
Training-Free Guidance Beyond Differentiability:
Scalable Path Steering with Tree Search in Diffusion

and Flow Models

Yingqing Guo ∗ Yukang Yang ∗ Hui Yuan ∗ Mengdi Wang

Princeton University

Abstract

Training-free guidance enables controlled generation in diffusion and flow models,
but most methods rely on gradients and assume differentiable objectives. This work
focuses on training-free guidance addressing challenges from non-differentiable
objectives and discrete data distributions. We propose TreeG: Tree Search-Based
Path Steering Guidance, applicable to both continuous and discrete settings in diffu-
sion and flow models. TreeG offers a unified framework for training-free guidance
by proposing, evaluating, and selecting candidates at each step, enhanced with tree
search over active paths and parallel exploration. We comprehensively investigate
the design space of TreeG over the candidate proposal module and the evaluation
function, instantiating TreeG into three novel algorithms. Our experiments show
that TreeG consistently outperforms top guidance baselines in symbolic music gen-
eration, small molecule design, and enhancer DNA design with improvements of
29.01%, 26.38%, and 18.43%. Additionally, we identify an inference-time scaling
law showing TreeG’s scalability in inference-time computation.2

1 Introduction
During the inference process of diffusion and flow models, guidance methods steer generations
toward desired objectives, achieving remarkable success in vision [15, 25], audio [35], biology
[45, 80], and decision making [1, 12]. In particular, training-free guidance offers high applicability by
directly controlling the generation process with off-the-shelf objective functions without extra training
[53, 81, 4, 24]. Most training-free guidance methods are gradient-based, leveraging the objective’s
gradient to steer inference, and thus assume the objective function is differentiable [78, 22].
However, recent advances have pushed the boundaries of guided generation beyond differentiability:
guidance objectives have expanded to include non-differentiable goals [30, 1]; diffusion and flow
models have shown strong performance on discrete data [2, 67], where objectives are inherently
non-differentiable unless approximated via differentiable features [36, 77]. In such settings, training-
free methods designed for differentiable objectives face fundamental limitations. Yet, the design
space beyond differentiability remains under-explored: only a few methods exist [38, 30], they differ
significantly and appear disconnected from prior guidance principles [38, 13]. This underscores the
need for a unified perspective and comprehensive study of guidance beyond differentiability. To
this end, we propose an algorithmic framework TreeG: Tree Search-Based Path Steering Guidance,
designed for both diffusion and flow models across continuous and discrete data spaces.
TreeG is based on path steering guidance, providing a unified perspective on training-free guid-
ance beyond differentiability. Let x0, · · · ,xt,xt+∆t, · · · ,x1 denote the inference trajectory of a

∗Equal contribution. Department of Electrical and Computer Engineering, Princeton University. Authors’
emails are: {yg6736, yy1325, huiyuan, mengdiw}@princeton.edu.

2Code available at https://github.com/yukang123/UniTreeG.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/yukang123/UniTreeG


Active sample

Branch candidate

Value functionBest Sample Selected

Branch Out

(a) Tree-Search Inference Process (b) Designs for BranchOut and Value Function V ,
gradient-based guidance

Figure 1: TreeG Overview: (a) An active set of size A is maintained, where each sample branches
into K candidates. At each step, the top A candidates are retained, and the best sample is selected
at the final step. (b) Left: The current state-based (BranchOut, V ) evaluates candidates via a
lookahead estimate of the clean sample (Sec. 5.1). Middle: branching and selection occur in the
destination state space (Sec. 5.2). Right: Gradient-based guidance can be applied to the current state
branch-out module when a differentiable objective predictor is available (Sec. 5.3).

diffusion or flow model. While gradients of the objective, when available, can offer a precise direction
to steer inference at each step, an alternative is to search for a favorable path: propose multiple next
state candidates xt+∆t (via BranchOut module), evaluate them using a value function (denoted by
V ) that reflects the objective, and select the best candidate to proceed. This structured search enables
TreeG using only zeroth-order information, making it applicable beyond differentiability.
TreeG adopts a tree-search mechanism to explore multiple trajectories, further enhancing the
effectiveness of path steering guidance. An active set of size A is maintained at each inference step
(Fig. 1(a)). Each sample in the active set branches into multiple candidate next states, from which the
top A candidates, ranked by the value function V , are selected for the next step. This process iterates
until the final step, where the best sample from the active set is chosen as the output. By enlarging A,
TreeG achieves higher objective values while flexibly adapting to the computational budget.
TreeG’s design space is over the branching-out module and value function, offering flexible
and comprehensive configurations. Effective search requires both efficient exploration and reliable
evaluation. As shown in Fig. 1(b), we propose two compatible pairs of (BranchOut, V ): one based
on the current state (xt), the other on the predicted destination (x̂1). The former uses the original
diffusion model to generate multiple next states and evaluates them via a lookahead estimate of the
clean sample. The latter generates candidate destinations, which indicate the orientation of the next
state, and selects the optimal using an off-the-shelf objective function. The top-ranked destination
determines the next state. In addition, TreeG introduces a novel gradient-based algorithm for guiding
discrete flow models using gradients when a differentiable objective predictor is available.
Contributions. Our methodological contributions are as follows:

• We propose a novel tree search framework TreeG of training-free guidance. It applies to both con-
tinuous and discrete, diffusion and flow models (Sec. 4), and supports non-differentiable objectives.

• We instantiate three novel algorithms within this framework, and provide theoretical guarantees
showing that they recover the posterior conditional distribution (Sec. 5).

• We show that existing sampling-based methods [30, 37] are special cases of TreeG (Sec. 5.1),
limited to exploration at the current state. Our novel exploration strategy at destination states,
combined with a comprehensive design space for candidate proposals and value functions, enhances
the effectiveness and versatility.

Empirically, we demonstrate that TreeG:
• Outperforms existing guidance methods on diverse tasks: symbolic music generation (continuous

diffusion with non-differentiable objectives), molecular design, and enhancer DNA design (both
on discrete flow models). Path steering guidance, the special case of TreeG with the active set
size as 1, consistently outperforms the strongest guidance baseline, yielding improvements of
29.01%, 26.38%, and 18.43% respectively (Sec. 6.2).

2



50 100 150 200
Computation Time (s)

10 1

100

No
te

 D
en

sit
y 

Lo
ss

Branch Size 1
Active Size 1
Optimal

(a) Symbolic Music (Loss ↓)

5 6 7 8 9 10 11 12
Computation Time (s)

0.66

0.70

0.74

0.78

0.82

M
ea

n 
QE

D

Branch Size 1
Active Size 1
Optimal

(b) Small Molecule (QED ↑)

0 50 100 150 200 250 300
Computation Time (s)

0.55

0.60

0.65

0.70

0.75

0.80

Cl
as

s P
ro

ba
bi

lit
y

Branch Size 1
Active Size 1
Optimal

(c) Enhancer DNA (Prob ↑)

Figure 2: Inference-Time Scaling Law of TreeG. “Optimal” refers to the best-performing combina-
tion of active set and branch-out sizes under the same inference time. The results demonstrate the
scalability of TreeG, validating the effectiveness of its multi-active-path and branch-out design.3

• Exhibits an inference-time scaling law, where performance consistently improves as inference-time
computation increases by larger active set and branch-out sizes (Fig. 2 and Sec. 6.3).

2 Related Work
We review the most relevant work on inference-time guidance here; see App. A for additional work.
Derivative-Free. Huang et al. [30] and Li et al. [37] guide sampling toward non-differentiable
objectives using soft values derived from optimal control. These are special cases of our TreeG-SC
with an active set size of one. Notably, our TreeG-SD (Sec.5.2) introduces a novel strategy that
proposes candidates at the end of the sampling trajectory in the clean space, unexplored by existing
derivative-free methods. This novel perspective, along with our flexible design for candidate proposals
and value functions, underscores the broader versatility and applicability of our framework.
On Discrete Models. Nisonoff et al. [45] extends classifier(-free) guidance [15, 25] to discrete
settings, requiring training time-dependent classifiers. Lin et al. [38] reweights the rate matrix using
objective values. All three of our algorithms apply to discrete models, including a gradient guidance
method we propose for cases with a differentiable objective predictor.
Inference-Time Scaling. The idea of searching across multiple inference paths has also been touched
upon by two concurrent works [42, 65]. Our TreeG provides the first systematic study of the design
space of tree search, offering a novel methodology for both exploration and evaluation.

3 Preliminaries
Notations. Bold symbols x denote high-dimensional vectors, while x indicates scalars. Superscripts
like x(d) refer to the d-th dimension, whereas xi or xi,j denote independent samples indexed by i
and j. pt is the density of intermediate training distributions. For inference, Tt represents the sample.
3.1 Diffusion and Flow Models
Diffusion and flow models learn to reverse a transformation from a data distribution pdata to a
noise distribution p0. Let p1 = pdata, and define intermediate distributions pt for t ∈ (0, 1) that
progressively corrupt p1 into p0 over T uniform timesteps (∆t = 1/T ). Generation starts by sampling
x0 ∼ p0, then iteratively samples xt ∼ pt for t = i/T , where i ∈ [T ], ultimately yielding x1 ∼ p1.
Diffusion and flow models are equivalent [39, 16]. We focus on the widely used continuous diffusion
models and discrete flow models, denoted udiff

θ and uflow
θ , and refer to both as uθ or diffusion models

when clear from context. We next review the two models in more detail.
Diffusion Models. For diffusion models applied to continuous data, given a data sample x1 ∼ p1,
the noisy sample at timestep t = i/T (i ∈ [T ]) is constructed as xt =

√
ᾱtx1 +

√
1− ᾱtϵ, where

ϵ ∼ N (0, I) and {ᾱt} are pre-defined monotonically increasing parameters that control the noise
level. The diffusion model udiff

θ : X × [0, 1]→ X parameterized by θ, estimates the noise added to
xt, it’s equivalent to learning the score function of pt(xt) [26, 54]:

udiff
θ = argmin

uθ

Ex1∼p1,ϵ∼N (0,I)||uθ (xt, t)− ϵ||2= −
√
1− ᾱt∇ log pt (1)

3Please refer to App. F.4 for the experimental setup of Fig. 2.

3



For sampling, we begin with x0 ∼ N (0, I) and iteratively apply the DDPM sampling step [26]:

xt+∆t =
1
√
αt

(xt + (1− αt)∇ log pt(xt)) + σtϵ =
1
√
αt

(
xt −

1− αt√
1− ᾱt

udiff
θ (xt, t)

)
+ σtϵ,

(2)
where ϵ ∼ N (0, I), αt = ᾱt/ᾱt+∆t and σt =

√
1− αt. This step (2) can be restated as sampling

from a distribution centered on a linear interpolation of xt and x1|t:

xt+∆t = ct,1xt + ct,2x1|t + σtϵ, (3)

where ct,1 and ct,2 are constants4, and with x1|t being an estimation of the conditional expectation
E [x1 | xt] based on Tweedie’s formula [18]:

x1|t :=
1√
ᾱt

(
xt −

√
1− ᾱtu

diff
θ (xt, t)

)
. (4)

Flow Models. For flow models applied to discrete data [10], suppose data space is X = [S]D, where
D is the dimension and S is the number of states per dimension. An additional mask state M is
introduced as the noise prior distribution. Given a data sample x1, the intermediate distributions are
constructed by pt|1(xt|x1) = ΠD

d=1pt|1(xt|x1) with pt|1(xt|x1) = tδ {x1, xt}+ (1− t)δ {M,xt}.
The flow model uflow

θ estimates the true denoising distribution p1|t(x1|xt). Specifically, it’s defined
as uflow

θ = (u
(1)
θ , . . . , u

(D)
θ ), where each component u(d)

θ (x1|·) is a function X × [0, 1] → ∆([S]).
Here, ∆([S]) represents the probability distribution over the set [S] The training objective is:

uflow
θ = argmax

uθ

Ex1∼p1,xt∼pt|1

[
log u

(d)
θ (x

(d)
1 |xt)

]
. (5)

For generation, it requires the rate matrix:

R
(d)
t (xt, j) = E

x
(d)
1 ∼p

(d)

1|t

[
Rt

(
x
(d)
t , j|x(d)

1

)]
= E

x
(d)
1 ∼u

(d)
θ (x1|xt)

[
Rt

(
x
(d)
t , j|x(d)

1

)]
, (6)

where the pre-defined conditional rate matrix can be chosen as the popular: Rt(xt, j|x1) =
δ{j,x1}
1−t δ {xt,M}. The generation process can be simulated via Euler steps [58]:

x
(d)
t+∆t ∼ Cat

(
δ{x(d)

t , j}+R
(d)
t (xt, j)∆t

)
, (7)

where δ {k, j} is the Kronecker delta which is 1 when k = j and is otherwise 0.
3.2 Objective
The objective is to sample from the conditional distribution p(x | y), where y denotes a desired
property, using a pre-trained diffusion model that generates samples from unconditional distribution
p(x). The extent to which a sample satisfies the property y is quantified by an objective function
fy : X → R, where fy(x) = log p(y | x) and x in the clean data space. We aim to sample from:

p(x | y) ∝ p(x) p(y | x) ∝ p(x) exp(fy(x)).

Given the training objectives defined in (1) and (5) for conditional counterparts x1 ∼ p1(x | y), the
objective translates to estimating the conditional score or rate matrix:

∇xt
log pt (xt | y) ; R

(d)
t (xt, j | y) = E

x
(d)
1 ∼p

(d)

1|t (x1|y)

[
Rt

(
x
(d)
t , j|x(d)

1

)]
, (8)

which enables the sampling step (2) or (7) to use the conditional counterparts and generate the next
state xt+∆t following the conditional transition distribution Tt(xt+∆t | xt, y).
We assume a perfect pre-trained diffusion model, where uθ exactly minimizes the training objectives
in (1) or (5). Our focus is on training-free methods that neither fine-tune uθ nor train a time-dependent
classifier aligned with the diffusion noise schedule.

4 TreeG: Tree Search-Based Path Steering Guidance
While gradients provide precise direction when available [22], search offers an alternative when
they are not: proposing multiple candidates, evaluating them via a value function aligned with the
objective, and selecting the best to proceed. We demonstrate the tree search framework in this section.

4We have ct,1 =
√
αt(1− ᾱt+∆t)/(1− ᾱt) , ct,2 =

√
ᾱt+∆t(1− αt)/(1− ᾱt).

4



4.1 Algorithmic Framework
Let x0, · · · ,x1 denote the inference path from pure noise to a clean sample. At each step (Alg. 1),
the BranchOut module proposes K candidate states, among which some candidates are selected into
the active set. While the basic approach tracks a single path, the active set size A can be increased to
explore multiple paths via tree search. The selection step can be implemented as ranking candidates
by their values and selecting the top, or resampling candidates with probabilities proportional to their
values. In following sections, we will show that TreeG with resampling enjoys theoretical guarantees,
while empirically, experiments (please refer to App. H.3) demonstrate that selection by ranking is
superior to resampling.

Algorithm 1 TreeG: Tree Search-Based Path Steering Guidance

1: Input: diffusion model uθ, branch out policy and value function (BranchOut, V ), objective
function fy , active set size A, branch out sample size K.

2: Initialize: t = 0, A =
{
x1
0, . . . ,x

A
0

}
, xi

0 ∼ p0.
3: while t < 1 do
4: Propose candidates for next step: For xi

t ∈ A, xi,j
t+∆t ∼ BranchOut

(
xi
t, uθ

)
, j ∈ [K].

5: Select: select A candidates (by ranking or resampling 5) with respect to the value function
V
(
xi,j
t+∆t, t, fy

)
, i ∈ [A], j ∈ [K]: xi1,j1

t+∆t, . . . ,x
iA,jA
t+∆t .

6: Update the active set: A =
{
xi1,j1
t+∆t, . . . ,x

iA,jA
t+∆t

}
7: t← t+∆t.
8: end while
9: Output: x∗

1 = argmaxx1∈A fy (x1).

In Alg.1, the BranchOut module and value function V are two core components that require careful
design, for which we propose novel designs in the next section. Those specifications of BranchOut
and V lead to new algorithms that outperform existing baselines (Sec.6).

5 Design Space of TreeG
This section explores the design space of TreeG, focusing on the (BranchOut, V ) pair. We introduce
two compatible pairs that operate by sampling and selecting from either the current state or the
predicted destination. Additionally, we present a gradient-based discrete guidance method.
5.1 Sample-then-Select on Current States
The target conditional score and rate matrix in (8) relate to their unconditional counterparts as follows:

∇xt log pt(xt | y) = ∇xt log pt(xt) +∇xt log pt(y | xt), (by Bayes’ rule)

Rt(xt,x
′
t | y) =

pt(y | x′
t)

pt(y | xt)
·Rt(xt,x

′
t), (by [45])

Both expressions depend on pt(y | xt), which is key to adapting the unconditional score or rate
matrix, estimated by a pre-trained diffusion model, to their conditional counterparts.
The idea is to use the original backward process to generate multiple candidate states at time t, then
prioritize samples with higher pt(y | xt) using it as a value function. We approximate pt(y | xt) as:

pt(y | xt) = Ex1∼p1|tp(y | x1) = Ex1∼p1|t exp (fy(x1)) ≃
1

N

N∑
i=1

exp
(
fy(x̂

i
1)
)
. (9)

Based on this, we propose the (BranchOut, V ) pair operating on current states as follows:
We refer to instantiating Alg. 1 with Module 1 and Value Function 1 as TreeG-Sampling Current,
abbreviated as TreeG-SC. We demonstrate that stochastic control guidance (SCG) [30] and soft value
decoding guidance (SVDD) [37] are special cases of TreeG-SC (App. E.1).

The following theorem (proof in App. D.1) shows that TreeG-SC yields a distribution T̂ that closely
approximates the target conditional transition distribution T (· | xt, y).

5Given a set of candidates {x1, x2, . . . , xn} with associated nonnegative values V1, V2, . . . , Vn, ranking

involves selecting the top A candidates with the highest Vi values; Resampling defines P (xi) = Vi/
(∑n

j=1 Vj

)
,

and then samples A candidates according to P (xi).

5



Module 1 BranchOut-Current
1: Input: xt, diffusion model uθ,

time step t.
2: Sample the next state by the

original generation process:
xt+∆t ∼ (2) or (7).

3: Output: xt+∆t

Value Function 1 V : Current State Evaluator
1: Input: xt, diffusion model uθ, objective function fy,

time step t, (optional) Monte-Carlo sample size N .
2: Predict the clean sample:

(continuous) x̂1 = x1|t in (4).
(discrete) x̂i

1 ∼ Cat (uθ(xt, t)) , i ∈ [N ].
3: Evaluate: V (xt) =

1
N

∑N
i=1 exp

(
fy(x̂

i
1)
)
.

4: Output: V (xt)

Theorem 1. Consider TreeG-Sampling Current at time t, with an active set of size one and selection
performed via resampling. Then, for any ε, δ > 0, it holds with probability 1− δ:

||T̂ − T (· | xt, y)||ℓ < ε,

provided one of the following conditions is satisfied:
(a, Continuous) It holds under ℓ = 1 norm. Suppose data follow Gaussian distribution and the
objective function is linear. Branch-Out size K = Θ( log(1/δ)ε2 ) and timestep satisfies αt = 1−O

(
ε2
)
.

(b, Discrete) It holds under ℓ =∞ norm. The Branch-Out size is K = Θ( log(|X |/δ)
ε2 ), Monte Carlo

size is N = Θ( log(|X |/δ)
ε2 ), and the timestep ∆t = O(ε), where X is the data space.

5.2 Sample-then-Select on Destination States
During inference, the transition probability at each step is determined by the current state and the end
state of the path, with the latter estimated by the diffusion model, as stated in the following lemma
(proof in App. D.2).
Lemma 1. In both continuous and discrete cases, the transition probability during inference at
timestep t satisfies: T (xt+∆t | xt) = Ex̂1

[T ⋆(xt+∆t | xt, x̂1)] ,
where the expectation is taken over a distribution estimated by uθ, with T ⋆ being the true posterior
distribution predetermined by the noise schedule.

In diffusion and flow models, T ⋆ is centered at a linear interpolation between its inputs: the current
state xt, and the predicted destination state x̂1, indicating that the orientation of the next state
is partially determined by x̂1, as it serves as one endpoint of the interpolation. If the x̂1 has a
high objective value, then its corresponding next state will be more oriented to a high objective.
Accordingly, we introduce the (BranchOut, V ) pair to operate on destination states as follows.

Module 2 BranchOut-Destination
1: Input: xt, diffusion model uθ, time step t,

(optional) tuning parameter ρt, τt.
2: Sample destination state candidates:

(continuous) x̂1 ∼ N (x1|t, ρtI), x1|t in (4).
(discrete) x̂1 ∼ Cat (uθ(xt, t)).

3: Compute the next state:
(continuous) xt+∆t ∼ N (ct,1xt + ct,2x̂1, τtI).

(discrete) x(d)
t+∆t ∼ Cat

(
δ{x(d)

t , j}+Rt

(
x
(d)
t , j | x̂(d)

1

)
∆t
)

.
4: Output: (xt+∆t, x̂1)

Value Function 2 V :
Destination State Evaluator

1: Input: (xt+∆t, x̂1),
objective function fy .

2: Evaluate on the clean
sample:
V ((xt+∆t, x̂1))
= exp (fy (x̂1)).

3: Output:
V ((xt+∆t, x̂1))

We name Alg. 1 with Module 2 and Value Function 2 by TreeG-Sampling Destination (TreeG-SD).
TreeG-SD outputs T̂ that closely approximates the conditional transition distribution, as shown below
(proof in App. D.3).
Theorem 2. Consider TreeG-Sampling Destination at time t, with an active set of size one and
selection performed via resampling. Then, for any ε, δ > 0, it holds with probability 1− δ:

||T̂ − T (· | xt, y)||ℓ < ε,

provided one of the following conditions is satisfied:
(a, Continuous) It holds under the ℓ = 1 norm. Suppose data follow Gaussian distribution and the

6



objective function is linear. The Branch-Out size is K = Θ( log(1/δ)ε2 ).

(b, Discrete) It holds under the ℓ =∞ norm. The Branch-Out size is K = Θ(D
2 log(|X |/δ)

ε2 ) where X
is the data space and D is its dimension.

5.3 Gradient-Based Guidance with Differentiable Objective Predictor
Previously in this section, we derived two algorithms that do not rely on the gradient of the objective.
Though we do not assume the true objective is differentiable, leveraging its gradient as guidance
is still a feasible option when a differentiable objective predictor is available. Therefore, in what
follows, we propose a novel gradient-based training-free guidance for discrete flow models, which
also fits into the TreeG framework as a special case with K = 1.
For discrete flow models, we aim for the conditional rate matrix [45]:

Rt(xt, j | y) =
pt(y | x\d

t (j))

pt(y | xt)
·Rt(xt, j),

where x
\d
t matches xt except at dimension d, and x

\d
t (j) has its d-dimension set to j. While [45]

requires training a time-dependent predictor to estimate pt(y | x), we propose to estimate it using (9)
in a training-free way. However, computing this estimation over all possible x\d

t ’s is computationally
expensive. As suggested by [45, 67], we can approximate the ratio using Taylor expansion:

log
pt(y | x\d

t )

pt(y | xt)
= log pt(y | x\d

t )− log pt(y | xt)

≃ (x
\d
t − xt)

⊤∇xt log pt(y | xt)

(10)

We use the Straight-Through Gumbel-Softmax trick [31] to enable gradient backpropagation through
the sampling process (details are in App. E.4). We also show that this approximation achieves high
accuracy compared to computing (9) for all x\d

t , while offering greater efficiency (see App. H.2).
A backward sampling step, utilizing the estimated conditional rate matrix, can be viewed as a
BranchOut operation, termed BranchOut-Gradient (detailed in App. E.2). With K = 1, BranchOut-
Gradient reduces to gradient-based guidance methods. For K > 1, it aligns with Value Function 1.
We denote this algorithm as TreeG Gradient (TreeG-G).

6 Experiments
This section evaluates TreeG on one continuous and two discrete models across diverse tasks. Sec. 6.1
introduces the comparison methods; Sec. 6.2 details the tasks and results; Sec. 6.3 validates framework
scalability; and Sec. 6.4 discusses configuration choices for different scenarios.

6.1 Settings
Below are the methods we would like to compare:
For continuous models: DPS [13], a training-free classifier gradient guidance requiring surrogate
neural network predictors for non-differentiable objective functions; TDS [73], a sequential Monte
Carlo method based on gradient guidance; SCG [30]; SVDD [37]; and TreeG-SD (Sec. 5.2).
For discrete models: DG [45], a training-based classifier guidance with a predictor trained on noisy
inputs, implemented with Taylor expansion and gradients; TFG-Flow [38], a training-free method
estimating the conditional rate matrix; SVDD [37]; TreeG-G (Sec. 5.3), which trains a predictor on
clean data for non-differentiable objectives; TreeG-SC (Sec. 5.1); and TreeG-SD (Sec. 5.2).

6.2 Guided Generation
To enable a clear comparison with the guidance baselines, we report the active size of TreeG for both
A = 1 and A > 1, while controlling inference time to be comparable across methods and settings.
6.2.1 Symbolic Music Generation
We follow the setup of [30], using a continuous diffusion model pre-trained on several piano midi
datasets, detailed in App. F.1. The branch-out size for TreeG-SD is K = 16; SCG and SVDD use a
sample size of 16, the temperature of SVDD is 0.01, and TDS uses 4 particles.
Guidance Target. Our study focuses on three types of targets: pitch histogram, note density, and
chord progression. The objective function is fy(·) = −ℓ (y, Rule(·)), where ℓ is the loss function.
Notably, the rule function Rule(·) is non-differentiable for note density and chord progression.

7



Evaluation Metrics. For each task, we evaluate performance on 200 targets as formulated by [30].
Two metrics are used: (1) Loss, which measures how well the generated samples adhere to the target
rules. (2) Average Overlapping Area (OA), which assesses music quality by comparing the similarity
between the distributions of the generated and ground-truth music [74].

Table 1: Evaluation on Music Generation. TreeG-SD reduces loss by average 29.01%. Results of no
guidance, Classifier, and DPS are copied from [30]. Best results are bold, second-best underlined.

Method Pitch Histogram Note Density Chord Progression
Loss ↓ OA ↑ Loss ↓ OA ↑ Loss ↓ OA ↑

No Guidance 0.0180± 0.0100 0.842± 0.012 2.486± 3.530 0.830± 0.016 0.831± 0.142 0.854± 0.026

Classifier 0.0050± 0.0040 0.855± 0.020 0.698± 0.587 0.861± 0.025 0.723± 0.200 0.850± 0.033
DPS 0.0010± 0.0020 0.849± 0.018 1.261± 2.340 0.667± 0.113 0.414± 0.256 0.839± 0.039
TDS 0.0027± 0.0055 0.845± 0.017 0.218± 0.241 0.875± 0.023 0.714± 0.187 0.857± 0.028
SCG 0.0036± 0.0057 0.862± 0.008 0.134± 0.533 0.842± 0.022 0.347± 0.212 0.850± 0.046
SVDD 0.0085± 0.0100 0.846± 0.013 0.445± 0.437 0.835± 0.028 0.528± 0.189 0.865± 0.014

TreeG-SD (A=1,K=16) 0.0002± 0.0003 0.860± 0.016 0.142± 0.423 0.832± 0.023 0.301± 0.191 0.856± 0.032
TreeG-SD (A=4,K=4) 0.0002± 0.0003 0.818± 0.013 0.048± 0.198 0.843± 0.012 0.226± 0.144 0.862± 0.015

Results. As shown in Table 1, our TreeG-SD outperforms baselines while preserving comparable
sample quality. For differentiable rules (pitch histogram), TreeG-SD outperforms DPS, which
gradient-free methods like SCG and SVDD cannot achieve. For non-differentiable rules (note density
and chord progression), TreeG-SD matches or exceeds SCG and significantly outperforms others.
6.2.2 Small Molecule Generation
We validate our methods on the generation of small molecules with discrete flow models. Following
[45], small molecules are represented as simplified molecular-input line-entry system (SMILES)
strings. These discrete sequences are padded to 100 tokens and there are 32 possible token types,
including one pad and one mask token M . We adopt the same unconditional flow model and Euler
sampling curriculum as [45].
Guidance Target. Following the benchmarks in [20, 37], we deploy guidance to maximize four
targets: quantitative estimate of drug-likeness (QED), synthetic accessibility (SA), binding score with
dopamine type 2 receptor (DRD2), and binding affinity to protein 5ht1b (Docking). We directly use
the target measurement as the objective function fy(x) for guidance in Algorithm 1. The values of
QED, SA and DRD2 are estimated using a pretrained predictor model f(x) while Docking score is
measured by an oracle tool, QuickVina2-GPU-2.1, and is thus an entirely non-differentiable target. In
addition, we guide the number of rings Nr toward target values N∗

r ∈ [0, 6]. The objective function
is formalized as fy(x) = − (y−f(x))2

2σ2 . Please refer to App. F.2 for details.
Evaluation Metrics. We measure five molecule properties using RDKit, TDC, and QuickVina2-GPU-
2.1 [29] for generated valid unique sequences. For Nr, we report the mean absolute error (MAE)
against each target value. We evaluate molecular diversity through average Tanimoto similarity (TS)
across molecules (Table 2). Further, we also report the Negative Log-Likelihood (NLL) per token
(bits/dim), a widely adopted metric in discrete diffusion and flow-based generation [2, 64] (Table 12).
The likelihood is estimated by the ELBO of the pretrained discrete flow model.

Table 2: Evaluation on Small Molecule Generation. Complete results for different N∗
r and NLL per

token evaluations are deferred to App. G.2.1. Detailed experimental setup are stated in App. F.2.

Method QED SA DRD2 Docking Nr
∗ = 1

VAL ↑ TS ↓ VAL ↑ TS ↓ VAL ↑ TS ↓ VAL ↑ TS ↓ MAE ↓ TS ↓
No Guidance 0.61± 0.19 0.12± 0.02 0.79± 0.10 0.12± 0.02 0.06± 0.17 0.12± 0.02 8.50± 1.41 0.12± 0.02 2.09± 1.16 0.12± 0.02

DG 0.62± 0.20 0.12± 0.02 0.80± 0.10 0.12± 0.02 0.17± 0.32 0.12± 0.02 0.11± 0.33 0.14± 0.03
TFG-Flow 0.61± 0.20 0.12± 0.02 0.79± 0.10 0.12± 0.02 0.09± 0.22 0.12± 0.02 8.74± 1.49 0.12± 0.02 0.28± 0.65 0.13± 0.02
SVDD 0.67± 0.18 0.13± 0.02 0.80± 0.09 0.13± 0.02 0.43± 0.44 0.17± 0.04 9.47± 1.37 0.12± 0.01 0.35± 1.14 0.14± 0.03

TreeG-SC (A=1) 0.80± 0.13 0.13± 0.02 0.89± 0.06 0.21± 0.05 0.77± 0.33 0.20± 0.04 9.64± 1.28 0.12± 0.02 0.01± 0.07 0.14± 0.02
TreeG-G (A=1) 0.64± 0.19 0.12± 0.02 0.79± 0.10 0.12± 0.02 0.22± 0.37 0.13± 0.02 0.44± 1.19 0.13± 0.02
TreeG-SD (A=1) 0.77± 0.14 0.12± 0.02 0.86± 0.10 0.16± 0.04 0.45± 0.41 0.14± 0.03 8.72± 1.27 0.12± 0.02 0.11± 0.37 0.12± 0.02
TreeG-SD (A>1) 0.80± 0.11 0.12± 0.02 0.89± 0.07 0.21± 0.05 0.66± 0.40 0.19± 0.04 9.29± 1.30 0.12± 0.02 0.02± 0.12 0.14± 0.02

Results. TreeG consistently outperforms three guidance baselines (Table 2) while maintaining
comparable sequence diversity (TS) and sample quality (NLL). Our best guidance method TreeG-SC
achieves a 26.38% average improvement across five targets compared to the best baseline methods

8



50 100 150 200 250
Computation Time (s)

10 1

100

No
te

 D
en

sit
y 

Lo
ss

TreeG-SC
TreeG-SD

(a) ND Music

25 50 75 100 125 150 175 200
Computation Time (s)

10 3

10 2

Pi
tc

h 
Hi

st
og

ra
m

 L
os

s TreeG-SC
TreeG-SD

(b) PH Music

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Computation Time (s)

10 1

100

M
ea

n 
Ab

so
lu

te
 E

rro
r TreeG-SC

TreeG-SD

(c) Molecular (N∗
r = 5)

0 50 100 150 200 250 300
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

Cl
as

s P
ro

ba
bi

lit
y

TreeG-G
TreeG-SC

(d) Enhancer (Class 4)

Figure 3: Inference Time Scaling Behavior: As the active set size and branch-out size increase, the
optimization effect of the objective function scales with inference time. This trend is consistently
observed across all algorithms and tasks. The inference time is measured with a batch size of 1 for
music and 100 for molecule and DNA design. For DNA design, γ = 20 for TreeG-G.

(Table 11). And increasing the size of the active set A to more than 1 could further improve the
performance of TreeG-SD.
6.2.3 Enhancer DNA Design
We follow the experimental setup of [56], using a discrete flow model pre-trained on DNA sequences
of length 500, each labeled with one of 81 cell types [32, 61]. For inference, we apply 100 Euler
sampling steps. The branch-out size for TreeG-G is set K = 1. Setup details are in App. F.3.
Guidance Target. The goal is to generate enhancer DNA sequences that belong to a specific target
cell type. The guidance target predictor is provided by an oracle classifier f from [56]. The objective
function of given cell class y is fy(·) = log f(y | ·).

Table 3: Evaluation of guidance methods for Enhancer DNA Design at varying guidance strength lev-
els γt = γ in Module 3. TreeG-G consistently achieves significantly higher target class probabilities.

Method (strength γ)
Class 1 Class 2 Class 3

Prob ↑ NLL ↓ Div ↑ Prob ↑ NLL ↓ Div ↑ Prob ↑ NLL ↓ Div ↑
No Guidance 0.021± 0.079 1.311± 0.038 373 0.008± 0.052 1.311± 0.038 373 0.007± 0.053 1.311± 0.038 373

DG
20 0.359± 0.188 1.225± 0.036 351 0.627± 0.340 1.191± 0.052 359 0.693± 0.264 1.241± 0.044 357
100 0.372± 0.237 1.159± 0.074 352 0.571± 0.356 1.130± 0.073 343 0.173± 0.256 1.183± 0.081 349
200 0.251± 0.171 1.114± 0.098 331 0.350± 0.351 1.137± 0.084 335 0.064± 0.143 1.179± 0.074 343

TFG-Flow 200 0.054± 0.129 1.398± 0.011 375 0.012± 0.076 1.390± 0.016 375 0.004± 0.029 1.382± 0.013 375

SVDD 0.155± 0.173 1.307± 0.038 364 0.088± 0.193 1.303± 0.040 367 0.061± 0.168 1.297± 0.040 363

TreeG-G (A=1,K=1)
20 0.236± 0.178 1.198± 0.085 355 0.313± 0.343 1.152± 0.136 347 0.247± 0.280 0.895± 0.119 324
100 0.509± 0.242 0.951± 0.097 353 0.915± 0.154 0.847± 0.090 332 0.745± 0.217 0.687± 0.089 306
200 0.560± 0.258 0.951± 0.104 358 0.951± 0.110 0.801± 0.078 331 0.894± 0.136 0.711± 0.094 321

TreeG-G (A=2,K=2) 200 0.740± 0.209 0.885± 0.085 362 0.981± 0.042 0.823± 0.077 336 0.934± 0.098 0.713± 0.085 310

Evaluation Metrics. We generate 1000 DNA sequences conditioned on cell type and evaluate
performance using three metrics. Target Class Probability, provided by the oracle classifier, where
higher probabilities indicate better guidance. We adopt NLL per token to evaluate the fidelity of the
generated sequences. Diversity is measured by the average pairwise Hamming distance between
sequences.
Results. As shown in Tab. 3, our TreeG-G consistently achieves the highest target probabilities as
guidance strength increases, with an average improvement of 18.43% compared to DG over eight
test classes [45], and significantly exceeding other training-free baselines. See App. G for details.

6.3 Scalability on Inference-Time Computation
TreeG is scalable to the active size A (i.e., the number of generation paths) and the branch-out size
K. It is compatible with all guidance methods. When increasing the active set size and branch-out
size, the computational cost of inference rises. We investigate the performance frontier to optimize
the objective function concerning inference time. The results reveal an inference-time scaling law, as
illustrated in Fig. 3. Our findings indicate consistent scalability across all algorithms and tasks, with
App. 3 showcasing four examples. Additional results refer to App. G.

6.4 TreeG Configuration Analysis
This section analyzes the configuration of TreeG, focusing on selecting the instantiated algorithms
and balancing A and K under a fixed computational budget.

9



Table 4: Computation Complexity of TreeG

Methods Computation

TreeG-SC ACmodel +AK(Cmodel +NCpred)
TreeG-SD ACmodel +AKCpred
TreeG-G AK (Cmodel +NCpred) +ACbackprop

We analyze the computational complexity of TreeG,
summarized in Tab. 4, The cost units are: Cmodel for
a forward pass through the diffusion model, Cpred
for a predictor call, and Cbackprop for backpropa-
gation through both. N denotes the Monte Carlo
sample size used in Value Function 1.
Design Axes Comparison. We evaluate TreeG de-
signs along two axes. Gradient-free vs. gradient-
based: TreeG-G requires an accurate objective predictor to be effective. If available, predictor
latency guides the choice—faster predictors favor TreeG-SC and TreeG-SD, while slower ones make
TreeG-G more practical. TreeG-SC (current state) vs. TreeG-SD (destination state): As Tab. 4
shows, TreeG-SD is more efficient, costing only A for the diffusion model forward pass, versus AK
for alternatives. Experiments show TreeG-SD outperforms TreeG-SC in continuous diffusion, while
TreeG-SC is better for discrete flow. Please refer to App. C for detailed discussion.

20 21 22 23 24 25

Active Set Size

0.0

0.2

0.4

0.6

0.8

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
4
8
16
32
64

Figure 4: Trade-off between Active
Set Size A and Branch-out Size K
with Fixed Compute. The results
are for TreeG-SC DNA (Class 4).

Trade-off between Active Set Size A and Branch-out Size K.
Tab. 4 shows that the computational complexity of TreeG-SC
and TreeG-G using BranchOut-Current is O(AK). With a fixed
product A ·K (i.e., fixed inference cost; see Fig. 9 in App. G.3.2),
we explore how to best balance A and K. As shown in Fig.4,
performance peaks when both values are moderate. In the special
case where K=1 inference paths do not interact, often leading to
suboptimal performance.

7 Conclusion
We proposed the framework TreeG based on inference path search,
along with three novel instantiated algorithms: TreeG-SC, TreeG-
SD, and TreeG-G, which guide diffusion models toward the pos-
terior conditional distribution and address the non-differentiability
challenge in training-free guidance. Experimental results demon-
strated the improvements of TreeG against existing methods. Fur-
thermore, we identified an inference-time scaling law that highlights TreeG’s scalability in inference-
time computation.

Acknowledgments
This work received no external funding. The authors declare no competing interests.

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[3] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion
score model for biological sequence generation. In International Conference on Machine
Learning, pages 1276–1301. PMLR, 2023.

[4] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 843–852, 2023.

[5] Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein,
Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment
policy. arXiv preprint arXiv:2401.01879, 2024.

[6] Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
Differentiating through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

10



[7] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

[8] Zander W Blasingame and Chen Liu. Adjointdeis: Efficient gradients for diffusion models.
Advances in Neural Information Processing Systems, 37:2449–2483, 2024.

[9] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in
Neural Information Processing Systems, 35:28266–28279, 2022.

[10] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. arXiv preprint arXiv:2402.04997, 2024.

[11] Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo
guided diffusion for bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023.

[12] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ
Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
The International Journal of Robotics Research, page 02783649241273668, 2023.

[13] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-
sion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687,
2022.

[14] Michael Scott Cuthbert and Christopher Ariza. music21: A toolkit for computer-aided musicol-
ogy and symbolic music data. 2010.

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[16] Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

[17] Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving:
A filtering perspective. In The Twelfth International Conference on Learning Representations,
2024.

[18] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[19] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS) 2023. Neural Information Processing Systems Foundation, 2023.

[20] Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a
benchmark for practical molecular optimization. Advances in neural information processing
systems, 35:21342–21357, 2022.

[21] Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

[22] Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance
for diffusion models: An optimization perspective. arXiv preprint arXiv:2404.14743, 2024.

[23] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander
Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano music
modeling and generation with the maestro dataset. arXiv preprint arXiv:1810.12247, 2018.

[24] Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim,
Wei-Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, et al. Manifold preserv-
ing guided diffusion. arXiv preprint arXiv:2311.16424, 2023.

11



[25] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[27] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Advances in Neural
Information Processing Systems, 34:12454–12465, 2021.

[28] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. Compound word transformer:
Learning to compose full-song music over dynamic directed hypergraphs. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 178–186, 2021.

[29] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learn-
ing datasets and tasks for drug discovery and development. Proceedings of Neural Information
Processing Systems, NeurIPS Datasets and Benchmarks, 2021.

[30] Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli S
Sastry, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with
non-differentiable rule guided diffusion. arXiv preprint arXiv:2402.14285, 2024.

[31] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[32] Jasper Janssens, Sara Aibar, Ibrahim Ihsan Taskiran, Joy N Ismail, Alicia Estacio Gomez,
Gabriel Aughey, Katina I Spanier, Florian V De Rop, Carmen Bravo Gonzalez-Blas, Marc
Dionne, et al. Decoding gene regulation in the fly brain. Nature, 601(7894):630–636, 2022.

[33] Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular
data via diffusion and flow-based gradient-boosted trees. arxiv, page 2309.09968, 2023. doi:
10.48550. arXiv preprint ARXIV.2309.09968.

[34] Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwa-
janakorn, and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1334–1345, 2024.

[35] Heeseung Kim, Sungwon Kim, and Sungroh Yoon. Guided-tts: A diffusion model for text-
to-speech via classifier guidance. In International Conference on Machine Learning, pages
11119–11133. PMLR, 2022.

[36] Hongjian Li, Kwong-Sak Leung, Man-Hon Wong, and Pedro J Ballester. Improving autodock
vina using random forest: the growing accuracy of binding affinity prediction by the effective
exploitation of larger data sets. Molecular informatics, 34(2-3):115–126, 2015.

[37] Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tom-
maso Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance
in continuous and discrete diffusion models with soft value-based decoding. arXiv preprint
arXiv:2408.08252, 2024.

[38] Haowei Lin, Shanda Li, Haotian Ye, Yiming Yang, Stefano Ermon, Yitao Liang, and Jianzhu
Ma. Tfg-flow: Training-free guidance in multimodal generative flow, 2025. Available at
http://arxiv.org/abs/2501.14216.

[39] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

[40] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by
estimating the ratios of the data distribution. 2023.

12

http://arxiv.org/abs/2501.14216


[41] Yueming Lyu, Kim Yong Tan, Yew Soon Ong, and Ivor W Tsang. Covariance-adaptive sequen-
tial black-box optimization for diffusion targeted generation. arXiv preprint arXiv:2406.00812,
2024.

[42] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan
Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion
models beyond scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

[43] Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud
Doucet, Felipe Llinares-López, Courtney Paquette, and Quentin Berthet. Implicit diffusion:
Efficient optimization through stochastic sampling. arXiv preprint arXiv:2402.05468, 2024.

[44] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[45] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking
guidance for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572,
2024.

[46] Jiachun Pan, Jun Hao Liew, Vincent YF Tan, Jiashi Feng, and Hanshu Yan. Adjointdpm:
Adjoint sensitivity method for gradient backpropagation of diffusion probabilistic models. arXiv
preprint arXiv:2307.10711, 2023.

[47] Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George
Deligiannidis, and Arnaud Doucet. Particle denoising diffusion sampler. arXiv preprint
arXiv:2402.06320, 2024.

[48] Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-
to-image diffusion models with reward backpropagation. arXiv preprint arXiv:2310.03739,
2023.

[49] Yifei Shen, Xinyang Jiang, Yifan Yang, Yezhen Wang, Dongqi Han, and Dongsheng Li.
Understanding and improving training-free loss-based diffusion guidance. Advances in Neural
Information Processing Systems, 37:108974–109002, 2024.

[50] Yuchen Shen, Chenhao Zhang, Chenghui Zhou, Sijie Fu, Newell Washburn, and Barnabas
Poczos. Non-differentiable diffusion guidance for improved molecular geometry. In ICML
2024 AI for Science Workshop.

[51] Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown,
and Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

[52] Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alán Aspuru-
Guzik, Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-
kac correctors in diffusion: Annealing, guidance, and product of experts. arXiv preprint
arXiv:2503.02819, 2025.

[53] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz,
Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable
generation. In International Conference on Machine Learning, pages 32483–32498. PMLR,
2023.

[54] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[55] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[56] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,
and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv
preprint arXiv:2402.05841, 2024.

13



[57] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[58] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

[59] Kim Yong Tan, Yueming Lyu, Ivor Tsang, and Yew-Soon Ong. Fast direct: Query-efficient on-
line black-box guidance for diffusion-model target generation. arXiv preprint arXiv:2502.01692,
2025.

[60] Zhiwei Tang, Jiangweizhi Peng, Jiasheng Tang, Mingyi Hong, Fan Wang, and Tsung-Hui Chang.
Inference-time alignment of diffusion models with direct noise optimization. arXiv preprint
arXiv:2405.18881, 2024.

[61] Ibrahim I Taskiran, Katina I Spanier, Hannah Dickmänken, Niklas Kempynck, Alexandra
Pančíková, Eren Can Ekşi, Gert Hulselmans, Joy N Ismail, Koen Theunis, Roel Vandepoel, et al.
Cell-type-directed design of synthetic enhancers. Nature, 626(7997):212–220, 2024.

[62] Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding
reinforcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv
preprint arXiv:2407.13734, 2024.

[63] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia,
Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-
tuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024.

[64] Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine,
and Tommaso Biancalani. Reward-guided iterative refinement in diffusion models at test-time
with applications to protein and dna design. arXiv preprint arXiv:2502.14944, 2025.

[65] Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, and Tom-
maso Biancalani. Inference-time alignment in diffusion models with reward-guided generation:
Tutorial and review. arXiv preprint arXiv:2501.09685, 2025.

[66] Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable
inference in diffusion models for vision, language, and control. Advances in neural information
processing systems, 37:76080–76114, 2024.

[67] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

[68] Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent
optimization improves classifier guidance. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7280–7290, 2023.

[69] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8228–8238, 2024.

[70] Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika
Lal, Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete
diffusion models via reward optimization with applications to dna and protein design. arXiv
preprint arXiv:2410.13643, 2024.

[71] Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai, Xianbin Gu, and
Gus Xia. Pop909: A pop-song dataset for music arrangement generation. arXiv preprint
arXiv:2008.07142, 2020.

14



[72] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[73] Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practi-
cal and asymptotically exact conditional sampling in diffusion models. Advances in Neural
Information Processing Systems, 36:31372–31403, 2023.

[74] Li-Chia Yang and Alexander Lerch. On the evaluation of generative models in music. Neural
Computing and Applications, 32(9):4773–4784, 2020.

[75] Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with
spherical gaussian constraint for conditional diffusion. arXiv preprint arXiv:2402.03201, 2024.

[76] Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead
discovery with explorative rl and fragment-based molecule generation. Advances in Neural
Information Processing Systems, 34:7924–7936, 2021.

[77] Chun Wei Yap. Padel-descriptor: An open source software to calculate molecular descriptors
and fingerprints. Journal of computational chemistry, 32(7):1466–1474, 2011.

[78] Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James
Zou, and Stefano Ermon. Tfg: Unified training-free guidance for diffusion models. arXiv
preprint arXiv:2409.15761, 2024.

[79] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
free energy-guided conditional diffusion model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 23174–23184, 2023.

[80] Zaixi Zhang, Marinka Zitnik, and Qi Liu. Generalized protein pocket generation with prior-
informed flow matching. arXiv preprint arXiv:2409.19520, 2024.

[81] Linxi Zhao, Yihe Deng, Weitong Zhang, and Quanquan Gu. Mitigating object hallucination in
large vision-language models via classifier-free guidance. arXiv preprint arXiv:2402.08680,
2024.

[82] Yulai Zhao, Masatoshi Uehara, Gabriele Scalia, Sunyuan Kung, Tommaso Biancalani, Sergey
Levine, and Ehsan Hajiramezanali. Adding conditional control to diffusion models with
reinforcement learning. arXiv preprint arXiv:2406.12120, 2024.

15



A Additional Related Work
In this section, we provide an overview of related work on aligning diffusion models with downstream
objectives. The methods in this domain can be broadly categorized into inference-time alignment and
post-training/fine-tuning approaches. We begin by reviewing these two main categories, followed
by a discussion of other relevant methods, including alternative alignment techniques for diffusion
models and discrete diffusion and flow models.
Inference-Time Alignment. Classifier guidance uses a time-dependent classifier to provide
directional signals throughout the generation process [55, 15]. A growing body of work ex-
plores training-free guidance methods that leverage gradients derived from objective functions
[13, 4, 78, 53, 24, 79, 49]. A line of work [73, 47, 17, 11, 52] combined diffusion models with
Sequential Monte Carlo methods. [37, 30] use value-based selection and importance sampling When
objectives are non-differentiable. A concurrent work [51] proposes an SMC-based framework for
inference-time scaling using value resampling. A widely used and straightforward approach is
Best-of-N sampling, where the model generates multiple candidates and selects those with the highest
objective values [57, 44, 5].
Fine-tuning Diffusion Models. Fine-tuning diffusion models involves directly adjusting model
parameters to align with downstream objectives. One common method involves direct fine-tuning
through gradient backpropagation across the sampling process [7, 63, 48]. To ensure stable training
and prevent divergence from the original distribution, Kullback-Leibler (KL) regularization has been
introduced in [63, 16, 66]. Reinforcement learning has also emerged as a powerful tool for fine-tuning
[7, 19, 82, 62]. [69] proposes direct preference optimization for aligning diffusion models with
human preferences. Additionally, recent work [70] has extended fine-tuning techniques to discrete
diffusion models.
Other Diffusion Alignment Methods. Beyond guidance and fine-tuning approaches, an alternative
line of training-free methods focuses on optimizing the initial latent state of the reverse diffusion
process [68, 6, 34, 60]. These methods typically use an ODE solver to backpropagate the objective
gradient directly to the initial latent state, making them a gradient-based version of the Best-of-N
strategy. Additionally, adjoint-based methods have been proposed for gradient estimation in diffusion
models [43, 46, 8]. [59, 41] focus on improving query efficiency when the objective function is
computationally expensive. Other recent work explores diffusion-based alignment techniques and
applications of diffusion models in biology [72, 3, 50, 33].
Discrete Diffusion and Flow Models. Austin et al. [2] and Hoogeboom et al. [27] pioneered
diffusion in discrete spaces by introducing a corruption process for categorical data. Campbell et al.
[9] extended discrete diffusion models to continuous time, while Lou et al. [40] proposed learning
probability ratios. Discrete Flow Matching Campbell et al. [10], Gat et al. [21] further advances this
field by developing a Flow Matching algorithm for time-continuous Markov processes on discrete
state spaces, commonly known as Continuous-Time Markov Chains (CTMCs). Lipman et al. [39]
presents a unified perspective on flow and diffusion.

B Limitations and Broader Impacts
Limitations. We do not observe significant limitations in our methods. However, in cases where the
objective function is non-differentiable, very expensive to evaluate, and lacks an effective surrogate
neural network, our methods can become relatively time-consuming. These represent inherently
difficult scenarios, where a trade-off between computational cost and optimization effectiveness is
unavoidable.
Broader Impacts. This paper aims to explore inference-time alignment methods for diffusion
models, advanced control techniques in generative AI, and contribute to the broader field of artificial
intelligence. This work holds promise for improving the accuracy and personalization of AI systems
in diverse domains, such as image synthesis and drug discovery. Nonetheless, the same techniques
may also be exploited to produce harmful content.

C Discussion on Design Axes
We compare the guidance designs: TreeG-SC, TreeG-SD and TreeG-G based on experimental results,
to separate the effect of guidance design from the effect of tree search, we set A = 1. A side-to-side
comparison on the performance of the three methods are provided in Table 5.

16



Gradient-based v.s. Gradient-free: depends on the predictor. The choice between gradient-
based and gradient-free methods largely depends on the characteristics of the predictor.
The first step is determining whether a reliable, differentiable predictor is available. If not, sampling
methods should be chosen over gradient-based approaches. For example, in the chord progression task
of music generation, the ground truth reward is obtained from a chord analysis tool in the music21
package [14], which is non-differentiable. Additionally, the surrogate neural network predictor
achieves only 33% accuracy [30]. As shown in Table 1, in cases where no effective differentiable
predictor exists, the performance of gradient-based methods (e.g., DPS) is significantly inferior to
sampling-based methods (e.g., TreeG-SD and SCG).
If a good differentiable predictor is available, the choice depends on the predictor’s forward pass time.
Our experimental tasks illustrate some typical cases. For molecule generation which uses a pretrained
predictor model, forward passes are fast as shown in Table 6. Thus, sampling approaches efficiently
expand the candidate set and capture the reward signal, yielding strong results (Table 5). While for
enhancer DNA design, where predictors have slow forward passes, increasing the sampling candidate
set size to capture the reward signal becomes prohibitively time-consuming, making gradient-based
method more effective (Table 5). However, for the optimization of non-differentiable targets which
employ an oracle as the predictor like small molecules’ Docking score, gradient-based methods are
not applicable and computationally expensive target measurement becomes an bottleneck (Table 7).

TreeG-SC v.s. TreeG-SD. Experiments on continuous data and discrete data give divergent results
along this axis. In the continuous task of music generation (Table 1), TreeG-SD achieves equal or
better performance than SCG (equivalent to TreeG-SC) with the same candidate size K = 16 and
similar time cost (details in Appendix G.1). Thus, TreeG-SD is preferable in this continuous setting.
Conversely, for discrete tasks, TreeG-SD requires significantly more samples, while TreeG-SC
outperforms it, as shown in Table 5.

Table 5: Comparison of results across TreeG-G, TreeG-SC and TreeG-SD.
For molecule generation, the target is specified as the number of rings
Nr = 2. For enhancer DNA design, the results correspond to Class 3.

TreeG-G TreeG-SC TreeG-SD

M
ol

ec
ul

e MAE ↓ 0.09± 0.54 0.02± 0.14 0.10± 0.33
Time ↓ 13.5s 12.9s 11.2s
N 30 30
K 2 200

E
nh

an
ce

r

Prob ↑ 0.89± 0.14 0.13± 0.39 0.002± 0.000
FBD ↓ 213 384 665
Div ↑ 321 375 376

Time ↓ 10.3s 285.1s 189.7s
N 20 20
K 64 1024

Table 6: Computation time per basic unit (ms)
Cmodel Cpred Cbackprop

Molecule 0.038 2.2e-4 0.036
Enhancer 0.087 0.021 0.11

D Omitted Proofs in Section 5
D.1 Proof of Theorem 1
We begin by restating Theorem 1 with all conditions for completeness, followed by its proof.
Theorem (Restatement of Theorem 1). Consider TreeG-Sampling Current at time t, with an active
set of size one and selection performed via multinomial resampling. Then, for any ε, δ > 0, it holds
with probability 1− δ:

||T̂ − T (· | xt, y)||ℓ < ε,

17



provided one of the following conditions is satisfied:
(a, Continuous)It holds under the ℓ = 1 norm. Suppose data follow Gaussian distribution and the
objective function is linear. The Branch-Out size is K = Θ( log(1/δ)ε2 ) and the timestep is sufficiently
small such that αt = 1−O

(
ε2
)
.

(b, Discrete)It holds under the ℓ = ∞ norm. The mapping t 7→ p1|t(x1 | x) is L-Lipschitz
continuous for all x and x1, and the likelihood scores satisfy 0 < Bmin ≤ exp(fy(x)) ≤ Bmax for
all x. Branch-Out size is K = Θ( log(|X |/δ)

ε2 ), Monte Carlo size is N = Θ( log(|X |/δ)
ε2 ), and time step

∆t = O(ε), where X is the data space.

Proof. Proof of (a) continuous case: Assume the data is drawn from a Gaussian, and the objective
function is linear

x1 ∼ N (µ, I), fy(x) = g⊤x.
Since xt | x1 ∼ N (

√
ᾱt x1, (1− ᾱt) I), by Bayes’ rule the posterior follows:

x1 | xt ∼ N
(
(1− ᾱt)µ+

√
ᾱt xt, (1− ᾱt) I

)
.

We have the denoising model’s predictive distribution for label y given xt as

pt(y | xt) =

∫
p(y | x1) p(x1 | xt) dx1 =

1

Z

∫
exp(fy(x1)) p(x1 | xt) dx1,

where the objective function is linear fy(x) = g⊤x. Since for a Gaussian N (m,Σ),∫
exp(g⊤x)N (x;m,Σ) dx = exp

(
g⊤m+

1

2
g⊤Σ g

)
,

it follows that

pt(y | xt) ∝ exp
(
g⊤((1− ᾱt)µ+

√
ᾱt xt) +

1

2
(1− ᾱt) ∥g∥2

)
.

Therefore, we have
∇xt

log pt(y | xt) =
√
ᾱt g,

which allows us to express the conditional score as:
∇xt

log pt(xt | y) = ∇xt
log pt(xt) +

√
ᾱt g. (11)

Recall the transition step (2). The unconditional transition is given by:
T (· | xt) = N

(
·; x̄t+∆t, σ

2
t I
)
, (12)

where
x̄t+∆t =

xt + (1− αt)∇ log pt(xt)√
αt

.

Using the conditional score from (11), the target conditional transition distribution becomes:
T (· | xt, y) = N

(
·; x̄t+∆t + (1− αt)

√
ᾱt+∆t g, σ

2
t I
)
. (13)

TreeG-Sampling Current proceeds by generating i.i.d. samples Xk ∼ T (· | xt), followed by
multinomial resampling according to the weights

V (x) = exp
(
fy
(
x1|t(xt)

))
,

where, using Tweedie’s formula [18], the posterior mean of x1 given xt is:
x1|t = E[x1 | xt] = (1− ᾱt)µ+

√
ᾱt xt.

Therefore, the value function simplifies to:
fy(x1|t(xt)) = g⊤ ((1− ᾱt)µ+

√
ᾱt xt

)
.

From Lemma 2, with probability at least 1 − δ, the distribution T̂ produced by this resampling
satisfies: ∥∥∥T̂ − T1∥∥∥

1
≤ 4(1 + C)

√
log(4/δ)

2K
, (14)

where the adjusted distribution is
T1(x) ∝ exp

(√
ᾱt g

⊤x
)
· T (x | xt),

and the constant C is given by
C =

∥g∥22
|g⊤x̄t+∆t|

.

We have
T1(·) = N

(
·; x̄t+∆t + σ2

t

√
ᾱt g, σ

2
t I
)
. (15)

18



Now, comparing the means of T1 and T (· | xt, y), we use the bound via KL divergence:

∥T1 − T (· | xt, y)∥1 ≤
√

2KL(T1∥T (· | xt, y)) =
2∥µ1 − µ2∥2

σt
,

where
µ1 = x̄t+∆t + σ2

t

√
ᾱt g, µ2 = x̄t+∆t + (1− αt)

√
ᾱt+∆t g,

with σt =
√
1− αt and αt = ᾱt/ᾱt+∆t. Thus,

∥T1 − T (· | xt, y)∥1 ≤ 2ᾱt+∆t

√
1− αt(1−

√
αt) ∥g∥2. (16)

Combining this with (14), we obtain:∥∥∥T̂ − T (· | xt, y)
∥∥∥
1
≤ 4(1 + C)

√
log(4/δ)

2K
+ 2ᾱt+∆t

√
1− αt(1−

√
αt) ∥g∥2.

Thus, if K = Θ
(
(1 + C)2 log(1/δ)

ε2

)
and 1 − αt = O

(
ε2/∥g∥22

)
, provided that ∆t is sufficiently

small, the total variation distance is bounded by ε. Ignoring constant factors, this completes the proof.
Proof of (b) discrete case: We simplify the notation and recall some key definitions for clarity.
At time step t, the current state is given by xt. The unconditional transition probability is defined as:

T (· | xt) = δ{·,xt}+Rt(xt, ·)∆t,

where δ{·,xt} is the Dirac delta function. The target conditional distribution is
T (· | xt, y) = δ{·,xt}+Rt(xt, · | y)∆t,

where the conditional rate is defined as [45]:

Rt(xt,x | y) =
pt(y | x)
pt(y | xt)

Rt(xt,x), for x ̸= xt,

and
Rt(xt,xt | y) = −

∑
x̸=xt

Rt(xt,x | y).

For simplicity, we introduce the shorthand:
T0 := T (· | xt), and T ∗ := T (· | xt, y).

We then define the distribution used in importance sampling, where we first sample from T0 and then
reweight according to the likelihood pt(y | ·):

T1(x) =
pt(y | x) T0(x)∑
x pt(y | x) T0(x)

.

In our algorithm, we use Monte Carlo estimation to approximate the likelihood:

pt(y | x) =
∫

p(y | x1) p1|t(x1 | x) dx1 =
1

Z

∫
exp (fy(x1)) p1|t(x1 | x) dx1.

This is estimated using the following procedure (as shown in Lines 2 and 3 of Value Function 1):

1

N

N∑
i=1

exp (fy(x̂
i
1)), x̂i

1 ∼ Cat(uθ(x, t+∆t)), i ∈ [N ], (17)

where we assume the pretrained flow model is perfect, i.e., uθ(x, t+∆t) = p1|t+∆t(x1 | x).
We denote the Monte Carlo estimate of the likelihood in (17) as q̂. Using this, we define the
distribution used in importance sampling, where we first sample from T0 and reweight according to q̂:

T2(x) =
q̂(x) T0(x)∑
x q̂(x) T0(x)

.

When resampling over K candidates xk ∼ T0 and reweighting according to q̂, the resulting (empirical)
output distribution is:

T̂ (x) =

K∑
k=1

wk 1
(
x = xk

)
,

where wk = q̂(xk)/
∑K

i=1 q̂(x
i).

We can therefore decompose the distance between the empirical distribution T̂ and the target
distribution T ∗ as:

∥T ∗ − T̂ ∥∞≤ ∥T ∗ − T1∥∞+∥T1 − T2∥∞+∥T2 − T̂ ∥∞. (18)

19



We now proceed to bound the three terms on the right-hand side of (18), starting with the first term
involving T1. We have:∑

x

pt(y | x) T0(x) = pt(y | xt)

1−
∑
z ̸=xt

Rt(xt, z)∆t

+
∑
z ̸=xt

pt(y | z)Rt(xt, z)∆t

= pt(y | xt)− pt(y | xt)
∑
z ̸=xt

Rt(xt, z)∆t+
∑
z ̸=xt

pt(y | z)Rt(xt, z)∆t

= pt(y | xt) +

∑
z ̸=xt

[pt(y | z)− pt(y | xt)]Rt(xt, z)

∆t

= pt(y | xt) +O(∆t).

Therefore, for any x ̸= xt, we have:

T1(x) =
pt(y | x) T0(x)∑
x pt(y | x) T0(x)

=
pt(y | x)Rt(xt,x)∆t

pt(y | xt) +O(∆t)
=

pt(y | x)
pt(y | xt)

Rt(xt,x)∆t+O(∆t2).

As a result, we can bound the distance as:
∥T ∗ − T1∥∞= O(∆t2). (19)

We now bound the error introduced by the Monte Carlo estimation (17). By Lemma 3, with probability
at least 1− δ/2, we have:

max
x∈X
|q̂(x)− q1|t+∆t(x)| ≤ ϵ1,

where the unnormalized quantity is defined as

q1|t(x) :=

∫
exp (fy(x1)) p1|t(x1 | x) dx1,

and where
ϵ1 = Bmax

√
log(4|X |/δ)

2N
, Bmax = sup

x∈X
exp (fy(x)).

Additionally, due to the Lipschitz continuity of t 7→ p1|t(x1 | x), we have:

|p1|t(x1 | x)− p1|t+∆t(x1 | x)|≤ L∆t,

which implies:
|q1|t(x)− q1|t+∆t(x)|≤ BmaxL∆t.

Therefore, combining the Monte Carlo estimation error and the temporal approximation error, we get
(with probability at least 1− δ/2):

max
x∈X
|q̂(x)− q1|t(x)| ≤ ϵ1 +BmaxL∆t. (20)

Recall that:
T1(x) =

q1|t(x) T0(x)∑
x q1|t(x) T0(x)

, where q1|t(x) = Z pt(y | x),

and
T2(x) =

q̂(x) T0(x)∑
x q̂(x) T0(x)

.

By applying (20) and using Lemma 4, we obtain with probability at least 1− δ/2:

∥T1 − T2∥∞≤
4

Bmin
(ϵ1 +BmaxL∆t) =

4Bmax

Bmin

(√
log(4|X |/δ)

2N
+ L∆t

)
, (21)

where
Bmin = inf

x∈X
exp (fy(x)).

And it requires:
ϵ1 +BmaxL∆t < Bmin.

Finally, we bound the error introduced by sampling from the multinomial distribution over the K
candidate branches. By Lemma 2, we have that with probability at least 1− δ/2,

∥T2 − T̂ ∥∞≤ (1 +Bmax/Bmin)

√
log(4|X |/δ)

2K
. (22)

20



Now, combining the three error terms — from (19), (21), and (22) — into the decomposition (18),
we obtain that with overall probability at least 1− δ,

∥T ∗ − T̂ ∥∞≤ O(∆t2) +
4Bmax

Bmin

(√
log(4|X |/δ)

2N
+ L∆t

)
+

√
log(4|X |/δ)

2K
.

To ensure that the total error stays below a prescribed threshold ε. Specifically, we choose the time
step ∆t = O

(√
ε+ Bmin

BmaxL
ε
)

, the Monte Carlo sample size N = Θ
(

B2
max log(4|X |/δ)

B2
minε

2

)
, and the

branch candidate size K = Θ
(

B2
max log(4|X |/δ)

B2
minε

2

)
. If we omit constant factors, this completes the

proof.

D.2 Proof of Lemma 1
Lemma (Recall Lemma 1). In both continuous and discrete cases, the transition probability during
inference at timestep t satisfies:

T (xt+∆t | xt) = Ex̂1
[T ⋆(xt+∆t | xt, x̂1)] ,

where the expectation is taken over a distribution estimated by uθ, with T ⋆ being the true posterior
distribution predetermined by the noise schedule.

Proof. In the continuous case, the forward process is defined as:
xt ∼ N (ᾱtx1, (1− ᾱt)I), xt+∆t ∼ N (ᾱt+∆tx1, (1− ᾱt+∆t)I).

Given this, the posterior distribution conditioned on both xt and x1 is:
p(· | xt,x1) = N (·; ct,1xt + ct,2x1, βtI), (23)

where the coefficients are defined as:

βt =
1− ᾱt+∆t

1− ᾱt
(1− αt), ct,1 =

√
αt(1− ᾱt+∆t)

1− ᾱt
, ct,2 =

√
ᾱt+∆t(1− αt)

1− ᾱt
.

We set the transition distribution as:
T ∗(· | xt,x1) = N (·; ct,1xt + ct,2x1, βtI).

Let the estimate x̂1 be sampled from the distribution:
q1 = N (x1|t, (1− αt)I),

where, as given in (4), the posterior mean x1|t is:

x1|t =
1√
ᾱt

(
xt −

√
1− ᾱt · uθ(xt, t)

)
.

Then, the expected approximate posterior becomes:
Ex̂1∼q1 [T ∗(xt+∆t | xt, x̂1)] = N

(
ct,1xt + ct,2x1|t, σ

2
t I
)
, (24)

where σt =
√
1− αt.

Thus, (24) defines the transition distribution T (xt+∆t | xt) used for sampling during inference.
For the discrete case, we recall the expression for the rate matrix used during inference, as given in
(6):

R
(d)
t (xt, j) = E

x
(d)
1 ∼u

(d)
θ (x1|xt)

[
Rt(x

(d)
t , j | x(d)

1 )
]
,

where the conditional rate matrix is defined as

Rt(xt, j | x1) =
δ{j, x1}
1− t

· 1{xt = M}.

Given xt and x1, the transition probability is

T ∗,(d)(j | xt,x1) = δ{x(d)
t , j}+Rt(x

(d)
t , j | x(d)

1 ) ·∆t.

Taking the expectation over x1 ∼ uθ(· | xt), we obtain

Ex1∼uθ

[
T ∗,(d)(j | xt,x1)

]
= δ{x(d)

t , j}+ E
x
(d)
1 ∼u

(d)
θ (x1|xt)

[
Rt(x

(d)
t , j | x(d)

1 )
]
·∆t,

which corresponds to the transition probability T (xt+∆t | xt). This completes the proof.

21



D.3 Proof of Theorem 2
Theorem (Restatement of Theorem 2). Consider TreeG-Sampling Destination at time t, with an
active set of size one and selection performed via multinomial resampling. Then, for any ε, δ > 0, it
holds with probability 1− δ:

||T̂ − T (· | xt, y)||ℓ < ε,

provided one of the following conditions is satisfied:
(a, Continuous)It holds under the ℓ = 1 norm. Suppose data follow Gaussian distribution and the
objective function is linear. The Branch-Out size is K = Θ( log(1/δ)ε2 ) and we set ρt = 1− αt, τt =
1−ᾱt+∆t

1−ᾱt
(1− αt).

(b, Discrete)It holds under the ℓ =∞ norm. The likelihood scores satisfy 0 < Bmin ≤ exp(fy(x)) ≤
Bmax for all x. The Branch-Out size is K = Θ(D

2 log(|X |/δ)
ε2 ) where X is the data space and D is

its dimension.

Proof. Proof of (a) continuous case: We begin by recalling the unconditional transition process
given in (3):

xt+∆t = c1xt + c2x1|t + σtϵ,

where the coefficients are defined as c1 = ct,1 =
√
αt(1−ᾱt+∆t)

1−ᾱt
, c2 = ct,2 =

√
ᾱt+∆t(1−αt)

1−ᾱt
, σt =√

1− αt, and x1|t = E[x1 | xt].
Assuming that the data distribution is Gaussian and the objective function is linear, we have:

x1 ∼ N (µ, I), fy(x) = g⊤x.

In Line 2 of Module 2 and the associated Value Function 2, a candidate x̂1 is proposed by sampling
from N (x1|t, ρtI) and reweighting using exp(fy(x)) = exp(g⊤x). Let q̂ denote the distribution
density of the output x̂1. According to Lemma 2, with probability at least 1− δ, the distance between
q̂ and the ideal distribution q satisfies

∥q̂ − q∥1< 4(1 + C)

√
log(4/δ)

2K
, (25)

where the ideal distribution is

q(x) ∝ exp(g⊤x) · N (x;x1|t, ρtI),

and the constant C is defined as C =
∥g∥2

2

|g⊤x1|t|
. It follows from this form that q is a Gaussian with

mean x1|t + ρtg and covariance ρtI , i.e.,

q = N (x1|t + ρtg, ρtI).

In Line 3 of Module 2, the next sample xt+∆t is generated according to

xt+∆t ∼ N (c1xt + c2x̂1, τtI), x̂1 ∼ q̂.

Consequently, the distribution of xt+∆t, denoted T̂ , is the convolution 6 of c2q̂ and φ, where
φ = N (c1xt, τtI):

T̂ = (c2q̂) ∗ φ.

Next, we will show that the true conditional transition probability satisfies

T (· | xt, y) = (c2q) ∗ φ,
by setting

ρt = 1− αt, τt =
1− ᾱt+∆t

1− ᾱt
(1− αt).

By the property of convolution between Gaussian distributions, we have

(c2q) ∗ φ = N (c2x1|t + c2ρtg, c
2
2ρt I) ∗ N (c1xt, τt I)

= N (c1xt + c2x1|t + c2ρtg, (τt + c22ρt) I).

6The convolution operation models the distribution of the sum of two independent random variables. For
probability density functions f and g on Rd, the convolution is defined as (f ∗ g)(x) =

∫
Rd f(y)g(x− y) dy.

In the case of Gaussian distributions, this results in a new Gaussian with summed means and covariances.

22



We now verify that this matches the conditional transition distribution by examining the mean and
variance. Starting with the variance term, we compute

τt + c22ρt =
1− ᾱt+∆t

1− ᾱt
(1− αt) +

(√
ᾱt+∆t(1− αt)

1− ᾱt

)2

(1− ᾱt)

=
1− αt

1− ᾱt
(1− ᾱt+∆t + ᾱt+∆t − ᾱt+∆tαt)

=
1− αt

1− ᾱt
(1− ᾱt+∆tαt) = 1− αt.

For the mean, we have
c1xt + c2x1|t + c2ρtg = c1xt + c2x1|t + (1− αt)

√
ᾱt+∆t g.

Recalling from (13) in the proof in App. D.1, the target conditional transition distribution is
T (· | xt, y) = N

(
·; x̄t+∆t + (1− αt)

√
ᾱt+∆t g, σ

2
t I
)
,

where the mean is x̄t+∆t = c1xt + c2x1|t.

Hence, the convolution (c2q) ∗ φ exactly recovers the conditional transition distribution T (· | xt, y).
Therefore, we bound the distance between the output distribution and target transition distributions as
follows:

||T̂ − T (· | xt, y)||1 = ||(c2q̂) ∗ φ− (c2q) ∗ φ||1
≤ ||c2q̂ − c2q||TV= c2||q̂ − q||1,

where the inequality follows from the data processing inequality under convolution with a fixed
distribution.
With (25), we obtain that with probability at least 1− δ,

||T̂ − T (· | xt, y)||1≤ 4c2(1 + C)

√
log(4/δ)

2K
.

Hence, to ensure the approximation error is at most ε, it suffices to choose the branch-out size
K = Θ

(
c22(1 + C)2 log(1/δ)

ε2

)
, up to constant factors, which completes the proof.

Proof of (b) discrete case:
In Line 2 of Module 2, and with Value Function 2, a candidate state x̂1 is proposed by sampling
from the distribution p1|t(· | xt)(since uθ is optimal estimation), where the reweighting term
exp(fy(x1)) = p(y | x1). Let q̂ denote the density of the resulting distribution over x̂1.
According to Lemma 2, with probability at least 1− δ, the ℓ∞ distance between q̂ and the ideal target
distribution q is bounded as:

||q̂ − q||∞≤
(
1 +

Bmax

Bmin

)√
log(2|X |/δ)

2K
, (26)

where the ideal distribution is given by
q(·) ∝ p(y | ·) p1|t(· | xt),

and hence
q = p1|t(· | xt, y).

Here, Bmax = supx∈X exp(fy(x)) and Bmin = infx∈X exp(fy(x)).
Next, in Line 3 of Module 2, the next state xt+∆t is sampled according to:

P1

(
x
(d)
t+∆t = j

)
= Ex1∼q̂

[
δ{x(d)

t , j}+Rt

(
x
(d)
t , j | x(d)

1

)
∆t
]
,

where the conditional transition rate matrix satisfies:

R
(d)
t (xt, j | y) = E

x
(d)
1 ∼p

(d)

1|t (x1|y)

[
Rt

(
x
(d)
t , j | x(d)

1

)]
,

as given in (8).
Accordingly, the target conditional transition probability under T (· | xt, y) is:

P2

(
x
(d)
t+∆t, j

)
= Ex1∼q

[
δ{x(d)

t = j}+Rt

(
x
(d)
t , j | x(d)

1

)
∆t
]
,

with q(·) = p1|t(· | xt, y).

23



Therefore, for all dimensions d ∈ [D], the deviation between the approximate and conditional
transition probabilities is bounded by:∣∣∣P1

(
x
(d)
t+∆t = j

)
− P2

(
x
(d)
t+∆t = j

)∣∣∣ ≤ ||q̂ − q||∞.

Taking the product structure across all dimensions, we obtain the total deviation in transition operators:

||T̂ − T (· | xt, y)||∞≤ D · ||q̂ − q||∞.

By substituting the bound from (26), we conclude that to ensure ||T̂ − T (· | xt, y)||∞≤ ε with
probability at least 1− δ, it suffices to choose K = Θ

(
B2

max

B2
min
· D

2 log(|X |/δ)
ε2

)
.

D.4 Auxiliary Lemmas
In this section, we provide auxiliary lemmas with proofs.
Lemma 2. Let X1, . . . , XK be i.i.d. draws from a proposal density p on a measurable space (X ,A).
Define

wi = q(Xi) ≥ 0, Z =

∫
X
p(x) q(x) dx,

and normalized weights w̃i =
wi∑K
j=1 wj

. Let X∗
1 , . . . , X

∗
K be a multinomial resample of {Xi} with

probabilities {w̃i}, and define the empirical law

µ̂K(A) =
1

K

K∑
k=1

1{X∗
k∈A}, µq(A) =

∫
A

p(x) q(x)

Z
dx.

Then for any δ ∈ (0, 1), with probability at least 1− δ, where one may take either

(a) If 0 ≤ q(x) ≤M <∞ and X is finite, then

∥µ̂K − µq∥∞ = sup
A∈A
|µ̂K(A)− µq(A)| ≤ (1 +

M

Z
)

√
log(2|X |/δ)

2K
.

(b) If p(x) = N (µ,Σ), q(x) = g⊤x, then

∥µ̂K − µq∥1 ≤ 4
(
1 +

√
g⊤Σ g

|g⊤µ|

)√ log(4/δ)

2K
.

Proof. For (a): Define the measure

µ̃(A) =

K∑
i=1

w̃i 1{Xi∈A} =

∑K
i=1 q(Xi)1{Xi∈A}∑K

j=1 q(Xj)
.

Then by the triangle inequality,
∥µ̂K − µq∥∞ ≤ ∥µ̂K − µ̃∥∞ + ∥µ̃− µq∥∞.

To bound ∥µ̂K − µ̃∥TV, note that conditional on {Xi}, the resampled points X∗
1 , . . . , X

∗
K are i.i.d.

draws from the finite-support distribution µ̃. By Hoeffding’s inequality, for any measurable A,
Pr(|µ̂K(A)− µ̃(A)|> ε | {Xi}) ≤ 2 exp(−2Kε2).

A union bound over the two tails and taking the supremum over A implies that, with probability at

least 1− δ

2
,

∥µ̂K − µ̃∥∞ ≤
√

log(2|X |/δ)
2K

.

To bound ∥µ̃− µq∥∞, observe that for any A,

µ̃(A)− µq(A) =

1

K

∑K
i=1 q(Xi)1A − Z µq(A)

1

K

∑K
j=1 q(Xj)

.

24



Since 0 ≤ q ≤M , Hoeffding’s inequality yields simultaneously, with probability at least 1− δ
2|X | ,

the two bounds∣∣∣ 1
K

K∑
i=1

q(Xi)1A−Z µq(A)
∣∣∣ ≤ M

√
log(2|X |/δ)

2K
,
∣∣∣ 1
K

K∑
j=1

q(Xj)−Z
∣∣∣ ≤ M

√
log(2|X |/δ)

2K
.

On this event, the denominator satisfies
1

K

∑
j q(Xj) ≥ Z −M

√
log(2|X |/δ)

2K . Assuming K is large

enough that M
√

log(2|X |/δ)
2K < Z/2, we obtain

|µ̃(A)− µq(A)| ≤
M

√
log(2|X |/δ)

2K

Z −M

√
log(2|X |/δ)

2K

≤ M

Z

√
log(2|X |/δ)

2K
,

and taking supremum over A = {x} , x ∈ X gives

∥µ̃− µq∥∞ ≤
M

Z

√
log(2|X |/δ)

2K
.

By a union bound the two high-probability events both hold with probability at least 1− δ. Adding
the two bounds yields

∥µ̂K − µq∥∞ ≤
√

log(2|X |/δ)
2K

+
M

Z

√
log(2|X |/δ)

2K
= (1 +M/Z)

√
log(2|X |/δ)

2K
,

as required.

For (b):Let Ỹi =
wi

E[wi]
= g⊤Xi

g⊤µ
. Define the intermediate measure

νK(A) =
1

K

K∑
i=1

wi

E[wi]
1{Xi∈A} =

1

K

K∑
i=1

Ỹi 1{Xi∈A}.

Since each Ỹi has mean 1 and is sub-Gaussian with parameter τ2 = g⊤Σ g
(g⊤µ)2

, a Bernstein inequality

yields that with probability at least 1− δ

2
,

∥νK − µq∥1 ≤ 2
(
1 +
√
2 τ
)√ log(4/δ)

2K
.

Next observe that
µ̂K(A) =

Z

w̄
νK(A),

so that
∥µ̂K − νK∥1 ≤ 2| w̄

Z
− 1|.

Applying the same sub-Gaussian tail bound to w̄/Z =
1

K

∑
i Ỹi shows that with probability at least

1− δ

2
,

| w̄
Z
− 1| ≤

(
1 +
√
2 τ
)
2

√
log(4/δ)

2K
,

provided K is large enough that the deviation does not exceed 1/2. The union bound then guarantees
both concentration events hold with probability at least 1− δ. Finally, the triangle inequality

∥µ̂K − µq∥1 ≤ ∥µ̂K − νK∥1 + ∥νK − µq∥1
yields the asserted bound.

Lemma 3. Let X be a finite set of cardinality M . For each x ∈ X , let Y (x) be a real-valued
random variable with mean g(x) = E[Y (x)] and almost-sure bounds 0 ≤ Y (x) ≤ B. Draw N
independent copies Y1(x), . . . , YN (x) of each Y (x) and form the empirical average

ĝ(x) =
1

N

N∑
i=1

Yi(x).

Then with probability at least 1− δ,

max
x∈X
|ĝ(x)− g(x)| ≤ B

√
log(2M/δ)

2N
.

25



Proof. Fix any x ∈ X . Since Y1(x), . . . , YN (x) are i.i.d. in [0, B] with mean g(x), Hoeffding’s
inequality yields, for every ϵ > 0,

Pr(|ĝ(x)− g(x)|≥ ϵ) ≤ 2 exp
(
−2N ϵ2

B2

)
.

Applying the union bound over all M elements of X , we obtain

Pr(∃x ∈ X : |ĝ(x)− g(x)|≥ ϵ) ≤ 2M exp
(
−2N ϵ2

B2

)
.

To ensure this probability is at most δ, set

2M exp
(
−2N ϵ2

B2

)
= δ.

Taking natural logarithms gives

−2N ϵ2

B2
+ log(2M) = log δ =⇒ ϵ2 =

B2

2N
log
(2M

δ

)
,

hence
ϵ = B

√
log(2M/δ)

2N
.

Therefore, with probability at least 1− δ, no empirical average deviates by more than ϵ, i.e.
max
x∈X
|ĝ(x)− g(x)| ≤ ϵ.

Lemma 4. Let X be a finite state space and let T0 be a probability distribution on X , so that∑
x∈X T0(x) = 1. Fix two nonnegative weight functions q, q̂ : X → R≥0 and define

T1(x) =
q(x)T0(x)∑
z∈X q(z)T0(z)

, T2(x) =
q̂(x)T0(x)∑
z∈X q̂(z)T0(z)

.

Suppose there exists qmin > 0 and ∆ ∈ [0, qmin) such that
min
x∈X

q(x) ≥ qmin, max
x∈X
|q̂(x)− q(x)| ≤ ∆.

Then
∥T1 − T2∥∞ ≤ ∥T1 − T2∥1 ≤

2∆

qmin −∆
≤ 4∆

qmin
,

where the final inequality holds whenever ∆ ≤ qmin/2.

Proof. Set

ax = q(x)T0(x), bx = q̂(x)T0(x), A =
∑
x

ax, B =
∑
x

bx.

Then T1(x) = ax/A and T2(x) = bx/B. Since q(x) ≥ qmin and
∑

x T0(x) = 1,

A =
∑
x

q(x)T0(x) ≥ qmin,

and because |bx − ax| ≤ ∆T0(x),

|B −A|=
∣∣∣∑

x

(bx − ax)
∣∣∣ ≤ ∆

∑
x

T0(x) = ∆,

so B ≥ A−∆ ≥ qmin −∆ > 0. Now

∥T1 − T2∥1 =
∑
x

∣∣∣ax
A
− bx

B

∣∣∣ =∑
x

∣∣∣axB − bxA

AB

∣∣∣ = 1

AB

∑
x

∣∣∣(ax − bx)B + ax(B −A)
∣∣∣

≤ B

AB

∑
x

|ax − bx|+
|B −A|
AB

∑
x

ax =
1

A

∑
x

|ax − bx|+
|B −A|

B

≤ ∆

A
+

∆

A−∆
=

∆(A−∆+A)

A (A−∆)
=

2A∆−∆2

A (A−∆)

≤ 2A∆

A (A−∆)
=

2∆

A−∆
≤ 2∆

qmin −∆
.

When ∆ ≤ qmin/2, qmin −∆ ≥ qmin/2, so

∥T1 − T2∥1≤
2∆

qmin −∆
≤ 2∆

qmin/2
=

4∆

qmin
,

and one may tighten the constants to obtain the stated ≤ 2∆/qmin.

26



E Algorithmic Details
E.1 Discussion on Existing Works
In this section, we will show that the recent works, stochastic control guidance (SCG) [30] and soft
value decoding guidance (SVDD) [37], can be viewed as special cases of our TreeG-SC.
At timestep t−∆t, both SCG and SVDD sample multiple candidate next states from the original
diffusion model: x1

t , . . .x
n
t . They then select one of these candidates, xk

t , according to the following
strategies:

SCG: k = argmax
i

log p(y|x̂1(x
i
t)),

SVDD (training-free version): k ∼ Cat(
wi∑
wi

), wi = exp(r(x̂1(x
i
t))/α), r(·) = log p(y|·),

where x̂1(xt) =
(
xt −

√
1− ᾱtuθ (xt, t)

)
/
√
ᾱt and α > 0 is a temperature parameter.

Within our TreeG-SC algorithm, SCG corresponds to setting the active set size A = 1 and selecting the
candidate via ranking, while SVDD corresponds to setting the scoring function fy(·) = 1

α log p(y | ·),
also with A = 1, and selecting the candidate via resampling based on soft values.
E.2 TreeG-Gradient Details
We provide the algorithmic details for BranchOut-Gradient in Module 3.

Module 3 BranchOut-Gradient
1: Input: xt, t, diffusion model uθ, differentiable predictor fy, guidance strength γt, (optional)

Monte-Carlo sample size N .
2: Compute the gradient guidance:

(continuous) g = ∇xt
fy(x̂1) with x̂1 = uθ(xt, t).

(discrete) g(d) = (x
\d
t − xt)

⊤∇xt

1
N

∑N
i=1 fy(x̂

i
1)

with x̂i
1 ∼ Cat (uθ(xt, t)) , i ∈ [N ].

3: Sample the next state:
(continuous) xt+∆t = γtg + ct,1xt + ct,2x̂1 + σtϵ with ϵ ∼ N (0, I).

(discrete) x(d)
t+∆t ∼ Cat

(
δ{x(d)

t , j}+ exp(γtg
(d))⊙R

(d)
θ,t (xt, j)∆t

)
.

4: Output: xt+∆t

E.3 More Implementation Details for Continuous Models
For TreeG-SD on the continuous case, we have two additional designs: the first one is exploring
multiple steps when branching out a destination state; the second one involves plugging in Spherical
Gaussian constraint(DSG) from [75]. We present the case A = 1 for TreeG-SD on the continuous
case as follows while A > 1 is similar.
Notice that the computation complexity for using Niter step to select is: ACmodel + AKNiterCpred.
The setting of Niter will be provided in Appendix F.1.
E.4 More Implementation Details for Discrete Models
Estimate ∇xt log pt(y | xt). Since the sampling process of discrete data is genuinely not differen-
tiable, we adopt the Straight-through Gumbel Softmax trick to estimate the gradient while combining
Monte-Carlo Sampling as stated in (9). The whole process is listed in Module 4.

27



Algorithm 7 TreeG-SD (Continuous, A = 1)

1: Input: diffusion model uθ, objective function fy, branch out sample size K, stepsize scale ρt,
number of iteration Niter

2: t = 0, x0 ∼ p0
3: while t < 1 do
4: Compute the predicted clean sample x̂1 = uθ(xt, t)
5: Set the branch out state x← x̂1

6: for n = 1, . . . , Niter do
7: Sample xi = x+ ρtξ

i, with ξi ∼ N (0, I).
8: Evaluate and select that maximizes the objective: k = argmaxi fy

(
xi
)
.

9: Update x← xk.
10: end for
11: if DSG [75] then
12: Compute the selected direction: ξ∗ = x− x̂1

13: Rescale the direction: ξ∗ ←
√
D · ξ∗

||ξ∗|| , with D = dim(xt).
14: Compute the next state: xt+∆t = ct,1xt + ct,2x̂1 + σtξ

∗

15: else
16: Get the selected destination state x̂1 ← x
17: Sample the next state: xt+∆t = ct,1xt + ct,2x̂1 + σtϵ with ϵ ∼ N (0, I)
18: end if
19: t← t+∆t
20: end while

Module 4 Gradient Approximation with Straight-Through Gumbel Softmax.
1: Input: xt, t, diffusion model uθ, differentiable predictor fy , Monte-Carlo sample size N , number

of possible states S, Gumbel-Softmax temperature τ
2: Sample x̂i

1 ∼ Cat (uθ(xt, t)) , i ∈ [N ] with Gumbel Max and represent x1 as an one-hot vector:

x̂i
1 = argmax

j
(log uθ(xt, t) + gi), (27)

gi is a S-dimension Gumbel noise where gj ∼ Gumbel(0, 1), j ∈ [S].
3: Since the argmax operation is not differentiable, get the approximation x̂i∗

1 with softmax:

x̂i∗
1j =

exp((log uθ(xt, t) + gij)/τ)∑
k exp((log uθ(xt, t) + gik)/τ)

, (28)

4: Feed x̂i
1 into the fy and obtain the gradient through backpropagation: ∇x̂i

1
log fy(x̂

i
1).

5: Straight-through Estimator: directly copy the gradient ∇x̂i
1
log fy(x̂

i
1) to x̂i∗

1j , i.e.,
∇x̂i∗

1
log fy(x̂

i∗
1 ) ≃ ∇x̂i

1
log fy(x̂

i
1).

6: Since Eq. (28) is differentiable with regard to xt, get∇xt
log pt(y | xt) ≃ ∇xt

1
N

∑N
i=1 fy(x̂

i∗
1 ).

7: Output: ∇xt
log pt(y | xt)

F Experimental Details
All experiments are conducted on one NVIDIA 80G H100 GPU.
F.1 Additional Setup for Symbolic Music Generation
Models. We utilize the diffusion model and Variational Autoencoder (VAE) from [30]. These
models were originally trained on MAESTRO [23], Pop1k7 [28], Pop909 [71], and 14k midi files in
the classical genre collected from MuseScore. The VAE encodes piano roll segments of dimensions
3× 128× 128 into a latent space with dimensions 4× 16× 16.

Objective Functions. For the tasks of interest—pitch histogram, note density, and chord progres-
sion—the objective function for a given target y is defined as: fy(x) = −ℓ (y, Rule(x)), where
Rule(·) represents a rule function that extracts the corresponding feature from x, and ℓ is the loss
function. Below, we elaborate on the differentiability of these objective functions for each task:

28



For pitch histogram, the rule function Rule-PH(·) computes the pitch histogram, and the loss
function ℓ is the L2 loss. Since Rule-PH(·) is differentiable, the resulting objective function fPH

y is
also differentiable.
For note density, the rule function for note density is defined as: Rule-ND(x) =

∑n
i=1 1(xi > ϵ)

where ϵ is a small threshold value, and 1(·) is the indicator function which makes Rule-ND(·)
non-differentiable. ℓ is L2 loss. fND

y is overall non-differentiable.

For chord progression, the rule function Rule-CP(·) utilizes a chord analysis tool from the music21
package [14]. This tool operates as a black-box API, and the associated loss function ℓ is a 0-1 loss.
Consequently, the objective function fCP

y is highly non-differentiable.

Test Targets. Our workflow follows the methodology outlined by Huang et al. [30]. For each task,
target rule labels are derived from 200 samples in the Muscore test dataset. A single sample is then
generated for each target rule label, and the loss is calculated between the target label and the rule
label of the generated sample. The mean and standard deviation of these losses across all 200 samples
are reported in Table 1.

Inference Setup. We use a DDPM scheduler with 1000 inference steps. Guidance is applied only
after step 250.

Chord Progression Setup. Since the objective function running by music21 package [14] is very
slow, we only conduct guidance during 400-800 inference step.

TreeG-SD Setup. As detailed in Algorithm 7, we use DSG [75], and set Niter = 2 for pitch
histogram and note density, Niter = 1 for chord progression. The stepsize ρt = s · σt/

√
1 + σ2

t
[53, 78], with s = 2 for pitch histogram, s = 0.5 for note density and s = 1 for chord progression.

F.2 Additional Setup for Small Molecule Generation
Due to lack of differentiable off-the-shelf predictors, we train a suite of regression models f(x) on
clean data x1 following the same procedure described in Nisonoff et al. [45] to test the efficacy of
our gradient-based method TreeG-G on the targets QED, SA, DRD2, and Nr. The same predictor is
applied for all compared training-free guidance methods (TreeG, TFG-Flow, and SVDD).
For molecule optimization targets, QED, SA, and DRD2, we directly use the pretrained model f(x)
as the objective function fy without setting any target values and generate 500 samples within 1000
denosing steps. As stated in [45], generated SMILES sequences may not yield valid molecule
structures. Thus, we continue generating samples until the required number of valid and unique
sequences is reached. For these three targets’ results in Table 2, A = 1,K = 2 for TreeG-SC;
A = 1,K = 200 and A = 2,K = 8 for TreeG-SD. To ensure comparable runtime between baseline
models and TreeG, we set N = 200 for TFG-Flow and K = 2 for SVDD with a temperature
parameter α of 0.1. Monte Carlo sample size for estimating pt(y | xt) in TreeG-G is N = 30 (Eq.
(9)) while TreeG-SC and SVDD use N = 10.
We use QuickVina2-GPU-2.1 to evaluate the binding affinity of generated molecules to protein
5ht1b following [76]. The original scores DS are normalized as max(−DS, 0) for maximization.
Because using oracle docking scores as guidance signals is computationally expensive, we only
generate 100 sequences in 200 inference steps for comparison. Since the docking measurement is
non-differentiable, TreeG-G and DG are not applicable. In Table 2, A = 1,K = 8 for TreeG-SC;
A = 1,K = 200 and A = 4,K = 8 for TreeG-SD; N = 200 for TFG-Flow; K = 8, α = 0.1 for
SVDD. Monte Carlo sample size for pt(y | xt) estimation in TreeG-SC and SVDD is N = 5.

While for Nr which is optimized towards specific target values, we adopt fy(x) = − (y−f(x))2

2σ2

with σ learned during the training of f(x). We report the results on 1000 generated valid unique
sequences. In Table 2, A = 1,K = 4 for TreeG-SC; A = 1,K = 200 and A = 2,K = 8 for
TreeG-SD; N = 200 for TFG-Flow; K = 2, α = 0.1 for SVDD. Monte Carlo sample size for
pt(y | xt) estimation in TreeG-SC, TreeG-G, and SVDD is N = 30.

F.3 Additional Setup for Enhancer DNA Design
We test on eight randomly selected classes with cell type indices 0, 2, 33, 4, 16, 5, 68, and 9. For
simplicity, we refer to these as Class 1 through Class 8.

29



Table 7: Computation time per basic unit during small molecule generation (ms)
Cmodel CQED Objective CDocking Objective

Molecule 0.038 2.0e-4 390

We set the Monte Carlo sample size of TreeG-G and TreeG-SC as N = 20, and N = 200 for
TFG-Flow. For SVDD, we set the sample size to 16 and the temperature parameter α = 0.01.

F.4 Experimental Setup in Figure 2
In Figure 2, (a) shows TreeG-SD applied to the note density objective in symbolic music generation;
(b) shows TreeG-SD used for QED optimization in small molecule generation; and (c) shows TreeG-G
applied to Enhancer DNA design.

G Additional Experiment Results
G.1 Additional Results for Symbolic Music Generation
G.1.1 Additional Infomation for Table 1
For the results in Table 1, Table 8 presents a comparative improvement over the best baseline. We
provide the inference time of one generation in Table 8 for results in Table 1. TreeG-SD, SCG, and
SVDD use ground-truth objective functions for evaluation, resulting in relatively long inference times
for Chord Progression but achieving higher optimization performance. In contrast, TDS relies on
gradient-based guidance through a surrogate neural network predictor, which reduces inference time
at the cost of optimization effectiveness.

Table 8: Improvement of TreeG-SD in Music Generation.
Task Best Baseline TreeG-SD Loss Reduction

PH 0.0010± 0.0020 (DPS) 0.0002± 0.0003 80%
ND 0.134± 0.533 (SCG) 0.142± 0.423 −5.97%
CP 0.347± 0.212 (SCG) 0.301± 0.191 13.26%
Avg 29.01%

Table 9: Time (s) per sample for
results in Table 8.

Task TDS SCG SVDD TreeG-SD

PH 306 194 194 203
ND 308 194 194 204
CP 305 7267 7267 6660

G.1.2 Scalability
We conduct experiments scaling the active set size A and branch-out size K for TreeG-SD and
TreeG-SC. Increasing either A or K enhances the performance, as demonstrated in Figure 5. Figure 6
shows the trade-off between A and K with fixed A ∗K.

20 21 22 23

Branch Out Size

10 3

10 2

Pi
tc

h 
Hi

st
og

ra
m

 L
os

s Active 1
2
4
8

(a) TreeG-SD for ND

20 21 22 23

Branch Out Size

10 3

10 2

Pi
tc

h 
Hi

st
og

ra
m

 L
os

s Active 1
2
4
8

(b) TreeG-SD for PH

20 21 22 23

Branch Out Size

10 1

100

No
te

 D
en

sit
y 

Lo
ss

Active 1
2
4
8

(c) TreeG-SC for ND

20 21 22 23

Branch Out Size

10 2

3 × 10 3

4 × 10 3

6 × 10 3

Pi
tc

h 
Hi

st
og

ra
m

 L
os

s Active 1
2
4
8

(d) TreeG-SC for PH

Figure 5: Scaling Behavior with Fixed Active or Branch-Out Size on Music Generation.

20 21 22 23

Active Set Size

10 1

100

No
te

 D
en

sit
y 

Lo
ss

Compute 1
2
4
8
16

(a) TreeG-SD for ND

20 21 22 23

Active Set Size

10 3

10 2

Pi
tc

h 
Hi

st
og

ra
m

 L
os

s Compute 1
2
4
8
16

(b) TreeG-SD for PH

20 21 22 23

Active Set Size

10 1

100

No
te

 D
en

sit
y 

Lo
ss

Compute 1
2
4
8
16

(c) TreeG-SC for ND

20 21 22 23

Active Set Size

10 2

4 × 10 3

6 × 10 3

Pi
tc

h 
Hi

st
og

ra
m

 L
os

s Compute 1
2
4
8
16

(d) TreeG-SC for PH

Figure 6: Trade-off between Active Set Size A and Branch-out Size K on Music Generation.

30



Scaling Effect on Performance while Maintaining Quality. While the product A×K gives an
indication of total computation, different combinations of A and K can lead to varying computational
costs, even when A×K is held constant, as shown in the computational complexity analysis in Table 4.
We report the actual running time for generating one frontier from Figure 6 (a) and Figure 6 (b) in
Table 10. The results demonstrate that the optimization exhibits a scaling effect with computation
time, while still maintaining high-quality performance.

Table 10: Performance when Scaling Inference Time. Results are
for the Optimal (A,K) with Fixed A ∗K for TreeG-SD.

Note Density Pitch Histogram
Time(s) Loss ↓ OA ↑ Time(s) Loss ↓ OA ↑

16.7 2.486± 3.530 0.830± 0.016 16.7 0.0180± 0.0100 0.842± 0.012
43.1 0.629± 0.827 0.826± 0.060 42.2 0.0022± 0.0021 0.869± 0.009
71.8 0.231± 0.472 0.823± 0.045 65.3 0.0008± 0.0008 0.853± 0.013
130.7 0.113± 0.317 0.834± 0.023 118.6 0.0005± 0.0008 0.834± 0.018
251.9 0.048± 0.198 0.843± 0.012 209.6 0.0002± 0.0003 0.860± 0.016

G.2 Additional Results for Small Molecule Generation
G.2.1 Additional Results for Table 2.
As shown in Tables 2 and 11, SVDD achieves the best performance among the baselines for the
targets QED, SA, DRD2, and Docking score while DG performs best in guiding toward the Nr

target. On average, our method yields a 26.38% relative improvement over the strongest baselines.
According to the metrics TS (Table 2) and NLL per token (Table 12), improved target optimization
performance may come at the expense of diversity and quality.

Table 11: Relative performance improvement of TreeG-SC compared to DG, TFG-Flow, and SVDD.
For Nr, we average MAE over all target values before comparing different methods. The relative
improvements over the strongest baselines are bolded.

Method QED ↑ SA ↑ DRD2 ↑ Docking ↑ Nr MAE ↓
DG 28.6% 12.3% 354% -21.6%

TFG-Flow 32.0% 13.7% 803% 10.2% −69.0%
SVDD 19.5% 11.4% 77.7% 1.71% −75.5%

Table 12: Supplementary results for Table 2: NLL (↓) for small molecule generation.

Method QED SA DRD2 Docking N∗
r = 1

No Guidance 0.70± 0.39 0.70± 0.39 0.70± 0.39 0.68± 0.39 0.73± 0.41

DG 0.72± 0.42 0.73± 0.43 0.70± 0.40 0.86± 0.41
TFG-Flow 0.72± 0.41 0.74± 0.45 0.73± 0.46 1.04± 0.51 0.88± 0.39
SVDD 0.71± 0.39 0.70± 0.40 0.67± 0.38 1.21± 0.54 0.81± 0.37
TreeG-SC (A=1) 0.83± 0.46 0.58± 0.31 0.70± 0.39 1.13± 0.54 1.02± 0.40
TreeG-G (A=1) 0.70± 0.41 0.71± 0.42 0.67± 0.39 0.84± 0.40
TreeG-SD (A=1) 1.13± 0.51 0.83± 0.42 1.09± 0.52 1.14± 0.47 1.22± 0.40
TreeG-SD (A>1) 1.14± 0.50 0.70± 0.36 0.94± 0.47 1.08± 0.49 1.13± 0.37

Table 13: Supplementary results for Table 2: N∗
r ∈ {0, 1, 2, 3} for small molecule generation.

Method N∗
r = 0 N∗

r = 1 N∗
r = 2 N∗

r = 3
MAE ↓ TS ↓ NLL ↓ MAE ↓ TS ↓ NLL ↓ MAE ↓ TS ↓ NLL ↓ MAE ↓ TS ↓ NLL ↓

No Guidance 3.03± 1.26 0.12± 0.02 0.73± 0.41 2.09± 1.16 0.12± 0.02 0.73± 0.41 1.27± 1.02 0.12± 0.02 0.73± 0.41 0.92± 0.86 0.12± 0.02 0.73± 0.41

DG 0.16± 0.44 0.16± 0.03 0.83± 0.39 0.11± 0.33 0.14± 0.03 0.86± 0.41 0.07± 0.27 0.13± 0.02 0.80± 0.42 0.06± 0.25 0.12± 0.02 0.78± 0.43
TFG-Flow 0.30± 0.74 0.16± 0.03 0.84± 0.34 0.28± 0.65 0.13± 0.02 0.88± 0.39 0.20± 0.51 0.12± 0.02 0.82± 0.42 0.21± 0.46 0.12± 0.02 0.80± 0.44

SVDD 1.28± 1.92 0.14± 0.05 0.70± 0.38 0.35± 1.14 0.14± 0.03 0.81± 0.37 0.04± 0.37 0.14± 0.02 0.73± 0.36 0.01± 0.14 0.13± 0.02 0.68± 0.37
TreeG-SC (A=1) 0.03± 0.41 0.20± 0.04 0.86± 0.34 0.01± 0.07 0.14± 0.02 1.02± 0.40 0.02± 0.13 0.13± 0.02 0.88± 0.42 0.02± 0.18 0.13± 0.02 0.85± 0.45
TreeG-G (A=1) 1.45± 1.95 0.13± 0.03 0.70± 0.36 0.44± 1.19 0.13± 0.02 0.84± 0.40 0.09± 0.55 0.12± 0.02 0.79± 0.42 0.04± 0.30 0.12± 0.02 0.75± 0.42

TreeG-SD (A=1) 0.15± 0.47 0.17± 0.04 1.13± 0.41 0.11± 0.37 0.12± 0.02 1.22± 0.40 0.10± 0.33 0.12± 0.02 1.15± 0.45 0.15± 0.40 0.12± 0.02 1.14± 0.49
TreeG-SD (A>1) 0.001± 0.033 0.21± 0.05 0.95± 0.40 0.02± 0.12 0.12± 0.02 1.13± 0.37 0.03± 0.18 0.12± 0.02 0.99± 0.43 0.04± 0.22 0.12± 0.02 0.96± 0.48

G.2.2 Scalability
We demonstrate the scaling laws for TreeG-SC and TreeG-SD in Figures 7 and 8. Increasing
computation time could boost guidance performance, i.e., lower mean absolute errors or higher
property values. The computation of the Docking objective function with the oracle tool dominates

31



Table 14: Supplementary results for Table 2: N∗
r ∈ {4, 5, 6} for small molecule generation.

Method N∗
r = 4 N∗

r = 5 N∗
r = 6

MAE ↓ TS ↓ NLL ↓ MAE ↓ TS ↓ NLL ↓ MAE ↓ TS ↓ NLL ↓
No Guidance 1.27± 0.95 0.12± 0.02 0.73± 0.41 2.03± 1.16 0.12± 0.02 0.73± 0.41 2.98± 1.23 0.12± 0.02 0.73± 0.41

DG 0.08± 0.27 0.12± 0.02 0.79± 0.49 0.19± 0.40 0.13± 0.02 0.74± 0.52 0.42± 0.51 0.14± 0.02 0.72± 0.57
TFG-Flow 0.30± 0.53 0.12± 0.02 0.78± 0.49 0.51± 0.64 0.12± 0.02 0.78± 0.53 0.94± 0.86 0.13± 0.02 0.76± 0.57

SVDD 0.06± 0.36 0.13± 0.02 0.70± 0.42 0.28± 0.97 0.13± 0.02 0.73± 0.52 1.42± 1.97 0.12± 0.02 0.73± 0.50

TreeG-SC (A=1) 0.05± 0.29 0.13± 0.02 0.92± 0.50 0.13± 0.53 0.12± 0.02 1.04± 0.62 0.60± 1.47 0.12± 0.03 1.06± 0.70
TreeG-G (A=1) 0.08± 0.47 0.12± 0.02 0.76± 0.46 0.26± 0.90 0.12± 0.02 0.74± 0.49 1.25± 1.93 0.12± 0.02 0.77± 0.53

TreeG-SD (A=1) 0.30± 0.58 0.11± 0.02 1.26± 0.57 0.67± 0.84 0.11± 0.02 1.39± 0.61 1.41± 1.17 0.11± 0.02 1.36± 0.67
TreeG-SD (A>1) 0.10± 0.35 0.12± 0.02 1.12± 0.56 0.24± 0.60 0.11± 0.02 1.30± 0.65 0.50± 0.94 0.12± 0.02 1.48± 0.72

the overall runtime (Table 7). Thus, maximizing Docking score may require substantially increased
inference compute (Figure 8), highlighting the inherent trade-off between effectiveness and efficiency.

10 20 30 40 50
Computation Time (s)

10 1

100

M
ea

n 
Ab

so
lu

te
 E

rro
r TreeG-SC

5 10 15 20 25 30 35
Computation Time (s)

100

6 × 10 1

2 × 100

3 × 100

M
ea

n 
Ab

so
lu

te
 E

rro
r TreeG-SC

4 6 8 10 12 14 16 18
Computation Time (s)

0.80

0.82

0.84

0.86

0.88

0.90

SA

TreeG-SC

100 101 102 103 104 105

Computation Time (s)

8.5

9.0

9.5

10.0

10.5

11.0

Do
ck

in
g 

Sc
or

e

TreeG-SC

Figure 7: Small Molecule Generation: Scaling Law of TreeG-SC. From left to right, the targets are
N∗

r = 3, N∗
r = 6, SA, and Docking score. The time-axis for Docking score is in logarithmic scale.

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computation Time (s)

10 2

10 1

100

M
ea

n 
Ab

so
lu

te
 E

rro
r TreeG-SD

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computation Time (s)

10 1

100

M
ea

n 
Ab

so
lu

te
 E

rro
r TreeG-SD

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Computation Time (s)

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80

QE
D

TreeG-SD

100 101 102 103 104

Computation Time (s)
8.2

8.4

8.6

8.8

9.0

9.2

Do
ck

in
g 

Sc
or

e

TreeG-SD

Figure 8: Small Molecule Generation: Scaling Law of TreeG-SD. From left to right, the targets are
N∗

r = 1, N∗
r = 5, QED, and Docking score. The time-axis for Docking score is in logarithmic scale.

G.3 Additional Results for Enhancer DNA Design
G.3.1 Full Results of Table 3
Additional results of guidance methods for Class 4-8 are shown in Table 15 and Table 16. For both
DG and our TreeG-G, we experiment with guidance values γ ∈ [1, 2, 5, 10, 20, 50, 100, 200] and
compare the highest average conditional probability across the eight classes. On average, TreeG-G
outperforms DG by 18.43%.

Table 15: Supplementary results (Part 1): Classes 4–6 for enhancer DNA design.

Method (strength γ)
Class 4 Class 5 Class 6

Prob ↑ NLL ↓ Div ↑ Prob ↑ NLL ↓ Div ↑ Prob ↑ NLL ↓ Div ↑
No Guidance 0.007± 0.059 1.311± 0.038 373 0.035± 0.112 1.311± 0.038 373 0.037± 0.115 1.311± 0.038 373

DG
20 0.669± 0.377 1.256± 0.035 373 0.665± 0.332 1.244± 0.038 374 0.595± 0.334 1.251± 0.044 373
100 0.585± 0.380 1.255± 0.043 365 0.466± 0.376 1.266± 0.050 373 0.385± 0.334 1.266± 0.057 364
200 0.404± 0.384 1.280± 0.045 369 0.199± 0.284 1.279± 0.053 373 0.164± 0.235 1.281± 0.058 366

TFG-Flow 200 0.015± 0.083 1.389± 0.012 375 0.008± 0.048 1.386± 0.012 375 0.033± 0.104 1.394± 0.012 375

SVDD 0.107± 0.264 1.311± 0.035 374 0.142± 0.240 1.283± 0.039 374 0.124± 0.230 1.292± 0.042 373

TreeG-G
20 0.518± 0.391 1.151± 0.088 365 0.290± 0.306 1.078± 1.109 372 0.250± 0.292 1.052± 0.087 366
100 0.845± 0.264 1.100± 0.060 365 0.778± 0.279 0.874± 0.162 359 0.843± 0.232 0.890± 0.093 368
200 0.826± 0.297 1.099± 0.074 370 0.543± 0.426 1.015± 0.189 374 0.364± 0.432 1.104± 0.180 374

G.3.2 Scalability
A ∗ K as a Computation Reference. We use A ∗ K as the reference metric for inference time
computation in TreeG-SC and TreeG-G, both employing BranchOut-Current. The corresponding
inference times are shown in Figure 9, measured for a batch size of 100. Combinations of (A,K)
that yield the same A ∗K value exhibit similar inference times. We exclude the case where K = 1,
as it does not require evaluation and selection, leading to a shorter inference time in practical
implementation.

32



Table 16: Supplementary results (Part 2): Classes 7–8 for enhancer DNA design.

Method (strength γ)
Class 7 Class 8

Prob ↑ NLL ↓ Div ↑ Prob ↑ NLL ↓ Div ↑
No Guidance 0.010± 0.065 1.311± 0.038 373 0.013± 0.073 1.311± 0.038 373

DG
20 0.693± 0.346 1.231± 0.034 366 0.609± 0.350 1.224± 0.039 372
100 0.475± 0.398 1.199± 0.061 364 0.600± 0.342 1.191± 0.057 372
200 0.208± 0.313 1.196± 0.070 360 0.453± 0.370 1.208± 0.057 371

TFG-Flow 200 0.001± 0.015 1.376± 0.015 375 0.006± 0.055 1.377± 0.014 375

SVDD 0.039± 0.136 1.294± 0.042 369 0.038± 0.122 1.296± 0.037 373

TreeG-G
20 0.536± 0.335 0.720± 0.155 307 0.159± 0.233 1.011± 0.136 366
100 0.740± 0.365 0.723± 0.230 343 0.413± 0.412 1.104± 0.126 373
200 0.423± 0.457 0.936± 0.294 367 0.073± 0.205 1.204± 0.076 373

(1,
 1)

(1,
 2)

(1,
 4)

(2,
 2)

(1,
 8)

(2,
 4)

(4,
 2)

(1,
 16

)
(2,

 8)
(4,

 4)
(8,

 2)
(1,

 32
)
(2,

 16
)
(4,

 8)
(8,

 4)
(16

, 2
)
(1,

 64
)
(2,

 32
)
(4,

 16
)
(8,

 8)
(16

, 4
)
(32

, 2
)

Active Set Size and Branch-out Size

0

50

100

150

200

250

300

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

(1,
 1)

(1,
 2)

(1,
 4)

(2,
 2)

(1,
 8)

(2,
 4)

(4,
 2)

(1,
 16

)
(2,

 8)
(4,

 4)
(8,

 2)
(1,

 32
)

(2,
 16

)
(4,

 8)
(8,

 4)
(16

, 2
)

Active Set Size and Branch-out Size

0

50

100

150

200

250

300

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

Figure 9: Inference Time for (A,K) Combinations (Left: TreeG-SC; Right: TreeG-G) in DNA
Enhancer Design. Combinations with the same product A×K show similar inference times.

We provide the scaling law of TreeG-G at different guidance strengths in Figure 10. We also provide
the scaling law for TreeG-SC in Figure 11.

50 100 150 200
Computation Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cl
as

s P
ro

ba
bi

lit
y

TreeG-G

50 100 150 200
Computation Time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Cl
as

s P
ro

ba
bi

lit
y

TreeG-G

0 50 100 150 200 250 300
Computation Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cl
as

s P
ro

ba
bi

lit
y

TreeG-G

0 50 100 150 200 250 300
Computation Time (s)

0.90

0.92

0.94

0.96

0.98

Cl
as

s P
ro

ba
bi

lit
y

TreeG-G

20 21 22 23

Branch Out Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23

Branch Out Size

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23

Branch Out Size

0.3

0.4

0.5

0.6

0.7

0.8

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23

Branch Out Size

0.90

0.92

0.94

0.96

0.98

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23 24

Active Set Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
2
4
8
16
32

20 21 22 23 24

Active Set Size

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
2
4
8
16
32

20 21 22 23 24

Active Set Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
2
4
8
16
32

20 21 22 23 24

Active Set Size

0.90

0.92

0.94

0.96

0.98

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
2
4
8
16
32

Figure 10: TreeG-G for Enhancer DNA Design. Top row: Effect of scaling on inference time. Middle
row: Impact of increasing the active set size A or branch-out size K. Bottom row: Trade-off between
A and K with fixed compute A ∗K. Columns from left to right correspond to different guidance
strengths: γ = 5, 10, 20, 200 (results shown for Class 3).

33



0 50 100 150 200 250 300
Computation Time (s)

0.1

0.2

0.3

0.4

0.5

Cl
as

s P
ro

ba
bi

lit
y

TreeG-SC

0 50 100 150 200 250 300
Computation Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

s P
ro

ba
bi

lit
y

TreeG-SC

0 50 100 150 200 250 300
Computation Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Cl
as

s P
ro

ba
bi

lit
y

TreeG-SC

0 50 100 150 200 250 300
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

Cl
as

s P
ro

ba
bi

lit
y

TreeG-SC

20 21 22 23

Branch Out Size

0.1

0.2

0.3

0.4

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23

Branch Out Size
0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23

Branch Out Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23

Branch Out Size

0.0

0.2

0.4

0.6

0.8

Cl
as

s P
ro

ba
bi

lit
y

Active 1
2
4
8

20 21 22 23 24 25

Active Set Size

0.1

0.2

0.3

0.4

0.5

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
4
8
16
32
64

20 21 22 23 24 25

Active Set Size
0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
4
8
16
32
64

20 21 22 23 24 25

Active Set Size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
4
8
16
32
64

20 21 22 23 24 25

Active Set Size

0.0

0.2

0.4

0.6

0.8

Cl
as

s P
ro

ba
bi

lit
y

Compute 1
4
8
16
32
64

Figure 11: TreeG-SC for Enhancer DNA Design. Top row: Effect of scaling on inference time.
Middle row: Impact of increasing the active set size A or branch-out size K. Bottom row: Trade-off
between A and K with fixed compute A ∗K. Columns from left to right correspond to Class 1 to 4.

H Ablation Studies
H.1 Symbolic Music Generation
For TreeG-SD, we ablation on Niter (detailed in Algorithm 7). As shown in Table 17, the loss
decreases when Niter increases. However, increasing Niter also leads to higher computation costs.
Here’s a trade-off between controllability and computation cost.

Table 17: Ablation on Niter of TreeG-SD.
Niter Loss ↓ (PH) OA ↑ (PH) Loss ↓ (ND) OA ↑ (ND)

1 0.0031± 0.0037 0.733± 0.024 0.207± 0.418 0.810± 0.049
2 0.0005± 0.0008 0.833± 0.018 0.217± 0.450 0.819± 0.050
4 0.0005± 0.0006 0.786± 0.015 0.139± 0.319 0.830± 0.029

H.2 Discrete Models
Ablation on Taylor-expansion Approximation. As shown in Table 18, using Taylor-expansion to
approximate the ratio (Eq. 10) achieve comparable model performance while dramatically improve
the sampling efficiency compared to calculating the ratio by definition, i.e. TreeG-G-Exact.
Ablation on Monte Carlo Sample Size N . As shown in Table 19, increasing the Monte Carlo
sample size improves performance, but further increases in N beyond a certain point do not lead to
additional gains.

Table 18: Ablation on Taylor-expansion Approximation. The performances are evaluated on 50
generated samples.

Method Nr
∗ = 1 Nr

∗ = 2
MAE ↓ TS ↓ Time MAE ↓ TS ↓ Time

TreeG-G 0.24± 0.76 0.13± 0.02 2.4min 0.02± 0.14 0.12± 0.02 3.5min
TreeG-G-Exact 0.00± 0.00 0.14± 0.03 356.9min 0.02± 0.14 0.13± 0.02 345.2min

34



Table 19: Ablation on Monte Carlo Sample Size N . The performances are evaluated on 200 generated
samples.

N
Nr

∗ = 2 Nr
∗ = 5

MAE ↓ TS ↓ MAE ↓ TS ↓
1 0.47± 1.12 0.12± 0.02 0.65± 1.37 0.12± 0.02
5 0.30± 0.97 0.12± 0.02 0.41± 1.14 0.12± 0.02
10 0.17± 0.68 0.12± 0.02 0.20± 0.76 0.12± 0.02
20 0.09± 0.46 0.12± 0.02 0.26± 0.91 0.12± 0.02
40 0.10± 0.60 0.12± 0.02 0.29± 1.01 0.13± 0.02

Table 20: Ablation on Selection Choices in TreeG. TreeG-SC and TreeG-SD are evaluated on 500
and 100 generated samples respectively. t means temperature used for resampling weights. lower t
leads resampling closer to ranking.

Choices TreeG-SC (K = 4) TreeG-SD (K = 16)
QED ↑ TS ↓ QED ↑ TS ↓

Ranking 0.79± 0.12 0.12± 0.02 0.76± 0.12 0.12± 0.02

Sampling (t = 0.1) 0.71± 0.17 0.13± 0.02 0.67± 0.19 0.12± 0.02
Sampling (t = 0.5) 0.64± 0.19 0.12± 0.02 0.67± 0.17 0.11± 0.02

H.3 Selection Choices in Alg.1
We compare two selection choices, i.e., ranking and resampling, in Alg.1 on small molecule generation
with QED as the target. For both TreeG-SC and TreeG-SD, selection by ranking produces better
guidance performance compared to selection by resampling (Tab. 20).

35



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction (Section 1) includes a paragraph “Contributions”, together
with the abstract, clearly reflecting the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

36



Justification: All the theoretical results Theorem 1, Lemma 1 and Theorem 2 provide the
full set of assumptions, and the correspond proofs are in Appendix D.1, Appendix D.2 and
Appendix D.3, respectively
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments are described in Section 6, and the details are provided in
Appendix E, Appendix F and Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code available at https://github.com/yukang123/UniTreeG.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are provided in Appendix E, Appendix F and Ap-
pendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experiments that support the main claims of the paper provide error bars,
as shown in tables, such as Table 1, Table 2 and Table 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

38

https://github.com/yukang123/UniTreeG
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources is included in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to all guidelines and principles outlined in the NeurIPS
Code of Ethics, including considerations for fairness, accountability, and transparency.
Ethical practices were maintained throughout the study, ensuring compliance with all
applicable standards.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the social impacts of this paper in Appendix B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

39

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators and original owners of assets used in this paper are properly
credited. The licenses and terms of use are explicitly mentioned and respected according to
their guidelines.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

40



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release our code and models along with detailed documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

41

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodological development in this research does not involve LLMs
as significant, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Diffusion and Flow Models
	Objective

	TreeG: Tree Search-Based Path Steering Guidance
	Algorithmic Framework

	Design Space of TreeG
	Sample-then-Select on Current States
	Sample-then-Select on Destination States
	Gradient-Based Guidance with Differentiable Objective Predictor

	Experiments
	Settings
	Guided Generation
	Symbolic Music Generation
	Small Molecule Generation
	Enhancer DNA Design

	Scalability on Inference-Time Computation
	TreeG Configuration Analysis

	Conclusion
	Additional Related Work
	Limitations and Broader Impacts
	Discussion on Design Axes
	Omitted Proofs in sec: design space
	Proof of thm:xt_sampling
	Proof of Lemma 1
	Proof of thm:x1_sampling
	Auxiliary Lemmas

	Algorithmic Details
	Discussion on Existing Works
	TreeG-Gradient Details
	More Implementation Details for Continuous Models
	More Implementation Details for Discrete Models

	Experimental Details
	Additional Setup for Symbolic Music Generation
	Additional Setup for Small Molecule Generation
	Additional Setup for Enhancer DNA Design
	Experimental Setup in Figure 2

	Additional Experiment Results
	Additional Results for Symbolic Music Generation
	Additional Infomation for tab:music guidance
	Scalability

	Additional Results for Small Molecule Generation
	Additional Results for Table 2.
	Scalability

	Additional Results for Enhancer DNA Design
	Full Results of tab:enhancer guidance res
	Scalability


	Ablation Studies
	Symbolic Music Generation
	Discrete Models
	Selection Choices in Alg.1


