; Feng et al.,
2025) as well as some linear RNNs (Dao et al., 2022) combine temporal 1D convolutions (albeit
with far shorter kernel lengths and without learnable spacings) and recurrent components, yielding
consistent empirical performance improvements. However, the distinct functional contributions of
these components, particularly with respect to the timescales they operate on, have remained largely
unexplored prior to this work.

6 CONCLUSION

We present mGRADE, a hybrid-memory architecture engineered for real-time processing of se-
quences with multi-timescale dependencies on resource-constrained embedded systems. Our design
is grounded in formal proofs and experimental evidence that demonstrate mGRADE’s capacity to
model not only short-term dynamics, but also long-range dependencies. We characterize the func-
tional complementarity of each component: the temporal convolution serves as a short-term cache
for delayed inputs, providing effective representations for reconstructing trajectories of dynami-
cal systems from partial observations, while the gated recurrent component maintains a memory-
efficient and selective history of the input sequence.

We support these theoretical arguments with an extensive empirical evaluation of mGRADE across
the multi-timescale sequence modeling tasks of the LRA benchmark. The results show that
mGRADE substantially reduces the memory footprint compared to the SotA models, while main-
taining competitive performance. This highlights the potential of mGRADE for large-scale, real-
time sequence modeling on embedded systems.
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APPENDIX

A MODEL SPECIFICATION DETAILS

A.1 LEARNABLE DCLS KERNELS

DCLS was first introduced by Hassani et al. (2023) and enables the spacings between different
elements of a convolution kernel to be trained. In a temporal setting, this is equivalent to learning
delays. DCLS requires a specific kernel construction parameterized by both a set of weights, Ωd =
{w0, w1, ..., wK−1 | wi ∈ R}, and a set of corresponding positions, Ψd = {p0, p1, ..., pK−1 | pi ∈
R, pi ≤ pmax}, for every channel d ≤ D of the input. These sets have K, the kernel count,
elements each, and a maximum possible position (or in time, a maximum delay) pmax = Γ, called
the kernel length. In time, each position is relative to the current timestep, making it equivalent to a
transmission delay.

To construct the discrete kernel kd for one of the input channels, each real-valued position pi is
mapped to the discrete kernel indices n ≤ Γ via a differentiable interpolation function, c. This
enables both the position and weight of the kernel elements to be learned with gradient descent. The
kernel kd ∈ RΓ for a single channel then becomes:

kd[n] =

K−1∑
i=0

wi · c[n, pi], with kd = [kd[0], kd[1], ..., kd[Γ− 1]] (3)

As in Khalfaoui-Hassani et al. (2023), we use a Gaussian with fixed width v as our interpolation
function:

c[n, pi] = exp

[
−1

2

(
n− pi

v

)2
]

(4)

A.2 MEMORY FOOTPRINT

Scaling The memory requirements of mGRADE during inference consist of (1) the model param-
eters and (2) the activation buffer required for sequential processing. Since these come with distinct
usage patterns and on-chip implementations in embedded systems, we treat them separately as they
might necessitate employing different memory technologies.

In terms of the number of parameters, the temporal convolution component of each mGRADE layer
scales with the number of channels (or model dimensionality) D and the number of kernel elements
K, leading to O(D ×K) complexity. In practice, K is significantly lower than D or Γ. The gated
recurrent component scales with the model dimensionality and the hidden state dimensionality H ,
with O(D ×H), just like the MLP after the gated recurrence. Assuming that H is proportional to
D, the overall parameter memory scales as O(D2).

In terms of activation buffer, the temporal convolution with learnable delays requires storing input
activations for at most Γ timesteps (Eq. (1)). More precisely, the activation buffer size scales linearly
with the model dimensionality D, the number of layers L, and the kernel length Γ, yielding a
memory complexity of O(D × L × Γ). The gated recurrent component only requires a single
hidden state vector per layer (similar to the MLP), so assuming the hidden state dimensionality H
is proportional to D, the overall activation buffer complexity is thus dominated by the temporal
convolution.

Calculation This section presents complete derivations for the memory requirements of each net-
work component during inference. We begin by examining the parameter memory footprint, fol-
lowed by an analysis of buffer memory usage.

The notation MemParamcomponent represents the memory consumption for each component (encoder,
convolution, recurrent, MLP, decoder), with subelements categorized as Weights, Bias, and Po-
sitions. Note that the hidden state dimensionality of the recurrent component, H , is the model
dimensionality scaled by an expansion factor denoted as e.
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MemParamEnc = WeightsEncoder + BiasEncoder = Din ×D (5)

MemParamConv =

{
WeightsConv + PositionsConv = 2(K ×D) for mGRADE,
WeightsConv = K ×D else.

(6)

MemParamRec = Weightsz + Weightsh̃ + Biasz + Biash̃ (7)

= H ×D +H ×D +H +H = 2eD2 + 2D (8)

MemParamMLP = WeightsMLP + BiasMLP (9)

= 2D ×H + 2D +D × 2D +D = 4eD2 + 3D (10)

MemParamNorm = 2D (11)

MemParamDec = WeightsDec = D ×Dout (12)

MemParamnetwork = MemParamEnc + MemParamDec

+ L× (MemParamConv + MemParamRec (13)

+ MemParamMLP + MemParamNorm)

Overall, this yields a memory complexity of O(L× e×D2 + L×K ×D) for parameter storage,
with the model dimensionality D dominating.

As explained in Section 2, any single convolution layer requires the storage of past inputs to produce
an output. The past inputs are stored in an activation buffer whose size scales linearly with the kernel
length Γ. Thus, for an entire network, the buffer requirements for the convolutional components are
determined by D, L, and the kernel length Γ. In addition, recurrent models must maintain hidden
state activations with dimensionality H = eD, further contributing to the required activation buffer.

MemBufferConv = L×D × Γ with Γ =

{
d× (K − 1) TCN with dilation rate d,

pmax mGRADE.
(14)

MemBufferRec = L×H = L× eD (15)

For purely recurrent models, the activation buffer size is determined entirely by MemBufferRec and,
for purely convolutional models, by MemBufferConv. mGRADE’s final required memory is just the
sum of the two:

MemBuffernetwork = MemBufferConv + MemBufferRec (16)
= L×D × Γ + L× eD (17)
= L×D × (Γ + e) (18)

Thus, mGRADE’s activation buffer does not scale with sequence length but instead with layer num-
ber, model dimensionality, and kernel length.

B THEORETICAL CAPABILITIES OF MGRADE

B.1 DYNAMICS RECONSTRUCTION TASK

B.1.1 PROOF FOR MGRADE AS A DELAY EMBEDDING

Here we detail the full proof of Theorem 1, demonstrating how mGRADE can learn to express a
delay embedding.
Theorem 1 (Reconstructing Dynamics through mGRADE’s Delay Embedding). Take a discrete-
time dynamical system f : M → M over a compact manifold M of dimension d, mapping ut ∈ Rd

to ut+1 ∈ Rd according to some differentiable and deterministic rule. Let y : M → R be a
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generic twice-differentiable observation function that deterministically maps any ut on M to a
single observable yt ∈ R at time t. Let m ≥ 2d+ 1. Let a single mGRADE layer be preceded by a
linear projection mapping the input yt to ŷt ∈ Rm (the encoder) such that D = H = m. Assume
that v → 0, with v being the width of mGRADE’s interpolation function c.

Then, the hidden state ht ∈ Rm of m-dimensional mGRADE layer can learn to express a delay
embedding in the sense of Takens (1981), and accordingly can learn to fully reconstruct the original
dynamics of ut ∈ Rd, differing only by a smooth, invertible change of coordinates (a diffeomor-
phism).

Proof. Let f : M → M be a discrete-time dynamical system over a compact d-dimensional man-
ifold M, and let y : M → R be a generic twice-differentiable observation function, as defined
in Theorem 3. Assume m ≥ 2d + 1. Let the encoder preceding the mGRADE layer map yt to a
m-dimensional vector ŷt = [yt, yt, . . . , yt] ∈ Rm by replication.

Construct a single-layer mGRADE model as follows:

1. Each of the m channels of mGRADE’s temporal convolution kernel is learned to a unique, fixed
delay. Specifically, for the q-th channel, set the kernel’s delay to pq = (q − 1)τ , for some fixed
delay step τ ∈ N, letting the interpolation function width v → 0 and learning unitary weights. This
means that the output of the q-th channel is equal to yt−(q−1)τ .

2. Let the update gate parameter matrix Wz be such that ht = h̃t at every timestep (by setting
Wz → −∞). Let the hidden projection matrix Wh ∈ Rm×m be the identity.

Under this construction, the hidden state at each time t becomes:

ht = h̃t = [yt, yt−τ , yt−2τ , . . . , yt−(m−1)τ ],

which corresponds exactly to the delay vector used by Takens as the delay embedding (Takens,
1981).

Because m ≥ 2d+1 and y is twice differentiable, Takens’ Embedding Theorem guarantees that the
map defined by mGRADE, ut 7→ ht, is generically an embedding of the original dynamic manifold
M ∈ Rd into Rm (Takens, 1981). That is, the mGRADE hidden state ht reconstructs the underlying
system dynamics ut up to a smooth, invertible change of coordinates (a diffeomorphism).

B.1.2 TRAINING AND EVALUATION DETAILS

Task Description We train mGRADE to perform autoregressive next-step prediction on the first
dimension of 2000 randomly generated trajectories of 500 timesteps from the 3-dimensional chaotic
Lorenz attractor, using the non-standardized Lorenz flow from the dysts package (Gilpin, 2024). We
add 5% Gaussian time-independent observational noise to every trajectory. We test with randomly
generated sequences of the same length as the training sequences, using either the first dimension or
the 2 unobserved dimensions of the attractor (to evaluate generalization capabilities).

Hyperparameters We compare a single-layer mGRADE to a 2-layer minGRU with the hyperpa-
rameters outlined in Table A1. We choose the 2-layer minGRU as a comparison for fairness, given
that a single-layer minGRU does not provide its update gate or candidate activations with any tem-
poral information (they only depend on the current input). Neither model uses the MLP or layer
normalization. For the learning rate, we use AdamW (Loshchilov & Hutter, 2019) over all weights,
and standard Adam (Kingma & Ba, 2017) for the biases, normalization layers, and DCLS positions.
We use a cosine annealing learning rate scheduler without warmup. For the z gate biases, we use
an ”open” initialization for the (where the gate bias is set such that σ(Wzxt) ≈ 1) for all models,
while using the traditional zero initialization for all other biases. For weights, we initialize with a
truncated normal distribution, with a standard deviation set to

√
1/fan in. Other hyperparameters

are outlined in Table A1. Reported results are averaged over 5 random seeds.
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Table A1: Hyperparameters used for the Dynamics Reconstruction Task. L: number of layers. D/H:
model dimensionality and hidden state size per layer (no hidden state expansion for any of these
models). K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Epochs: max epochs
set for the run. WD: weight decay.

Parameter L D/H K Γ LR B Epochs WD

mGRADE 1 10 1 32 0.004 32 200 0.0
minGRU 2 10 – – 0.004 32 200 0.0

Loss Metric Following (Ostrow et al., 2024), we use MASE as the loss metric. MASE compares
the mean absolute error made by the model across a sequence with the mean absolute error that
would have been incurred had the default prediction been that the next state is equal to the current
state at every timestep (Hyndman & Koehler, 2006). This can be expressed as follows,

MASE =
1
T

∑T
i=1 |yt − ŷt|

1
T−1

∑T
i=2 |yt − yt−1|

,

where ŷ is the model’s prediction, T is the sequence length, and yt is what is being predicted.
Notably, a MASE > 1 means that naive forecasting (using the current yt−1 to predict the next state
yt) works better than the forecasting model. Thus, a model only offers meaningful predictive power
if it can achieve a MASE < 1.

Manifold Similarity Metric The Nearest neighbor Overlap metric is used to evaluate how
smoothly mGRADE maps the original Lorenz attractor manifold to the hidden state ht. It is calcu-
lated following Ostrow et al. (2024). For every point i on every trajectory in the test set, we find the
k-nearest neighbors, i.e., the set of time points Qu(i) where the trajectory gets closest to the selected
point in the original 3 dimensions of the Lorenz system. Then we map the selected point to the
model’s hidden state and evaluate how many of the k-nearest neighbors in the hidden state (Qh(i))
are in fact the same k-nearest neighbors in the original system mapped into the hidden state. The
number of overlapping neighbors relative to the total number of neighbors evaluated then yields the
Nearest neighbor Overlap metric when applied to every point i on every trajectory in the dataset:

Overlap(Original Manifold,Hidden State) =
1

n

n∑
i=1

|Qu(i) ∩Qh(i)|
k

where k is the number of neighbors evaluated (20 in this work), and n is the total number of data-
points available across all trajectories.

Results The MASE over epochs for next-step prediction of the dimension that the models are
trained on is shown for the mGRADE and minGRU models in Fig. A1A. Fig. A1B shows the av-
erage MASE when performing next-step prediction over the 2 dimensions that the models do not
observe during training. mGRADE outperforms the purely recurrent models in both cases. Notably,
the minGRU model does not generalize well to unobserved dimensions resulting in a MASE > 1.
mGRADE also achieves a higher Nearest neighbor Overlap (in %) over epochs for both models in
Fig. A1C.

B.2 HIDDEN STATE PRINCIPAL COMPONENTS

To provide an additional visualization aid on the similarity of the various models’ hidden state
representations of the Lorenz attractor dynamics in Section 3.1, we plot each of the top 3 Principal
Components (PC) against each other in Fig. A2 together with their corresponding explained variance
(EV). Compare to Fig. 2B, C for the corresponding 3D plots.
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Figure A1: mGRADE achieves lower training loss and higher manifold overlap, even on un-
observed dimensions of dynamics. A) Validation MASE loss (mean ± stde) over training epochs
on predicting the observed first dimension. B) Out-of-Distribution MASE loss (mean ± stde) over
training epochs on predicting the dimensions unobserved during training (2 and 3 of the original
attractor). Dotted black line marks MASE = 1 which indicates no predictive power. C) Nearest
neighbor Overlap (mean ± stde) of 20 nearest neighbors to each trajectory point between original
state space and hidden state space over training epochs.

Figure A2: mGRADE reconstructs original dynamics in hidden state principal components. A)
Three top PCs of single-layer mGRADE plotted against each other with corresponding explained
variance (EV). (see Fig. 2B for 3D plot). B) Three top PCs of 2-layer minGRU plotted against each
other with corresponding explained variance (EV). (see Fig. 2C for 3D plot).

B.3 HIGH-FREQUENCY PATTERN RECOGNITION TASK

Task Description We train on sequences with a total length of 165 timesteps, randomly generated
at every training step. Each sequence contains 5 out of 16 possible features. Each feature is l = 32
timesteps long and contains input symbols selected from an alphabet of size n = 16. After each
marker symbol m in the sequence, the goal is to output the associated class label Si of the preceding
feature indexed by i. The feature frequency is adapted by changing how many times r an input
symbol is repeated within the feature before switching to a different input symbol (Figure A3). We
normalize the feature frequency to the sampling rate so that it is equal to 1/r. Thus, a feature
frequency of 1.0 means that the input symbols in the pattern change every timestep, while a feature
frequency of 0.5 means that each input symbol is repeated 2 times before switching. All models
are trained on sequences that contain patterns with increasing normalized feature frequencies (0.07,
0.17, 0.33, 1.00).
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Figure A3: High-frequency pattern recognition task. The task requires classifying several fea-
tures within a sequence, with each feature consisting of randomly ordered input symbols with dif-
ferent feature frequencies (top: low frequency, bottom: high frequency). After being presented a
feature, the model should output the associated class. The number of times that the input symbol
changes within a feature is the inverse of the feature frequency.

Hyperparameters We compare single- and 2-layer mGRADEs with single- and 2-layer min-
GRUs. The 2-layer models were chosen as comparisons to demonstrate that mGRADE can pass
high-frequency feature information through multiple gated layers, while minGRU cannot. None of
the models use an MLP or layer normalization between layers. For the optimization, we use AdamW
(Loshchilov & Hutter, 2019) over weights, and standard Adam (Kingma & Ba, 2017) for the biases,
normalization layers, and DCLS positions. We use a cosine annealing learning rate scheduler with-
out warmup. For biases, we use a standard zero initialization, and for weights, we initialize with a
truncated normal distribution, with a standard deviation set to

√
1/fan in. Other hyperparameters

are outlined in Table A2.

Table A2: Hyperparameters for the High Frequency Recognition Task. L: number of layers. D/H:
model dimensionality and hidden state size per layer (no hidden state expansion for any of these
models). K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Training Steps:
number of batches presented during training. WD: weight decay.

Parameter L D/H K Γ LR B Training Steps WD

mGRADE 1 16 8 16 0.004 64 200 0.1
mGRADE 2 16 8 16 0.004 64 200 0.1
minGRU 1 20 – – 0.004 64 200 0.1
minGRU 2 16 – – 0.004 64 200 0.1

Loss Metric Cross-entropy loss is used over the predicted feature classes, which are set for each
timestep with a marker m in the input. Each model is tested on randomly generated test sequences
using the same feature frequency as during training.

Results Fig. A4A shows the classification validation accuracy over training steps for the models
that were trained on a feature frequency of 0.33. With increasing feature frequency, the test accu-
racy of the mGRADE models remains roughly constant (or even slightly increases) while the 2-layer
minGRU collapses when trying to classify higher-frequency features (Fig. A4B). Notably, adding a
second layer to the minGRU decreases its classification accuracy, implying that high-frequency in-
formation is lost over successive gated recurrent layers as suggested by previous literature (Rahaman
et al., 2019). mGRADE on the other hand maintains performance even with 2 layers, indicating that
the temporal convolution indeed preserves high-frequency information even through the gated re-
current unit.
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Figure A4: mGRADE recognizes features with high frequencies better than pure gated RNNs.
A) Validation accuracy (mean ± stde) for high-frequency pattern recognition task with a feature fre-
quency of 0.33. B) Final test accuracy (mean ± stde) after training on different feature frequencies.
1L stands for single-layer and 2L for 2-layer models.

B.4 FLIP-FLOP PREDICTIVE MODELING TASK

B.4.1 PROOFS FOR FLIP-FLOP PREDICTIVE MODELING CAPABILITIES

Here we detail the full proofs associated with Section 3.2. For convenience, we start by reiterating
the definition of a Flip-Flop language.

Definition 1 (Flip-Flop Language). Let the alphabet be Σ = {w, r, i, 0, 1}, where w, r, and
i represent instruction symbols (”write”, ”read”, ”ignore”), and 0, 1 represent value symbols. The
Flip-Flop languages Lff consist of sets of strings over Σ that alternate between instructions and
values (e.g., w 0 r 0 i 1), satisfying the condition that after every r symbol, the subsequent
value equals the value symbol following the most recent w. All valid strings begin with w.

Definition 2 (Predictive Modeling). For a string s ∈ Lff and a prefix s[1 : t] ending at position
t with symbol at, predictive modeling requires outputting the prediction set Pi ⊆ Σ of valid next
symbols at+1 such that s[1 : t] at+1 remains a prefix of some string in Lff . We say that a model
predictively models Lff iff its output at a single timestep t encodes all the information needed such
that a linear classifier can return the next prediction set with 100% accuracy.

mGRADE

Theorem 2 (Flip-Flop Modeling with mGRADE). A single-layer mGRADE with at least 2 delays in
the convolutional component can predictively model a Flip-Flop language, Lff , at arbitrary length.

Proof. We prove the above theorem by construction. For notation, we use to c = [a,b] to denote
stacking column vectors a ∈ RA, b ∈ RB into another column vector c ∈ RA+B . In addition,
we assume all symbols and possible prediction sets are one-hot encoded in the input and output,
respectively.

Consider a single-layer mGRADE with an input sequence of length T , u1:T ∈ R|Σ|×T , where ut is
the one-hot encoded vector of the symbol at position t in the string, and a model dimensionality of
D = 2|Σ|. To match the model dimensionality, pass u1:T at every timestep through a simple linear
projection to match the model dimensionality (as described in the model architecture). Set this
linear projection to simply stack 2 copies of the input u1:T in a single vector û1:T = [u1:T ,u1:T ].
Set the convolution component to have 2 different delays to the 2 copies of the input in û1:T at
times t and t − 1 (delay of 0 and 1 respectively) with weights of 1. Set the interpolation function
width v narrow enough such that the convolution kernel elements are zero everywhere besides at t
and t − 1. Given this kernel construction, the output of the temporal convolution at any timestep
xt ∈ R2|Σ| will depend only on the current input ut,ut−1 ∈ R|Σ|. Specifically, given the 2 different
delays to the input copies, xt = [ut,ut−1].

Set the hidden state size H = D = 2|Σ| such that ht ∈ R2|Σ|. Split the hidden state into 2
components ht = [hstored

t ,hcurrent
t ] where hstored

t ∈ R|Σ| is parameterized such that it stores the
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value following the most recent w, and hcurrent
t ∈ R|Σ| passes on the current input. Define zt =

[zstored
t , zcurrent

t ], and h̃t = [h̃stored
t , h̃current

t ] as the corresponding gate and candidate states.

The mGRADE updates ht as follows.

1. Compute zstored
t :

zstored
t = σ(Wstored

z xt) = σ(Wstored
z [ut,ut−1])

where σ is the sigmoid function, and Wstored
z ∈ R|Σ|×2|Σ| is the weight matrix coupling zstored

t and
xt = [ut,ut−1]. Set Wstored

z such that the weight corresponding to the location of the 1 in the one-
hot encoding of w in ut−1 approaches −∞, and weights for all other components to approach +∞.
Thus:

zstored
t =

{
0 if ut−1 = w,

1 otherwise.

2. Compute h̃stored
t :

h̃stored
t = Wstored

h̃
xt = Wstored

h̃
[ut,ut−1]

where Wstored
h ∈ R|Σ|×2|Σ| is the weight matrix coupling h̃stored

t and xt = [ut,ut−1]. Set Wstored
h

as a block matrix containing the identity in the component multiplied with ut and zeros in the
component multiplied with ut−1 to the effect that the ut component gets passed on whereas ut−1

does not. Thus:
h̃stored
t = ut

3. Update hstored
t :

hstored
t = zstored

t ⊙ hstored
t−1 + (1− zstored

t )⊙ h̃stored
t

When ut−1 = w, zt = 0 in the asymptotic limit, so hstored
t = h̃stored

t = ut (a value 0 or 1); otherwise,
zt = 1, so hstored

t = hstored
t−1 .

4. Update hcurrent
t . Let each component of Wcurrent

z ∈ R|Σ|×2|Σ| approach −∞ such that zcurrent
t ≈ 0

always. As above, set Wcurrent
h̃

∈ R|Σ|×2|Σ| such that h̃stored
t = ut. In the asymptotic limit, the

update expression
hcurrent
t = zcurrent

t ⊙ hcurrent
t−1 + (1− zcurrent

t )⊙ h̃current
t

evaluates to hcurrent
t = ut.

Thus, hstored
t retains the one-hot vector of the value following the most recent w, and hcurrent

t passes
on ut.

The possible prediction sets over Lff are P1 = {0, 1}, P2 = {w, r, i}, P3 = {0}, P4 = {1}.
Given the structure of Lff , we can associate each set of possible input symbols to its corresponding
prediction set.

If ut ∈ {0, 1} (a value), then ut+1 is an instruction, so the output should be P2 = {w, r, i}.
If ut ∈ {w, r, i} (an instruction), then ut+1 must be a value. Specifically, if ut = w or ut = i,
then the output should be P1 = {0, 1}, since the following value is arbitrary. On the other
hand, if ut = r, then ut+1 must match the value after the most recent w, which (by the preceding
construction) is stored in hstored

t . Thus, the output at time t should be

hstored
t =

{
p3 if hstored

t = 0,

p4 otherwise.
.

A linear classifier, parameterized by a weight matrix Wc ∈ R4×2|Σ| and bias bc ∈ R4, maps ht to
the correct prediction set Pi:

i = argmax(Wcht + bc),

where i is the index corresponding to one of the four prediction sets. Since ht = [hstored
t ,ut] pro-

vides both the current symbol and the stored value, Wc can be trained (or constructed) to distinguish
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these cases based on the one-hot encoded positions in hcurrent
t = ut and hstored

t . Specifically, we set
Wc to have a high weight between the one-hot encodings of w and i and the corresponding index
of the prediction set {0,1}. We also set a high weight between the one-hot encodings of 0 and 1
and the corresponding index of the prediction set {w, r, i}. Finally, we set a negative bias term
to the indices of the {0} and {1} prediction sets with a corresponding larger weight between r and
those indices such that r is enough to activate {0} and almost enough to activate {1}. If now the
weight from hstored

t to {0} is negative and to {1} is positive, then a stored 1 will activate {1} (and
suppress {0}) while a stored 0 will allow {0}) to be active while not adding to the activation of {1}.

To conclude, for any prefix s[1 : t] ∈ Lff :

1. hstored
t can correctly store the value symbol after the most recent w (at least in an asymptotic limit

w.r.t. the weight magnitudes of the update gate zstored
t ).

2. hcurrent
t = ut encodes the current input symbol.

3. Given mGRADE’s outputs ht, a linear classifier can be constructed to output the correct pre-
diction set classification as required by the language’s rules, handling arbitrary lengths since hstored

t
persists across timesteps.

For initial states or prefixes without w, assume hstored
0 = 0, but since every r in a valid string follows

a w, hstored
t is always defined when needed. Thus, mGRADE can predictively model Lff at arbitrary

length.

Fixed-length Context Models
Theorem 3 (Flip-Flop Modeling with Fixed-length Context Models). A model with a fixed-length
context window for a fixed memory size cannot predictively model a Flip-Flop language, Lff , at
arbitrary lengths.

Proof. Consider a sequence of length Tc + 3, where Tc is the context window given some fixed
memory size. Start with w v, follow with Tc i instructions, and end with r. The correct prediction
after r is v, but v lies outside the context window, forcing chance-level performance. Note that
increasing the context length is the obvious solution to this problem however, the correspondingly
increasing memory costs eventually become prohibitive for very long sequences.

Note that models with fixed-length temporal contexts given some fixed memory size include Trans-
formers and TCNs.

B.4.2 TRAINING AND EVALUATION DETAILS

Task Description We train on the Flip-Flop dataset from Liu et al. (2023), containing 1M valid
Flip-Flop sequences of 512 timesteps, where training data contains i instruction symbols with prob-
ability p(i) = 0.8, such that the expected distance between any w and r symbol is 10 timesteps.
This dataset slightly simplifies the full predictive modeling task to focus on recalling the correct
value symbol after an r as described in Section 3.2. For testing, we use out-of-distribution data with
sparse w and r (expected distance around 100 timesteps) to stress long-range dependencies.

Hyperparameters We compare a single-layer mGRADE to a 5-layer TCN (with an exponentially
increasing receptive field) and a single-layer LRU augmented by DCLS. The LRU is used as a
drop-in replacement for the gated recurrent component of mGRADE, demonstrating the importance
of mGRADE’s update gate relative to a linear time-invariant SSM like the LRU. We use the code
supplied in (Zucchet, 2024) as the basis for our LRU implementation. None of the models use layer
normalization. For the optimization, we use AdamW (Loshchilov & Hutter, 2019) over the weights,
and Adam (Kingma & Ba, 2017) for the biases, the normalization layers, and the DCLS positions.
We also use a cosine annealing learning rate scheduler without warmup. For the z gate biases, we
use a ”closed” initialization (where the gate bias is set such that σ(Wzxt) ≈ 0), while using the
traditional zero initialization for all other biases. For all weights, we initialize with a truncated
normal distribution with a standard deviation set to

√
1/fan in. Other hyperparameters are outlined

in Table A3. Reported results are averaged over 3 random seeds.
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Table A3: Hyperparameters for the Flip-Flop Modeling Task. L: number of layers. D/H: model
dimensionality and hidden state size per layer (no hidden state expansion for any of these models).
K: kernel count (for all layers). Γ: kernel length (per layer from input to output for the TCN). LR:
learning rate. B: batch size. Training Steps: number of batches presented during training. WD:
weight decay.

Parameter L D/H K Γ LR B Training Steps WD

mGRADE 1 32 1 2 0.004 64 250,000 0.1
LRU + DCLS 1 32 1 2 0.004 64 250,000 0.1
TCN 5 32 16 16/32/64/128/256 0.004 64 250,000 0.1

Loss Metric Cross-entropy loss is used as the training loss. The reported accuracy is how often
the model correctly recalls the value symbol after the most recent w when encountering a r. Since
there are 2 possible value symbols, chance level performance lies at 50%.

Results Fig. A5A shows the recall accuracy of each model over training steps.

Figure A5: mGRADE solves Flip-Flop modeling task better than TCNs and non-gated RNNs.
A) Validation accuracy (mean ± stde) over training steps. B) Recall accuracy (mean ± stde) for
different recall distances.

B.4.3 RECALL DISTANCE

In addition to the results reported in Section 3.2, we evaluated how well the model recalls the most
recent value after a w given increasing distances between the w and r (the recall distance). For this,
we construct Flip-Flop strings with one w at the beginning and a r in the middle, with different
numbers of i symbols (with corresponding value symbols) in between. Fig. A5B shows the recall
accuracy of each of the models trained using the setup described above and tested on different recall
distances. Note that the only model consistently performing accurate recall over distances of up
to 100 timesteps is mGRADE. Even the LRU model decreases in accuracy with increasing recall
distance, demonstrating the utility of a gated recurrent component.

B.5 SELECTIVE COPYING TASK

B.5.1 TRAINING AND EVALUATION DETAILS

Task Description Following the training setup in Gu & Dao (2024) and Feng et al. (2025), we
randomly generate sequences of 4096 timesteps at each training step. We train over 300, 000 steps.
Each sequence contains 16 randomly distributed value symbols selected from an alphabet of size
n = 16. After seeing the m symbol at the end of the sequence, the goal is to output the value
symbols in the order they were received. For testing, we generated new sequences of the same
length.

Hyperparameters Following the architecture used in Gu & Dao (2024), we use a 2-layer
mGRADE, comparing it to a 2-layer LRU augmented by DCLS. Just like the Flip-Flop model-
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ing task, we use (Zucchet, 2024) as the basis for a drop-in LRU replacement into the mGRADE
architecture. All models use encoders and decoders at the input and output, respectively. For the op-
timization, we use AdamW (Loshchilov & Hutter, 2019) for the weights, and Adam (Kingma & Ba,
2017) for the biases, the normalization layers, and the positions of the DCLS. We also use a cosine
annealing learning rate scheduler without warmup. For the z gate biases, we use the Uniform Gate
Initialization (UGI) initialization from Gu et al. (2020), while using the traditional zero initialization
for all other biases. We initialize the weights with a truncated normal distribution, with a standard
deviation set to

√
1/fan in. Other hyperparameters are outlined in Table A4. Reported results are

averaged over 2 seeds (because of the compute-intensive nature of this task).

Table A4: Hyperparameters for the Selective Copying Task. L: number of layers. D/H: model
dimensionality and hidden state size per layer (no hidden state expansion for any of these models).
K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Training Steps: number of
batches presented during training. WD: weight decay.

Parameter L D/H K Γ LR B Training Steps WD

mGRADE 2 64 128 32 0.001 64 300,000 0.1
LRU + DCLS 2 64 128 32 0.001 64 300,000 0.1

Loss Metrics Cross-entropy loss is used over the final outputs after the m symbols. The final
accuracy is evaluated on randomly generated test sequences of the same length.

Results Fig. A6 shows the accuracy over training steps for each model.

Figure A6: mGRADE solves the Selective Copying Task better than LRU. Validation accuracy
(mean ± stde) over training steps.

C LRA SETUP

C.1 HYPERPARAMETERS

We provide in Table A5 the hyperparameters used for the reported results in Table 3. We use the
encoder and decoder at the input and output, respectively, as well as an MLP and layer normalization
in each mGRADE layer. For the optimization, we use AdamW (Loshchilov & Hutter, 2019) for the
weights, and Adam (Kingma & Ba, 2017) for the biases, normalization layers, and DCLS positions.
In addition, the learning rate was scaled by 5 for the DCLS positions. For all tasks, we use a cosine
annealing with linear warmup learning rate scheduler. We use two initialization schemes for the z
gate biases, the traditional zero initialization and the UGI from Gu et al. (2020). We selected the
zero-initialization for all the other biases. We use a truncated normal distribution for all weights
(except the ones of the temporal convolution block), with a standard deviation set to

√
1/fan in.
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For the temporal convolution block, we set
√

α/K where α is a scaling hyperparameter. We use
gradient clipping for every task except for Pathfinder, with a threshold of 10. For Pathfinder we use
gradient global normalization with a threshold at 2. We did not use dropout. Finally, for the Image
task, we introduced an extra linear layer at the output of the mingru layer and before the addition
with the corresponding skip connection.

Table A5: Hyperparameters used for the reported mGRADE results on LRA. L: number of layers.
D/H: model dimensionality and hidden state size per layer (no hidden state expansion for any of
these models). K: kernel count. Γ: kernel length. LR: learning rate. B: batch size. Epochs: max
epochs set for the run. WD: weight decay. ZBI: z gate bias initialization. α: scaling factor for DCLS
weight initialization. WU: number of epochs for the learning rate linear warmup.

Parameter L D/H K Γ LR B Epochs WD ZBI α WU

ListOps 6 32 2 16 0.003 64 100 0.1 UGI 0.05 10
Text 6 32 2 8 0.002 32 100 0.1 zero 0.25 10
Retrieval 3 64 2 8 0.003 32 20 0.1 UGI 0.05 4
Image 6 128 8 256 0.004 64 100 0.1 zero 0.1 10
Pathfinder 6 128 8 256 0.003 64 100 0.02 zero 1 10

C.2 ACTIVITY BUFFER MEMORY FOOTPRINT

In this section, we explain how we compute the total buffer memory used by the baseline models in
Table 3 and Table A6. S4 (Gu et al., 2022b), DSS variants (Gupta et al., 2022), Liquid-S4 (Hasani
et al., 2023) all implement a similar architecture where H single-input, single-output SSM heads of
size N are used in parallel. Thus, the amount of memory used for all recurrent hidden states is given
by the formula L× (H×N). S4-LegS (Gu et al., 2022b) uses H bi-directional SSM heads of size N
in parallel. Thus, the amount of memory used by all states is given by the formula L×(H×2N). S5
(Smith et al., 2023), LRU (Orvieto et al., 2023) use only a single head multi-input, multi-output SSM
of size N. Thus, the amount of memory used by all states is given by the formula L × N . HGRN
(Qin et al., 2023) uses a similar architecture to mGRADE’s gated recurrent block, extended with
complex states. Thus, the amount of memory used by all states is given by the formula L × (2H).
The long-convolution models, SGConv (Li et al., 2023) and MRConv (Cunningham et al., 2024),
need to buffer the activity of each neuron at each timestep, thus the amount of memory used by all
states is given by the formula L×H × T (where T is the sequence length).

C.3 PARAMETER COUNT FOR REAL-TIME PROCESSING ON EDGE DEVICES

In this section, we explain how real-time processing on edge devices impose taking into consid-
eration some aspects that do not apply when running inference on GPUs. When processing in-
puts in real-time, it is too memory-expensive to save the entire sequence before processing it, let
alone buffering the activities of each neuron for the entire sequence length. For this reason, besides
mGRADE, only S4 (Gu et al., 2022b), DSS (Gupta et al., 2022), Liquid-S4 (Hasani et al., 2023),
S5 (Smith et al., 2023), and LRU (Orvieto et al., 2023) could be deployed on an embedded device
and we report the adjusted numbers for these architectures in Table A6. We leave out bi-directional
architectures as we care for causal processing. We also leave out the convolution architectures too
as Table 3 shows that their activity buffers memory footprint is already above 1M for all tasks.
In S4 (Gu et al., 2022b) and Liquid-S4 (Hasani et al., 2023), the recurrent matrix is parametrized as
a Diagonal Plus Low Rank (DPLR) matrix A = Λ−PP ∗. This means that it is parametrized by two
vectors of dimension N (state dimension). However, when running in step-by-step recurrent mode
on an embedded device, A would need to be instantiated into a full N ×N matrix, which increases
the number of effective parameters substantially. For example on the Image task, the number of
parameters of S4 (Gu et al., 2022b) increases from 3.4M to 15.6M (i.e a factor of 4.5). Similarly
to deploy mGRADE on an embedded device, we would need to fully materialize the DCLS kernels
into vectors of dimension Γ. This increases the number of parameters of mGRADE from 712K to
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896K on the Image task (i.e, a small 25% increase). With these results, we confirm that mGRADE
is the architecture with the smallest memory footprint.

Table A6: Fully Instantiated Memory Footprint for Recurrent Embedded Deployment. Com-
pare to Table 3.

ListOps Text Retrieval Image Pathfinder
Model Params. / Buff. Act. Params. / Buff. Act. Params. / Buff. Act. Params. / Buff. Act. Params. / Buff. Act.

S4 (Gu et al., 2022b) 3.3M / 49K 1.2M / 16K 7.3M / 98K 15.6M / 197K 7M / 98K
DSSSOFTMAX (Gupta et al., 2022) 206K / 49K 152K / 16K 888K / 98K 2.0M / 197K 601K / 98K
DSSEXP 206K / 49K 152K / 16K 888K / 98K 2.0M / 197K 601K / 98K
DSSEXP-NO-SCALE 206K / 49K 152K / 16K 888K / 98K 2.0M / 197K 601K / 98K
Liquid-S4 (Hasani et al., 2023) 373K / 8K 182K / 4K 7.6M / 98K 813M / 1.6M 7.3M / 98K
LRU (Orvieto et al., 2023) 190K / 1.5K 1.3M / 1.1K 772K / 1.5K − / − 1.1M / 1.5K

mGRADE 42K / 3K 45K / 1.5K 105K / 1.7K 896K / 197K 796K / 197K

D MGRADE ANALYSIS

D.1 ABLATION STUDY

In Section 3, we formally motivated the need for the temporal convolution and the gated recurrent
component of mGRADE to tackle long-range dependency tasks. Table A7 compares the perfor-
mance of mGRADE to architectures using only recurrent or convolutional components. The pure
convolution-based models are the TCN, consisting of stacked causal dilated temporal convolution
layers, and the DCLS model, made up of stacked causal temporal DCLS layers, which can be
thought of as mGRADE without the recurrent component. For the pure gated recurrent architec-
ture, we simply remove the convolutional component from the mGRADE layers, leaving us with
the minGRU (Feng et al., 2025). We focus on the ListOps, Image, and Pathfinder tasks from LRA
as (Orvieto et al., 2023) already showed that pure linear RNNs could solve the Text and Retrieval
tasks to around 89%. Both the TCN and the DCLS models achieve good performance on Image
while falling short on ListOps. On the other hand, minGRU achieves a better result than mGRADE
on ListOps, while performing poorly on the Image task. Besides mGRADE, none of these ar-
chitectures learn on Pathfinder. This ablation study validates the theoretical motivations for each
component of an mGRADE layer and showcases the synergy between the temporal convolution and
gated recurrent components.

Table A7: Ablation of mGRADE’s component on the LRA benchmark. The total memory foot-
print (“Total”) at inference time is differentiated from the parameter count (“Params”) as explained
in Section 2. All architectures use the best hyperparameters found for mGRADE, we only scaled
the layer width H to match the number of parameters.

ListOps Image Pathfinder

Model Acc Params. / Buff. Act. Acc Params. / Buff. Act. Acc Params. / Buff. Act.

TCN 39.6 45K / 4K 85.3 727K / 220K × 867K / 230K
DCLS 43.8 41K / 3K 86.2 526K / 220K × 525K / 240K
minGRU 62.5 40K / 192 66.0 697K / 786 × 597K / 786
mGRADE 61.9 40K / 3K 87.1 712K / 197K 94.9 612K / 197K

D.2 LEARNED KERNELS

We analyze the learned positions in the DCLS kernel across layers to understand how mGRADE
adapts its temporal convolution mechanism to different task structures. Figure A7 shows the distri-
bution of learned delay positions across the kernel (x-axis) and across hidden channels (y-axis) for
models trained on the LRA Image, Pathfinder, and ListOps tasks (as done in Appendix D.1).
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Figure A7: Learned DCLS delay positions across layers for LRA benchmark. Each panel shows
the distribution of learned delay positions (x-axis) across hidden channels (y-axis) for all layers (0-5,
top to bottom) of models trained on (A) Image, (B) PathFinder, and (C) ListOps. Color intensity
indicates weight magnitude (red: positive, blue: negative). A) Image (kernel size 256, 8 elements,
128 hidden dims): Positions cluster around vertical bands at positions 32, 64, and 96, which for a
32 × 32 image correspond to the pixels in the same column but one, two, and three rows above
respectively, demonstrating learned preference for local structure. Deeper layers show increasing
dispersion around the vertical bands (offsets ranging from 0-10) while maintaining locality. B)
Pathfinder (kernel size 256, 8 elements, 128 hidden dims): Delays disperse much more across the
full 0-256 range, reflecting the sparse, non-local nature of path detection where relevant features
(blobs and connecting paths) appear at arbitrary locations. Moderate vertical banding suggests some
channels specialize for identifying the blobs at early layers. C) ListOps (kernel size 16, 2 elements,
32 hidden dims): Full utilization of the 0-15 delay range across layers. The sparse sampling (2 of 16
positions per channel) enforces efficient information aggregation for bracket matching and operator
precedence.

D.2.1 LRA IMAGE: EMERGENCE OF SPATIAL LOCAL PROCESSING ON SEQUENTIAL
IMAGES

For the LRA Image task (Fig. A7A), the learned positions reveal a hierarchical local feature ex-
traction pattern. In the early layers (0-2), positions sharply cluster around a delay of 32 timesteps.
When processing the 32 × 32 images used in LRA sequentially, this delay precisely corresponds to
the pixel directly above the current input pixel. This concentration on immediate spatial neighbors
(whether above or below) resembles the local receptive fields of classic 2D Convolutional Neural
Networks (CNN), suggesting that mGRADE, through training, automatically tends towards spatial
locality for image processing despite the sequential presentation of the image. Deeper layers (3-5)
maintain this locality bias, but with increased dispersion in time, effectively expanding the receptive
field and with it the spatial context (while still remaining local). The distinct vertical bands observed
across channels indicate specialized feature detectors, some channels consistently attend to imme-
diate neighbors while others look slightly further with a few specific offsets. This hints towards the
model using its learnable positions to capture irregularly spaced patterns and a larger range of spatial
frequencies within the spatially local receptive field it builds over the image.

D.2.2 LRA PATHFINDER: DISTRIBUTED SEARCH FOR SPARSE STRUCTURE

In contrast, the delays learned by the model trained on the LRA Pathfinder task (Fig. A7B) exhibit
slightly different patterns that reflect the task’s more sparse, less local structure. While still ex-
hibiting some vertical clustering, delays appear more dispersed around the clusters compared to the
Image task. Particularly deeper layers show significantly weaker clustering than the corresponding
layers in the model trained on Image. This distribution suggests that the model cannot rely only on
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local patterns, as the relevant features (two dots and their connecting path in a 32 × 32 image) can
appear at arbitrary pixel locations across samples. Early layers show moderate clustering at certain
delay values visible as a few strong vertical bands, especially in layers 1 and 2. Later layers maintain
broader delay coverage, suggesting they aggregate evidence across multiple spatial scales to deter-
mine path connectivity. The weaker locality bias in the positions indicates that spatially adjacent
pixels in the Pathfinder images provide less predictive power than is the case for the natural images
in Image.

D.2.3 LRA LISTOPS: ADAPTATION TO NESTED DEPENDENCIES

The learned positions for ListOps (Fig. A7C) reveal a sophisticated strategy for parsing symbolic
structures, which stands in contrast to the patterns seen in the Image task. A key feature is how
mGRADE’s temporal receptive field spans the entire kernel length, all 16 timesteps across all lay-
ers. This reflects the task nature, where meaningful dependencies between operators, operands, and
matching brackets occur at variable distances but remain bounded to a range of around 10 timesteps
on average (Nangia & Bowman, 2018). In the initial layers (0-1), the model establishes a strong
inductive bias by concentrating weights at diverse positions, combining more local information (de-
lays close around 3) with information at the boundaries of the kernel (positions around 14). In
contrast, the deeper layers exhibit a more distributed pattern, with channels dedicating kernel ele-
ments sparsely to specific and non-local delays. This sparse distributed sampling allows the model
to track multiple long- and mid-range dependencies simultaneously and efficiently.

These contrasting solutions demonstrate mGRADE’s ability to adapt its information aggregation
mechanisms to task structure without overpowering inductive biases (given that the kernel length
is large enough). For structured data with strong spatially local correlations (Image), the model
converges to classic 2D CNN-like local processing. For tasks requiring global reasoning over sparse
features (Pathfinder), it maintains broader temporal coverage. Listops, on the contrary, requires a
hybrid of mid-range and long-range aggregation in deeper layers. This adaptive behavior arises
from enabling the delays to be learnable, validating DCLS as a flexible alternative to TCNs with
fixed dilation rates, and further justifying our decision to use it in mGRADE.
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